

Value-Based Utility Adaptation of
RED Parameters

A Thesis Proposal

by Rachel Pua Villacorta

Candidate for Master of Science in Electrical Engineering
(Computers and Communications)

Department of Electrical and Electronics Engineering
University of the Philippines, Diliman

with Dr. Cedric Festin
as Thesis Adviser

 October 2003

1

Abstract

Random Early Detection (RED) is used as a congestion avoidance mechanism in a

router wherein the average queue size is compared to the minimum and maximum

thresholds of the buffer. Packets are dropped, marked, or allowed to pass depending

on the size of the queue relative to the thresholds. While RED may be suitable for

flows which have similar loss requirements, it remains to be seen if it can be effective

when flows have varying expectations. A solution is to make the RED thresholds

adaptive to requirements. Studies on finding suitable values for these parameters are

available but they are not directly applicable when there are differences in

requirements. This study aims to provide solutions to configuring these parameters

which uses information differentiating flows and their requirements. In particular, we

will be using Value-Based Utility (VBU), a utility-based cost function to assess each

flow's packet loss requirements. This additional information will then be used to

dynamically tune and adapt the RED parameters.

2

1.0 Literature Review

1.1 Introduction

The number of Internet users is rapidly growing. Internet traffic load is

thus increasing making congestion a big issue in computer networks.

Transport Control Protocol (TCP), a reliable connection-oriented

transport protocol, uses a congestion control mechanism wherein

retransmission timeout and duplicate acknowledgments (ACKs) are needed to

detect congestion [14]. However, this congestion control mechanism is not

enough to limit the congestion experienced in the network.

Congestion avoidance mechanisms are thus developed to complement

the work that this congestion control mechanism accomplishes. With a

congestion control mechanism, packet loss is inevitable since congestion is

only detected when packets are lost due to buffer overflow or when a time-out

occurs due to high delay. Congestion avoidance mechanisms, on the other

hand, aim to detect incipient congestion. Thus, packet loss could be minimized

while maximizing throughput and minimizing delay. There are several

congestion avoidance mechanisms defined such as DECbit and Random Early

Detection (RED), the latter being the more prominent one. Some simulations

and papers have acknowledged the advantages of using RED [9, 10] but some

authors refute these [14]. Some have extended RED knowing its capabilities

and limitations. Some have combined RED with Explicit Congestion

Notification (ECN) and compared this with Packet drop [5]. Some have

combined RED and ECN with a preferential dropping [11, 12]. There are

therefore many factors that could be studied to improve the overall treatment

of congestion or incipient congestion. The type of congestion avoidance

mechanism, its parameters, and congestion notification algorithms are among

the things that could be investigated to improve network performance through

metrics like throughput and delay.

User Datagram Protocol (UDP), an unreliable connectionless transport

protocol, does not have a congestion control mechanism [14]. Unlike TCP, it

does not respond to congestion notifications. It just uses up whatever

3

bandwidth is available. Dropping packets is then the solution in managing the

buffer. However, in the upper layer, congestion indications are not ignored.

Thus, even though UDP traffic is inherently ‘greedy’, it can still be studied in

congestion avoidance issues. Some authors suggested penalizing these types of

traffic since ‘behaved’ flows are the ones suffering from these ‘greedy’ flows

[12]. On the other hand, some are not biased against these flows but are in

favor of taking measures in controlling this type of flows [13].

1.2 Congestion

Congestion happens when too many packets are dropped frequently at

the routers. This could be due to a fast sender sending too many packets,

transmitting at a rate that a receiver cannot handle. Packets are queued in a

limited, finite buffer and if the buffer becomes full, packets need to be

dropped.

Congestion could also occur when too many users or applications are

connecting to the same output. Again, since buffer space and capacity of the

link are limited, the buffer could overflow, dropping packets in the process.

1.3 Congestion Avoidance Mechanisms

There are many mechanisms developed in congestion avoidance. As

opposed to drop-tail which just allows packets to be dropped when the buffer

overflows, active queue management is much recommended because it avoids

congestion thus minimizing packet drops.

1.3.1 DECbit

The DECbit mechanism aims to avoid congestion at the router by

setting a bit in the packets which experience congestion [14]. The receiver

then sends an ACK to the source indicating that there is congestion. The

source, which counts the number of packets with set congestion bit, will

decrease its congestion window to 0.875 times the previous value when

more than 50% of the total transmitted packets have set congestion bit.

1.3.2 Random Early Detection (RED)

Random Early Detection (RED) [10] is a congestion avoidance

mechanism used for packet-switched networks. It is called Random Early

Detection because it notifies the connections at random of incipient

4

congestion and anticipates congestion before it happens. RED is one of the

most popular algorithms being used today to detect and avoid congestion.

It is most commonly implemented in gateways since the gateways have a

local view of the state of the connections. It allows occasional burst traffic

by maintaining a regular, evenly spaced interval when marking packets,

and avoids global synchronization by randomly choosing which

connection to notify to decrease its window size in sending packets. In this

way, simultaneous decreasing of windows will be avoided.

RED is designed to be used in conjunction with Transport Control

Protocol/Internet Protocol (TCP/IP) in the transport layer but it could still

be used when other protocols in the transport layer are implemented. This

is because in RED, marking of packets can be implemented by dropping

them rather than marking a bit in the packet header.

RED computes the average queue size as packets arrive in the

gateways rather than the actual queue size to isolate cases of transient

congestion. This means that RED allows occasional burst traffic and is not

biased against it. After computing the average queue size, this value is

compared to the minimum and maximum thresholds. If the average queue

size is less than the minimum threshold, then the packets are queued with

no marks. If the average queue size is greater than the maximum

threshold, the packets are marked (a bit is set in the packet header) or the

packet is dropped. If the average queue size is between the minimum and

maximum thresholds, then the packets are marked with a probability

proportional to the connection’s share of the bandwidth.

The detailed RED algorithm is shown below:

 INITIALIZATION:
avg = 0;
count = -1;

FOR EACH PACKET ARRIVAL:
calculate the new average queue size avg:

if the queue is not empty {
avg = (1 – wq)avg + wqq; }

else {
m = f(time – q_time);
avg = (1 – wq)mavg;

 }

5

if minth ≤ avg < maxth {
increment count;
calculate probability pa ;
 pb = maxp(avg - minth)/(maxth – minth);
 pa = pb /(1 – count * pb);
with probability pa :
 mark the arriving packet;
 count = 0;

 }
else if maxth ≤ avg {

mark the arriving packet;
count = 0;

 }
else {

count = -1;
 }

when queue becomes empty
q_time = time;

Saved Variables:
avg: average queue size
q_time: start of the queue idle time
count: packets since last marked packet

Fixed Parameters:
wq: queue weight
minth: minimum threshold for queue
maxth: maximum threshold for queue
maxp: maximum value for pb

Other:
pa: current packet-marking probability
q: current queue size
time: current time
f(t): a linear function of the time t

 The average queue size is calculated as

 avg = (1 – wq)avg + wqq

In calculating the average queue size, a low pass filter is needed

and an exponential weighted moving average is used to implement it. This

type of filter is used so that occasional bursts and transient congestion do

not contribute too much to the increase in the average queue size.

In calculating the packet marking probability, the initial packet-

marking probability, pb, is determined by

6

 pb = maxp(avg - minth)/(maxth – minth)

This pb is used in calculating the final packet-marking probability,

pa,

 pa = pb /(1 – count * pb)

This is the equation used so that the interval of marked packets is

fairly evenly spaced to avoid clustering such that global synchronization is

avoided.

Some guidelines had been followed in finding a value for the

parameters. The weight in calculating the average queue size, Wq, should

not be too large or too low. It must be greater than 0.001 [8] and must

satisfy the following equation where minth is the minimum threshold, and

L is the allowable bursts of packets:

 L + 1 + (1 – wq) L+1 -1 < minth

 wq

The minimum threshold, minth, must not be too small such that the

link utilization is not optimized. The maximum threshold, maxth must be

set to at least twice minth to account for the increase in the average queue

size in one roundtrip time. It must also be greater than 0.1 [8, 10].

1.4 Congestion Notification Algorithms

The congestion notification algorithms should be carefully chosen to

minimize or avoid global synchronization or bias against bursty traffic.

1.4.1 Packet Drop

Packet Drop is the basic way of notifying connections of

congestion. However, studies have shown that this is not enough and that

a more explicit indicator should be adopted.

1.4.2 Explicit Congestion Notification (ECN)

Explicit Congestion Notification is used in conjunction with a

congestion avoidance mechanism (in a TCP/IP environment) which sets a

bit in the packet header. Once the ACK is received and the source sees

that this bit is set, it will halve its window size.

1.5 Parameter Setting

7

As mentioned before, there are many things that could be manipulated

or could influence the network so that congestion is best controlled and

avoided.

1.5.1 Type of Congestion Avoidance Mechanism and Parameters

As mentioned earlier, congestion control is not enough to address

congestion problems. The type of congestion avoidance mechanism that

will be used together with other factors (such as its algorithm and

parameters) affect network congestion. RED, the more commonly used

congestion avoidance mechanism, has a lot to offer in the area of network

congestion. However, as mentioned earlier, it also has areas for

improvement. The area that we are most interested in is the manipulation

of its parameters. One of the studies on RED [5] suggests that the

parameter maxp be investigated. Another study [14], on the other hand,

suggests that the calculating probability algorithm be investigated.

1.5.2 Type of Congestion Notification Scheme

Most of the current experiments now explore schemes other than

dropping packets. ECN is more commonly used. The congestion

notification scheme is important in congestion control and avoidance since

congestion management does not just end in the routers. End to end

management is equally important since it is the sender who will be

adjusting its transmission rate and transmitting packets over the network.

1.5.3 Type of Flows

The traffic mix affects the performance of the network. TCP flows

are responsive to congestion indications. UDP flows, on the other hand,

are unresponsive to congestion. One paper [11] categorizes traffic into

three categories: non-adaptive (e.g., audio and video applications), robust

(respond to congestion but uses up as much bandwidth as allowed), and

fragile (responds to congestion but cannot adapt easily to available

bandwidth and is sensitive to losses). In the same paper, Flow Random

Early Drop (FRED), an extension of RED, is studied. It tries to eliminate

RED's tendency to be 'unfair' since it does not distinguish between traffic

types.

8

1.5.4 Traffic Load

Studies show that traffic load influences the Quality of Service

(QoS) of computer networks. RED, in particular, does not operate

optimally under different traffic conditions. A study, then, proposes to

maintain high throughput and low delay while adaptively managing the

queue [14].

1.5.5 Queuing Discipline and Scheduling

FIFO

In First-In-First-Out (FIFO) [14], packets are queued in the

buffer as they arrive. Packets are serviced in the order of arrival in

the router, i.e., packets that arrived first get serviced first. With

drop-tail, packets are just dropped once the buffer is full. With

other mechanisms, performance of FIFO queues will greatly

improve.

Fair Queuing

Traffic flows get differentiated in fair queuing. Each flow

is queued in separate buffers. Round Robin scheduling is

implemented in the different queues. Round Robin is done by

passing through all the queues one after the other in an ordered

manner. Once the last queue is serviced, the first queue is serviced

next and again, the same order is followed.

1.6 Value-Based Utility

The Value-Based Utility [6] is a tool, for measuring the level of

satisfaction or dissatisfaction of users. Its definition is given by:

 Ui,QoS,m,�t(p,b) = G/N – (N-G)/N * p/q Equation (1)

 where U is the utility of a flow i for the required QoS, taken at point m

during the interval �t = (t2-t1)

 p is the target percentage of packets meeting the required QoS

 b is the target QoS bound

G is the number of packets that satisfy the requirements of a

certain flow

 N is the total number of packets of a flow

9

 q is the allowed percentage of error and is equal to 1 - p

Utility is 1 when G equals N. This means that all packets of a certain

flow satisfy all the requirements for that flow. This is what is referred to as

happinessmax. This indicates that the user corresponding to that flow is satisfied

to the highest level.

Utility is 0 when G equals N*p. This is what is referred to as

happinessmin. This indicates that the user corresponding to that flow is satisfied

but to the lowest level only, i.e., when the percentage of the packets satisfying

the requirement is equal to the target percentage of packets meeting the

required QoS.

Utility is between 0 and 1 when there is no target requirement

percentage for meeting bound b, when p equals 0, or when the target QoS

bound, b is not set. This could also happen when G is greater than N*p, i.e.,

when a certain flow i exceeds the target percentage of packets meeting the

required QoS bound. In this case, the user is still happy and the degree of

happiness varies from 0 to 1 depending on how much the target is exceeded.

Utility is negative when G is less than N*p which means that the

percentage of packets that meet the requirement is less than the target

expectation. Negative utility is bounded by unhappinessmax when G equals 0 or

when utility is –p/q. This also means that there are no packets that satisfied the

target QoS bound.

Utility is shown in diagram form [6] in Figure 1-1:

 happinessmax =1
 expectation

 Utility happinessmin =0

 dissatisfaction

 unhappinessmax = -p/q

Figure 1-1. Utility in diagram form

The definition of utility in Equation (1) is not applicable for a

deterministic requirement wherein p is always 1. In the above equation, when

p equals 1, q equals 0 which would give an undefined p/q term. Moreover,

10

when G equals N, the above definition would give a utility of 1 or

happinessmax. This should not be the case for a deterministic QoS requirement

since when p is always equal to 1 and G equals N, this points to the fact that

the QoS requirement is just satisfied and degree of satisfaction is only

minimum. This also means that since it is expected that all packets satisfy the

target QoS bound, then, when this happens, the degree of happiness is just the

minimum. For a deterministic requirement, the definition of utility is

expressed as:

Ui,QoS,m,�t(p,b) = – (N-G)/N * α'

where α' is some value greater than p/q of the known smallest q at

point m

The Value-Based Utility could be used in traffic management when

controlling the admission of connections, classifying packets, shaping and

conditioning traffic, marking packets, scheduling, and discarding packets.

In admission control, the Value-Based Utility could be used to

determine how many users are satisfied. If this number, say T, taken over the

total number of users, say W, meets a certain percentage, X, then new

connections could be admitted and the number of connections to be admitted

could depend on how far or near T/W is to X. The Value-Based Utility could

also be used to adjust the utility of users to give way to new connections. It

could look at some number of users with the highest value of utility, and then

adjust the resources of these connections such that these utilities will decrease

while retaining a minimum level of satisfaction and making room for new

connections.

In packet classification, the Value-Based Utility could be used to attach

a label to each flow. Labels could be ‘highly satisfied’, ‘satisfied’, and

‘unsatisfied’. ‘Highly satisfied’ flows could be adjusted such that these

become ‘satisfied’ flows and some, if not all, ‘unsatisfied’ flows could be

adjusted to become ‘satisfied’ flows. Moreover, some, if not all, ‘satisfied’

flows could be promoted to become ‘highly satisfied’ flows as long as there

are no more ‘unsatisfied’ flows.

11

In traffic shaping and conditioning wherein the transmission of packets

is regulated and a connection’s profile is checked, the Value-Based Utility

could be used to slow down or to speed up transmission of packets by

manipulating p, b or �t or it could be used to police connections and see if

these still adhere to the contract agreed upon with the network.

In scheduling, the Value-Based Utility could be used, for example, in

priority scheduling, to choose which flow to service first depending on the

degree of happiness or unhappiness of each flow. Flows that have lesser level

of happiness could be serviced first with the happiest flow serviced last.

Service weights or percentage of flows permitted to the network could also be

adjusted to improve the utility of unhappy flows.

In packet marking or discarding, the Value-Based Utility could be used

to classify which and when to mark or discard packets. This is important in

congestion avoidance mechanisms such as RED. Since the Value-Based

Utility could be used to know the state of each flow, packets belonging to a

certain flow that need to be dropped or marked when implementing RED

could still be queued or serviced to improve its happiness. Moreover, the

Value-Based Utility could also be used to dynamically adapt or change the

parameters critical to the implementation of RED. This is an area that needs to

be thoroughly researched and is the area the researcher plans to study in depth.

As shown in the algorithm of RED, the parameters – minimum and

maximum thresholds are critical for the implementation of the mechanism.

This is where the Value-Based Utility will be used. The Value-Based Utility

will be used to dynamically adapt these parameters to avoid congestion while

maintaining or improving the satisfaction of some, or improving the state of

unsatisfied users.

2.0 Statement of the Problem

RED treats all flows similarly even if flow requirements are different. This

results in an insufficient queue management leading to dissatisfaction of some flows.

A solution is needed to address this problem. Value-Based Utility offers flow

identification based on requirements which can be adapted for RED. We believe that

12

with this additional information used to adapt and tune RED parameters, the problem

of uniform treatment of flows will be mitigated and RED's performance improved.

3.0 Methodology

The initial phase includes designing and implementing Drop Tail and RED in

Network Simulator 2 (NS2), a tool wherein buffer management strategies could be

experimented on and modified. After implementation, simulation results will be

compared based on packet loss. Similarly, RED with VBU management (RED-VBU)

will be designed and implemented in NS2. Simulation results will also be compared

based on packet loss, delay and throughput.

3.1 Simulation environment

All experiments will investigate the following factors unless specified

otherwise.

3.1.1 Network Topology

Single-hop and double-hop models will be used. In the single-hop

model (Figure 3-1), sources S1, S2, S3,... Sn are connected to the router R

with O as the output sink. Utilities could be measured and kept in both R

and O. Utilities measured in O will serve as feedback to R. These will be

used in recalculating the utilities in R. On the other hand, in the double-

hop model (Figure 3-2), sources S1, S2, S3,... Sn are connected to the

router, R1, like in the former model but this time, R1 is connected to

another router, R2 with O as the output sink. In this model, utilities could

be measured in R1, R2 and O. The utilities measured in O will serve as

feedback to R2. R2 will then recalculate the utilities and in turn will serve

as feedback to R1. Note that where the utilities will be measured is still

subject to experimentation.

13

 S1

 S2

 S3

 Sn

 Figure 3-1. Single hop model

 S1

 S2

 S3

 Sn�����������������������������������

 Figure 3-2. Double hop model

3.1.2 Traffic Source Models

In general, we will consider two types of traffic – bulk transfer and

interactive traffic. We will be looking at some source models commonly

used and available in NS2. Initially, we will look at the Exponential and

Pareto distributions in generating the traffic sources. These distributions

will be used in varying the size of packets and the transmission rate of

each packet.

3.1.3 Network Load

Load will be varied to see the effects of the buffer management

schemes. The schemes will be tested under light, medium and heavy load.

This classification could be defined by looking at one of these things – the

utilization, utility or the packet drops. A high utilization would mean that

the buffer is almost always with packets that need to be serviced. The

utilization, U, could be measured by counting the amount of time, B, that

there is/are packet/s in the queue and dividing it by the measurement

period, T. A high utility, U, would mean that the flow is very happy. This

means that the flow is satisfied with the service that it gets. High packet

drops would mean that the buffer frequently overflows. Thus, load is

considered light when the U is low, U is high and packet drops is zero.

Load is considered medium when U, U and packet drops are 35-70%.

14

�
�

�
�

� ��

��

Load is considered heavy when U is high, U is low and packet drops is

almost 100%.

3.1.4 Traffic mix

Flows will be grouped according to their requirements. Initially,

the groupings used in [6] will be adapted. Flows will be grouped as

follows : High Expectation Flows (HEFS) have a target, p, of 99%,

Medium Expectation Flows (MEFS), 90% and the Low Expectation

Flows (LEFS), 80%. HEFS are those flows which could tolerate 1%

packet loss while MEFS could tolerate 10% packet loss and LEFS 20%.

The number of sources with each type of flow will be varied.

3.1.5 Service Time

Service time, S, is the average amount of time that is needed for a

packet to be serviced. S of each router will be deliberately set to values

that will lead to congestion. This is needed to determine the effect of the

schemes to be investigated. Setting S small would cause the buffer not to

overflow or be empty at times. This is not the desired scenario since we

are observing at the performance of the schemes while congestion is

happening. S should then be slower than the arrival rate, λ, �of each

packet. The experiments will be implemented with the service time kept

constant while varying the buffer length.

3.1.6 Routers R1 and R2

Each router will have a single buffer that will be used for

queueing. The length will be varied from large to small. This will show

the effect of the schemes when there is congestion. Experiments will be

designed to look at the effect of logically partitioning the buffer. There

will be experiments using a single buffer with no partition and

experiments using virtual buffers to accommodate each type of flow.

These virtual buffers would allow differentiation of the flows so that each

flow will be serviced according to its need. Since there are three types of

flows that will be considered – HEFS, MEFS and LEFS, we will initially

15

use three virtual buffers. Each buffer will maintain RED's parameters –

minth, maxth, maxp and wq. Upon implementing the experiments, the

number of logical partitions will be investigated together with the length

of each virtual buffer and the values of each RED parameter per virtual

buffer.�

The bandwidth of the link connecting R1 and R2 should be small to

induce congestion in both R1 and R2. This would mean that S will be large

or servicing would be slow since S is inversely proportional to the

bandwidth. Again, S should be slower than λ.

 3.1.7 Duration of the simulation

Preliminary experiments per scheme will be done to look at the

duration of the simulation that will be used in all the experiments. Not all

data will be used particularly the transient period associated with the

startup phase. This will be removed so that the results will not be affected

by the fluctuations during the start of the simulation.

3.2 Experiments

Majority of the experiments will use the single hop model and we shall

initially investigate the Exponential and Pareto distributions as traffic source

models. Some experiments will be implemented in the double hop model to be

able to generalize the results. The experiments will be implemented under

light, medium and heavy load. Traffic mix will also be investigated.

Preliminary experiments will be simulated at different durations to extract that

which gives the most stable results. Experiments will be designed and

implemented using Drop Tail, RED and RED-VBU schemes.

3.3 Proposed Scheme : RED-VBU

NS2 script for RED will be modified by integrating VBU management

of packet loss requirements in RED's algorithm. Initially, routers will each

have three virtual buffers with each buffer assigned to a specific class. This

scheme will investigate the sizes of each virtual buffer under a predefined

buffer length. The experiments will be investigated under different factors

shown in Table 3-1.

16

Factors Description
time interval �t time interval in getting VBU

measurements

handling packets queuing, dropping or marking

RED parameters minimum and maximum
thresholds, maxp (maximum value
for probability pb), and wq (queue
weight)

Table 3-1. Factors affecting RED and VBU

In RED-VBU, we will compute the utility per flow in the router. The

average queue size will be computed every packet arrival. Only after �t will

we decide on the appropriate way of handling the packets. The decision will

now be based on the average queue size and the utilities in comparison to the

thresholds. After the flow is serviced, the utility will be computed again in the

output sink. The utility measured will then be sent back to the router. The

previous utility will be compared to this feedback utility. Based on this

comparison, the size of the virtual buffers and/or the values of RED

parameters will be adjusted.

The last implementation of RED-VBU scheme will also be

investigated on the double hop model to look at its scalability and consistency.

Under the same simulation environment, Drop Tail and RED will also be

implemented on the double hop model. Implementation in the double hop

model will only involve managing packet loss requirements similar to the

implementation in the single hop model.

3.4 Analysis of Results

Scripts will be written to reduce the data gathered in the simulations.

This will remove the data that are not needed in the trace file extracted from

the simulations. Xgraph, which is integrated in NS2, or GNUplot, which is an

open source data plotting program, will be used to graph packet loss, delay

and throughput.

Results of Drop Tail, RED and RED-VBU will be compared.

Comparisons will be shown through graphs.

17

3.5 Schedule

Phase Month 1 Month 2 Month 3 Month 4 Month 5 Month 6
Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 6

Phase 7

Phase 8

Figure 3-3. Schedule

Phase 1 consists of performing preliminary experiments on Drop Tail

using the single hop model implementing the different traffic source models,

experiments on Drop Tail under different simulation environment, extracting

the data that we will be using from the trace file and graphing packet loss,

delay and throughput metrics.

Phase 2 consists of performing experiments on RED using the single

hop model and graphing packet loss, delay and throughput metrics.

Phase 3 consists of designing experiments on RED using the single

hop model.

Phase 4 consists of performing experiments on RED using the single

hop model and graphing packet loss, delay and throughput metrics.

Phase 5 consists of comparing and analyzing of results using the

graphs obtained.

Phase 6 consists of designing and performing experiments on Drop

Tail, RED, and RED-VBU using the double hop model under the simulation

environment that produced the most satisfactory RED-VBU scheme results

using the single hop model.

Phase 7 consists of comparing and analyzing the results from Phase 6.

 Phase 8 consists of making the documentation.

4.0 Bibliography

18

[1] M. Arpaci and J. Copeland, “An adaptive queue management method for

congestion avoidance in TCP/IP networks,” in Proceedings IEEE

GLOBECOM 2000, San Francisco, California, November 2000.

[2] U. Bodin, O. Schelen, and S. Pink, “Load-tolerant differentiation with active

queue management,” ACM SIGCOMM Computer Communication Review,

vol. 30, no. 4, pp. 4-16, July 2000.

[3] T. Bonald, M. May, and J. Bolot, “Analytic evaluation of RED performance,”

in Proceedings of INFOCOM, pp. 1415-1424, 2000.

[4] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd,

V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S.

Shenker, J. Wroclawski, and L. Zhang, “Recommendations on Queue

Management and Congestion Avoidance in the Internet,” Request for

Comments (RFC) 2309, April 1998.

[5] W. C. Feng, D. Kandlur, D. Saha, and K. Shin, “A self-configuring RED

gateway,” in Proceedings of INFOCOM'99, March 1999.

[6] C. Festin, “Utility-based buffer management and scheduling for networks,”

Ph.D. Thesis, University of London, 2002, Ch. 2 & 3.

[7] V. Firoiu and M. Borden,“A study of active queue management for congestion

control,” in Proceedings of INFOCOM 2000.

[8] S. Floyd. “RED: Discussion of Setting Parameters”.

http://www.icir.org/floyd/REDparameters.txt. (Accessed August 2003).

[9] S. Floyd and K. Fall, "NS simulator tests for random early detection (RED)

queue management," Lawrence Berkeley Laboratory, April 29, 1997.

[10] S. Floyd and V. Jacobson, “Random early detection gateways for congestion

avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp.

397-413, August 1993.

[11] D. Lin and R. Morris, “Dynamics of random early detection,” in Proceedings

of ACM SIGCOMM '97, Cannes, France, pp. 127-137, October 1997.

[12] R. Mahajan, S. Floyd, and D. Wetherall, “Controlling high bandwidth flows at

the congested router,” in Proceedings of the ACM 9th International

Conference on Network Protocols (ICNP), Nov. 2001.

19

[13] M. Parris and K. Jeffay, “A better-than-best-effort service for continuous

media UDP flows,” NOSSDAV '98.

[14] L. Peterson and B. Davie. Computer Networks: A Systems Approach. 2nd ed.

Academic Press, 2000.

[15] S. Reddy, “LRU-RED: An active queue management scheme to contain high

bandwidth flows at congested routers,” in Proceedings of Globecomm, Nov.

2001.

20

