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Abstract This manuscript is concerned with a novel, unified
finite element approach to fully coupled cardiac electrome-
chanics. The intrinsic coupling arises from both the
excitation-induced contraction of cardiac cells and the defor-
mation-induced generation of current due to the opening of
ion channels. In contrast to the existing numerical approaches
suggested in the literature, which devise staggered algorithms
through distinct numerical methods for the respective elec-
trical and mechanical problems, we propose a fully implicit,
entirely finite element-based modular approach. To this end,
the governing differential equations that are coupled through
constitutive equations are recast into the corresponding weak
forms through the conventional isoparametric Galerkin
method. The resultant non-linear weighted residual terms are
then consistently linearized. The system of coupled algebraic
equations obtained through discretization is solved monolith-
ically. The put-forward modular algorithmic setting leads to
an unconditionally stable and geometrically flexible frame-
work that lays a firm foundation for the extension of constitu-
tive equations towards more complex ionic models of cardiac
electrophysiology and the strain energy functions of cardiac
mechanics. The performance of the proposed approach is
demonstrated through three-dimensional illustrative initial
boundary-value problems that include a coupled electrome-
chanical analysis of a biventricular generic heart model.
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1 Introduction

Heart disease is the primary threat to human life in developed
countries. In the United States, for example, half a million
people yearly die because of heart diseases such as cardiac
arrhythmias [44]. Recent research in medicine and bioengi-
neering striving for the treatment of infarcted cardiac tissue
advocates stem cell-based therapies. Undoubtedly, computa-
tional models of cardiac electromechanics are powerful tools,
used to guide a successful patient specific therapy design.
They do not only play a crucial role in reproducing biologi-
cal cardiac behavior by incorporating experimental findings
but also serve as a virtual testing environment for predictive
analyses where experimental techniques fall short [14,31].
The predictive quality of the computational tools crucially
hinges on physiologically well-founded, detailed constitu-
tive models and on their robust, efficient and stable algorith-
mic implementation. Therefore, it is the key objective of this
work to develop an efficient, robust, modular, and unified
finite element approach to the fully coupled cardiac elec-
tromechanical problem. In the remainder of this section, we
provide an introduction to computational cardiac electrom-
echanics in a nutshell. Hence, an exhaustive review of the
existing literature is not aimed; instead, only a few selected
references are addressed.

The heart is mainly made of contractile muscle cells, myo-
cytes, that constitute approximately 75% of the solid heart
volume. Myocytes have a cylindrical shape, range from 10
to 25 µm in diameter and can reach up to 100 µm in length.
The rest of the heart consists of pacemaker cells, conducting
tissue, blood vessels and extracellular media [15,28]. The
myocardium possesses a hierarchical micro-structure where
myocytes are arranged in bundles of myofibers. These fibers
wind around the heart in an organized way, thereby result-
ing in highly anisotropic and heterogeneous architecture.
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Directional orientation of the myofibers is relatively well
documented in the literature [26,32,36]. Roughly speaking,
the orientation of myofibers exhibits a left-handed spiral-
like pattern in the epicardium (outer wall) and a right-handed
spiral-like arrangement in the endocardium (inner wall). Var-
iation of the fiber orientation across the heart wall is
fairly smooth. This arrangement of myofibers is of vital
importance for the successful transduction of essentially one-
dimensional contraction of myocytes to the overall pumping
function of the heart.

On the lower scale of the hierarchical micro-structure,
myocytes contain bundles of contractile myofibrils that are
formed by sarcomeres, the basic contractile unit. Sarcomeres,
which measure about 2 µm in length, are connected in series
to form myofibrils. Two major protein molecules of sarco-
meres, thick myosin and thin actin, slide over each other,
thereby pulling the two ends (Z-lines) of the sarcomere. The
entire complex process, called cross-bridging, is where the
myosin heads interact with the binding side of the actin fila-
ments. Cross-bridging is triggered by calcium influx [3] upon
rapid depolarization of the myocyte from the polarized rest-
ing state with transmembrane potential of Φ ≈ −80 mV to
the depolarized state with Φ ≈ +20 mV. From the depolar-
ized state, the myocyte repolarizes back to its resting state
through complex ion in- and efflux dynamics across the cell
membrane. The depolarization, also referred to as excita-
tion, and repolarization result in the action potentials, Fig. 4,
whose characteristics are intrinsic to different kinds of excit-
able cardiac cells. The electrical depolarization activity of the
heart is initiated at its natural pacemaker, the sinoatrial node,
located in the right atrium. The depolarization wave travels
through the atria, the upper chambers of the heart, and is then
conducted to the ventricles, the lower chambers, via a spe-
cial conducting system involving the atrioventicular node,
left and right bundle branches, Purkinje fibers, and the myo-
cardium. The generation and propagation of excitation waves
are controlled by opening and closing of ion channels in the
cell membrane. Apart from the excitation-induced depolar-
ization and contraction of cardiac cells, myocytes can also
be excited through the stretch-induced opening of ion chan-
nels, commonly referred to as the mechano-electric feedback
[16]. This phenomenon is considered to be extremely crucial
to understand the interplay between electrophysiology and
mechanics of myocytes, especially regarding the transient
pacemaker organization and fibrillation [13]. Therefore, it
is of fundamental importance that a complete computational
modeling approach to cardiac electromechanics accounts not
only for the excitation-triggered contraction of myocytes but
also for the stretch-activated excitation of cardiac cells.

Quantitative modeling of electrophysiology of cells can be
traced back to the seminal work of Hodgkin and Huxley [10]
on neural cells. About a decade later, their celebrated four-
parameter model was considerably simplified by FitzHugh

[7] and Nagumo et al. [20] to a two-parameter phenomeno-
logical model involving only two ordinary differential equa-
tions for the rapidly evolving transmembrane potential Φ and
the recovery variable r that evolves slower than Φ. This pio-
neering work has then been followed by the action potential
models of cardiac cells proposed by Noble [27], Beeler and
Reuter [2], Luo and Rudy [18], to mention a few. We also
refer to the recent literature [4,6,12,33,37,41] for excellent
classifications of the cardiac cell models. To describe the spa-
tial propagation of excitations waves (depolarization front),
the local cell models have been extended to the reaction–dif-
fusion-type formulations through a phenomenological con-
duction term. In this context, Aliev and Panfilov [1] and
Fenton and Karma [5] suggested the numerical analysis of
traveling excitation waves with the help of explicit finite dif-
ference schemes. At the same time, one of the first finite ele-
ment algorithms for cardiac action potential propagation was
suggested by Rogers and McCulloch [34,35]. In our recent
work on computational cardiac electrophysiology [8], we
proposed a new, algorithmically efficient, fully implicit finite
element approach based on the global–local split of the fast
and slow variables. We have successfully applied this method
to three-dimensional fibrillation simulations [9] and to
patient-specific calculation of electrocardiograms [17]. The
formulation proposed in this paper extends this approach to
the fully coupled electromechanics of the heart where both
the excitation-induced contraction of myocytes and the defor-
mation-activated ion channels play an important role.

Apart from the approaches to computational rigid car-
diac electrophysiology, mentioned above, and models deal-
ing with purely mechanical passive behavior of the heart
[11,21], there have also been attempts aimed at incorpo-
rating the mechanical field through excitation–contraction
coupling. However, most existing algorithms are based on a
staggered time stepping scheme that combines a finite differ-
ence approach to integrate the excitation equations through
an explicit forward Euler algorithm with a finite element
approach for the mechanical equilibrium problem [13,22,
23,29]. Therefore, they require sophisticated mappings from
a fine electrical grid to a coarser mechanical mesh to map
the potential field, and vice versa, the deformation field. In
this line, the methods suggested, for example in [24,38,42]
among others, devise operator splitting schemes for the solu-
tion of the coupled problem. It, however, is a well known fact
that these algorithms have drawbacks regarding the numer-
ical stability. They are only conditionally stable [25], and
thus, the size of the time step is restricted to extremely small
values. Moreover, the latter approaches are only one-way
coupled, neglecting the mechano-electric feedback.

In contrast to the existing numerical approaches in the
literature; to the best of our knowledge, we, for the first
time, propose a fully implicit, entirely finite-element-based
approach to the strongly coupled non-linear problem of
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cardiac electromechanics. Accordingly, the governing
differential equations that are coupled through constitutive
equations are recast into the corresponding weak forms
through the conventional isoparametric Galerkin method.
The resultant non-linear weighted residual terms are then
consistently linearized in the Eulerian setting. The system
of coupled algebraic equations obtained through discretiza-
tion is solved simultaneously. This results in an uncondi-
tionally stable, modular and geometrically flexible structure.
The put forward framework accounts for both the excita-
tion-induced contraction of cardiac tissue and the deforma-
tion-induced generation of current due to the opening of ion
channels. The suggested algorithmic setting is tailored in
such a general way that it can readily be furthered towards
physiologically more complex ionic models of cardiac elec-
trophysiology where the concentration of ions directly enters
the formulation. We illustrate the performance of the pro-
posed approach by means of three-dimensional representa-
tive initial boundary-value problems that cover the re-entrant
scroll dynamics and impact loading-generated excitation in
a slice of contractile cardiac tissue and the coupled electro-
mechanical analysis of a biventricular generic heart model.

The paper is organized as follows. In Sect. 2, we introduce
the governing equations of a coupled initial boundary-value
problem of cardiac electromechanics. Section 3 is devoted
to the derivation of the weak forms of the field equations,
their linearization, and their spatio-temporal discretization.
In Sect. 4, we consider a model problem of cardiac elec-
tromechanics where the specific constitutive equations are
described and the associated consistent algorithmic tangents
are derived. Section 5 is concerned with several numerical
examples demonstrating the distinctive performance of the
proposed approach. We conclude the manuscript with some
closing remarks in Sect. 6.

2 Field equations of cardiac electromechanics

In this section, we introduce the fundamental equations of
the coupled boundary-value problem of cardiac electrome-
chanics. After briefly introducing the key geometric maps of
non-linear continuum mechanics, we present two essential
differential equations of the coupled problem along with the
corresponding boundary conditions. Apart from the kine-
matic and field equations, the specific functional dependen-
cies of constitutive equations are outlined to address the
intrinsically coupled electromechanical character of the prob-
lem of interest.

2.1 Kinematics

Let B ⊂ R
3 be the reference configuration of an excitable and

deformable solid body that occupies the current configuration

Fig. 1 Motion of an excitable and deformable solid body in the Euclid-
ean space R

3 through the non-linear deformation map ϕt (X) at time
t . The deformation gradient F = ∇X ϕt (X) describes the tangent map
between the respective tangent spaces

S ⊂ R
3 at time t ∈ R+ as shown Fig. 1. Material points X ∈

B are mapped onto their spatial positions x ∈ S through the
non-linear deformation map x = ϕt (X) : B → S at time t .
The deformation gradient F :=∇Xϕt (X) : TXB→ Tx S acts
as the tangent map between the tangent spaces of the respec-
tive configurations. The gradient operator ∇X [•] denotes the
spatial derivative with respect to the reference coordinates
X . Moreover, the Jacobian J := det F > 0 describes the
volume map of the infinitesimal reference volume elements
onto the associated spatial volume elements. Furthermore,
the reference B and the spatial S manifolds are locally fur-
nished with the reference G and current g metric tensors in
the neighborhoods NX of X and Nx of x, respectively. These
metric tensors are required for calculating basic deformation
measures such as stretches, angle changes, and invariants.

2.2 Governing differential equations

A coupled problem of cardiac electromechanics is formu-
lated in terms of the two primary field variables, namely
the placement ϕ(X, t) and the action potential Φ(X, t). The
former has already been introduced above in Fig. 1. The lat-
ter refers to a potential difference between the intracellu-
lar domain and the extracellular domain within the context
of mono-domain formulations of cardiac electrophysiology
[8,12,22]. An electromechanical state of a material point X
at time t is then defined by

State(X, t) := {ϕ(X, t), Φ(X, t)} . (1)

Spatial and temporal evolution of the primary field variables
are governed by two basic field equations, namely the bal-
ance of linear momentum and the reaction–diffusion-type
equation of excitation.

The balance of linear momentum that assumes the follow-
ing well-known local spatial form

J div[J−1τ̂ ] + B = 0 in B (2)

describes the quasi-static stress equilibrium in terms of the
Eulerian Kirchhoff stress tensor τ̂ and a given body force B
per unit reference volume. The operator div[•] denotes the
divergence with respect to spatial coordinates x. Note that
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Fig. 2 Depiction of the mechanical (left) and electrophysiological
(right) natural and essential boundary conditions

the momentum balance depends non-linearly on the primary
field variables through the Kirchhoff stress tensor τ̂ , whose
specific form is elaborated in the forthcoming subsection.
The essential and natural boundary conditions, Fig. 2 (left),

ϕ = ϕ̄ on ∂Sϕ and t = t̄ on ∂St , (3)

complete the description of the mechanical problem. The
union of the surface subdomains, on which the boundary con-
ditions (3) are prescribed, forms the total spatial surface ∂S =
∂Sϕ∪∂St where ∂Sϕ and ∂St are disjoint, i.e. ∂Sϕ∩∂St = ∅.
The surface stress traction vector t̄ , defined on ∂St , is related
to the Cauchy stress tensor through the Cauchy stress the-
orem t̄ := J−1τ · n where n denotes the outward surface
normal on ∂S.

The second field equation of the coupled problem that falls
into the class of mono-domain formulations of electrophys-
iology is commonly referred to as the FitzHugh–Nagumo-
type model due to the seminal works of FitzHugh [7] and
Nagumo et al. [20].

The phenomenological excitation equation of the follow-
ing form

Φ̇ − J div[J−1q̂] − F̂φ = 0 in B (4)

describes the spatio-temporal evolution of the action poten-
tial field Φ(X, t) in terms of the diffusion term div[J−1q̂]
and the non-linear current term F̂φ . Henceforth, we employ
the notation ˙[•] := D[•]/Dt to denote the material time
derivative. In cardiac electrophysiology, the source term F̂φ

plays a key role in determining the excitability and oscil-
latory nature of cells. In particular, it governs whether the
excitation model exhibits the self-oscillatory pacemaker
behavior or the non-oscillatory excitable cell behavior [8,12].
The current source F̂φ also controls characteristics of the
action potential regarding its shape, duration, restitution, and
hyperpolarization along with another variable, the so-called
recovery variable r whose evolution is governed by an addi-
tional ordinary differential equation. Since the recovery vari-
able r chiefly controls the local repolarization behavior of the
action potential, we treat it as a local internal variable in our
formulation. This will be more transparent as we introduce
the explicit functional form of F̂φ and set out the algorithmic

setting of the formulation. Analogous to the momentum
balance, the Fitzhugh–Nagumo-type field equation of exci-
tation is also furnished by the corresponding essential and
natural boundary conditions, Fig. 2 (right),

Φ = Φ̄ on ∂Sφ and q = q̄ on ∂Sq , (5)

respectively. Note that the surface subdomains ∂Sφ and ∂Sq

are disjoint, ∂Sφ ∩ ∂Sq = ∅, and complementary, ∂S =
∂Sφ∪∂St . The electrical surface flux term q̄ in (5)2 is related
to the spatial flux vector through the Cauchy-type formula
q̄ := J−1q̂ · n in terms of the spatial surface normal n.
Owing to the transient term in the excitation equation (4), its
solution requires the knowledge of initial potential field at
t = t0

Φ0(X) = Φ(X, t0) in B. (6)

Note that the “hat” sign used along with the terms τ̂ , q̂ and
F̂φ indicates that these variables are dependent on the pri-
mary fields through constitutive equations, which we intro-
duce next.

2.3 Constitutive equations

The two field equations along with the corresponding
boundary and initial conditions introduced in the preced-
ing subsection complete the strong description of a coupled
boundary-value problem of cardiac electromechanics. The
solution of the problem at hand, however, necessitates the
knowledge of constitutive equations describing the Kirchhoff
stress tensor τ̂ , the potential flux q̂, and the current source
F̂φ appearing in (2) and (4).

As suggested in the literature, see e.g. [22,38], the
Kirchhoff stress tensor τ̂ is assumed to be composed of the
passive τ̂

pas and active τ̂
act parts

τ̂ = τ̂
pas

(g; F)+ τ̂
act

(g; F, Φ). (7)

The passive part τ̂
pas is solely governed by mechanical

deformation, while the active part τ̂
act is generated by exci-

tation-induced contraction of myocytes during the course of
depolarization. Since the formulation is laid out in the Eule-
rian setting, we need to explicitly include the current metric
g among the arguments of the constitutive functions.

The potential flux q̂ is assumed to depend linearly on the
spatial potential gradient ∇xΦ
q̂ = D(g; F) · ∇xΦ (8)

through the deformation-dependent anisotropic spatial con-
duction tensor D(g; F) that governs the conduction speed
of the non-planar depolarization front in three-dimensional
anisotropic cardiac tissue.
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The last constitutive relation describes the electrical source
term of the Fitzhugh–Nagumo-type excitation equation (4)

F̂φ = F̂φ
e (Φ, r)+ F̂φ

m(g; F, Φ) (9)

that is additively decomposed into the excitation-induced
purely electrical part F̂φ

e (Φ, r) and the stretch-induced mec-
hano-electrical part F̂φ

m(g; F, Φ). The former describes the
effective current generation due to the inward and outward
flow of ions across the cell membrane. This ionic flow is
triggered by a perturbation of the resting potential of a car-
diac cell beyond some physical threshold upon the arrival
of the depolarization front. The latter, on the other hand,
incorporates the opening of ion channels under the action of
deformation [16,22].

Note that apart from the primary field variables, as we
briefly introduced in the preceding subsection, the recov-
ery variable r appears among the arguments of F̂φ

e in (9). It
describes the repolarization response of the action potential.
Evolution of the recovery variable r chiefly determines the
shape and duration of the action potential locally inherent to
each cardiac cell and may change throughout the heart. For
this reason, evolution of the recovery variable r is commonly
modeled by a local ordinary differential equation

ṙ = f̂ r (Φ, r). (10)

From an algorithmic point of view, the local nature of the
evolution equation (10) allows us to treat the recovery vari-
able as an internal variable. This is one of the key features of
the proposed formulation that preserves the modular global
structure of the field equations as set out in our recent work
[8]. Furthermore, as mentioned in Sect. 1, cardiac tissue
possesses an anisotropic and inhomogeneous micro-struc-
ture. This undoubtedly necessitates the explicit incorpora-
tion of position-dependent orientation of myocytes, possibly
in terms of structural tensors, in the argument list of the con-
stitutive functions for τ̂ , D̂ and F̂φ

m . At this stage, however,
we have suppressed this dependency for the sake of concise-
ness by leaving details out until Sect. 4 where we introduce
a model problem.

Having the field equations and the functional forms of the
constitutive equations at hand, we are now in a position to
construct a unified finite element framework for the mono-
lithic numerical solution of the strongly coupled problem of
cardiac electromechanics.

3 Finite element formulation

This section is devoted to the construction and consistent
linearization of weak integral forms of the local non-linear
field equations (2) and (4) introduced in the preceding sec-
tion. For this purpose, we employ conventional isoparametric
spatial discretization for the placement ϕ(X, t) and potential

Φ(X, t) fields to transform the continuous integral equations
for the non-linear weighted residual and for the Newton-type
update to a set of coupled, discrete algebraic equations. This
set of algebraic equations is then solved monolithically in an
iterative manner for the nodal degrees of freedom.

3.1 Weak formulation

We follow the conventional Galerkin procedure to construct
the weak forms of the governing field equations (2) and (4).
To this end, we multiply the residual equations by the square-
integrable weight functions δϕ ∈ U0 and δΦ ∈ V0 that sat-
isfy the essential boundary conditions (3) and (5) such that
δϕ = 0 on ∂Sϕ and δΦ = 0 on ∂Sφ . We then integrate
the weighted residual equations over the solid volume, and
carry out integration by parts to obtain the following weighted
residual expressions for the balance of linear momentum (2)

Gϕ(δϕ,ϕ, Φ) = Gϕ
int(δϕ,ϕ, Φ)− Gϕ

ext(δϕ) = 0 (11)

and for the FitzHugh–Nagumo-type equation (4)

Gφ(δΦ,ϕ, Φ) = Gφ
int(δΦ,ϕ, Φ)− Gφ

ext(δΦ,ϕ, Φ)=0,

(12)

respectively. Explicit forms of the internal Gϕ
int and external

Gϕ
ext terms in (11) are separately defined as

Gϕ
int(δϕ,ϕ, Φ) :=

∫

B
∇x (δϕ) : τ̂ dV,

(13)
Gϕ

ext(δϕ) :=
∫

B
δϕ · B dV +

∫

∂St

δϕ · t̄ da,

where the body force B and the surface traction t̄ are assumed
to be given. Likewise, we obtain the following expressions
for Gφ

int and Gφ
ext

Gφ
int(δΦ,ϕ, Φ) :=

∫

B
(δΦ Φ̇ + ∇x (δΦ) · q̂) dV,

(14)
Gφ

ext(δΦ,ϕ, φ) :=
∫

B
δΦ F̂φdV +

∫

∂Sq

δΦ q̄da,

respectively. The surface flux q̄ is prescribed as a natural
boundary condition through (5)2. Observe that, in contrast to
the mechanical external term in (13)2, Gφ

ext depends explic-
itly upon the field variables due to the non-linear source term
F̂φ introduced in (9).

Before proceeding with the consistent linearization of the
weak forms, it is convenient to introduce the discretization
of the time space T := [0, t]. For this purpose, we divide
up the time interval T into nstp divisions such that T =⋃nstp−1

n=0 [tn, tn+1]. The current time step is denoted with
�t := t− tn where we have suppressed the subscript “n+1”
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for the sake of compactness. Having the temporal discreti-
zation defined, we use the implicit Euler scheme to compute
the time derivative of the potential Φ at time t

Φ̇ ≈ (Φ −Φn)/�t (15)

with Φn := Φ(X, tn). Substitution of this finite difference
approximation for Φ̇ into (14)1 yields the following algorith-
mic form

Gφ,algo
int (δΦ,ϕ, Φ) =

∫

B
( δΦ

Φ −Φn

�t
+ ∇x (δΦ) · q̂ ) dV .

(16)

With the weak forms of the field equations at hand, we can
then go on to carry out the consistent linearization.

Remark 1 Since the primary focus of the present formu-
lation is the numerical treatment of the strongly coupled
cardiac electromechanics; in the weak formulation of the
mechanical part Gϕ of the coupled problem, we restrict our-
selves solely to the displacement approximation. Neverthe-
less, a possible extension of the present mechanical setting
toward the well-established three-field (pressure-dilatation-
displacement) finite element formulation along with the
isochoric–volumetric decomposition of the deformation gra-
dient can readily be carried out if quasi-incompressibility
needs to be accounted for. The incompressibility of myocar-
dium, on the other hand, seems to be a rather controversial
issue due to the vascular network that constitutes 10–20%
of the total volume of the ventricular wall. According to the
experimental results reported by Yin et al. [43], for example,
the changes in wall volume range between 5 and 10% due to
the intravascular blood flow.

3.2 Consistent algorithmic linearization

The weighted residual equations (11) and (12) are non-lin-
ear functions of the field variables due to the spatial gra-
dient operators and the non-linear constitutive equations.
Therefore, simultaneous treatment of these equations neces-
sitates utilization of Newton-type iterative solution schemes
within the framework of the implicit finite element method.
Accordingly, we carry out the consistent linearization of the
weighted residuals with respect to the field variables at an
intermediate iteration step at which the field variables assume
the respective values ϕ̃ and Φ̃ to obtain:

Lin Gϕ(δϕ,ϕ, Φ)
∣∣
ϕ̃,Φ̃
:= Gϕ(δϕ, ϕ̃, Φ̃)

+�Gϕ(δϕ, ϕ̃, Φ̃;�ϕ,�Φ) = 0 ,

Lin Gφ(δΦ,ϕ, Φ)
∣∣
ϕ̃,Φ̃
:= Gφ(δΦ, ϕ̃, Φ̃)

+�Gφ(δΦ, ϕ̃, Φ̃;�ϕ,�Φ) = 0.

(17)

The incremental terms �Gϕ and �Gφ , which can be
obtained through the Gâteaux derivative, may be expressed
in the following decomposed form

�Gγ = �Gγ
int −�Gγ

ext for γ = ϕ, φ, (18)

based on the definitions in (11) and (12). We then start with
the elaboration of the increment �Gϕ

int according to (13)1

�Gϕ
int =

∫

B
�(∇x (δϕ)) : τ̂ +∇x (δϕ) : �τ̂ dV . (19)

Linearization of the non-linear terms in (19) yields

�(∇x (δϕ)) = −∇x (δϕ)∇x (�ϕ) , (20)

�τ̂ = £�ϕτ̂ +∇x (�ϕ) τ̂ + τ̂ ∇T
x (�ϕ)+ Cϕφ�Φ, (21)

where £�ϕτ̂ denotes the objective Lie derivative along the
increment �ϕ and can be expressed as

£�ϕτ̂ = C
ϕϕ : 1

2 £�ϕ g = C
ϕϕ : (g∇x (�ϕ)). (22)

in terms of the Lie derivative of the current metric

£�ϕ g = g ∇x (�ϕ)+ ∇T
x (�ϕ) g. (23)

The fourth-order spatial tangent moduli C
ϕϕ in (22) and the

sensitivity of the Kirchhoff stresses to the action potential
Cϕφ introduced in (21) are defined as

C
ϕϕ :=2∂g τ̂ (g; F, Φ) and Cϕφ :=∂Φ τ̂ (g; F, Φ), (24)

respectively. Incorporation of the results (20) and (21) along
with (22)–(24) in (19) results in the following well-known
expression

�Gϕ
int =

∫

B
∇x (δϕ) : Cϕϕ : (g∇x (�ϕ))dV

+
∫

B
∇x (δϕ) : (∇x (�ϕ)τ̂ )dV

+
∫

B
∇x (δϕ) : Cϕφ�ΦdV . (25)

The three terms on the right-hand side of (25) clearly dem-
onstrate the inherent nonlinearities arising from the entirely
mechanical material response, from the geometry, and from
the coupled electromechanical stress response. Since the
body force B and the traction boundary conditions t̄ in (13)2

are prescribed, we have �Gϕ
ext = 0 yielding the identity

�Gϕ ≡ �Gϕ
int.

Recalling the explicit algorithmic form of Gφ
int from (16),

the increment �Gφ
int can be expressed as

�Gφ
int =

∫

B
δΦ

�Φ

�t
+�(∇xδΦ) · q̂ +∇x (δΦ) ·�q̂dV .

(26)
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Analogous to (20), linearization of ∇x (δΦ) leads to

�(∇x (δΦ)) = −∇x (δΦ)∇x (�ϕ). (27)

Furthermore, based on the functional definition of the spatial
potential flux q̂ in (8), we obtain

�q̂ = £�ϕ q̂ + ∇x (�ϕ) · q̂ + D̂ · ∇x (�Φ) (28)

where £�ϕ q̂ denotes the Lie derivative of the potential flux
q̂ along the increment �ϕ

£�ϕ q̂ = Cφϕ : 1
2 £�ϕ g = Cφϕ : (g∇x (�ϕ)). (29)

In Eqs. (28) and (29), we introduced the second-order defor-
mation-dependent conduction tensor D̂ and the third-order
mixed moduli Cφϕ that are defined as

D̂:=∂∇x Φ q̂(g; F, Φ) and Cφϕ :=2∂g q̂(g; F, Φ), (30)

respectively. Substituting the results (27) and (28) and the
definitions (29) and (30) into (26), we end up with

�Gφ
int =

∫

B
δΦ

�Φ

�t
dV

+
∫

B
∇x (δΦ) · D̂ · ∇x (�Φ)dV

+
∫

B
∇x (δΦ) · Cφϕ : (g∇x (�ϕ))dV . (31)

In contrast to Gϕ
ext, the external term Gφ

ext in (12) depends
non-linearly on the field variables through the source term
F̂φ(g; F, Φ) introduced in (9). For a given q̄ on ∂Sq , we
then obtain the following incremental form

�Gφ
ext :=

∫

B
δΦ �F̂φdV . (32)

In the Eulerian setting, linearization of the scalar-valued func-
tion F̂φ yields

�F̂φ = H : (g∇x (�ϕ))+ H�Φ (33)

where the tangent terms H and H are defined as

H := 2∂g F̂φ(g; F, Φ) and H := ∂Φ F̂φ(g; F, Φ), (34)

respectively. Based on the decomposed form introduced in
(9), the scalar tangent term H can be expressed as

H = He + Hm with He :=∂Φ F̂φ
e , Hm :=∂Φ F̂φ

m. (35)

Inserting the results (33) and (34) into (32), we obtain the
linearized external term

�Gφ
ext =

∫

B
δΦ

(
H : (g∇x (�ϕ))+ H�Φ

)
dV . (36)

This completes the linearization within the continuous spa-
tial setting. In the subsequent part, we carry out the spatial

discretization of the field variables to obtain algebraic coun-
terparts of the residual expressions (13) and (14).

3.3 Spatial discretization

To approximate the continuous integral equations for the
weak forms (11) and (12) derived in the preceding section,
we follow the conventional isoparametric Galerkin proce-
dure. To this end, we discretize the domain of interest B into
element subdomains Bh

e such that B ≈ Bh =⋃nel
e=1 Bh

e with
nel denoting the total number of elements. We then interpo-
late the field variables and the associated weight functions
over each element domain by introducing the corresponding
discrete nodal values and C0 shape functions

δϕh
e =

nen∑
i=1

N iδxe
i , δΦh

e =
nen∑
j=1

N jδΦe
j ,

ϕh
e =

nen∑
k=1

N k xe
k, Φh

e =
nen∑
l=1

NlΦe
l , (37)

where nen refers to the number of nodes per element. Based
on the discretization (37), the spatial gradient of the weight
functions read as

∇x (δϕh
e ) =

nen∑
i=1

δxe
i ⊗∇x N i ,

∇x (δΦh
e ) =

nen∑
j=1

δΦe
j ⊗∇x N j . (38)

Likewise, we obtain the spatial gradient of the incremental
fields

∇x (�ϕh
e ) =

nen∑
k=1

�xe
k ⊗∇x N k,

∇x (�Φh
e ) =

nen∑
l=1

�Φe
l ⊗∇x Nl . (39)

Incorporating the discretized representations (37) and (38) in
(11) and (12) along with (13) and (14), we end up with the
discrete residual vectors

Rϕ
I =Anel

e=1

⎧⎪⎨
⎪⎩

∫

Bh
e

∇x N i · τ̂ dV

−
∫

Bh
e

N i B dV −
∫

∂Se
t

N i t̄ da

⎫⎪⎬
⎪⎭ = 0,
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Rφ
J =Anel

e=1

⎧⎪⎨
⎪⎩

∫

Bh
e

(N j Φ −Φn

�t
+ ∇x N j · q̂) dV

−
∫

Bh
e

N j F̂φ dV −
∫

∂Se
q

N j q̄ da

⎫⎪⎬
⎪⎭ = 0, (40)

where the operator A designates the standard assembly of
element contributions at the local element nodes i, j = 1,

. . . , nen to the global residuals at the global nodes I, J =
1, . . . , nnd of a mesh with nnd nodes. Following the analo-
gous steps, the discrete form of the linearized residual terms
(17) can readily be obtained by substituting the discretized
representations (37) and (39) in (25), (31), and (36). This
step, however, is left out for the sake of conciseness.

4 Model problem

In this section, we present specific forms of the constitutive
equations that are utilized in the representative numerical
examples in Sect. 5. In particular, we identify the concrete
expressions for the Kirchhoff stress τ̂ , the potential flux q̂,
and the current source F̂φ , whose functional dependencies
have already been briefly outlined in Sect. 2.3. These con-
stitutive equations include not only the explicit functional
evaluations but also the accompanying ordinary differen-
tial equations governing the temporal evolution of additional
internal variables. This, in turn, necessitates construction of
algorithmic procedures for the local update of these inter-
nal variables at quadrature points. Hence, the tangent moduli
introduced in Sect. 3.2 have to be computed consistently with
the employed algorithmic integration scheme for the update
of internal variables.

4.1 Active and passive stress response

Before going into the details of the model problem, it is cru-
cial to introduce an approach that we devise to account for
the fibrous micro-structure of cardiac tissue in the current
model. As mentioned in Sect. 1, cardiac tissue possesses a
highly anisotropic micro-structure that is chiefly made up
of unevenly distributed myofibers. This heterogeneous but
well-organized architecture is of fundamental importance for
the successful transduction of essentially one-dimensional
excitation–contraction of individual cardiac cells to the over-
all pumping function of the heart. For this reason, the consti-
tutive equations describing the passive and active tissue stress
response, as well as the one controlling the conductivity, have
to account for the inherently anisotropic micro-structure. It
is the objective of this section to demonstrate that an ele-
mentary constitutive approach accounting for basic physical

features of cardiac tissue can reproduce physiological results.
For this purpose, we restrict ourselves to transversely isotro-
pic cardiac tissue with one single, spatially varying preferred
direction that characterizes the local orientation of myofi-
bers. Specifically, we let a0(X) ∈ TXB be a unit vector, i.e.
|a0|G = 1, and denote the average preferred direction of
myofibers in the reference configuration at a material point
X . Under the action of ϕt , this vector is mapped onto its
spatial counterpart a(x) = Fa0 ∈ Tx S emanating from
x = ϕt (X). Moreover, we define the symmetric reference
structural tensor

M(X) := a0 ⊗ a0 (41)

as a key measure of the underlying transversely isotropic
material symmetry. Structural tensors are widely employed
to develop coordinate-free representation of isotropic ten-
sor functions for anisotropic response of materials, see e.g.
Spencer [40].

We now assume the following elementary form for the
purely mechanical, passive part of the Kirchhoff stress ten-
sor (7)1

τ̂
pas

(g; F, M) =
(

λ

2
ln I3 − µ

)
g−1 + µb

+ 2ϑ η(I4 − 1)m (42)

in terms of the inverse metric g−1, the left Cauchy–Green
tensor b := FG−1 FT , and the deformed structural tensor
m := a⊗ a = FMFT . The Lamé constants λ and µ govern
the isotropic stress response, while the parameter η can be
conceived as the passive stiffness of myofibers. The aniso-
tropic part of the stress is assumed to be active only when the
fibers are under tension. This condition is imposed through
the following conditional definition of the coefficient ϑ

ϑ(λ̄) =
{

1 if λ̄ > 1,

0 otherwise,
(43)

where λ̄ := |a|g = √a · ga refers to the stretch in the
preferred direction a. Furthermore, the invariants I3 and I4

appearing in the stress expression (42) are defined as

I3 := J 2 = det(FT g F) and I4 := g : m , (44)

respectively. Observe that the invariant I4 is none other than
the fiber stretch squared, I4 = λ̄2.

Since the active Kirchhoff stress τ̂
act is generated by exci-

tation-induced contraction of spatially well organized cardiac
cells, this part of the stress tensor is considered to be of purely
anisotropic form

τ̂
act

(g; F, Φ, M) = σ(Φ) m. (45)

In contrast to recent constitutive equations proposed in the
literature, e.g. [22,25], where the active stress contribution
is incorporated as an isotropic function, we assume that the
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Fig. 3 Switch function ε(Φ) is plotted against the potential Φ for dif-
ferent values of the rate parameter ξ=0.1, 0.2, 0.4, 1 mV−1 and for
ε0=0.1 ms−1, ε∞=1 ms−1, Φ̄=− 30 mV

active part is entirely anisotropic. From the geometrical point
of view, the active stress expression (45) implies that the
direction of the active stress tensor is dictated by the deformed
structural tensor m, while its magnitude is chiefly determined
by the transmembrane potential-dependent active fiber ten-
sion σ(Φ). To model the twitch-like response of the fiber
tension σ(Φ), we adopt the evolution equation proposed by
Nash and Panfilov [22]

σ̇ = ε(Φ)[kσ (Φ −Φr )− σ ] , (46)

where the parameter kσ controls the saturated value of σ

for a given potential Φ and a given resting potential Φr ,
which is about−80 mV for cardiac cells. That is, σ̇ vanishes
identically when σ admits the value σ∞ = kσ (Φ − Φr )

for ε(Φ) 
= 0. Moreover, contrary to its Heaviside form pro-
posed in [22], we use the following smoothly varying form
for the rate switch function

ε(Φ) = ε0 + (ε∞ − ε0) exp[− exp(−ξ(Φ − Φ̄))] (47)

in terms of the parameters ε0 and ε∞ that characterize the two
limiting values of the function for Φ < Φ̄ and Φ > Φ̄ about
the phase shift Φ̄, respectively. In addition, the transition rate
of ε from ε0 to ε∞ about Φ̄ is determined by the parameter
ξ . As depicted in Fig. 3, as the value of ξ gets higher, the
transition of the function ε from ε0 to ε∞ becomes sharper.

In order to compute the current value of σ , we use the
backward Euler scheme. For a typical time step �t = t − tn ,
we then obtain

σ = σn +�t ε(Φ)[kσ (Φ −Φr )− σ ]. (48)

This immediately results in a closed-form algorithmic expres-
sion for the current value of the active fiber tension

σ(Φ) = 1

1+�t ε(Φ)
[σn +�t ε(Φ) kσ (Φ −Φr )] (49)

in terms of the current action potential Φ and σn at time tn
that is stored as a history variable at each quadrature point

of the finite element model. Having the stress expressions at
hand, we are now in a position to determine the moduli based
on the definition (24)1

C
ϕϕ = λ g−1 ⊗ g−1 − (λ ln I3 − 2µ) Ig−1

+ 4ϑ η m ⊗ m (50)

where we have made use of the results ∂g I3 = I3 g−1, ∂g I4 =
m. The symmetric fourth identity tensor Ig−1 := −∂g g−1

has the indicial representation I
i jkl
g−1 := 1

2 (gik g jl + gil g jk)

in terms of the components of the inverse metric gi j . Sim-
ilarly, the sensitivity of the Kirchhoff stress tensor to the
transmembrane potential then follows from (24)2

Cϕφ = σ ′(Φ) m with σ ′(Φ) := ∂Φσ(Φ). (51)

Being consistent with the implicit integration scheme
employed in (49), it can be readily shown that

σ ′(Φ) = �t

1+�t ε(Φ)

× [
ε′(Φ)(kσ (Φ −Φr )− σ)+ ε(Φ) kσ

]
, (52)

where the derivative ε′(Φ) := ∂Φε̂(Φ) can be obtained from
the definition (47)

ε′(Φ) = ξ (ε(Φ)− ε0) exp[−ξ(Φ − Φ̄)]. (53)

4.2 Spatial potential flux

We have already introduced the spatial potential flux q̂ in (8)
in terms of the conduction tensor D (30)1, and the potential
gradient ∇xΦ. In this model problem, the second-order con-
duction tensor is additively decomposed into the isotropic
and anisotropic parts

D = diso g−1 + dani m (54)

in terms of the scalar conduction coefficients diso and dani,
where the latter accounts for the faster conduction along the
myofiber directions. Having D specified, we can express the
third-order mixed moduli Cφϕ based on their definition given
in (30)2

Cφϕ = −2 diso∇xΦ · Ig−1 . (55)

4.3 Current source

In order to complete the description of the model problem,
we finally need to specify the constitutive equations for the
electrical source term F̂φ . In the field of phenomenological
electrophysiology, it is common practice to set up the model
equations and parameters in the non-dimensional space. For
this purpose, we introduce the non-dimensional transmem-
brane potential φ and the non-dimensional time τ through
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the following conversion formulae

Φ = βφφ − δφ and t = βtτ. (56)

The non-dimensional potential φ is related to the phys-
ical transmembrane potential Φ through the factor βφ and
the potential difference δφ , which are both in millivolt (mV).
Likewise, the dimensionless time τ is converted to the phys-
ical time t by multiplying it with the factor βt in millisecond
(ms). Having the basic relations (56) at hand, we obtain the
following conversion expressions

F̂φ = βφ

βt
f̂ φ, H = βφ

βt
h and H = 1

βt
h (57)

for the normalized source term f̂ φ , and the non-dimensional
counterparts h := ∂φ f̂ φ and h := 2∂g f̂ φ of the tangent

terms defined in (34). The additive split of F̂φ , introduced in
(9) Sect. 2.3, along with (57)1 implies the equivalent decom-
position of f̂ φ = f̂ φ

e + f̂ φ
m into the purely electrical part

f̂ φ
e and the stretch-induced mechano-electrical part f̂ φ

m. This
also leads to the dimensionless counterpart of (35)

h = he + hm with he := ∂φ f̂ φ
e , hm := ∂φ f̂ φ

m . (58)

In this model problem, we use the celebrated Aliev–Panfilov
model, which favorably captures the characteristic shape of
the action potential in excitable ventricular cells,

f̂ φ
e = cφ(φ − α)(1− φ)− r φ (59)

where c, α are material parameters. The evolution of the
recovery variable r is governed by the ordinary differential
equation (10) through the specific source term

f̂ r =
[
γ + µ1 r

µ2 + φ

]
[−r − c φ (φ − b − 1)]. (60)

The coefficient term [γ + µ1r/µ2 + φ] plays a key role in
controlling the restitution characteristics of the model
through the additional material parameters µ1, µ2, b and γ .
The phase diagram in Fig. 4 (top) depicts the solution trajec-
tories of the local ordinary differential equations ∂τφ = f̂ φ

e

and ∂τ r = f̂ r corresponding to different initial points φ0 and
r0. Note that the dashed nullclines, where f̂ φ = 0 or f̂ r = 0
vanish, guide the trajectories. The diagrams in Fig. 4 (bot-
tom) show the non-dimensional potential φ and the recovery
variable r curves plotted against the dimensionless time τ .
The action potential is generated by adding external stimula-
tion I = 30 to the right-hand side of ∂τφ = f̂ φ

e from τ = 30
to τ = 30.02.

Analogous to the algorithmic update of σ , we use the
backward Euler integration to calculate the current value of
r . Owing to the highly non-linear form of the source f̂ r ,
however, we need to introduce the residual

Rr = r − rn −�τ f̂ r (φ, r)
.= 0 (61)

Fig. 4 The Aliev–Panfilov model with α = 0.01, γ = 0.002,

b = 0.15, c = 8, µ1 = 0.2, µ2 = 0.3. The phase portrait depicts
trajectories for distinct initial values φ0 and r0 (filled circles) converg-
ing to a stable equilibrium point (top). Non-oscillatory normalized time
plot of the non-dimensional action potential φ and the recovery variable
r (bottom)

that has to be solved iteratively. Linearization of (61) leads
us to the local update equation of the recovery variable r

r ← r − (Crr )−1 Rr , (62)

where the scalar local tangent Crr is defined by

Crr := ∂r Rr

= 1+�τ

[
γ + µ1

µ2 + φ
[2r + cφ(φ − b − 1)]

]
.

(63)

Calculation of the modulus he, defined in (58)2, necessitates
the knowledge of the derivative of the recovery variable r
with respect to the action potential φ. This derivative can
be calculated based on the persistency condition dφ Rr =
∂φ Rr + ∂r Rr dφr

.= 0, which implies the consistent ful-
fillment of (61) throughout the whole calculation. Solving
this equality for the sought derivative, we obtain dφr =
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Table 1 Local Newton update of the internal variable r

Given are rn and Φ

(i) Calculate φ = (Φ + δφ)/βφ (56)1
(ii) Set r ← rn
(iii) Compute Rr (61) and Crr (63)
(iv) Update recovery r ← r − (Crr )−1 Rr

(v) Check if |Rr | < tol, if no goto (iii), continue otherwise
(vi) Update history for rn

(vii) Compute Crφ and dφr (64)
(viii) Compute f̂ φ

e (59) and he (58)2

−(Crr )−1 Crφ , where Crφ is defined and obtained as

Crφ := ∂φ Rr

= �τ

[
[γ + µ1r

µ2 + φ
] c (2φ − b − 1)

− µ1r

[µ2 + φ]2 [ r + c φ (φ − b − 1) ]
]

. (64)

With this result at hand, we can obtain the tangent modulus

he = c
[
−3φ2 + 2[1+ α]φ + α

]
− r − φdφr, (65)

and convert it into its physical counterpart He = he/βt by
using (57)3. We summarize the local Newton iteration for the
update of the internal variable r and subsequent computation
of the corresponding source term f̂ φ

e and its linearization
dφ f φ in Table 1.

For the stretch-induced current generation f̂ φ
m, we adopt

the formula proposed by Panfilov, Keldermann and Nash [13,
29]

f̂ φ
m = ϑGs(λ̄− 1)(φs − φ) (66)

where Gs and φs denote the maximum conductance and the
resting potential of the stretch-activated channels, separately.
This contribution to the current source term is due to the open-
ing of ion channels, and therefore, exists only when myofi-
bers are under tension. This condition is enforced through the
coefficient ϑ defined in (43). With (66) at hand, the tangent
terms hm, h can be immediately obtained as

hm = ϑGs(λ̄− 1) and h = ϑGs(φ − φs)λ̄
−1m , (67)

and converted to their counterparts Hm and H (35) and (34),
through the conversion rules given in (57).

Having the specific expressions for the constitutive equa-
tions introduced and their algorithmic treatment elaborated,
we can now implement the model problem in a finite ele-
ment code according to the formulation outlined in Sect. 3.
The basic steps of the algorithmic implementation of the
model problem are briefly summarized in Table 2 where
Table 1 is implicitly embodied in Step v. In addition, the
material parameters of the specified model problem are listed
in Table 3 along with their brief description and the equation
numbers where they appear.

Table 2 Overall algorithmic setting of the model problem

Given are F = ∇X ϕt , Φ, ∇xΦ and history H = {σn, rn}
(i) Calculate m = F M FT and λ̄ := √m : g
(ii) Set ϑ = 1 if λ̄ ≥ 1; ϑ = 0 otherwise
(iii) Calculate τ̂

pas (42) and C
ϕϕ (50)

(iv) Compute φ = (Φ + δφ)/βφ and �τ = �t/βt (56)
(v) Update the recovery variable r based on Table 1
(vi) Compute f̂ φ

e (59), he (65), hm (67)1 and h (67)2

(vii) Perform conversion to F̂φ
e , Hm, He and H (57)

(viii) Update σ(Φ) (49) and compute σ ′(Φ) (52)
(ix) Compute τ̂

act (45) and Cϕφ (51)
(x) Calculate q̂ (8), D (54) and Cφϕ (54)

Table 3 Material parameters of the specified model

Parameter Description Equation

λ, µ Lamé constants (42)
η Passive stiffness of myofibers (42)
kσ Saturated active stress (46)
Φr Resting potential (46)
ε0, ε∞ Rate constants of contraction (Fig. 3) (47)
ξ, Φ̄ Transition rate and phase shift (Fig. 3) (47)
diso, dani Conduction speed (54)
α, b, c Dynamics of the AP-model (Fig. 4) (59) and (60)
γ, µ1, µ2 Restitution properties (Fig. 4) (59) and (60)
Gs , φs Stretch-induced excitation (66)[
βφ, δφ, βt Conversion factors (56)

]

Table 4 Values of the material parameters used in analyses

Passive stress λ = 0.5 MPa, µ = 0.2 MPa, η = 0.1 MPa
Active stress kσ = 0.005 MPa mV−1, Φr = −80 mV
Switch function Φr = −80 mV, ε0 = 0.1 mV−1, ε∞ = 1 mV−1

ξ = 1 mV−1, Φ̄ = 0 mV
Conduction diso = 1 mm2 ms−1, dani = 0.1 mm2 ms−1

Excitation α = 0.01[−], b = 0.15[−], c = 8[−]
γ = 0.002[−], µ1 = 0.2[−], µ2 = 0.3[−]
Gs = 10[−], φs = 0.6[−]

5 Representative numerical examples

This section is devoted to the illustrative numerical examples
chosen to demonstrate the key features and capabilities of the
proposed formulation. With this aim in mind, we consider
three initial boundary-value problems. First, we illustrate the
mechano-electric feedback on a slice of cardiac tissue whose
center is subjected to impact loading. The second example
is concerned with the formation and stable rotation of scroll
waves in excitable and deformable cardiac tissue. This phe-
nomenon is closely related to re-entrant cardiac arrhythmias,
and thus to atrial and ventricular fibrillation. Lastly, we pres-
ent a coupled electromechanical analysis of a biventricular
generic heart model that successfully demonstrates the main
physiological features of the overall response of the heart.

Unless stated otherwise, we used the values of the mate-
rial parameters given in Table 4 in the finite element analyses
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of the examples presented in this section. Observe that the
parameters belonging to the Aliev–Panfilov model f̂ φ

e and
to the stretch-induced part of the excitation source f̂ φ

m are
dimensionless. This is consistent with the non-dimensional
setting introduced through the conversion formulae (56) and
(57). In the conversion, we employ the factors βφ = 100 mV,
δφ = −80 mV and βt = 12.9 ms that are chosen to obtain the
physiological action potential response ranging from−80 to
+20 mV and the characteristic action potential duration, as
suggested in [1].

5.1 Deformation-induced excitation of cardiac tissue

In order to illustrate the phenomenon of mechano-electric
feedback, we consider a three-dimensional 100mm×100mm
× 12 mm slice of cardiac tissue, see the upper leftmost panel
in Fig. 6 for dimensioning. The tissue block is discretized into
21×21×2 eight-node coupled brick elements. The myofibers
are assumed to be oriented in x−direction, i.e. a0 = e1, with
respect to the global coordinate system depicted in Fig. 5.
Initial value of the transmembrane potential in the whole
domain is set to its resting value Φ(X, t0) = −80 mV. The
displacement degrees of freedom in the z-direction at the

nodes located on the four edges of the mid-plane (z = 6)

of the slice are restrained. Moreover, the displacements in
the x- and y-directions at (0, 0, 0) and the displacement in
the y-direction at the node located at (100, 0, 0) are fixed.
Furthermore, the outer surface of the tissue is assumed to
be electrically insulated, i.e. q̄ = 0 on ∂S. In order to ini-
tiate the excitation, the nodes located within the central,
20 mm × 20 mm × 12 mm, parallelepiped are subjected to
impulsive cyclic loading p̄(t) in z-direction, see the upper
leftmost panel Fig. 5. The loading p̄(t) is increased propor-
tionally up to 1 N within the first 5 ms and then decreased back
to the zero load level at the same rate. The snapshot taken at
t = 5 ms in Fig. 5 demonstrates the deformed shape of the
tissue at the instant of peak loading. Besides the deformed
shapes, the contour plots of action potential are also depicted
at each snapshot.

The impulsive loading in the transverse direction gives
rise to the tension-dominated deformation in the center of
the tissue. This region then undergoes the stretch-induced
excitation through the activation of ion channels due to the
source term F̂φ

m introduced in (9) and (66) as depicted in
the panel at t = 10 ms in Fig. 5. The excitation leads to
depolarization of the tissue from the center, and in turn, exci-

Fig. 5 Deformation-induced excitation of deformable cardiac tissue.
Snapshots of the deformed model depict the action potential contours at
different stages of depolarization (upper row) and repolarization (lower

row). Note that the cardiac tissue recovers its original shape at t = 0 ms
upon completion of repolarization at t ≈ 360 ms
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Fig. 6 Initiation and rotation of scroll re-entry in excitable and deformable cardiac tissue. The re-entrant scroll is triggered by externally stimulating
tail of the repolarization wave through the addition of I = 5 to f̂ φ

e from 440 to 460 ms at the rectangular region

tation-induced contraction of myofibers that are located in
the x-direction, see the snapshot at t = 30 ms. Both the con-
traction of myofibers and the higher rate of conduction in the
x-direction result in faster depolarization along that direc-
tion. This non-uniform deformation pattern brings about the
bending of the slice, thereby triggering secondary excita-
tion at the upper and lower edges of the domain, as shown
in the panel corresponding to t = 55 ms. The two depo-
larization fronts then merge, and cause the whole tissue to
become completely depolarized, see the panel at t = 80 ms.
The snapshots taken at t = 280, 300, 330 ms illustrate the
sequence of tissue repolarization from the excited state with
Φ = +20 mV back to the resting state with Φ = −80 mV.
The repolarization process is also accompanied by the relaxa-
tion of myocytes leading to the recovery of the original shape
at around t = 360 ms.

5.2 Scroll waves in a slice of cardiac tissue

One of the key benchmark problems of computational cardiac
electrophysiology and electromechanics is the simulation of
three-dimensional scroll waves. These re-entrant waves are
closely related to cardiac arrhythmias, such as atrial and ven-

tricular fibrillation. Re-entry may arise from different inho-
mogeneities such as the uneven distribution of conduction
properties in diseased tissue as in the case of unidirectional
block or unsynchronized multiple pacemakers.

In order to simulate the re-entrant waves in deformable
cardiac tissue, we devise the same geometry and discretiza-
tion as the one used in the preceding boundary-value prob-
lem, see the panel at t = 3 ms in Fig. 6. The values of the
material parameters are selected to be the same as in Table 4
except that Gs = 0 such that mechano-electric feedback
effect is suppressed. To generate a scroll wave, we follow
the conventional procedure suggested in [8,9]. To this end,
we initiate a planar depolarization front in x-direction by
assigning elevated initial values to the nodal action potentials
Φ0 = −40 mV on the plane located at x = 0 mm. The initial
value of the nodal transmembrane potential at the remain-
der of the nodes is set to the resting value Φ0 = −80 mV.
The outer surface of the tissue is assumed to be electrically
flux-free. Moreover, the orientation of contractile myofibers
is assumed to be a0 = e1 with respect to the global coor-
dinate system depicted in Fig. 6. In contrast to the mechan-
ical essential boundary conditions utilized in the preceding
example, no degree of freedom is a priori prescribed here.
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Instead, the nodes on the plane situated at z = 0 are sup-
ported by uncoupled linear springs of directional stiffness-
es kx = ky = 10−3 N/mm and kz = 10−1 N/mm. This
has resulted in a system of equations that is stable enough
to tackle, while at the same time, providing a fairly uncon-
strained representation of deformed configurations.

Once the wave front has formed, it starts to travel in x-
direction, thereby depolarizing the whole domain and lead-
ing to contraction of myocytes, see the panel at t = 75 ms in
Fig. 6. The myocytes then start to relax in the region where the
repolarization tail has taken over, as shown in the snapshot at
t = 420 ms. To initiate the spiral wave re-entry, we externally
stimulate the rectangular region bounded by the coordinates
x ∈ [40, 50] mm, y ∈ [0, 55] mm and z ∈ [0, 12] mm with
respect to the initial configuration. The rectangular region is
depolarized by adding the extra current I = 5 to f̂ φ

e at time
t = 440 ms for 20 ms. Observe that the snapshots corre-
sponding to the time steps following the stimulation clearly
demonstrate the stages of initiation, development, and stable
rotation of the scroll wave re-entry.

It is important to note that, contrary to the purely electro-
physiology-based simulations of re-entrant waves on regular
domains, the center of the scroll does not remain station-
ary but drifts due to the deformation, see also [30]. Another
crucial observation concerns the substantial reduction of the
action potential duration once the scroll wave is initiated.
This is closely related to the restitution property of cardiac
cells that are able to adjust the action potential duration adap-
tively depending upon the frequency of excitation. This fea-
ture is well captured by the Aliev–Panfilov model through the
non-linear coefficient term in (60) as discussed extensively
in [1,8].

5.3 Excitation–contraction of a generic heart model

The key motivation for this work is its potential application
in guiding stem cell-based therapies in heart failure. As a first
attempt towards this objective, we carry out a three-dimen-
sional coupled electromechanical analysis of a biventricu-
lar generic heart model and show that basic features of the
heart function can be captured by our model. The solid model
of a biventricular generic heart is constructed by means of
two truncated ellipsoids as suggested in [39]. The generic
heart model whose dimensions and spatial discretization are
depicted in Fig. 7 is meshed with 13,348 four-node coupled
tetrahedral elements connected at 3,059 nodes. The unevenly
distributed average orientation of contractile myocytes a0 is
depicted with yellow lines in Fig. 8. This fiber organiza-
tion is consistent with the myofiber orientation in the human
heart where the fiber angle ranges from approximately−70◦
in the epicardium to +70◦ in the endocardium with respect
to the z-plane. Displacement degrees of freedom on the top
base surface (z = 0) are restrained and the whole surface of

Fig. 7 Geometry and discretization of a generic heart model generated
by truncated ellipsoids. Dimensions are in millimeters

the heart is assumed to be flux-free. Moreover, we use the
same values of the material parameters as in the preceding
example.

To initiate the excitation, the elevated initial value Φ0 =
−10 mV of the transmembrane potential is assigned to the
nodes located at the upper part of the septum (wall separat-
ing the ventricles) as indicated by the partially depolarized
region in the panel at t = 3 ms in Fig. 8. The initial trans-
membrane potential at the remaining nodes is set to the rest-
ing value Φ0 = −80 mV. The excitation at the top of the
septum generates the depolarization front travelling from the
location of stimulation throughout the entire heart, thereby
resulting in the contraction of the myocytes, see the snap-
shots taken at t = 75, 105, 135 ms in Fig. 8. At first glance,
we observe that the contraction of myocytes gives rise to the
upward motion of the apex (bottom part of the heart). More
importantly, we also note that the upward motion of the apex
is accompanied by the physiologically observed wall thick-
ening and the overall torsional motion of the heart. These
effects can be better appreciated by looking at the deforma-
tion of the two slices presented in the complementary images
shown in Fig. 9. Undoubtedly, it is the inhomogeneous dis-
tribution of myocyte orientation, which is incorporated in
the model both spatially over the surfaces and across the
transmural direction of the ventricular walls, that yields this
physiological response through the non-uniform contraction
of myofibers. The panels in the lower rows of Figs. 8 and 9
depict the relaxation of the heart during the course of repo-
larization. At the end of the repolarization process, the ref-
erence configuration of the heart is fully recovered. Note
that the repolarization starts from regions which depolarized
last. This is in accordance with the uneven action potential
duration distribution throughout the myocardium where the
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Fig. 8 Coupled excitation-induced contraction of generic heart model. Snapshots of the deformed model depict the action potential con-
tours at different stages of depolarization (upper row) and repolarization (lower row). The lines denote the spatial orientation a of contractile
myofibers

Fig. 9 Coupled excitation-induced contraction of the generic heart
model. Snapshots of two slices located at x = 0 and z = 25 mm
(Fig. 7) in the three-dimensional model favorably illustrate the phys-

iological wall thickening and overall torsional motion of the heart at
different stages of depolarization (upper row) and repolarization (lower
row)

action potential lasts longer in the endocardial cells than in
the epicardial cells [19]. In the present model, this is achieved
by altering the temporal converting factor βt inversely pro-

portional to the excitation time as originally proposed in
our recent work on computational modeling of electrocar-
diograms [17].
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6 Concluding remarks

In this manuscript, we have proposed a new, fully implicit,
entirely finite element-based numerical approach to the
strongly coupled non-linear problem of cardiac electrome-
chanics. The suggested unified algorithmic formulation has
been thoroughly set out by giving full particulars of the weak
formulation, consistent linearization, and discretization. This
has resulted in an unconditionally stable scheme and a mod-
ular framework that can readily be extended towards more
detailed constitutive approaches. The particular constitutive
model considered in this paper accounts for a two-way
coupling; that is, both the excitation-induced contraction of
cardiac tissue and the deformation-induced generation of
excitation have been incorporated. Apart from the
intrinsic coupling, the inherent anisotropic micro-structure of
cardiac tissue is reflected in the model by means of the mod-
ern notions of coordinate-free representation of anisotropy in
terms of structural tensors. This concerns not only the passive
and active non-linear stress response but also the deforma-
tion-dependent conduction tensor. The outstanding perfor-
mance of the proposed approach has been then demonstrated
by means of the three-dimensional benchmark problems that
include the re-entrant scroll dynamics and impact loading-
generated excitation in the contractile cardiac tissue and the
complete coupled electromechanical analysis of a biventric-
ular generic heart model. It is important to emphasize that
the fully implicit unified finite element setting allowed us
to carry out the benchmark computations with a consider-
ably less computational effort compared to the calculations
reported in the literature, which require much finer temporal
and spatial discretization.
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