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Abstract

The term neural network evolution usually refers to network topology evolution leaving the network’s parameters to be trained using

conventional algorithms. In this paper we present a new method for neural network evolution that evolves the network topology along

with the network parameters. The proposed method uses grammatical evolution to encode both the network and the parameters space.

This allows for a better description of the network using a formal grammar allowing the network architect to shape the resulting search

space in order to meet each problem requirement. The proposed method is compared with other three methods for neural network

training and is evaluated using 9 known classification problems and 9 known regression problems. In all 18 datasets, the proposed

method outperforms its competitors.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Evolutionary neural networks have been extensively
used for various applications. In almost all cases only the
topology of the network is evolved and the resulting
network is trained using conventional algorithms. In other
approaches of neural network evolution, only the weights
of the network are evolved and the network topology is
predefined. The use of a genetic algorithm to evolve only
the topology is considered excessive since a genetic
algorithm is inherently used for optimization problems
with a vast search space. Even in the case of recurrent
neural networks, the maximum number of available
topologies per problem is limited. The proposed approach
(Fig. 1) encodes both the topology of the neural network
and its parameters (input vector, weights, bias) in a genetic
algorithm using a context-free grammar (CFG). The
combination of a CFG and a genetic algorithm is known
as grammatical evolution and in the present case has the
e front matter r 2008 Elsevier B.V. All rights reserved.
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benefit of allowing easy shaping of the resulting search
space.
Furthermore, recent developments in distributed and

quantum computing will present a need in distributed
algorithms. This will give an undisputed advantage to
evolutionary algorithms over classical approaches (such
as gradient-descent-based optimization) since they are
natively parallel and can be used in distributed systems
with very little modifications.
The proposed method is strongly evaluated on 18 known

experimental datasets that are available on the Internet.
The experimental datasets refer to both classification and
regression problems. In order to reduce random variation
of the datasets, 10-fold cross-validation has been applied to
all experiments. Furthermore, in order to reduce random
variation of the proposed algorithm itself, each experiment
has been run 30 times and the mean is presented. The
method is tested against neural networks that are trained
with various algorithms:
�

an
RPROP [27] which is an improved version of the well-
known back-propagation (BP) method local optimiza-
tion method.
d training using grammatical evolution, Neurocomputing (2008),
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Fig. 1. The proposed method uses a context-free grammar in Backus

Naur Form and the grammatical evolution procedure in order to

construct and train a population of neural networks (phenotypes) from

a genotype population.

Fig. 2. A neural network representation using a table and evolving both

topology and weights.
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�

P

d

A Powell’s variant of the well-known BFGS [25] local
optimization method.
Fig. 3. A binary representation of a neural network topology and weights.
�
 A global optimization method namely MinFinder [35]
which is capable under some conditions, to find all the
local minimums of a function.

�
 Using a genetic algorithm to estimate the neural

network’s initial parameters and the BFGS [5,11] local
optimization method for fine tuning using a local search.
This method is similar to the one described in [28].

�
 In all cases, the function to be minimized in the case of

neural networks is the train error. In almost all cases,
the proposed method outperforms its competitors.

2. Related work

Artificial neural networks are well-established tools [8]
used with success in many problems such as pattern
recognition [3], solving differential equations [19], regres-
sion problems, classification problems, etc. The use of
genetic algorithms in the evolution of neural networks has
been widely used in literature. However, in most cases
limited experimental results are presented. In evolving a
neural network using a genetic algorithm, two main
approaches are used. In the first approach, the network
topology and the network weights are evolved simulta-
neously [2,16,36], while in the second approach only the
network topology is evolved and the parameters are
estimated using a standard approach such as a gradient-
based optimization method [1,14,37]. Other approaches of
defining the network’s topology other than using genetic
algorithms include pruning algorithms [26], simulated
annealing-based algorithms [9] and particle swarm optimi-
zation techniques [38].

The representation of the neural network is another
important aspect of the evolutionary approach. Three
lease cite this article as: I. Tsoulos, et al., Neural network construction
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major approaches are adopted in the bibliography. In the
first, a binary coding of the topology and weights is used
(Fig. 2). In the second approach, a table structure is used to
represent the connectivity between the neurons and the
network’s weights (Fig. 3). The third approach is con-
sidered the most sophisticated since it involves using a
higher-level language such as grammar to describe the
network topology (Fig. 1). The latter approach gives better
control to the network architect since he can create node
layers and better describe complex topologies.
Evolutionary neural networks have been widely used in

solving various problems. The authors in [15] employ a
descriptive language to model neural network topology
and train the evolved networks using classical algorithms
such as RPROP [27]. A modular architecture is used to
limit the search space and improve performance. In [2]
Ajith Abraham proposes meta-learning evolutionary neur-
al networks and combines both the learning of the weights
and topology into his algorithm. In his work, the author
presents a large number of experimental results to support
his findings. Evolutionary neural networks have also been
proposed for a wide variety of problems. The authors in
[17] use evolutionary neural networks to construct the
controller of a mobile robot. An intrusion detection
method is proposed in [14] where evolutionary neural
networks are used to find the optimal network topology
and weights. The authors extend the evolutionary algo-
rithm to include a BP local search for each evolved
network. In this way, the genetic algorithm is actually used
to initialize the network’s weights and the BP to perform a
local search and train the network. A breast cancer
diagnosis system is based on evolutionary networks in [1].
and training using grammatical evolution, Neurocomputing (2008),
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The authors propose a hybrid algorithm that uses BP to
estimate the network’s weights after the network has been
constructed and initialized by the genetic algorithm. In [28],
the authors employ a genetic algorithm to estimate the
weights and the number of neurons in the hidden layer of a
radial basis function (RBF) network. The resulting RBF
network is then used successfully to predict time series
data. The authors in [36] evolve a neural network in order
to create an adaptive intrusion detection system for
computer network attacks. In [16], the DNA Microarray
analysis is performed with high accuracy using evolved
neural networks. In [18] the authors propose a Lisp-based
genetic programming approach to evolve both the weights
and the architecture of a neural network. Also, in [32] a
genetic programming approach is used in order to evolve
modular neural networks and in [6] a genetic programming
technique based graph representation (PDGP) is used in
order to evolve the topology and the weights of Neural
Networks.

3. Grammatical evolution

The grammatical evolution approach has been intro-
duced by Ryan and O’Neill [22] in 1998 and has been used
successfully to solve various problems such as symbolic
regression [23], discovery of trigonometric identities [29],
robot control [7], caching algorithms [21] and financial
prediction [4]. It has also been successfully used for feature
selection and construction in [13,34] problem where the
authors use their proposed algorithm as a wrapper for
traditional neural network training algorithms in order to
automatically construct new features for pattern recogni-
tion problems. The grammatical evolution approach uses a
CFG and a genetic algorithm in order to map each
phenotype to sentence produced by the grammar. The
CFG G=(N,T,S,P) where N is a set of non-terminal
symbols, T is a finite set of terminal symbols where
N \ T ¼+. SAN is the starting symbol and P is a finite
set of production rules in the form A-a or A-aB, A,
BAN, aAT.

The genetic algorithm is a stochastic optimization algorithm
based on the theory of biological evolution [20]. It consists of a
set of chromosomes (population) and evolves each population
to the next generation through a set of genetic operators such
as crossover and mutation. The probability of a chromosome
to be included in the next generation, mostly (but not solely)
depends on its fitness (or evaluation). The genetic algorithm
can be described as follows:
1.
P

d

initialize a random population of chromosomes,

2.
 evaluate each chromosome,

3.
 if a member of the population satisfies the termination

criterion, terminate,

4.
 select a pool of chromosomes to be included in the next

generation,

5.
 create the next generation from the pool by applying the

crossover and mutation operators,
lease cite this article as: I. Tsoulos, et al., Neural network construction
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6.
 if the maximum number of generations has been
reached, terminate.

A chromosome C is usually represented as binary and it
consists of a set of l genes ci

x ¼ ðc1; c2; . . . ; clÞ; cl 2 f0; 1g

l is also the length of the chromosome. In the proposed
implementation, in order to increase speed, the chromo-
somes are represented as sets of integers where each gene is
defined as: clA{1,2,y,255}. The upper limit 255 practically
means that set number of production rules for each non-
terminal symbol cannot exceed 255. However, this can
easily change.
The genetic operators used are crossover and mutation.

For the crossover operator, assume that C1 ¼ ðc
1
1; c

1
2; . . . ; c

1
NÞ

and C2 ¼ ðc
1
1; c

2
2; . . . ; c

2
NÞ are two chromosomes. In the

proposed algorithm, a simple crossover is performed where
the resulting new chromosomes NC1, NC2 are defined as

NC1 ¼ ðc
1
1; c

1
2; . . . ; c

1
r ; c

2
rþ1; . . . ; c

1
N Þ,

NC2 ¼ ðc
2
1; c

2
2; . . . ; c

2
r ; c

1
rþ1; . . . ; c

1
N Þ

where rA{1,2,y,N�1} is a randomly chosen position
inside the chromosome. The crossover probability in the
present implementation is set to 0.95.
In the mutation procedure, every element of each

chromosome can be changed to a different random integer
in the range [0, 255] with probability equal to mutation
rate, which is a number in the range [0, 1].
The selection of the intermediate pool of chromosomes

in the current implementation is performed using the
tournament selection process in which N random chromo-
somes are selected from the population and according to
their fitness, 2 are selected. The genetic operators are
applied to the 2 selected chromosomes in order to create
the 2 new chromosomes that are to be included in the next
generation. This approach, compared to other techniques
(like the roulette selection), usually avoids converging
towards local minima thus giving better results.
An example of grammatical evolution can be seen in

Table 1. The grammar used in the example can be seen in
Fig. 4.

4. Neural network evolution and training using grammatical

evolution

In order to construct the neural network using gramma-
tical evolution, the network itself has to be expressed using
the BNF grammar. A two-layer network (see Fig. 5) can be
expressed as

Nðx;wÞ ¼
XH
i¼1

wðdþ2Þi�ðdþ1Þs
Xd

j¼1

ðwðdþ2Þi�ðdþ1ÞþjxjÞ þ wðdþ2Þi

 !

where xARd, H ¼ nodes/(d+2) denotes the number of
neurons in the hidden layer and w denotes the weights of
and training using grammatical evolution, Neurocomputing (2008),
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Table 1

Example of the grammatical evolution procedure

String Chromosome Operation

/exprS 9, 8, 6, 4, 16, 10, 17, 23, 8, 14 9 mod 3 ¼ 0

(/exprS/opS/exprS) 8, 6, 4, 16, 10, 17, 23, 8, 14 8 mod 3 ¼ 2

(/terminalS/opS/exprS) 6, 4, 16, 10, 17, 23, 8, 14 6 mod 2 ¼ 0

(/xlistS/opS/exprS) 4, 16, 10, 17, 23, 8, 14 4 mod 3 ¼ 1

(x2/opS/exprS) 16, 10, 17, 23, 8, 14 16 mod 4 ¼ 0

(x2+/exprS) 10, 17, 23, 8, 14 10 mod 3 ¼ 1

(x2+/funcS(/exprS)) 17, 23, 8, 14 17 mod 4 ¼ 1

(x2+cos(/exprS)) 23, 8, 14 23 mod 3 ¼ 2

(x2+cos(/terminalS)) 8, 14 8 mod 2 ¼ 0

(x2+cos(/xlistS)) 14 14 mod 3 ¼ 2

(x2+cos(x3))

Rule                                                           Rule number 

Fig. 4. The BNF grammar used for the grammatical evolution example of

Table 1.

Fig. 5. A graphical representation of a two-layer neural network.

Fig. 6. The proposed BNF grammar that can construct a two-layer

network.
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the network. The activation functions of each neuron is the
sigmoid function: sðxÞ ¼ 1=ð1þ e�xÞ.

A CFG in Backus Naur Form that can create such a
network can be seen in Fig. 6. The /sigexprS non-terminal
denotes the resulting neural network and each neuron is
represented by /NodeS. The sigmoid function is denoted
by sig( � ) and the inputs of the network are the /xxlistS
non-terminal. It can also be seen from Fig. 6 that the
parameters of the network (weights, inputs and bias)
are also encoded in the grammar and are in the form
of /numberS.
Please cite this article as: I. Tsoulos, et al., Neural network construction
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Each neural network Ng(x) is constructed from a
chromosome through the grammar. The fitness of the
chromosome is the performance of the neural network on a
selected train dataset. More specifically, for each point
(xi, yi), i ¼ 1,y,M where M is the total number of points in
the train set of the train set, the fitness f is calculated as
f ¼

PM
i¼1ðNgðxiÞ � yiÞ

2 where yi is the desired output for
the input vector xi.
The proposed coding schema for representing neural

networks overcomes many of the problems that are
indicated in [12]. More specifically, it does not allow the
genetic algorithm to restrict the network’s architecture and
it is more accurate than most binary representation
schemas while maintaining all the benefits of using a
higher description for the network’s architecture as
mentioned in [15].

5. Dataset description

The datasets used for evaluating the proposed method,
are known datasets that are available for download from
the Internet and refer to both classification and regression
problems. The number of datasets that are presented and
evaluated are 9 classification problems and 9 regression
problems.

5.1. Classification datasets
�

an
Wine. The wine recognition dataset (WINE) contains
data from wine chemical analysis. It contains 178
examples of 13 attributes each that are classified into
three classes.
d training using grammatical evolution, Neurocomputing (2008),
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�

P

d

Glass. This dataset (GLASS) contains glass component
analysis for glass pieces that belong to 6 classes. The
dataset contains 214 examples with 10 attributes each.

�
 Pima Indians Diabetes. The PIMA dataset contains 768

examples of 8 attributes each that are classified into two
categories: healthy and diabetic.

�
 Wisconsin Diagnostic Breast Cancer. The Wisconsin

Diagnostic Breast Cancer dataset (WDBC) contains
data for breast tumors. It contains 569 training
examples of 30 attributes each that are classified into
two categories.

�
 Circular Artificial data. The circular artificial dataset

(CIRCULAR) contains 1000 examples that belong to
two categories. The data in the first class belong to a
circle and the data of the second class belong to a
circular disc outside the first circle. Each example vector
has two attributes. It is expanded by adding 3 more
attributes generated randomly (noise) using a normal
distribution.

�
 Spiral Artificial data. The spiral artificial dataset

(SPIRAL) contains 1000 examples that belong to two
classes (500 examples each). The data in the first class
are created using the following formula: x ¼ 0.5 t cos
(0.08 t), y ¼ 0.5 t cos(0.08+p/2), and the second-class
data using: x ¼ 0.5 t cos(0.08 t+p), y ¼ 0.5 t cos(0.08 t+
3p/2). The original features vector has two attributes
(x, y).

�
 Spiral Artificial data 2. The second spiral dataset

(SPIRAL2) is created as the first dataset. Its difference
is that its primitive set is expanded by adding 3 more
noisy attributes using normal distribution.

�
 Liverdisorder. This dataset contains blood analysis data

from people with liver disorders. It consists of 345
examples of 6 attributes each.

�
 Ionosphere dataset: The ionosphere dataset contains

data from the Johns Hopkins Ionosphere database. It
contains 351 examples of 34 attributes each that are split
into two classes.

5.2. Regression datasets
�
 BL. This dataset can be downloaded from StatLib
(http://stat.cmu.edu/datasets/). It contains data from an
experiment on the affects of machine adjustments on the
percentage time to count bolts.

�

Table 2

Genetic algorithm parameters used in the experiments
FA. The FA dataset contains percentage of body fat,
age, weight, height and 10 body circumference measure-
ments. The goal is to fit body fat to the other
measurements.

�

Parameter Value

Maximum number of generations 500

Population size 500

Chromosome length 100

Crossover rate 0.95
LW. This dataset is produced from a study that was to
identify risk factors associated with giving birth to a
low-birth-weight baby (weighing less than 2500 g). Data
were collected on 189 women, 59 of which had low-
birth-weight babies and 130 of which had normal-birth-
weight babies.
Mutation rate 0.05

�

Tournament size 10

NT. This dataset contains data from a paper in the
Journal of the American Medical Association that
lease cite this article as: I. Tsoulos, et al., Neural network construction an
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examined whether the true mean body temperature is
98.61F.

�
 PO. This dataset is available from StatLib (http://stat.

cmu.edu/datasets/). It contains pollution data.

�
 PW. This dataset contains numeric prediction data

using instance-based learning with encoding length
selection.

�
 SN. This dataset contains data on a viticultural

experiment that was conducted to investigate different
methods of trellising and pruning.

�
 MB. This dataset is available from Smoothing Methods

in Statistics (http://stat.cmu.edu/datasets/).

�
 BK. This dataset comes from Smoothing Methods in

Statistics (http://stat.cmu.edu/datasets/).
6. Experimental results

In this section, the results from the application of the
proposed method against the methods RPROP, BFGS and
MinFinder are listed. Each method was tested for different
topologies of the resulting neural network (e.g. the number
of hidden neurons) and the topology with the best results
was selected. The genetic algorithm’s parameters have been
estimated experimentally after observing that the algorithm
converges faster using these parameters. The parameters
can be seen in Table 2.
For comparison, the datasets were split into 10 parts and

10-fold cross-validation was used in order to reduce
random variation of the data. The experimental results
for the 9 classification problems can be seen in Figs. 7
and 8. Figs. 7 and 8 show the test error for each of the 4
compared methods (smaller is better).
From the experimental results, it can be seen that in all

cases except one (SPIRAL2), the NNC performed better,
the NNC method is followed by MinFinder and the
RPROP and BFGS methods give the worst results. It must
also be noted that the MinFinder method is a global
optimization method that requires tremendous amounts of
time (several orders of magnitude than the proposed one).
The experimental results for the 9 regression problems

can be seen in Figs. 9 and 10. The mean square error
(MSE) is measured for the RPROP, BFGS, MinFinder,
Genetic and the proposed NNC method. As in the
classification problems, the NNC method gives the best
results.
d training using grammatical evolution, Neurocomputing (2008),
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0.0000
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0.2000

0.3000
0.4000
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0.7000
0.8000

RPROP 0.5993

BFGS 0.4886

MINFINDER 0.1178

GENETIC 0.1426

NNC 0.0444

WINE GLASS PIMA WDBC CIRCULAR

0.7137 0.3319 0.3271 0.4494

0.5393 0.3656 0.2091 0.0795

0.4941 0.3004 0.0489 0.0857

0.4801 0.3216 0.0687 0.0784

0.5140 0.2500 0.0456 0.0620

Fig. 7. Test error (%) for the first 5 classification problems. The RPROP, BFGS and MinFinder methods are compared against the proposed NNC

method.

0.0000
0.1000
0.2000
0.3000

0.4000
0.5000
0.6000

RPROP 0.4906

BFGS 0.4531

MINFINDER 0.4343

GENETIC 0.4358

NNC 0.4490

SPIRAL SPIRAL2 LIVERDISORDER IONOSPHERE

0.5022 0.4356 0.1578

0.4847 0.3886 0.1708

0.4704 0.3559 0.1627

0.4815 0.3584 0.1699

0.4780 0.3006 0.0966

Fig. 8. Test error (%) for the last 4 classification problems. The RPROP, BFGS and MinFinder methods are compared against the proposed NNC

method.
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In order to better evaluate the proposed method,
additional comparisons were made. More specifically, the
proposed method was compared to a standard generic
algorithm that encodes the topology and weights into a
binary chromosome (see Fig. 3). This approach is most
widely used in bibliography. The experiments were carried
out on all the classification datasets and in order to reduce
random variance they ran 30 times and the MSE is
presented in Fig. 11. As it can be seen from Fig. 11, the
NNC method outperforms the classical approach in 6 out
of 8 datasets.

7. Scalability

One of the advantages of genetic programming is that it
is inherently scalable. Much work has been done on
parallel genetic algorithms [10,24,30,31,33] and all methods
can be utilized by the proposed algorithm. A more
practical example of a scalable version of the proposed
method is the use of the island approach. In this approach,
Please cite this article as: I. Tsoulos, et al., Neural network construction

doi:10.1016/j.neucom.2008.01.017
multiple generations are evolved simultaneously (islands)
and periodically (or after a predefined number of genera-
tions) the best chromosomes of each island are gathered
compiled into a new population. The new population is
then re-distributed to all islands. The process is repeated
until the termination criteria are satisfied. This approach
which can be seen in Fig. 12, can be easily implemented
using the well-known Message Passing Interface, a well-
known technique for parallel programming.
Another approach is to create a scalable version of

the proposed method by dividing the search space
into smaller subspaces and letting each parallel processing
unit to explore each subspace separately. In the present
approach, the creation of each subspace can be accom-
plished by manipulating the grammar. In the present
case, each subspace could be mapped onto a subtopology,
thus allowing for different topologies to be explored
simultaneously.
The algorithm’s efficiency can also be improved by

scaling the fitness function. Since on real-world problems
and training using grammatical evolution, Neurocomputing (2008),
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0.21 0.25 2.41 0.27 1.72 1.13

0.26 0.29 2.01 0.22 2.81 2.04

0.05 0.1 0.13 0.1 0.04 0.46

Fig. 9. MSE error for the first 7 regression problems. The RPROP, BFGS and MinFinder methods are compared against the proposed NNC method.
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Fig. 10. MSE error for the last 2 regression problems. The RPROP, BFGS and MinFinder methods are compared against the proposed NNC method.
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the construction of a neural network, its training and
testing is a relatively computationally expensive process,
the evaluation of each chromosome could be performed in
a distributed manner thus reducing the time needed to
evolve a single generation.

8. Conclusions and future work

The method proposed in this paper (NNC) uses
grammatical evolution in order to construct and train a
neural network. The proposed method encodes in the
grammar not only the network topology but also the
network parameters. The NNC method is evaluated on 9
known classification and 9 known regression problems and
compared against the state of the art methods: RPROP,
Please cite this article as: I. Tsoulos, et al., Neural network construction
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BFGS and MinFinder. An accurate comparison of the four
methods is presented that uses 10-fold cross-validation and
30-fold experiment replication. The experimental results
show that the proposed NNC method outperforms the
other methods. Two major advantages of NNC are that it
is significantly faster than MinFinder by several orders of
magnitude and is natively parallel. This gives NNC an edge
over traditional methods since it can take advantage of
distributed computing technologies.
In continuing this work, the proposed algorithm could

be extended to include feature selection and/or feature
construction (using linear and/or non-linear transforma-
tion of the input space). Another aspect of the proposed
network that still needs to be explored is the construction
of recurrent networks and its evaluation on time series
and training using grammatical evolution, Neurocomputing (2008),
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0
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0.5140 0.3006 0.2500 0.0966 0.0620 0.4490 0.4780

Fig. 11. Comparison of the proposed (NNC) method to the classical (Genetic) approach. The (%) test error is presented.

Fig. 12. A classical approach of a parallel genetic algorithm. Multiple

generations are evolved simultaneously (in each island) and periodically, a

new population is created centrally by gathering the best chromosomes

from each island.
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data. Finally, a software package will be made available
from the authors Internet homepages using which in future
versions, could include a distributed version that would run
on grids.
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