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cknowledged for their unique antioxidant properties, and possess other activities
that may be relevant to heart ischemia–reperfusion. They may prevent production of oxidants (e.g. by
inhibition of xanthine oxidase and chelation of transition metals), inhibit oxidants from attacking cellular
targets (e.g. by electron donation and scavenging activities), block propagation of oxidative reactions (by
chain-breaking antioxidant activity), and reinforce cellular antioxidant capacity (through sparing effects on
other antioxidants and inducing expression of endogenous antioxidants). Flavonoids also possess anti-
inflammatory and anti-platelet aggregation effects through inhibiting relevant enzymes and signaling
pathways, resulting ultimately in lower oxidant production and better re-establishment of blood in the
ischemic zone. Finally, flavonoids are vasodilatory through a variety of mechanisms, one of which is likely
interaction with ion channels. These multifaceted activities of flavonoids raise their utility as possible
therapeutic interventions to ameliorate ischemia–reperfusion injury.

© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Myocardial ischemia–reperfusion injury occurs following partial or
complete cessation of blood circulation to themyocardium. Pathological
alterations underlying ischemia–reperfusion injury begins during
othelial nitric oxide synthase;
; MMP, matrix metalloprotei-
OS, nitric oxide synthase; O2

U−,
necrosis factor; VCAM, vascular
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ischemia by stoppage of anaerobic metabolism which activates
glycolysis, resulting in a decline in intracellular pH and consequently
elevation of sodium and calcium in the cytosol [1,2]. With reperfusion,
the ionic disturbances including calcium overload in the cytosol and
mitochondria are exacerbated and production of superoxide and other
reactive species of oxygen is intensified, leading eventually to structural
and functional changes in cellular biomolecules and activation of
signaling pathways that in severe cases result in cell demise [3,4].

Increased production of reactive oxygen species (ROS) and
accumulation of calcium in the cytosol and mitochondria are two
major causative factors of ischemia–reperfusion injury [5,6]. ROS
mostly originate from three sources: the mitochondrial electron
transport chain of myocytes [7,8], NADPH oxidase and myelope-
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Fig. 2. Flavonoid scavenging of superoxide and peroxynitrite. Through scavenging
superoxide, flavonoids improve NO

U
bioavailability and inhibit peroxynitrite formation.

Flavonoids can also scavenge peroxynitrite which damages endothelium and impairs
endothelium-mediated vasorelaxation, leading ultimately to better blood circulation in
coronary arteries. O2

U−, superoxide; ONOO−, peroxynitrite.
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roxidase of neutrophils [9,10], and xanthine oxidase of endothelial
cells, although the contribution of xanthine oxidase in reperfusion
injury of human hearts is a matter of debate [8,11–13]. Calcium
overload is the result of ionic derangements starting after diminution
of intracellular pH during ischemia [1,2]. Calcium overload not only by
itself can initiate signaling pathways towards the injury, but it also
accelerates formation of ROS and exacerbates destructive effects of
ROS on cellular compartments and pathways [14,15].

Upon reperfusion of an ischemic tissue, a burst of ROS generation
occurs due to rebound hyperoxia and oxidation of reduced intermedi-
ates [16,17]. Primary sources of ROS in this acute phase are likely the
mitochondrial respiratory chain and xanthine oxidase. There is also a
delayed and amplified generation of ROS due to the inflammatory
response initiated by cytokines released from the damaged cells [18].
Each of these phases presents opportunities for flavonoids to intervene
and help salvage the ischemic-reperfused tissue.

Flavonoids are a subgroup of the more extended family of
polyphenols. More than 5000 flavonoids have been identified, each
with a basic structure containing two benzene rings with a pyrane
ring in the middle [19]. Flavonoids are outstanding antioxidants, at
least in vitro [20], and because of their antioxidant activity as well as
their abundance in fruit and vegetables they may partly contribute to
the currently-known health benefits of plant foods [21]. There is
ample evidence indicating beneficial effects of flavonoids on ischemic-
reperfused hearts in in vitro applications (added to perfusate) or
administered to blood [22–27], which could be of use in acute
ischemia–reperfusion situations such as heart surgeries and trans-
plants. There is also growing evidence that oral administration of
flavonoids could provide protection against myocardial ischemia–
reperfusion [28–36], which would be of benefit to people with chronic
conditions such as ischemic heart disease. In this review, we have
presented the possible mechanisms of cardioprotective effects of
flavonoids that help the heart to overcome stress conditions of
ischemia and reperfusion.

2. Antioxidant capacities

The most well-known protection of flavonoids from ischemia–
reperfusion injury is conferred by their direct antioxidant activities.
Nevertheless, there are other antioxidant effects that are delivered
through different mechanisms such as post-translational modulation
of enzymes and induction of genes (Fig. 1).

Although the mechanisms involved are uncertain, there is
evidence that flavonoids inhibit ROS generation during heart
Fig. 1.Mechanisms of antioxidant effects of flavonoids. Flavonoids may exert their antioxidan
enhancement of cellular antioxidant enzymes.
ischemia–reperfusion. For example, 3 weeks feeding with grape
seed proanthocyanidins decreased the electron spin resonance-
detectable generation of free radicals during the initial minutes of
reperfusion [37]. Furthermore, flavonoids have been shown to
decrease ischemia–reperfusion-induced oxidative damage in myocar-
dium. For instance, perfusing hearts with quercetin for 30 min and
more strongly oral treatment with quercetin for 1 week before
ischemia reduced malondialdehyde levels in heart tissues after
reperfusion [32]. Similarly, 30 days feeding rats with either skin or
flesh of red grapes attenuated formation of malondialdehyde in
ischemic-reperfused hearts [38].

2.1. Reactive oxygen species scavenging activities

Flavonoids may protect heart from ischemia–reperfusion injury
by scavenging ROS. Flavonoids are potent scavengers of reactive
species such as superoxide [39,40], peroxyl radicals [41,42], and
peroxynitrite [43]. By scavenging such reactive species, flavonoids
prevent formation of highly reactive species of oxygen and limit
perpetuation of oxidative reactions. Moreover, scavenging ROS
bestows additional benefits. For instance, by scavenging superoxide
radicals the bioavailability of nitric oxide (NOU) increases [44–47] and
endothelial function in post-ischemic hearts improves (Fig. 2). Also,
peroxynitrite is a highly reactive species of oxygen involved in
cardiac reperfusion injury [48–50]. Peroxynitrite can cause
t effects by preventing generation of ROS, direct scavenging of ROS, or indirectly through
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endothelium dysfunction through nitration of the nitric oxide
synthase (NOS) cofactor, tetrahydrobiopterin, which in turn uncou-
ples NOS and produces more ROS, and also through nitration and
inhibition of prostacyclin synthase [51,52]. Thus, scavenging super-
oxide and peroxynitrite by flavonoids may help prevent endothelial
dysfunction during reperfusion.

With regard to heart ischemia–reperfusion a major question is
whether flavonoids or their metabolites reach heart tissues in
sufficient quantities to be competitive scavengers of ROS, especially
if delivered in the diet. The bioavailability of flavonoids is relatively
low, and whether they reach biologically active levels in vivo has been
questioned [53–55]. Vitamin C and glutathione in the aqueous phase
and vitamin E in the lipid phase are likely to be much more important
as direct scavengers of ROS. Nevertheless, flavonoids at nanomolar
concentrations are sometimes found to protect cultured cells against
reactive species such as peroxynitrite [e.g. 56]. Dietary supplementa-
tions with flavonoids have been shown to inhibit LDL oxidation in
both in vivo and ex vivo settings [57–59]. However, it is difficult to
ascertain if these effects are from direct scavenging of ROS or from
other mechanisms. The levels of flavonoids that are achievable in
heart tissues are not well known, although quercetinmetabolites have
been found deposited in human aorta [60]. Flavonoids at relatively
low concentrations may become important antioxidants in micro-
environments that are less accessible to vitamin C and vitamin E, such
as at the interface of membranes [61].

2.2. Metal chelation

Some of the antioxidant effects of flavonoids are delivered
through chelation of metal ions such as iron and copper [62–65].
Transition metal ions are critical co-factors of the Fenton reaction,
and therefore their chelation by flavonoids makes them unavailable
for this kind of reaction [66,67]. Decompartmentalization of iron has
been found to be an important contributor to oxidative stress in
heart ischemia–reperfusion injury [68,69]. This iron-initiated
damage could be inhibited by perfusing hearts with desferrioxamine
[70] or the flavonoid catechin [71]. Interestingly, it has been
suggested that specific flavonoids upon binding metals may behave
as a superoxide dismutase, scavenging superoxide more potently
than the parent flavonoids while devoid of catalytic activity for the
Fenton conversion of hydrogen peroxide to hydroxyl radicals
[72–73]. Flavonoids may bind metals in metal:flavonoid ratios of
1:1, 1:2, 2:2, and 2:3 [74].

2.3. Inhibition of xanthine oxidase

Inhibition of xanthine oxidase may be one of the mechanisms by
which flavonoids at physiological concentrations can mitigate
ischemia–reperfusion injury. Several flavonoids including luteolin,
apigenin, quercetin, myricetin, and kaempferol have been shown to
inhibit xanthine oxidase [75–78]. Catechin did not inhibit xanthine
oxidase activity [75,76]. However, there is conflicting evidence on
catechins as tea leaves, which are known sources of catechins,
inhibited xanthine oxidase activity to a greater extent than onions
and apples, which are good sources of quercetin [79]. Particularly in
coronary vessels and interstitial cells where xanthine oxidase activity
is thought to participate in ischemia–reperfusion injury [80],
inhibiting xanthine oxidase may help prevent formation of super-
oxide (O2

U−).

2.4. Inhibition of NADPH oxidases

NADPH oxidases are membrane-associated enzymes which cata-
lyze transfer of one electron from NADPH to O2 with consequent
generation of O2

U− [81,82]. Although NADPH oxidase was originally
thought to be a neutrophil enzyme, recent investigations showed
expression of NADPH oxidases in cardiovascular cells, including car-
diac cells, endothelial and smooth muscle cells, and fibroblasts.

The expression of subunits [83] and the enzyme activity [84] of
NADPH oxidase has been shown to increase in infarcted myocar-
dium and failing hearts, and may contribute to ventricular
remodeling and cardiac hypertrophy [85]. Nevertheless, the implica-
tion of NADPH oxidases in reperfusion injury and especially
myocardial infarction is still subject to debate, with some reports
showing an involvement [85–88] and others rejecting it [89–91]. It
is worthwhile to note that although inhibiting NADPH oxidases may
attenuate myocardial infarction damage [86], NADPH oxidases likely
bring benefits to ischemic myocardium by promoting myocardial
angiogenesis [92].

Although not yet investigated for this mechanism in ischemia–
reperfusion, flavonoids have shown ability to suppress enzyme
activity and/or expression of NADPH oxidases in other types of stress.
For instance, epigallocatechin gallate inhibited expression of NADPH
oxidase subunits in neonatal rat cardiomyocytes induced by angio-
tensin II and in rat hearts subjected to pressure overload [93].
Similarly, dietary administration of anthocyanins, proanthocyanidins,
or catechin oligomers for 6 weeks lowered cardiac NADPH oxidase
expression in rats treated with high-fructose diet [94]. Likewise,
diminished activity of NADPH oxidase was observed in neutrophils of
hemodialysis patients who consumed concentrated red grape juice for
two weeks [95]. Interestingly, inhibition of the NADPH oxidase of
endothelial cells has recently been proposed as amechanism bywhich
catechins improve vascular function [96], which could be of benefit in
protecting against ischemia–reperfusion injury.

2.5. Reinforcement of cellular antioxidants

Human studies have shown depletion of non-enzymatic antiox-
idants such as glutathione, ascorbic acid, and vitamin E following
myocardial ischemia–reperfusion [97]. Hydrophilic antioxidants, such
as ascorbate and glutathione, have shown to work at the front line of
defense against oxidative stress, protecting lipophilic antioxidants
such as ubiquinol and vitamin E from oxidation [98]. Ascorbic acid also
helps to regenerate vitamin E from its oxidized form [99], and is in
turn recycled by glutathione [100], although vitamin C is also needed
for the recovery of glutathione from its oxidized form [101]. In such a
network, flavonoids are proposed to act as intermediate antioxidants,
protecting lipophilic antioxidants and being protected by hydrophilic
antioxidants [102,103]. The extent to which flavonoids may preserve
other antioxidants in heart ischemia–reperfusion has not yet been
documented.

2.6. Induction of phase 2 enzymes

The antioxidant effect of flavonoids and other phytochemicals may
be exerted indirectly through induction of phase 2 enzymes [104–
107]. Phase 2 enzymes are proteins whose expression is coordinately
regulated by an antioxidant response element (ARE) located in the
promoter region of the corresponding genes [108]. Since phase 2
enzymes are committed to neutralization and detoxification of
xenobiotics and electrophiles, inducers of such genes may deliver
protection against oxidative stress [109]. One of the phase 2 enzymes,
heme oxygenase-1, has been recognized as an important mediator of
the delayed phase of ischemia preconditioning [110], and its over-
expression has led to reduced ventricular remodeling and hypertro-
phy [111] and better myocardial recovery and contractile function
[112].

Over the last decade, a large number of investigations have
indicated the ability of flavonoids to induce phase 2 enzymes in
animals [113–116] and human cell cultures [117]. This ability of
epigallocatechin gallate has recently been reviewed [118]. However,
whether flavonoids can induce phase 2 enzymes in heart and thereby



Fig. 3. Effect of flavonoids on endothelium-dependent vasorelaxation. Mild generation of O2
U− by flavonoids is likely responsible for induction of eNOS as well as a mild increase of

cytosolic Ca2+ as a cofactor for eNOS activation. Also, through scavenging O2
U− in interstitial fluid, flavonoids protect NO

U
. Other possible mechanisms of flavonoid vasorelaxation are

inhibition of phosphodiesterases (PDE) and lowering Ca2+ in smooth muscle cells.
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provide advance protection against ischemia–reperfusion injury is not
yet investigated.

3. Vasorelaxation

Besides antioxidant effects, flavonoids possess other properties
that alleviate ischemia–reperfusion injury; for instance they help to
better re-establish blood flow in post-ischemic hearts. A variety of
flavonoids and polyphenols have shown the capacity to dilate blood
vessels [e.g. 119–123]. Their mechanism of action is various and may
be exerted in endothelium-dependent and/or -independent manners.
Some polyphenols, such as quercetin and resveratrol, can induce
vasorelaxation by both mechanisms [124], although in the absence of
endotheliummuch higher concentrations of polyphenols are probably
required [125]. The endothelium-dependent relaxation effect of
polyphenols is mediated by nitric oxide.

Nitric oxide (NO
U
) is an important signaling molecule with

vasodilatory, anti-inflammatory, and anti-platelet activities
[126,127]. The up-regulatory effect of polyphenols on NO

U
levels

occurs through either activation of endothelium nitric oxide synthase
(eNOS) or by removing O2

U− and thereby inhibiting consumption of NO
U

[44,46,128]. Other than increasing eNOS activity [46], flavonoids may
additionally induce eNOS expression [129,130]. It has been reported
that in ischemic-reperfused hearts a part of beneficial effect of
epigallocatechin gallate is mediated through induction of eNOS
[25,31]. With resveratrol, Hung et al. [130] reported that intraper-
itoneal injection of 1 mg/kg 1 h before coronary ligation in rats
induced expression of eNOS and nNOS (neuronal NOS) while blocking
expression of iNOS (inducible NOS which contrary to eNOS produces
excessive amounts of NO

U
associated with formation of peroxynitrite

and oxidative stress). Interestingly, decreases in infarct size and
plasma levels of lactate dehydrogenase by resveratrol were NO

U
-

dependent, while attenuation of arrhythmia and mortality occurred
independently of NO

U
.

As eNOS is a calcium-dependent enzyme, elevation of intracellular
Ca2+ has been suggested as the mechanism of the endothelium-
dependent NO

U
-mediated vasorelaxation by polyphenols [131–134]

(Fig. 3). Polyphenols likely increase intracellular Ca2+ by stimulating
both Ca2+ entry from extracellular milieu and Ca2+ release from
intracellular Ca2+ stores [133]. Surprisingly, the rise of Ca2+ by
polyphenols occurs as a result of increased production of O2

U− as
application of superoxide dismutase plus catalase attenuated the Ca2+

elevation [135]. These results suggest that the effect of polyphenols on
NO

U
levels can occur both through stimulating O2

U− production inside
endothelial cells (stimulating eNOS activity), and through scavenging
O2
U− in the interstitial fluid (preserving NO

U
).

NO
U
is generally produced by eNOS attached to the endothelium

plasma membrane [136] and delivered to smooth muscle cells where
it manifests its biological functions [137]. In smooth muscle cells, NO

U

activates guanylate cyclase which synthesizes cyclic GMP (cGMP), an
important mediator of vasodilation (Fig. 3). cGMP acts by activating
protein kinase G which affects a number of target proteins including
those involved in Ca2+ channels, decreasing cytosolic Ca2+ through
activating endoplasmic reticulum Ca2+ uptake [138] and inhibiting
extracellular Ca2+ entry [139]. The eventual low intracellular Ca2+ in
smooth muscle cells mitigates cellular contractility and yields
relaxation. In contrast to the aforementioned polyphenol-induced
vasorelaxation, inhibition of NO

U
-cGMP-mediated vasorelaxation has

also been observed with some flavonoids [140].
The mechanism of endothelium-independent relaxation by poly-

phenols is yet uncertain, but signaling pathways downstream of cGMP
might be activated in smooth muscle cells independently of NO

U
.

Among downstream mechanisms are inhibition of protein kinase C
[141] and phosphodiesterases (a family of enzymes responsible for the
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breakdown of the vasorelaxants cyclic AMP (cAMP) and cGMP) [142],
inhibition of Ca2+ influx from extracellular and intracellular resources
[143–144], and activation of voltage-gated K+ channels [145] (Fig. 3).
The blockade of extracellular Ca2+ influx and endoplasmic reticulum
Ca2+ release by polyphenols is appealing as it could be one of the
possible mechanisms of polyphenol protection of hearts from Ca2+

overload in states of ischemia–reperfusion.
Flavonoids may also promote vasorelaxation by stimulating

production of prostacyclins by endothelial cells [36,144,146]. In this
regard, Maffei Facino et al. [36] found that 3 weeks oral administration
of grape seed proanthocyanidins (530 mg/kg diet) increased produc-
tion of prostacyclins in ischemic and ischemic-reperfused hearts.
Proanthocyanidins can also cause vasodilation through suppressing
the rennin–angiotensin system by acting as angiotensin receptor
antagonist as well as inhibiting angiotensin converting enzyme [147].
Furthermore, vasodilatory effects of flavonoids may partly be exerted
by scavenging peroxynitrite and therefore preserving tetrahydrobiop-
terin from oxidation [52]. Alternatively, resveratrol has shown to
elevate tetrahydrobiopterin levels by increasing activity of the rate-
limiting enzyme in tetrahydrobiopterin synthesis [148].

A part of the vasodilatory effect of flavonoids may be conferred
through inhibiting endothelial NADPH oxidase (as discussed above),
which due to production of O2

U− and promoting formation of
peroxynitrite likely contributes to endothelium dysfunction [149].
Accordingly, quercetin prevented endothelial dysfunction by inhibit-
ing expression of the p47phox regulatory subunit of NADPH oxidase
and thereby decreasing NADPH oxidase-mediated O2

U− production in
rat aortic rings pre-contracted with endothelin-1 [141] or angiotensin
II [150] and in spontaneously hypertensive rats after 13 weeks oral
treatment [120]. Similarly, oral administration of red wine polyphe-
nols for 5 weeks inhibited elevations in aortic NADPH oxidase activity
and plasma endothelin-1 levels in experimentally-induced hyperten-
sive rats [151]. Inhibition of NADPH oxidase activity may be one of the
underlying mechanisms of flavonoid protection of heart against
ischemia–reperfusion injury by the synthetic flavonoid 3′,4′-dihy-
droxyflavonol [152]. It is noteworthy that the O2

U− scavenging ability of
specific flavonoids may differ from their NADPH oxidase inhibitory
ability as for example epicatechin scavenged O2

U− but failed to inhibit
NADPH oxidase in human umbilical vein endothelial cells [153].
However, methylated forms of epicatechin inhibited NADPH oxidase,
while epicatechin glucuronide displayed both properties [153].

4. Anti-inflammatory and anti-aggregatory effects

Cardiac ischemia–reperfusion injury triggers an acute inflamma-
tory response in which neutrophils via chemotactic attraction
infiltrate the myocardium and aggravate the situation of the already
injured tissue [18]. In their normal path through the systemic
circulation when neutrophils arrive to the reperfused tissue, they
are exposed to chemotactic agents, mainly released from endothelial
cells, and become activated [154]. Endothelial cells, in response to
specific stimuli including ROS [155], release chemoattractants such as
leukotriene B4 [156] and adhesion molecules such as intercellular
adhesion molecules (ICAM), vascular cell adhesion molecules (VCAM)
and selectins, leading to neutrophil attraction, sequestration and
adhesion to the microvasculature [155]. Accumulation and sequestra-
tion of neutrophils in the coronary microcirculation can lead to the
occlusion of the microvasculature and thereby incomplete restoration
of blood flow in the reperfused region, causing the “no-reflow”

phenomenon [157].
Flavonoids have shown the capacity to inhibit enzymes involved in

eicosanoid pathways, including phospholipase A2, cyclooxygenases
and lipoxygenases, thereby limiting production of inflammatory
mediators such as prostaglandins and leukotrienes [for reviews see
158–162]. Flavonoids can also inhibit production of pro-inflammatory
cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β,
IL-6, and interferon-γ, as well as chemotactic agents. Inhibitory effects
of flavonoids on production of cytokines have not been investigated as
a mechanism of flavonoid protection of heart against ischemia–
reperfusion injury. However, oral ingestion of red wine, as a source of
flavonoids and resveratrol, for 1 year reduced plasma levels of pro-
inflammatory cytokines in survivors of a first myocardial infarction
[163], although an effect of alcohol was not excluded.

Moreover, flavonoids and other polyphenols have shown inhibi-
tory effects on expression of adhesion molecules such as ICAM-1,
VCAM-1, and E-selectin [160,164,165]. For instance, taking 100mg/day
proanthocyanidin supplement for one month decreased plasma
concentrations of ICAM-1, VCAM-1, and E-selectin in systemic
sclerosis patients [166]. In ischemia–reperfusion studies, perfusing
hearts with resveratrol before ischemia decreased the release of
adhesion molecules such as ICAM, VCAM, and E-selectins into heart
effluents during reperfusion in a NO

U
-dependent manner [167].

Similarly, intravenous administration of genistein 5min after coronary
artery occlusion decreased myeloperoxidase activity and ICAM-1
expression in the ischemicmyocardium and decreased levels of TNF-α
in serum and macrophages [168].

As a result of the anti-inflammatory function of flavonoids vascular
permeability is mitigated and the number of leukocytes adherent to
the endothelium is reduced [169,170]. For instance, incubation of TNF-
α-induced human umbilical vein endothelial cells with proanthocya-
nidins decreased expression of VCAM-1, but not ICAM-1, and
attenuated leukocyte-endothelial cell interactions [171]. Also, intra-
peritoneal administration of 7-monohydroxyethylrutoside, a semi-
synthetic flavonoid, 1 h before ischemia in mice decreased neutrophil
infiltration in post-ischemic myocardium [172]. Similarly, intravenous
treatment of rats with epigallocatechin gallate at the end of ischemia
and during reperfusion reduced neutrophil infiltration as evidenced
by lower myeloperoxidase activity in heart tissues [26].

Consumption of flavonoids for even shorter periods of time may
also be beneficial. For instance, one-time consumption of proantho-
cyanidin-rich chocolate decreased the plasma leukotriene to prosta-
cyclin ratio, an indicator of inflammation, along with an increase in
plasma epicatechin [173]. The reduction of leukotrienes likely resulted
from inhibition of lipoxygenases [159,174]. Lipoxygenases possess an
active ferric form of iron required for their catalytic activity [175]. The
activity of lipoxygenases is abolished if the ferric iron is reduced to the
ferrous form. ROS can activate the enzyme by oxidizing the ferrous
form, while flavonoids are suggested to inactivate it through either
scavenging ROS or directly by reducing the ferric form.

The anti-inflammatory effects of flavonoids are mediated to a large
extent through blocking activities of the enzymes implicated in
signaling pathways especially protein kinase C and mitogen-activated
protein kinases (MAPK), with downstream inhibition of transcription
factors nuclear factor-kappa B (NF-κB) and activator protein (AP)-1
[158,160,161,164]. For instance, in ischemic-reperfused hearts, intra-
venous administration of epigallocatechin gallate decreased plasma
levels of IL-6 and inhibited NF-κB and AP-1 activation [26]. Elevation
of cAMP secondary to inhibition of phosphodiesterases has also been
suggested as a mechanism for the anti-inflammatory activity of
flavonoids [160]. Flavonoid inhibition of protein kinases has been
suggested to occur through competitive binding of flavonoids with
ATP at the active site of the enzymes.

As with other properties, anti-inflammatory effects of flavonoids
depend on the type of the flavonoid and therefore differ from one
flavonoid to another. These effects may vary evenwhen flavonoids are
from the same category. For instance, small molecules of proantho-
cyanidins (e.g. dimers and trimers) suppressed, while comparably
larger molecules (e.g. pentamers) stimulated expression of IL-1β
[159]. For vasodilation, an effect contrary to this was observed;
whereas big polymers of proanthocyanidins showed endothelium-
dependent relaxation on rabbit aortic rings, small molecular weight
proanthocyanidins failed to exhibit such an effect.
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Flavonoids have also shown to inhibit platelet activation and
aggregation [147,176], an event which occurs following heat ischemia–
reperfusion [177]. The anti-platelet effect of flavonoids may be due to
increased production of prostacyclin [36] which via synthesis of cAMP
reduce platelet aggregation [178]. Accordingly, de-alcoholized red
wine and its catechin-anthocyanidin fraction exhibited anti-platelet
aggregatory activity associated with increased cAMP [179]. Flavonoids
may also decrease platelet activation through inhibition of phospho-
diesterases responsible for degradation of cAMP [160]. Furthermore,
given that NO

U
has a protective role in maintaining non-adhesive

endothelium [180] and considering that flavonoids are stimulators of
NOU generation, they may inhibit adhesion of leukocytes and platelets
to the endothelium through up-regulation of NO

U
[47]. Freedman et al.

[47] reported that in healthy individuals who ingested purple grape
juice for 14 days inhibition of platelet aggregation was accompanied
with enhanced platelet-derived NO

U
production. Moreover, as inflam-

matory responses are greatly induced by oxidative stress, flavonoid
inhibition of inflammation and platelet aggregation may be at least
partly due to attenuation of oxidative stress. Recently, a flavonoid
extract was shown to protect from myocardial reperfusion injury,
purportedly by blocking the action of platelet activating factor [181].

5. Inhibition of metalloproteinases

Matrix metalloproteinases (MMP) are a family of proteases that
play a major role in protein degradation and tissue remodeling [182].
Elevation of plasma levels of MMP has been documented after
ischemia–reperfusion-related morbidities such as myocardial infarc-
tion [183], restenosis [184], and heart failure [185]. Since increased
activity of MMP is associated with ventricular dilation and cardiac
remodeling [186], inhibitors of MMPmay play as effective strategies to
prevent chronic consequences of the injury [187,188].

Polyphenolic compounds in red wine and green tea have shown
ability to inhibit activation of metalloproteinase-2 [189]. In green tea,
the inhibitory effect seemed to correlate with the gallic acid moiety
of the catechins as the inhibitory activity of epigallocatechin gallate
and epicatechin gallate was more than that of epigallocatechin while
catechin and epicatechin showed the least effect [190]. Epigalloca-
techin gallate dose-dependently decreased activation of metallopro-
teinase-2 in human umbilical endothelial cells [191]. Similarly,
quercetin dose-dependently decreased expression of metalloprotei-
nase-9 in human aortic smooth muscle cells [192]. The flavonoid
inhibition of metalloproteinases has also been demonstrated in
ischemic-reperfused hearts. Yamazaki et al. [28] reported that
10 days oral pre-treatment of rats with 1 mg/kg/day epicatechin
prevented an increase in metalloproteinase-9 in the infarct zone 48 h
after 45 min coronary occlusion. The inhibition of metalloproteinases
by phenolic compounds has been speculated to occur transcription-
ally through suppression of DNA binding activity of NF-κB and AP-1
[193,194]. Moreover, quercetin has shown to stimulate expression of
metalloproteinase-1 tissue inhibitor in human vascular endothelial
cells treated with oxidized LDL [195]. It has been suggested that high
doses of polyphenols inhibit activation of metalloproteinases and
prevent angiogenesis, while low doses of polyphenols show
angiogenic effects without altering activity of metalloproteinases
[196].

6. Conclusions

Despite that flavonoids are well-known as antioxidants emerging
evidence demonstrates thatmechanisms behind their effects aremore
extensive than previously thought. They exert many of their effects
through interaction with cellular signaling pathways. Signaling path-
ways are mostly regulated by oxidation-reduction changes in the
redox-sensitive sites of critical structural and biological proteins,
giving plenty of opportunity for flavonoids and other antioxidants to
modify these pathways. Myocardial ischemia–reperfusion causes a
wide range of complications largely as a result of oxidative stress-
induced alterations in signal transduction pathways. The interactions
of flavonoids with such pathways have begun to be recognized in
more detail. A greater understanding of the ways by which different
flavonoids may protect the heart from ischemia–reperfusion injury
can be used to establish effective therapeutic interventions with
isolated flavonoids or flavonoid-rich foods.
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