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Abstract We study the orientation and speed tuning
properties of spatiotemporal 3D Gabor and motion en-
ergy filters as models of time-dependent receptive fields
of simple and complex cells in primary visual cortex
(V1). We augment the motion energy operator with sur-
round suppression to model the inhibitory effect of stim-
uli outside the classical receptive field. We show that spa-
tiotemporal integration and surround suppression lead
to substantial noise reduction. We propose an effective
and straightforward motion detection computation that
uses the population code of a set of motion energy fil-
ters tuned to different velocities. We also show that sur-
round inhibition leads to suppression of texture and thus
improves the visibility of object contours and facilitates
figure/ground segregation and the detection and recog-
nition of objects.

Keywords V1 - Gabor filter - receptive field - simple
cell - complex cell - motion energy - spatiotemporal
integration - surround suppression - contour detection -
texture suppression - noise reduction - motion detection -
figure/ground segregation

1 Introduction

The visual system of man and animals has been a sub-
ject of intense research for several decades. An impor-
tant finding in the neurophysiology of the visual sys-
tem of cats and monkeys, made in the beginning of the
1960s, was that the majority of neurons in the primary
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visual cortex (V1) respond to a line or an edge of a cer-
tain orientation in a given position of the visual field
(Hubel & Wiesel 1962, Hubel & Wiesel 1968). Primarily,
two types of orientation selective neurons were identi-
fied, one that was sensitive to the contrast polarity of
bars and edges, called simple cell and another that was
not, called complex cell. Computational models were de-
veloped aiming at simulating the function of these neu-
rons for understanding and predicting their responses
to more complex visual stimuli. The spatial summation
properties of simple cells were modeled by linear fil-
ters followed by half-wave rectification (Movshon et al.
19780, Andrews & Pollen 1979, Glezer et al. 1980, Ku-
likowski & Bishop 1981) and Gabor functions proved to
be particularly suited for this purpose (Marcelja 1980,
Daugman 1985, Jones & Palmer 1987). Complex cells
needed more intricate modeling, which included linear fil-
tering, half-wave rectification and subsequent local spa-
tial summation, or quadrature pair summation of lin-
ear filter responses (Movshon et al. 1978a, Spitzer &
Hochstein 1985, Morrone & Burr 1988, Petkov & Kruizinga
1997, Kruizinga & Petkov 1999, Grigorescu et al. 2002,
Grigorescu et al. 2003). These computational models con-
tributed to understanding the functions of simple and
complex cells and gave the basis for biologically moti-
vated edge detection algorithms in image processing and
computer vision (see Fig. 1).

However, most of these studies were based on the
spatial properties of the receptive field (RF) organiza-
tion. Later, sophisticated RF mapping techniques re-
vealed that the RF's of cortical cells change in time and
hence they must be considered as spatiotemporal enti-
ties. Indeed, the RF profiles of many simple cells are
inseparable functions of space and time, and their spe-
cific structure of alternating elongated excitatory and
inhibitory regions which are tilted with respect to the
time axis underlie the speed and direction selectivity
of these cells (DeAngelis et al. 19934, DeAngelis et al.
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Fig. 1 Edge and contour detection in the spatial domain: The input image (left) is processed by a Gabor energy operator
that is motivated by the function of complex cells. The binarized output of that operator is shown in the middle image. The
operator essentially acts as an edge detector and does not distinguish the edges that belong to the contour of the animal from
those of the background texture. The right image shows the binarized output of a Gabor energy operator that is augmented
with surround suppression (Petkov & Westenberg 2003, Grigorescu et al. 2003). The contours of the animal are better visible
in this image due to the removal of the texture edges by means of surround inhibition.

19930, DeAngelis et al. 1995). Therefore, these V1 cells
are essentially spatiotemporal filters and they combine
information over space and time.

One of the apparent advantages of a spatiotemporal
filter over a spatial filter is that the former can be used
for motion analysis. A purely spatial filter cannot be used
for this purpose because it considers information only at
a single time instant, while motion is a spatiotemporal
concept implying changes over time. Since a stimulus
in a given position will evoke responses in a number of
cells whose receptive fields include that position, it is
interesting to know how motion is coded in the group of
these responses. One purpose of this study is to take a
closer look at population coding by spatiotemporal filters
and to see whether it allows the extraction of motion
attributes such as the presence or absence of motion at
a given position.

As to the processing of image sequences for edge de-
tection, one can apply a spatial filter on a frame-by-frame
basis or a spatiotemporal filter that uses information
within and across frames. Another purpose of this work
is to closely examine the benefits of using spatiotempo-
ral filters instead of purely spatial filters to process image
sequences.

Furthermore, neurophysiological studies also showed
that once a cell is activated by a stimulus in its classi-
cal receptive field (CRF), another, simultaneously pre-
sented stimulus outside that field can have an effect on
the cell response (Blakemore. & Tobin 1972, Knierim
& van Essen 1992, Nothdurft et al. 1999, Jones et al.
2001). This, mostly inhibitive effect is known as non-
classical receptive field inhibition or surround suppres-
sion. With respect to the spatial properties of simple
and complex cells in V1, surround inhibition® is an useful
mechanism for contour detection by suppression of tex-
ture (Petkov & Westenberg 2003, Grigorescu et al. 2003)
and has been applied to other features as well (Rodrigues

! Throughout this text we use the words inhibition and
suppression as synonyms.

& du Buf 20054, Rodrigues & du Buf 20056, Rodrigues
& du Buf 2006). Its application to contour detection is
illustrated in Fig. 1, where the input image shown on
the left is processed by a Gabor energy operator that
is motivated by the function of complex cells. The bi-
narized output of that operator is shown in the middle
image. The operator essentially acts as an edge detector
and does not distinguish the edges that belong to the
contour of the animal from those of the background tex-
ture. The right image shows the binarized output of a
Gabor energy operator that is augmented with surround
suppression. The contours of the animal are more visible
in this image due to the removal of the texture edges by
means of surround inhibition. A similar mechanism has
been observed in the spatiotemporal domain (Allman et
al. 1985) and it is known to have several functional impli-
cations to motion processing (Born & Bradley 2005). A
further aim of the current work is to explore some func-
tional aspects of surround suppression in motion process-
ing using a computational model.

Surround interactions are observed in different corti-
cal regions such as V1 (Jones et al. 2001), middle tem-
poral (MT/V5) (Allman et al. 1985, Raiguel et al. 1995)
and lateral medial superior temporal (MSTI) (Eifuku
& Wurtz 1998) which are areas involved in processing
motion information. Also, it is known that the RFs of
about one half of the cells in MT have antagonistic sur-
rounds (Allman et al. 1985, Tanaka et al. 1986, Raiguel
et al. 1995, Bradley & Anderson 1998, Born 2000, DeAn-
gelis & Uka 2003, Born & Bradley 2005). The response
of such a neuron is suppressed when moving stimuli are
presented in the region surrounding its CRF. The sup-
pression is maximal when the surround stimuli move in
the same direction and at the same disparity as the pre-
ferred center stimulus (Allman et al. 1985, Raiguel et
al. 1995, Bradley & Anderson 1998, Born & Bradley
2005). In addition, neurons with facilitative surround
structures have also been found (Allman et al. 1985, Born
& Tootell 1992, Raiguel et al. 1995). Such neurons show
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Fig. 2 Spatiotemporal behavior of gu.,0,,(x, y,t) for v = 1 (in pixels per frame), § = 0 and ¢ = 0. Two types of spatiotemporal
RF profile are shown. The top row contains the profile of a filter where the spatial Gaussian envelope moves at speed v,
which is equal to the speed v of the traveling cosine wave (i.e. v = v.). The second row shows the profile of a filter with a
stationary spatial Gaussian envelope (i.e. v. = 0). In each frame, the z — y profile at a particular time instant is shown in
the two rows with elongated light and dark regions representing excitatory and inhibitory lobes of the filter, respectively.
The preferred direction of movement (6 = 0) is perpendicular to these regions. Below these rows are the x — ¢ plots of the
respective RF profiles. One can observe that the excitatory and inhibitory subregions are tilted in the space-time domain
toward the direction of movement (here the x axis). A light bar stimulus oriented parallel to the y axis and traveling along
the x axis will leave a trace in the £ —t domain that is similar to the excitatory lobes of the shown spatiotemporal receptive
fields and will elicit strong responses in the corresponding model cells. The purpose of discussing two types of spatiotemporal
RF profiles is to explore if there are any significant qualitative differences in the computational properties of one model over

the other.

an increased response when motion is presented to their
surround and are found in locations that are anatomi-
cally different from the ones that have antagonistic sur-
rounds (Born & Tootell 1992). Moreover, surround mech-
anisms differ for low- and high-contrast stimuli (Tadin et
al. 2003, Pack et al. 2005, Paffen et al. 2005): facilitation
happens at low-contrast and suppression occurs at high-
contrast.

An important utility of surround mechanisms in the
spatiotemporal domain is to detect motion discontinu-
ities or motion boundaries (Nakayama & Loomis 1974).
The functional role also depends on the spatial organiza-
tion of the surround. Neurons with a symmetric surround
are hypothesized to play a role in figure/ground segrega-
tion (Born & Bradley 2005). Asymmetric surround struc-
tures are thought to aid in determining surface tilt (or
slant) and curvature (Koenderink & van Doorn 1992,
Buracas & Albright 1996). The surround mechanisms
are also thought to be involved in motion segmenta-
tion and shape-from-motion processing (Gautama & van
Hulle 2001). In the current work, we closely examine the
role of center-surround interactions in the context of tex-
ture suppression and contour enhancement. To this end,
we first describe a computational model to process visual

motion and augment it with a surround suppression term
to qualitatively reproduce the center-surround behavior
of motion-sensitive neurons.

The paper is organized as follows. In Sect. 2 we begin
with an outline of the computational models of the CRF's
of motion sensitive V1 cells. We consider spatiotempo-
ral motion energy filters and examine their direction
and speed tuning properties. Then we augment these fil-
ters with a surround suppression computation. In Sect.
3 we analyze the utility of the proposed operators for
noise reduction, motion detection, texture suppression
and improving contour visibility. Sect. 4 contains a dis-
cussion on various aspects of the model. Finally, in Sect.
5, we present our conclusions. The Appendices contain
the mathematical details of the proposed operators.

2 Computational models
2.1 Spatiotemporal Gabor filters
In a seminal work, Adelson and Bergen (Adelson & Bergen

1985) suggested that a two-dimensional (2D) spatial pat-
tern moving at a given velocity corresponds to a three
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Fig. 3 x —t plots for cells preferring rightward motion (6 = 0) at four different speeds v € {0,1,2,4} (in pixels per frame)
for the moving envelope (upper block) and the stationary envelope (lower block) cases. Observe that as the speed increases
the subregions are tilted more towards the axis of movement (here the x axis) and the spatial period A of the wave along

that axis increases.

dimensional (3D) spatiotemporal pattern of a given ori-
entation which can be detected with an appropriately
oriented 3D spatiotemporal filter, such as a 3D Gabor
filter. To this end, we model the spatiotemporal recep-
tive field profiles of simple cells as a family of 3D Gabor
functions denoted by gu.9,,(x,y,t) where the parameter
v is the preferred speed, the angle parameter 6 deter-
mines the preferred direction of motion and the preferred
spatial orientation of the filter, and ¢ is a parameter
that determines the spatial symmetry of the function.
Essentially, g,,0.,(x,y,t) is a product of a Gaussian en-
velope function that restricts g, 9,,(«,y,t) in the spatial

domain, a cosine wave traveling with a phase speed v
in direction 6, another Gaussian function that depends
only on the time ¢t and determines the temporal decay of
Gv,0,0(2,y,t) and a step function of ¢ which ensures that
the filter based on g, ¢,,(z,y,t) is causal and thereby
considers inputs only from the past. The mathematical
details are provided in Appendix A.

In Fig. 2, the space-time profiles of g, ¢ .,(x,y,t) are
rendered for a stationary Gaussian envelope and an en-
velope that moves together with the cosine wave. Also
shown are x —t plots of spatiotemporal RF profiles com-
puted with y = 0 in g, 9,,(x,y,t). These plots are qual-
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Fig. 4 Responses of motion energy filters to moving bars. Snapshots of the stimuli, bars moving at a speed vs = 1 (in
pixels per frame), in various directions 6, are shown in the leftmost column. Each of the other columns show snapshots of
the response E, ¢(z,y,t) of a filter with a given preferred orientation 6 specified at the bottom of the column. All filters have
preference for the same speed (i.e. v = 1) but differ in their preference for direction of motion. A stimulus moving in a given
direction 05 elicits strongest response in a filter preferring the same direction of motion 6 = 6, (see diagonal entries). Since
the responses of filters with stationary (v. = 0) and moving envelopes (v. = v) are visually similar, we choose to show only

the responses of the moving envelope case.

itatively similar to the experimentally determined ones
by DeAngelis and co-workers (DeAngelis et al. 1993a,
DeAngelis et al. 19936, DeAngelis et al. 1995). The tilt
of the excitatory and inhibitory subregions in the space-
time domain is the origin of the selectivity for moving
stimuli that leave similar tilted traces in space-time. Our
main motivation for introducing two types of spatiotem-
poral RF profiles as shown in Fig. 2 (i.e. stationary and
moving envelope) is to explore if there are any signifi-
cant qualitative differences in the computational proper-
ties of one model over the other, to examine the plau-
sibility of suggestions previously made in this context
(DeAngelis et al. 1993a, DeAngelis et al. 19935, DeAn-
gelis et al. 1995, van Hateren & Ruderman 1998) and to
check if this is an issue of importance.

We compute the spatial period or wavelength \ of
the cosine wave using the following function of v : A =
AoV 1+ v?2 where A\ is the spatiotemporal period of the
filter. The above relation implies that filters that prefer
higher speeds have bigger receptive fields. In Fig. 3, z —t
plots are rendered for cells preferring rightward motion
(0 = 0) at four different speeds v € {0,1,2,4} for the
moving and the stationary envelope cases. Observe that

as the speed increases the subregions are tilted more to-
wards the axis of movement (here the x axis). The larger
the preferred speed v, the larger is the spatial period of
the wave along that axis.

The response 7,9, (z,y,t) of a linear filter with a
RF function g¢y6,,(z,y,t) to a luminance distribution
[(x,y,t) is computed by convolution:

(1)
The response of a model simple cell with a RF centered
on (x,y) at time ¢ is computed from the linear response
Tv.0,0(,y,t) using half-wave rectification:

To,0,0(T,y,1) = 1(x,y,t) * gv0,0(2,y,1).

)"

(2)

51:,9,@(1‘7 Y, t) = ‘Tvﬁ,(p(-ra y,t

where |.|* is defined as follows:

+72’
1o

A simple cell is phase sensitive in the sense that its re-
sponse to a moving pattern depends on the stimulus con-
trast polarity and exact position within the receptive
field. This property is reproduced by the computational

ifz>0
if z < 0.

3)

|z
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Fig. 5 Responses of motion energy filters to edges drifting at different speeds. A snapshot of the stimulus, an edge drifting
rightward (6s = 0) at a given speed, is shown in the top row. Each subsequent entry is a snapshot of the response E, ¢(z,y,t)
of a filter with a speed v (in pixels per frame) specified at the end of each column to an edge that is drifting at a particular
speed v indicated at the end of each row. All filters have preference for the same direction of motion (6 = 0) but differ in
their preference for speed. An edge drifting at a given speed v; elicits strongest response in the filter with the same preferred
speed v = v, (see diagonal entries). Since the responses of filters with stationary (v. = 0) and moving envelopes (v. = v) are
visually similar, we choose to show only the responses of the moving envelope case.

model according to equations (1)-(2). A phase insensitive
response can be obtained by quadrature pair summation
of the responses of two filters with a phase difference of
/2 as follows:

Eoo(w.9.6) = \Jr2 o o(@u.0) 4725 p(@.t). (4)

This quantity, called motion energy (Adelson & Bergen
1985), is phase insensitive and can be used as a model of
the response of a complex cell.

2.2 Direction and speed tuning properties

In the following part, we briefly examine the direction
and speed tuning properties of the motion energy filter
described above. For direction tuning, we consider bars
moving at the same speed but in different directions 65
(see Fig. 4). For each stimulus, we compute the response

of filters which have preference for the same speed but
are tuned to different directions. The maximum response
is obtained when the preferred direction of the filter ()
matches the direction of movement of the bar (6;) as
seen in the diagonal entries.

The speed tuning properties are studied by consider-
ing the responses of motion energy filters to edges drift-
ing rightward at different speeds (see Fig. 5). For this
experiment, we choose filters which have preference for
the same direction of motion (§ = 0) but differ in their
preference for speed. The maximum response is obtained
when the preferred speed of the filter (v) matches the
speed of the edge (vs) as seen in the diagonal entries.

The direction and speed tuning properties can also
be depicted as in Fig. 6. In Fig. 6(a) we show a plot
of the maximum response of each filter, at a particular
frame, to a vertical bar moving rightward (s = 0) at
a speed of one pixel per frame (vs = 1). The response
reaches its maximum when the direction of movement
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Fig. 6 (a) Direction tuning properties of motion energy filters: Maximum response of each filter, at a particular frame, to a
moving bar (6s = 0; vs = 1) as a function of the difference between the direction of bar movement and the preferred direction
of the filter. The peak response is obtained for the filter whose preferred direction matches the direction of the stimulus. (b)
Speed tuning: Maximum response of each filter, at a particular frame, to a drifting edge (s = 0; vs = 2) as a function of
the preferred speed of the filter. The response reaches the peak when the speed of the stimulus matches the preferred speed
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of the filter. The responses were computed for filters with a moving (solid line) and a stationary (dashed line) envelope.
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Fig. 7 Spatiotemporal behavior of the CRF function g..e,,(z,y,t
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) and the corresponding surround weighting function

wy,0(x,y,t) with v = 1 (in pixels per frame) and § = 0 for the movmg envelope case. The first row contains the profile of
Gv.0.0(,y,t) with ¢ = 0 and the second row contains the profile of w,.g(z,y,t).

of the stimulus matches the preferred direction of mo-
tion of the filter. A similar plot is also shown for speed
tuning (Fig. 6(b)) where the stimulus is an edge drifting
rightward (s = 0) at a speed of two pixels per frame
(vs = 2). The response reaches its peak when the phase
speed of the traveling cosine wave is equal to the speed
of the stimulus. For this reason, the phase speed v of the
traveling cosine wave can be considered as the preferred
speed of motion of the filter. From Fig. 6, one can ob-
serve that a filter with a moving envelope (solid line) is
more selective for direction and speed than a filter with a
stationary envelope (dashed line). For this reason, in all
subsequent experiments we choose to work with filters
with a moving envelope. As we see from Fig. 6 (b) the
speed of the envelope has no influence on the preferred
speed of the filter.

2.3 Surround suppression model

In this section we propose a surround inhibition oper-
ator that takes into account the influence of the sur-

round at each spatial location and time instant. It is
a straightforward generalization of a model that was
used in the case of a purely spatial filter (Petkov &
Westenberg 2003, Grigorescu et al. 2003, Grigorescu et
al. 2004). The classical receptive field (CRF) of a model
simple cell is defined as the area in which the (moving)
Gaussian envelope of the corresponding 3D Gabor func-
tion gy.0,,(x,y,t) is substantial. It contains all points
within a certain Mahalanobis distance (Mahalanobis 1936)
from the center of that envelope. We define the surround
suppression weighting function w, g(x, y,t) to be zero in-
side the CRF and positive outside it and to decay with
the distance to the CRF (see Fig. 7). In practice, we take
as a surround weighting function the half-wave rectified
difference of two concentric Gaussian envelopes, of which
one is identical to what was used in the CRF function
Gv,0,0(%,y,t), while the other has a spatial extent that is
several times larger. Furthermore, the surround weight-
ing function decays with time in the same way as the
CRF function g, (z,y,t). The mathematical details
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Fig. 8 xz —t plots for the classical receptive field function g, 6,,(z,y,t) and the corresponding surround weighting function
wy,g(z,y,t) for the moving (upper block) and the stationary (lower block) envelope cases for 6 = 0; v =1; ¢ = 0.

Stimulus Motion Energy

Inhibition term

) -
ES

Surround suppressed
motion energy

Fig. 9 Effect of the surround suppression operator: The stimulus whose snapshot is shown in the leftmost image comprises
a grating and one isolated bar. The grating is moving rightwards (s = 0) at a constant speed (vs = 1) and the isolated bar
is moving leftwards (s = 7) at the same speed (vs = 1). Subsequent entries show the snapshots of superposed responses of
motion energy filter for # = 0 and 6 = 7, the inhibition term and surround suppressed motion energy (o = 2), respectively.
While the response of the motion energy filter is alike to the isolated bar and to the bars that form the grating, the surround
suppressed motion energy operator responds only to the bar that is not surrounded by other stimuli. In this way, surround
mechanisms help separate objects (here an isolated bar) from their backgrounds (texture represented here by a grating).

are provided in Appendix B. In Fig. 8, we render the
x —t plot of wy ¢(z,y,t) for y = 0.

For each point in the (z, y,t) space, we compute an in-
hibition term S, g(x,y,t) by weighted summation of the
motion energy FE, ¢(x,y,t) in the surroundings of that
point using the surround weighting function w, ¢(x, y, t).
In practice, the inhibition term is computed by convolu-
tion:

Sv,@(xvy7t) = Ev,G(xvyat) *wvﬂ(‘rayvt)' (5)

The larger and denser the motion energy E, g(z,y,t) in
the surroundings of a point (z,y,t), the larger the sup-
pression term S, g(x,y,t) is at that point. We next use
this inhibition term to define and compute a surround
suppressed motion energy F, g(x,y,t) as follows:

EU79($7yat) = |(EU,9(m7y7t) - aSU,G(za y7t))|+7 (6)

where the factor a controls the strength with which sur-
round suppression is taken into account. The proposed

inhibition scheme is a subtractive linear mechanism fol-
lowed by a non-linear half-wave rectification. Note that
in each point, the motion energy response for a given
preferred speed v and orientation 6 is suppressed only by
responses for the same preferred speed and orientation
in the surround of that point. Since the motion energy
filters are broadly tuned to orientation and speed, stim-
uli with a broad range of orientations and speeds will
have an inhibitory effect. However, the suppression will
be strongest when the stimuli in the surroundings of a
point have the same direction and speed of movement as
the stimulus in the concerned point. In reality, a neuron
tuned to a certain velocity and orientation may be in-
hibited by other neurons tuned to nearby velocities and
orientations. As a result, the suppression will be minimal
when the surround stimuli move in opposite direction
as compared to the stimulus in the center. This aspect
of our model corresponds to neurophysiological findings
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concluding that surround stimuli with the same direction
and speed as the optimal CRF stimulus have a larger
suppressive effect on the response of a motion selective
neuron than stimuli of other directions and speed of mo-
tion (Allman et al. 1985, Raiguel et al. 1995, Bradley
& Anderson 1998). Our model (of V1 cells) also bears
a certain resemblance to MT cells for which the efficacy
of center-surround interactions is increased by opposite
motion directions.

The effect of surround suppression is illustrated in
Fig. 9. The stimulus, that is shown in the leftmost image,
consists of a bar grating and one isolated bar. While the
grating is moving rightward (65 = 0), the isolated bar is
moving leftward (0, = 7). Both are moving at a constant
speed of one pixel per frame (vs = 1). Subsequent entries
show snapshots of the superimposed responses of the mo-
tion energy filter, the inhibition term and the motion
energy operator augmented with surround suppression,
respectively. While the response of the motion energy
filter is similar to the isolated bar and to the bars that
form the grating, the surround suppressed motion energy
responds only to the bar that is not surrounded by other
similar stimuli. A similar result is obtained when the
bar and the grating move in the same direction. In this
way, surround mechanisms help separate objects (iso-
lated bar) from their backgrounds (grating). As we shall
show later, this property of the surround suppressed mo-
tion energy operator leads to improved visibility of ob-
ject contours and region boundaries and thus makes it
more effective for object recognition. The surround sup-
pressed motion energy operator inherits the properties
of the motion energy operator with respect to speed and
orientation tuning.

3 Benefits of spatiotemporal integration and
surround suppression

3.1 Noise suppression

Spatiotemporal integration and surround suppression en-
hances the robustness to noise. In Fig. 10 we illustrate
this idea using a drifting bar stimulus with added ran-
dom Gaussian noise. In addition the bar is broken in the
12th, 22nd and 34th time units. Subsequent rows con-
tain the responses obtained from a purely spatial Gabor
energy (Grigorescu et al. 2003), spatiotemporal motion
energy and surround suppressed motion energy filters.
The response of the spatial Gabor energy filter, shown
in the second row, is obtained by taking into account
only the input image at the corresponding current time.
One can observe that, unlike the Gabor energy filter,
spatiotemporal filters, by integrating inputs over time,
significantly reduce the noise and restore the integrity
of the bar. This is due to the fact that while noise is
uncorrelated from frame to frame, the signal shifts at a
constant speed and, provided that an appropriate mo-

tion energy filter is used, the current and past frames
combine information in a coordinated way to form the
current output frame. The improved response from the
surround suppressed motion energy operator is due to
the inhibition mechanism where the noise in one position
is inhibited by noise in neighboring regions. We carried
out a quantitative study using two different noise types
with varying noise strengths and different values of the
surround suppression parameter a. We calculated the re-
sponse of an operator to noise as the sum of the values
obtained in a region that does not contain the stimulus.
The results shown in Fig. 11 indicate that in all cases
the surround mechanisms are very effective in noise re-
duction. For o > 2, the noise is practically eliminated.

3.2 Motion Detection

A purely spatial filter computes the output at a given
time using only the input at that time. Hence, it cannot
be used for motion analysis because in image sequences
motion manifests itself in changes in space and time.
In the case of a spatiotemporal filter, inputs from the
present and the past are used to compute the response
at the current moment and hence such a filter can be
used for analyzing and detecting motion.

Motion detection is a basic task that is performed by
the visual system and it is therefore interesting to ex-
amine more closely the relation of the responses of the
considered spatiotemporal filters to that task. As illus-
trated in Figs. 5 and 6(b), the considered filters are not
sharply tuned to one single speed: a filter that prefers
stationary stimuli will also respond to moving stimuli
and vice versa, a filter that prefers a moving stimulus
will also respond to a stationary one. This ambiguity of
the separate filters regarding the presence or absence of
motion in a given position is in contrast with the sharp
distinction that our visual system can make between the
two conditions. Evidently, the presence or absence of mo-
tion at a given position is coded in the set of responses
of multiple filters at that position, a situation that is
referred to as population coding (Pouget et al. 2000).
We show that motion at a given spatial position can
be detected in a straightforward way from the motion
energy population code responsible for that position. If
motion is present, a filter that prefers a stationary stim-
ulus (v = 0) will give a smaller response than another
filter that is tuned to a preferred non-zero speed. This
is demonstrated in Fig. 12 which shows several frames
of a video sequence with added random Gaussian noise
(SNR = 20dB) and the edge positions in which a (motion
energy and a surround suppressed motion energy) filter
with a preferred non-zero speed has a higher response
than the identically oriented filter with a preferred zero
speed. As can be seen from the figure, this straightfor-
ward decoding scheme gives reasonable results for detect-
ing motion. Due to the higher robustness to noise of the
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Motion energy

Surround suppressed
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Fig. 10 Noise reduction: The first row shows snapshots of a bar moving rightward with a speed of one pixel per frame.
Uncorrelated random Gaussian noise is added to each frame and in addition the bar is broken in the 12th, 22nd and 34th
frames. Subsequent rows contain the responses obtained from a spatial Gabor energy (second row), a motion energy (third
row) and a surround suppressed motion energy («a = 2, fourth row) filters. By integrating inputs over time, spatiotemporal
operators significantly reduce the noise and restore the integrity of the bar. Further noise reduction is due to the surround

suppression mechanism.
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Fig. 11 Noise reduction in spatiotemporal filters for two different noise types of varied strengths. (a) Gaussian noise with
mean zero and variance as shown in the x axis. (b) Salt and pepper noise with noise density in the z axis. Uncorrelated
random noise is added to each frame of the input sequence. The response of an operator to noise was calculated as the sum
of the values obtained in a region that does not contain the stimulus, averaged over all frames. For surround suppression

with a > 2, the noise is practically eliminated.

surround suppressed motion energy operator the results
obtained with that operator contain less false positive
responses in the stationary background.

3.3 Contour detection by surround suppression of
texture

In previous works (Petkov & Westenberg 2003, Grig-
orescu et al. 2003), in which purely spatial 2D Gabor

filters were used, it was suggested that surround inhi-
bition facilitates the detection of object contours and
region boundaries by suppressing response to texture.
Here, we suggest the same biological utility for the spa-
tiotemporal model of cortical cells considered above.
Fig. 13 illustrates the effect of surround suppression
compared to spatial Gabor energy and motion energy fil-
ters. The first row shows frames from a video sequence
with added Gaussian noise (SNR = 26dB) that is un-
correlated from frame to frame. The associated ground
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Fig. 12 Motion detection: The top row shows a video sequence which consists of a moving object in a stationary background
(SNR = 20dB). Subsequent rows show the binary contours of the moving object which are computed by determining whether
the response of a motion energy filter (second row) and a surround suppressed motion energy filter (computed with o = 2,
third row) with a preferred non-zero speed is higher than the response of the respective filter with a preferred zero speed.
Binarization is achieved by non-maxima suppression followed by hysteresis thresholding (Canny 1986), with the most favorable

threshold value ¢, = 0.05 (¢; = 0.5¢p).

truth frames that contain object contours specified by
a human observer are displayed in the second row. The
purely spatial 2D Gabor energy filter (third row) that
is applied on a frame by frame basis is not robust to
noise. In contrast, the spatiotemporal 3D motion energy
filter successfully deals with noise by means of tempo-
ral integration that increases the SNR in the output.
Yet, the motion energy operator (fourth row) detects
all moving edges disregarding their origin: textures, ob-
ject contours and region boundaries. The spatiotemporal
surround suppressed motion energy operator (fifth row)
makes a difference between these two types of edges - it
inhibits texture edges while preserving object contours
and region boundaries.

In this way, the visibility of object contours is in-
creased and this facilitates the detection and recognition
of objects. Moreover, surround inhibition also helps elim-
inating information about uniform motion. Typically, the
motion flow generated due to eye or body movement
contains mostly trivial information. Such motion infor-
mation should be suppressed and surround suppression
may play an important role in performing this task.

4 Discussion

In our 3D Gabor function model, a stationary or a mov-
ing Gaussian envelope can be used. So far, we have not
discussed on which of these two options is more appropri-
ate. DeAngelis and co-workers (DeAngelis et al. 1993a,
DeAngelis et al. 1993, DeAngelis et al. 1995) mention

that their electrophysiological results suggest a station-
ary envelope. Van Hateren and Ruderman (van Hateren
& Ruderman 1998) make a similar suggestion based on
independent component analysis of video sequences of
natural scenes. In both cases, however, there is no quanti-
tative analysis of this aspect of spatiotemporal receptive
fields and the suggestions seems to have been based on
a qualitative visual inspection of the obtained profiles.
Furthermore, the quantitative results of (DeAngelis et
al. 1993b) for direction tuning point to a moving rather
than stationary envelope if considered in the context
of the respective orientation tuning curves (Fig. 6(a)).
Our computer simulations show that this question is of
secondary importance for the functional aspects stud-
ied in this work and that all results reported above hold
qualitatively for both a stationary and a moving enve-
lope. The speed of the Gaussian envelope only affects the
strength of the response for optimal vs non-optimal stim-
ulus direction and speed, but it has no influence on the
preferred speed which is determined only by the phase
speed of the moving cosine wave. The origin of direction
and speed tuning properties, although not addressed in
the current models, can be due to linear superposition
of geniculate and intracortical contributions (Sabatini &
Solari 1999). Further, these models have a functional link
to the classical Reichardt model (Reichardt 1961) be-
cause of their relation to the energy model (Adelson &
Bergen 1985).

In Sect. 3.2 we show that the population code gen-
erated by a set of 3-D Gabor filters tuned to different
preferred speeds can be used in a straightforward way
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Fig. 13 Edge and contour detection with Gabor-function-based-filters: First row: frames of an input sequence with uniform

motion generated by a frame window sliding over a stationary image (SNR = 26dB). Ground truth is displayed in the second
row. Subsequent rows contain the binarized outputs of various operators. Third row: Gabor energy (t5, = 0.08); Fourth row:
motion energy (tn, = 0.045). Fifth row: Surround suppressed motion energy (a = 2; t5 = 0.03)

to detect motion. The sign of the difference between the
response of a motion energy filter with a preferred non-
zero speed and an identically oriented filter that prefers
stationary stimuli is indicative of the presence or absence
of motion in a given position. However, we are not aware
of any neural correlate of such a computation.

The spatiotemporal filters discussed in the current
work are inspired by the properties of V1 cells. Typi-
cally, V1 cells have small receptive fields and therefore
can see only the component of motion that is orthogonal
to the orientation of a moving edges; this is known as the
aperture problem (Movshon et al. 1985, Heeger 1987).
There are several theories which speculate on how and

where pattern motion is computed from V1 outputs.
One idea is that pattern motion is computed in MT
(Adelson & Movshon 1982, Albright 1984, Movshon et
al. 1985, Heeger 1987, Simoncelli & Heeger 1998) where
the V1 outputs are combined using intersection of con-
straints (I0C) rule (Adelson & Movshon 1982, Simon-
celli & Heeger 1998) or vector averaging (Mingolla et
al. 1992, Rubin & Hochstein 1993). Another idea is that
end-stopped cells in V1 could be involved in encoding
pattern motion because they respond well to line ter-
minators (or features) moving in their preferred direc-
tion and speed, independent of the orientation of the
contour (Pack & Born 2001, Pack et al. 2003, Born &
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Surround weighting  Inhibition term

function

Surround suppressed
motion energy

Fig. 14 Each row shows a snapshot of a surround weighting
function (left), an inhibition term computed with this func-
tion for the stimulus shown in Fig. 9 (middle) and the output
of the corresponding surround suppressed motion energy op-
erator (right). The top row shows the surround suppression
calculated using a surround weighting function that excludes
the CRF while the bottom row shows the surround inhibi-
tion calculated using a weighting function that includes the
CRF. In areas with texture the inhibition term is similar for
both models. For contours (as represented by the isolated
bar), however, there is higher self-inhibition if the CRF area
is included in the inhibition (bottom row). Consequently, the
responses to contours are smaller. However, qualitatively the
results are similar.

Bradley 2005). In this case, MT cells just need to com-
bine V1 outputs. In addition, network models incorpo-
rated with feedback mechanisms have also been proposed
to support the idea that pattern motion can be computed
at V1 stage itself (Bayerl & Neumann 2004, Bayerl &
Neumann 2007).

The proposed model for surround suppression pos-
sesses similarities with certain mechanisms that were sug-
gested in the literature for a different purpose. For in-
stance, in a model of simple cells proposed by Heeger
(Heeger 1993), there is a normalization stage wherein the
response of a cell is divided by the pooled activity of a
large number of cells. This divisive normalization mech-
anism successfully accounted for response saturation for
high contrast stimuli exhibited by many cortical cells
(Tolhurst & Dean 1991) and for certain aspects of direc-
tion tuning. Our surround inhibition scheme is related to
the normalization model in the sense that the activity of
a cell is suppressed by the responses of other cells in a cer-
tain neighborhood. However, the main difference lies in
our motivation which is to explore other functional con-
sequences of surround mechanisms in the spatiotemporal
domain, viz., noise reduction, texture suppression, im-
proved contour visibility and figure/ground segregation.
On the modeling side, there is a difference concerning
the inclusion or exclusion of the area of the CRF in com-
puting the inhibition term. This is a model design issue
since the existing electrophysiological studies (Knierim
& van Essen 1992, Nothdurft et al. 1999) exclude the
CRF region from suppression measurements and there-
fore cannot conclusively answer the question whether or

0.8r
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Precision

0.4r

0.2 1

0 0.2 0.4 0.6 0.8 1
Recall

Fig. 15 On the choice of a: Plot of precision and recall val-
ues for different values of a for the elephant sequence shown
in Fig. 13. Low values of « yield high recall and low precision
and the situation is reversed for high values of «. Interme-
diate values of « lying between 2 and 3 produces reasonable
recall and precision values. The harmonic mean of precision
and recall reaches its maximum for a = 2.5.

not suppression originates from the CRF. The results of
some anatomic studies on the distribution of horizontal
interconnections in area V1 show that the sites (bou-
tons) at which a neuron connects to other neurons are
located outside a certain area around the considered neu-
ron (Bosking et al. 1997). This may point to exclusion
of the CRF area from the surround weighting function.
In Fig. 14 we demonstrate how results would change if
a surround weighting function is used which covers the
CRF and its surroundings. In areas with texture the in-
hibition term is similar for both models. For contours (as
represented by an isolated bar), however, the inclusion
of the CRF area in the support of the surround weight-
ing function leads to a higher self-inhibition. This self-
inhibition is reduced by exclusion of the CRF area from
the surround weighting function in our model. It can be
further reduced by exclusion of further areas from the
CRF-surround that are co-linear with the optimal center
stimulus (Papari et al. 2007). Actually, neurophysiologi-
cal studies (Xiao et al. 1995, Xiao et al. 1997q, Xiao et
al. 19970, Xiao et al. 1998) suggest that about one half
of the antagonistic surrounds in MT/V5 are asymmetric
with most of the suppression being confined to a single
side of the receptive field (Born & Bradley 2005). In any
case, noise and texture will be suppressed more strongly
than contours.

A point that deserves a special attention for clari-
fying the properties of our model is the setting of the
surround suppression parameter « in Eq. 6. In all illus-
trations presented in this paper we have used the value
« = 2. There is a theoretical reason for this choice and it
is related to the fact that the proposed inhibition scheme
(Eq. 6) is a subtractive linear mechanism followed by a
non-linear half-wave rectification. Consider the periodic



14

Nicolai Petkov, Easwar Subramanian

grating in the lower part of the input sequence shown
in Fig. 9. The response of the motion energy operator is
also a grating-like structure with alternating crests and
troughs. Since the weights of the inhibition kernel are
normalized using the L; norm to give an integral of 1, a
value of o > 2 is necessary to compute an inhibition term
that can completely suppress the crests in the motion
energy response?. In practice, the value of a = 2 is suf-
ficient to suppress the periodic grating structure present
in the input. As illustrated in Fig. 11, this value of «
is appropriate for eliminating noise as well. Higher val-
ues of o are not desirable because they lead to increased
suppression of object contours. Hence, the appropriate
choice of « is a balance of contradicting design issues:
suppression of noise and texture (favored by high values
of a) versus retainment of object contours (favored by
low values of «). One can use the metric defined in Eq.
7 to arrive at a particular choice of a. Let DC be the
set of points identified as being part of the contour by a
given contour detector (see rows three, four and five in
Fig. 13) and GT be the set of contour pixels in the cor-
responding ground truth image (see second row in Fig.
13). We define recall (R) and precision (P) as follows:

R card{ DC' N GT}
- card{GT}
_ card{DCNGT}
P= card{DC'} @

where card{X} is the number of elements in set X and
the intersection of GI" and DC' is computed to compen-
sate for small shifts of contours detected by an operator
(Grigorescu et al. 2003, Papari et al. 2007). Only those
values of « that produce reasonably large values of both
recall and precision are interesting. This is illustrated in
Fig. 15 where recall and precision values were calculated
for different values of the suppression parameter « for
the sequence shown in Fig. 13. For each value of «, the
binarized output was computed using suitable thresh-
old value and the values of precision (P) and recall (R)
were calculated for each frame and their averages over all
frames are used for the plot. One can observe that low
values of « yield high recall (i.e., good contour retain-
ment) and low precision (i.e., lots of response to noise
and texture) and the situation is reversed for high val-
ues of a. Intermediate values of « lying between 2 and 3
produce reasonable recall and precision values. The loca-
tion of the maximum of the harmonic mean of precision
(P) and recall (R) along the curve can be used to iden-
tify the optimal parameter value («) for a given input
sequence (van Rijsbergen 1979, Martin et al. 2004).
The simulation results shown in Fig. 9 suggest that
the responses to a moving oriented texture pattern will

2 A homogeneous response field would be adequately sup-
pressed for o > 1. The response to texture is, however, never
a homogeneous field but rather shows a crest-trough struc-
ture.

be suppressed. This is due to the fact that the center-
surround interactions of our model neurons are antag-
onistic in nature. We emphasize that our model con-
cerns V1 cells as already pointed out in the introduc-
tion. As shown in (Knierim & van Essen 1992, Noth-
durft et al. 1999) the majority of orientation selective
cells in V1 exhibit surround inhibition that leads to sup-
pression of responses of texture. However, there are also
neurons in V1 and V2, called ‘grating cells’ that show
selective responses to oriented texture (von der Heydt et
al. 1991, von der Heydt et al. 1992, Kruizinga & Petkov
1999, du Buf 2007). Furthermore, there are cells in MT,
called ‘wide-field neurons’ that prefer large moving tex-
ture fields and exhibit no surround inhibition (Allman et
al. 1985, Born & Tootell 1992, Raiguel et al. 1995). Our
model is not aimed at reflecting the properties of these
types of neuron, nor of neurons in MT or MST in gen-
eral. It is believed that wide-field neurons codify back-
ground motion and center-surround neurons specify ob-
ject motion (Born et al. 2000, Berezovskii & Born 2000).
In this context, the results obtained in this work add
support to the claim that surround mechanisms help
segregate figure from background. Some further exper-
imental /perceptual evidence also exist to support this
idea. For instance, it has been reported that surround
suppression mechanisms in old people and patients with
schizophrenia are weak. At the same time, such people
experience difficulties in segregating figure from back-
ground, findings that underlie the importance of sur-
round mechanisms (Betts et al. 2005, Tadin et al. 2006).
We also note that the visual system captures infor-
mation at multiple scales and generally the whole scale
space (Koenderink 1984) is used for performing various
tasks (ter Haar Romeny 2003, Rodrigues & du Buf 2006).
In our scheme, filters that prefer higher speeds have big-
ger receptive fields and therefore the motion detection
mechanism proposed in Sect. 3.2 has a multi-scale aspect.
Elsewhere, the concept of surround inhibition has been
used in a multi-scale approach for enhancing contour de-
tection in purely spatial images (Papari et al. 2006).

5 Conclusions

Spatiotemporal (3D) Gabor filters applied to video se-
quences have advantages over purely spatial (2D) Gabor
filters applied on a frame-by-frame basis.

First, spatiotemporal filters are much more effective
in reducing noise compared to purely spatial filters. This
is due to the fact that while noise is uncorrelated from
frame to frame, a moving stimulus shifts at a given speed.
An appropriate spatiotemporal filter tuned to that speed
combines information about the signal from the past
frames in a coordinated way to produce the current out-
put frame. Thus, processing by such a filter is more ben-
eficial for the signal than for the noise and this leads to
an increased signal-to-noise ratio in the filter output.
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Second, motion is an inherently spatiotemporal phe-
nomenon and cannot be dealt with by purely spatial
filters on a frame-by-frame basis. Spatiotemporal Ga-
bor filters inspired by the function of simple and com-
plex cells can be used for processing motion. Such filters
are broadly tuned to speed: while having some preferred
speed, they respond not only to that speed but also to
stimuli moving at different velocities as well as station-
ary stimuli. Therefore, a single such filter does not pro-
vide enough information to answer the question whether
there is motion at a given spatial position. That infor-
mation is population coded in the responses of a group
of filters at the concerned position. The presence (or ab-
sence) of motion can however be inferred from the pop-
ulation code in a straightforward way. This is so because
at spatial positions where there is movement a filter with
a preferred non-zero speed gives a higher response than
an identically oriented filter with a preferred zero speed
and a simple comparison of the filter responses suffices
to detect motion.

Third, with respect to the biological utility of sur-
round inhibition our results suggest that this mechanism
leads to reduced responses to texture while not affect-
ing the responses to object contours and region bound-
aries. It also further reduces the influence of noise. In
this way, the contours of moving objects that are em-
bedded in natural scenes rich in texture become more
visible which facilitates the detection and recognition of
objects in such scenes and segregation of figures from
their backgrounds. Another important biological utility
that surround suppression might have is to suppress uni-
form motion generated by the background due to head
or eye movement.

We believe that although the current model is based
on motion sensitive neurons in V1, it provides a general
framework to model surround interactions at all levels.
Next to improving the understanding of motion process-
ing in the visual system of man and animals, the insights
gained from the computational models proposed above
can be used in computer vision algorithms.

A Mathematical details of the CRF function

We define the CRF function of a model simple cell, gy 0,4 (2, y, t)

(x,y,t) € 2 C R®, which is centered in the origin (0,0,0) as
follows:

—((Z + vet)® +7°7%)

_ 7
gv,9,tp(~r> Y, t) - 271'0'2 exp( 20_2 )
COS(ZTW(.T + vt) + )
L (t —pe)?
“Tonr exp ( 572 ).U(t)

Z = z cos(f) + y sin(0)

g = —x sin(0) + y cos(0)
1 ift>0

utt) = {0 if t <0, ®)

where the parameter -« is the spatial aspect ratio that specifies
the ellipticity of the Gaussian envelope factor in the spatial
domain. The standard deviation o of this Gaussian factor de-
termines the size of the receptive field. The parameter v. is
the speed with which the center of the spatial Gaussian en-
velope moves along the Z axis. When v. = 0, the center of
the Gaussian envelope is stationary. The parameter A is the
spatial period or wavelength and 1/ the spatial frequency
of the cosine factor. The angle parameter 6 € [0,27) deter-
mines the preferred direction of motion and the preferred
spatial orientation of the filter. For instance, when 6 = 0, a
vertical edge moving rightwards will evoke higher response
than edges of other orientations and directions of movement.
The parameter v is the phase speed of the cosine factor and
determines the preferred speed of motion. The phase offset
¢ € (—m,m| determines the symmetry of g,,0,,(z,y,t) in the
spatial domain with respect to its moving center (Z + vct, 7).
It is symmetric when ¢ = 0 and ¢ = 7 and antisymmetric
when ¢ = —7/2 and ¢ = 7/2. Other values of ¢ correspond
to asymmetric mixtures. We use another Gaussian distribu-
tion, with a mean p; and standard deviation 7, to model the
change in intensities of the excitatory and inhibitory lobes
of the receptive field with time. Finally, the unit step func-
tion U(t) ensures that the filter is causal and hence considers
inputs only from the past.

We now specify the choice of parameter values that is
used in the current work. The parameterization that we use to
model the spatial properties follows previous works (Petkov &

Kruizinga 1997, Kruizinga & Petkov 1999, Petkov & Westenberg

2003, Grigorescu et al. 2003) and takes into account some
restrictions found in experimental data. The spatial aspect
ratio is set to v = 0.5 for which the support of the receptive
field is elongated along the g axis. The ratio o/ determines
the spatial bandwidth and the number of excitatory and in-
hibitory stripe zones in the receptive field. The half-response
spatial frequency bandwidth b (in octaves) and the ratio o/
are related as follows:

o 1 /In22°+1
—==y/= . 9
A xV o2 20-1 (9)

In this paper, we fix the value of the ratio o /A = 0.56, which
corresponds to a half-response bandwidth of one octave. We
set v. = 0 or v. = v to obtain a filter with a stationary or
a moving envelope, respectively. We use the following rela-
tion between the preferred spatial wavelength A and the pre-
ferred speed v: A = A\oV/1 + v2 where the constant A\ is the
spatiotemporal period of the filter. In this work, we choose
Ao = 2 which is the minimum spatiotemporal period that
could be used in digital image sequences. The above relation
between A\ and v ensures that we have a family of receptive
field functions with a constant spatiotemporal period Ag. The
relation also implies that filters that prefer high speeds have
bigger receptive fields. Assuming that image sequences are
sampled at a video rate of 25Hz and one time unit corre-

»sponds to 40ms, we choose it = 1.75 to reflect the fact that

the mean time delay of the peak of the receptive field is about
70 ms after the stimulus onset (DeAngelis et al. 1993a). We
set 7 = 2.75 which corresponds to the observation that the
mean duration of most RFs of the concerned type is about
300 ms (DeAngelis et al. 1993a).

The parameters v and 0 specify the preferred speed and
the direction selectivity of the filter. At the same time, v
determines the preferred wavelength (via the relation A =
AoV/1+ v?) and the receptive field size (via the relation o =
0.56\). Similarly, 6 specifies the preferred spatial orientation
of the filter.

For a multi-channel application like the one described in
Sect. 3.2 where responses of filters with different preferred
speeds are compared one should in principle carry out an ad-
ditional normalization of the function g.,,,(x,y,t) such that
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the filter gives a fixed response to a corresponding optimal
stimulus like a step edge moving at speed v in direction 6.
Such a normalization would however not qualitatively change
the results displayed in Figs. 6 and 12.

B Mathematical details of the surround
suppression weighting function

The surround suppression weighting function is defined as
follows:

L0,k k0 (2,9, 1)

10
110,60,k ks |11 (10)

Wo,0,k ks (T, Y, 1) =
where ||.||1 denotes the L1 norm and the term 1,0 k, k, (T, Y, t)
is defined as follows:

I0,0,k1 k2 (xvy:t) = |Gv797k2 (xvy:t) = G0,k (J,’,y,t)|+,

—((Z 4 vet)® + 72.@2))
2(ko)?

.mTeXp(—(t_Mt) VU).  (11)

272
Observe that the term Gy ¢ x(x,y,t) is similar to the recep-
tive field function g.,0,,(x,y,t) but without the cosine factor.
The parameters (0,7, i, T, Ve, ) have the same functional
role and are fixed in the same way as outlined in Appendix
A. In this paper, we set k1 = 1 and k2 = 4 and denote the
resulting function in (10) as wy,¢(x,y,t) in the main text.

Gv,@,k(xvyat) = 271_(’]10_)2 GXp(
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