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INTRODUCTION

This paper, in which all rings are commutative and noetherian, is devoted to the study
of the local structure of ring homomorphisms.

Given a ring homomorphism ¢: R — S, various numerical invariants have been at-
tached in [8], [5], [6], to its localizations ¢q: Rynr — Sq at prime ideals q of S. Some of
these numbers, like dimension, depth, or type, express quantitative characteristics of ¢;
others, like Cohen Macaulay defect, or complete intersection defect, capture its qualita-
tive aspects. An upshot of the work in [4 8] is the realization that when fd ¢, is finite
that is, the R-module S, has finite flat dimension — at all q, then the properties of the
homomorphism ¢ control the transfer of local properties between the rings R and S.

This point of view has put on common ground many phenomena perceived earlier as
different, and treated accordingly. The new perspective has also led to the determination
of large classes of ring homomorphisms, like the Gorenstein or Cohen Macaulay ones, with
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remarkable stability properties. Even in the classical framework of flat homomorphisms,
our approach has produced new results, like the solutions in [5] and [6] of a series of open
“localization” problems, going back to Grothendieck, for Cohen—Macaulay properties.

In the present paper we expand the scope of our study of homomorphisms by weakening
the homological assumption on the maps. Namely, we replace the condition on the flat
dimension of the R-modules S; by one on the finiteness of their Gorenstein dimension,
or G-dimension. This concept was initially defined for finite (that is, finitely generated)
modules by Auslander [1]. Tt is a finer invariant than the classical projective dimension:
they are equal when the latter is finite, but the Gorenstein dimension may be finite without
the projective one being so. In fact, over a Gorenstein ring of finite Krull dimension all
finite modules have finite G-dimension, a result which is doubtless responsible for the name
of this homological dimension.

As we want to impose at least locally a finiteness condition on the G-dimension of the
R module S, it is crucial to have an operational notion for not necessarily finite R modules.
While a concept of G-dimension is introduced in that generality in [2], its properties are
not sufficiently developed for the purpose at hand. Therefore, we take a different approach,
based on a relative version of the Cohen Structure Theorem for complete local rings.

It is proved in [8] that for each local homomorphism R — S, the induced map from
R to the completion S of S has a Cohen factorization R — R’ — S into a local flat
extension with regular closed fiber, followed by a surjective homomorphism. We say ¢ has
finite G-dimension, and write G-dim ¢ < oo, if the R'—module S has finite G-dimension.
This calls for a proof that the concept is independent of the choice of the factorization.
The argument is given in Section 4, where some of the more immediate consequences of
the finiteness of G-dim ¢ are also established.

In Section 5 we describe our main tool for the study of local homomorphisms of finite
G-dimension: the dualizing complex for a local homomorphism ¢. When G-dim ¢ is finite
we present a roster of properties of that complex, closely paralleling those of dualizing
complexes for local rings. Thus, ¢ has a dualizing complex when S is complete, or when
both R and S have such complexes; dualizing complexes are unique up to isomorphism
and translation in the derived category D(S) of S modules; they localize when R has
Gorenstein formal fibers; etc. The proofs of those results are presented in Section 6.

In [4] we defined a local homomorphism ¢: (R, m) — (S, n) to be Gorenstein at nif fd ¢
is finite and the Bass numbers of both rings essentially coincide: u”depthR u?depth 5 for
all © € Z. Weakening the homological condition to finite G-dimension, we obtain a larger
class of local homomorphisms, which we call quasi-Gorenstein at n. By using a normalized
dualizing complex for such a ¢, we define a formal Laurent series with non-negative integer
coefficients I@(t) , the Bass series of ¢, and establish a product formula

where I, (t) = Y, pi't" is the usual Bass series of R. In the case of finite flat dimension,
such a formula is established in [9], with a very different definition of T,(¢). Our present
approach provides a better hold on the Bass series of a homomorphism, and allows us to
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prove it has no “gaps,” solving a problem raised in [4]. This result has the practical conse-
quence, that now (quasi-)Gorenstein homomorphisms can be defined by the corresponding
homological condition, plus an equality ,ug“depthR = u?depths for a single integer ¢ > 0.

The preceding results are proved in Section 7, where we also characterize quasi-Goren-
stein homomorphisms without reference to G-dimension. They are shown to be precisely
the local homomorphisms which base change dualizing complexes properly: if D is dualizing
for R, then the derived tensor product D®% S is dualizing for S. In Section 8 we study ho-
momorphisms of noetherian rings all of whose localizations are quasi-Gorenstein, and prove
that this class enjoys essentially all the stability properties of Gorenstein homomorphisms,
established in [4] and [6].

On a couple of occasions in this Introduction we have mentioned concepts defined in
terms of derived categories of modules. In the body of the paper derived categories provide
both the language and the proof techniques for most results, so in Section 1 we fix some
terminology and notation. In Section 2, for the reader’s and our own convenience, we
briefly recall a few standard properties of dualizing complexes for local rings.

In Section 3 we prove that when R is local with dualizing complex D, the endofunctors
D ®% — and RHompg (D, —) of D(R) establish an equivalence of the full subcategories
F(R) and I(R) of D(R), consisting of complexes isomorphic to bounded complexes of flat
and injective modules, respectively. This is a vast generalization of a theorem of Sharp
[19] on the equivalence of the categories of finite modules of finite projective and finite
injective dimension over a Cohen-Macaulay local ring with dualizing module. For our
purposes, even the generalized form of such an equivalence is insufficient, so we extend it
further to full subcategories A(R) and B(R) of D(R). The category A(R), which contains
both F(R) and the full subcategory of finite R—modules of finite G-dimension, provides a
particularly flexible environment for the study of homomorphisms of finite G-dimension.

1. HOMOLOGICAL ALGEBRA

(1.1) Complexes. A complex M of R modules, or R complex, is a sequence of R linear
homomorphisms {0,,: M,, — M,,_1}nez such that 0,0,+1 = 0 for all n. (We only use
subscripts and all differentials have degree —1.) The infimum, supremum, and amplitude
of M are defined by inf M = inf{n € Z | H,,(M) # 0}, sup M = sup{n € Z | H,,(M) # 0},
and amp M = sup M — inf M. For s € Z we denote by =*M the complex with (=*M),, =
M, _sand 0™ = (—1)*9M | If N is an R-module then we also denote by N the complex
of R modules with N,, =0 for n # 0 and Ny = N.

If N is an R complex, then a morphism «: M — N is a sequence of R linear homo-
morphisms «,, : M,, — N,,, such that a};’an = ozn_lﬁflv" for n € Z. A quasi-isomorphism is
a morphism « such that H, () is an isomorphism for all n; we indicate quasi-isomorphisms
by ~, while 2 is our notation for isomorphisms of complexes (and thereby of modules).

(1.2) Derived functors. The derived category of the category of R modules, cf. [22] or
[16], is denoted by D(R). Isomorphisms in D(R) are labeled with ~ (since a morphism
of complexes is a quasi-isomorphism if and only if its image in D(R) is an isomorphism,
no notational confusion arises). We use ~ to denote isomorphisms up to translation; in
particular, H;(M) = 0 for i # n, precisely when M ~ H,,(M).
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We write Df(R) for the full subcategory of D(R) consisting of complexes M with H,,(M)
a finite R-module for each n € Z. Also, D (R), D (R), D(R), Dy(R), denote the full
subcategories defined by H,, (M) = 0 for, respectively, n < 0, n > 0, |n| > 0, n # 0. For
a subcategory S(R) C D(R) we set Sf(R) = SND(R), etc. Obvious equivalences identify
D, (R) with the category of R modules, and D{(R) with that of finite R modules.

The left derived functor of the tensor product functor of R complexes is denoted by
— ®% —, and the right derived functor of the homomorphism functor of R complexes is
denoted by RHompg(—, —) (no boundedness conditions are imposed on the arguments, due
to the existence of appropriate resolutions, cf. [10], [21]). Thus, for arbitrary M, N €
D(R) there are complexes M ®% N and RHompg(M, N) which are defined uniquely up to
isomorphism in D(R), and possess the expected functorial properties. As usual, we set

Tor®(M,N) = H, (M ®% N) and Exth(M,N) =H_,(RHomg(M, N))

for n € Z. These are the classical notions when M and N are modules.
When ¢: R — S is a ring homomorphism, M is an R complex, and N is an S complex,
standard spectral sequence arguments, cf. e.g. [3; (4.7.1.Proof)], yield:
(1.2.1) If M € DL (R) and N € D! (S), then M @} N € DL (5S).
(1.2.2) If M € DY (R) and N € D(S), then RHomg(M, N) € DL(S).

The following result is useful in locating quasi-isomorphisms.

(1.2.3) Lemma. Let D € Df(R) have H(D,) # 0 for all p € Spec R, and let M € D (R).

(a) If D € DE(R), then inf(D @% M) = inf M and sup RHompg (D, M) = sup M.
(b) If a: M — N is a morphism in D, (R), such that D ®% o or RHomg(D, ) is an
1somorphism, then « is an isomorphism.

Proof. By [14; (2.2), (2.1.1)] there are inequalities

sup M —sup D < sup RHompg(D, M) <supM —inf D.

Let Eg(A) be the injective envelope of an R-module A, and set I = [ cypax(r) Er(R/m).
The module I is injective, with Hompg(B,I) # 0 for each non-zero R—module B, so
we have an isomorphism H(Homp(M,I)) = Hompg(H(M),I), with equalities sup M
—inf Homg(M, I) and inf M = — sup Homg(M, I). The isomorphism Homg(D®% M, I)
RHompg (D, Homp(M, I)) now translates the inequalities above into

[raml

inf M +inf D < inf(D ®% M) <inf M +sup D.

The two sets of inequalities immediately imply (a).

A standard mapping cone argument reduces (b) to the claim that M is exact if D®% M
or RHompg (D, M) is. In the first case, oo < inf M by the last inequality. In the second
case, sup M < —oo by the first inequality. Either result means that M is exact. (]



L. L. AVRAMOV AND H.-B. FOXBY 5

(1.3) Homological dimensions. In D(R) we consider the full subcategories F(R), I(R), and
P(R), consisting of complexes isomorphic to bounded complexes of — respectively — flat,
injective, or projective modules. We note that PH(R) = F{(R), cf. [3; (2.10.F)], and that
P(R) = F(R) and Py(R) = Fy(R) when dim R < oo, cf. [15; (21.17)]. Furthermore,
F,(R), I,(R), and Py (R) are equivalent respectively to the (full) subcategories of
modules of finite flat, injective, or projective dimension.

If M eD,(R), FeF(R), I,I'e I(R), and P € P(R), then
(a) M @% F € D (R); (b) RHompg (M, I) € D, (R); (¢c) RHompg(P, M) € D, (R);
(d) I % F e I(R); (e) RHompg(I,1') € F(R).

(1.4) Canonical morphisms. Several canonical morphisms in D(R’) are associated with a
homomorphism of rings R — R’, complexes K, M € D(R), and K',M', N € D(R’).
Without comment we use the associativity and adjointness isomorphisms

(K@% M) @% N' ~ K @% (M’ ®% N');
RHomp (K @5 M', N') ~ RHomg (K, RHompg (M’', N')),
and their special cases
(K ®p R') @ N'~ K ®@p N';

RHomp (K ®5% R',N') ~ RHomg(K, N').
They easily yield an isomorphism
(1.4.1) RHomp (K' @% M, N') ~ RHompg (K', RHomp (M, N')).

Although the evaluation morphisms
wirmn: RHomp (K, M') ®% N’ — RHompg (K, M' ®% N');
Oxarn s K@% RHomp (M', N') — RHompg (RHompg (K, M'), N'),

are not always isomorphisms, by [3; (4.4)] the following hold for K € D% (R):

(1.4.2) wgp N 18 an isomorphism when M’ € D (R'), and N' € F(R') or K € P(R).
(1.4.3) O p N is an isomorphism when M’ € Dy (R'), and N' € I(R') or K € P(R).

We also systematically use the biduality morphism

dmr: M — RHomp(RHompg (M, K), K)

and the homothety morphism

xm: R — RHompg(M, M).
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(1.5) Numerical and formal invariants. Let R be a local ring with residue field k.

If M € DX (R), then the Betti number 31 (M) = rank;, Torf (M, k) is finite for all i and
vanishes for i < 0 by (1.2.1). Thus, P¥(t) = > ez BE(M)t" is a formal Laurent series,
known as the Poincaré series of M. By Nakayama, the order of P (¢) is equal to inf M.

Similarly, when M € Df(R) the Bass number (M) = rank, Ext’y(k, M) is finite for
all i and vanishes for i < 0 by (1.2.2). The formal Laurent series I}, (t) = 3", u% (M)t!
is known as the Bass series of M. We set pl = pn(R) and 15(t) = I5E(t).

The formal invariants of M determine membership in P(M) or I(M), cf. e.g. [3; (5.5)]:

(1.5.1) M € DL (R) is in P(M) if and only if P};(¢) is a Laurent polynomial. Furthermore,
M ~ R if and only if P (t) = t¢ for some d € Z.

(1.5.2) M € Df(R) is in I(M) if and only if I} (¢) is a Laurent polynomial.

A homomorphism ¢: R — S is said to be local if the ring S is local, and the closed fiber
k ®gr S of ¢ is nontrivial. The next result generalizes [15; (11.21), (13.19)].

(1.5.3) Lemma. Let ¢: R — S be a local homomorphism ¢: R — S.
(a) If M € DL(R), N € D! (S) and L = M ®% N, then

PL(t) = Py (t) PR (t) -
(b) If M € DL (R), N € D'(S) and L = RHomg(M, N), then

I5(t) =Py (1) 15 (1) -

Proof. Let £ denote the residue field of S. A first sequence of isomorphisms
(M ©f N) @5 £~ M@ (N @ £) ~ (M &% k) @ (N 5§ )

and the Kiinneth formula yield Tor? (M ®% N, £) = Tor® (M, k) @ Tor? (N, £), which gives
(a). Formula (1.4.1) starts a second sequence of isomorphisms

RHomg (¢, RHomp (M, N)) ~ RHomg({ @% M, N)
~ RHomg((M ®% k) ® £, N)
~ Homy (M ®% k, RHomg (¢, N))
~ Homy, (M ®% k, k) ®, RHomg (¢, N)

b b

hence Exty (£, RHomg (M, N)) 2 Homy (Tor® (M, k), k) @, Ext (¢, N), producing (b). O
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2. DUALIZING COMPLEXES

In this section (R, m, k) is a local ring with maximal ideal m and residue field £ = R/m.

The Cohen-Macaulay defect of R is the positive integer cmd R = dim R —depth R. The
first positive Bass number u% appears at ¢+ = depth R; known as the type of R, it is denoted
type R. We write vg M for the minimal number of generators of a finite R module M.

Definition. An R—-complex D is said to be dualizing for R if the homothety morphism
xp: R — RHomg(D, D) is an isomorphism, and D € If(R).

We record some important properties of dualizing complexes [16], cf. also [17] and [15],
with a dual purpose in mind. On the one hand, they appear in several proofs. On the
other, they presage properties of the relative dualizing complexes of Section 5.

(2.1) Example. A ring R is Gorenstein if and only if the R—module R is a dualizing complex,
cf. [16; (V.10.1)], [15; (15.5)].

(2.2) Completion. A complex D € D(R) is dualizing for R if and only if D®pg R is dualizing
for R, cf. [16; (V.3.5)], [15; (22.28)].

(2.3) Existence. A homomorphic image of a Gorenstein ring has a dualizing complex.
In particular, each complete ring has a dualizing complex, cf. [16; (V.10.4)], [15; (17.16)].

(2.4) Uniqueness. If D, D' € D(R) are dualizing complexes for R, then D ~ D’ cf. [16;
(V.3.1)], [15; (15.14)].
(

2.5) Size. If D is a dualizing complex for R, then amp D = cmd R and vg H;(D) = type R
for i = inf D, cf. [15; (15.18), (15.23.a)].

We say a dualizing complex D for R is normalized if inf D = depth R (this convention
differs from the one in [4; p. 1031]); by (2.4) such a complex is unique up to isomorphism.

(2.6) Formal invariants. A complex D € DE(R) is dualizing for R if and only if IR (t) = t?
for some d € Z, cf. [16; (V.3.4)], [15; (15.14)].
When D is normalized, IR (t) = 1 and PE(t) =1,(t), cf. [15; (15.18.b), (15.23.a)].

(2.7) Biduality. If D € D(R) is dualizing for R, then the biduality morphism
ovp: M — RHOIHR(RHOIHR(M, D), D)

is an isomorphism for each M € D! (R), cf. [16; (V.2.1)], [15; (15.10)].

(2.8) Localization. If D is a dualizing complex for R, then for each p € Spec R the complex
D, € D(R,) is dualizing for Ry, cf. [16; (V.8.1)], [15; (15.17)].

Recall that the fiber of a homomorphism of rings ¢: R — S at a prime ideal p in R is
the ring k(p) ®r S, where k(p) = R, /pR, is the residue field of the local ring R,. The
fibers of the m-adic completion map R — R are called the formal fibers of R.

(2.9) Formal fibers. A ring with a dualizing complex has Gorenstein formal fibers, cf. [16;
(V.10.1)], [15; (22.26)].
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The next property appears undocumented; in view of (5.1.a), it is a special case of (5.10).

(2.10) Closed fiber. If ¢: R — S is a flat local homomorphism, R is Gorenstein, and E is
a dualizing complex for S, then the complex k ®% F is dualizing for k ®p S.

A homomorphism ¢: R — S has finite flat dimension, denoted fd ¢ < oo, if S admits
a finite resolution by flat R modules. A local homomorphism ¢ is Gorenstein, cf. [4], or
more precisely, Gorenstein at n, if fdp < oc and ug—depthR = u?’depths for i € Z. By
[4; (4.2)], cf. also (8.3) below, a flat homomorphism is Gorenstein if and only if the ring
S/mS is Gorenstein. The relevance of this notion in the present context comes from the

next result, proved in [4; (5.1)].

(2.11) Base change. Let ¢: R — S be a local homomorphism. The following conditions
on D € Df(R) are equivalent.

(i) D is dualizing for R, and ¢ is Gorenstein at n.

(ii) D ®% S is dualizing for S, and ¢ has finite flat dimension.

(2.12) Finite ascent. Let ¢: R — S be a finite homomorphism of local rings. If D is a
dualizing complex for R then RHompg(S, D) is one for S, cf. [16; (V.10.2)], [15; (15.31)].

3. DUALIZING EQUIVALENCES

In this section R denotes a local ring with dualizing complex D.

We exhibit an equivalence of the categories F(R) and I(R), which is provided by the
restriction of endofunctors of the entire derived category D(R). The existence of such an
equivalence leads to natural extensions of both subcategories considered above.

(3.1) Auslander categories. Let A(R) denote the full subcategory of D, (R), consisting of
those complexes M for which D ®% M € D, (R) and the canonical morphism

i M — RHompg(D, D @% M)

3

Similarly, let B(R) denote the full su;bcategory of D, (R), consisting of those complexes
M for which RHompg (D, M) € D, (R) and the canonical morphism

v D ®% RHomp (D, M) — M,

induced by m — (d — (—1)I"™4ld ® m), is an isomorphism.

induced by d ® o — (—1)/¥l2lq(d), is an isomorphism.
(3.2) Theorem. If D is a dualizing complex for R, then there is a commutative diagram

DL -

D(R) D(R)

%
RHompg(D,—)

Ul Ul

AR) . B(R)

Ul Ul

F(R) " 1I(R)
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in which the vertical inclusions are full embeddings, and the unlabeled horizontal arrows
are quasi-inverse equivalences of categories.

Furthermore, for C, E € Dy (R) the following hold:

(a) D®% C € B(R) implies C € A(R); (b) RHomg(D, E) € A(R) implies E € B(R) ;
(f) D% C € I(R) implies C € F(R); (i) RHomg(D, E) € F(R) implies E € I(R).

Remark. If R is Gorenstein, then it is clear that A(R) = B(R) = D, (R), and (3.2)
contains the well known fact that then also F(R) = I(R).

Proof. If C € F(R), then D ®% C € D, (R) by (1.3.a), and wppc is a isomorphism by

(1.4.2). The commutative diagram

¢ —X - RHomg(D,D &% C)

J{: ZTWDDC

ReLC —;3 RHompg(D, D) ®% C
XDYRp

shows that y¢ is an isomorphism. Similarly, if £ € I(R), then RHompg(D, E) € D, (R)
by (1.3.b), and #ppg is an isomorphism by (1.4.3), and from the commutative diagram

D @% RHomg (D, E) 't E
QDDEJ/: QT
RHompg(RHompg(D, D), E) = » RHomp(R, E)

RHOmR(XD ,E)

we see that ¢g is an isomorphism. We have established the embeddings of categories.

For the remainder of the proof, C' and E denote complexes in Dy (R).

Set F = D ®% C, and consider the morphisms tr: D % RHomg(D,F) — F and
Yo : C — RHompg(D, F). The induced morphism

L
F=De%c 228%% p ek RHompg (D, F)

satisfies 1p(D ®% 7o) = 1, hence we see that
(¥) tp is an isomorphism if and only if D ®@% ¢ is one.

Starting with C' € A(R), the definition of A(R) shows that C, F', and RHompg(D, F)
are in D, (R), and that D ®% Yo is an isomorphism. Thus, ¢r is an isomorphism, hence
F € B(R). We have shown that D ®@% — restricts to a functor A(R) — B(R).

Set B = RHomg(D, E), and consider the morphisms v5 : B — RHompg(D, D ®% B)
and tg: D ®If{ B — E. The induced morphism

RHOmR(D,I/E)
—_—5

RHomg(D, D ®% B) RHompg(D, E) = B
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satisfies RHompg (D, tg) vy = 1p, hence
(%) yp is an isomorphism if and only if RHompg (D, tg) is one.

Arguing as above, we see that £ € B(R) implies B € A(R), so that RHompg(D, —)
restrict to a functor B(R) — A(R). The fact that those functors between A (R) and B(R)
are quasi-inverse equivalences is built in the definitions of these categories.

If C € F(R), then D®% C € I(R) by (1.3.d); if E € I(R), then RHompg(D, E) € F(R)
by (1.3.¢). Thus, D ®% — and RHompg(D, —) restrict to functors between F(R) and I(R).
They are quasi-inverse because this is true for their extensions to A(R) and B(R).

It remains to establish the last four assertions.

If F=D®%C isin B(R), then the complexes F' and RHompg (D, F) are homologically
bounded, and ¢ is an isomorphism, hence by (%) so is D ®% Yo. As D satisfies the
assumption of (1.2.3.b), cf. (2.8), we conclude that ¢ is an isomorphism, hence C' is in
A(R). This proves (a). The argument for (b) is similar, using (k).

If D®%LC isin I(R), then C € A(R) in view of the commutative diagram and (a).
This yields C ~ RHompg (D, D ®@% C) € F(R), as desired. The proof of (i) is similar. [

(3.3) Lemma. The following conditions are equivalent.

(i) The ring R is Cohen—-Macaulay.

) amp(D ®% M) =amp M for all M € A(R).

ii) amp RHomp (D, M) = amp M for all M € B(R).
) amp D = 0.

Proof. (i) <= (iv) is clear (and contained in (2.5)).
(i) = (iv): set M = R.
(iii) = (iv): set M = D.
(iv) = (ii). For M € A(R) we have

sup M = sup RHomp(D, D @5 M) = sup(D ®% M)

with second equality coming from (1.2.3.a), which also provides inf M = inf(D ®@% M).
(iv) = (iii) is similar. O
When R is Cohen-Macaulay, the single non-zero homology module of a dualizing com-

plex D, defined uniquely up to isomorphism, is known as the canonical module of R.

(3.4) Proposition. Let R be a Cohen—Macaulay ring with canonical module D.

An R-module M is in Ao(R) if and only if TorZ (D, M) = 0 = Ext'(D, D ® M) for
i > 0, and the canonical map M — Hom(D, D ®p M) is bijective.

An R module M is in Bo(R) if and only if Exth(D, M) = 0 = Tor?(D, Homg (D, M))
fori >0, and the canonical map D @ g Hompg (D, M) — M is bijective.

Proof. We prove the first assertion, and leave the second one to the reader.
Note that the morphism a: RHompg(D,D ®g M) — Homg(D,D ®r M) is an iso-
morphism if and only if Ext®z(D,D ®p M) = 0 for ¢ > 0 and that the morphism
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B: D% M — D ®pg M is an isomorphism if and only if Torf(D, M) =0 for i > 0. Fur-
thermore, H(a) HRHompg (D, 3)) H(var) is the canonical map v': M — Hom(D, DQrM).
Assume M € Ay(R), so that v is an isomorphism. By (3.3) the Tor’s vanish, hence (3 is
an isomorphism. Thus, RHomg (D, 8)vy: M — RHompg (D, D®p M) is an isomorphism.
It follows that the Ext’s vanish, implying « is an isomorphism, hence +' is bijective.
Conversely, the vanishing of Ext’s implies that « is an isomorphism. The vanishing
of Tor’s implies that D ®% M is bounded, and that ( is an isomorphism. Now from the
bijectivity of " we get that of H(7yas) is an isomorphism, hence so is yu. O

(3.5) Remark. 1t follows from the first part of the proposition and [11; (2.4), (3.3), (3.4)]
that a module M over a Cohen—Macaulay ring R is in Ag(R) if and only if there exists
an exact sequence 0 — G,, — --- — Gy — M — 0, such that each module G; is
Gorenstein flat in the sense of Enochs et al. Similarly, the second part of the proposition
and [11; (2.5)] imply that M is in B(R) if and only if it there exists an exact sequence
0—> M — .Jyg—---—.J, — 0, such that each .J; is Gorenstein injective.

Combining (3.2) and (3.4), we obtain the following

(3.6) Corollary. When R is Cohen—Macaulay with canonical module D there are commu-
tative diagrams of categories of R-modules

Dy(R) " Dy(R) DiR) " D)
Hompg (D,—) Homp(D,-)

U Ul U U
AfR) 7 By(R) and ALR) . BI®R)
U Ul U U
N R —. 1) 0 R —. 0]

in which the vertical inclusions are full embeddings, and the unlabeled horizontal arrows
are quasi-inverse equivalences of categories. 0

Remark. In view of (3.4), the corollary can be obtained as a direct consequence of [13;
(1.4), (2.1)]. Furthermore, loc. cit. establishes an analog of the last part of (3.2).
The equivalence above between FE(R) and I§(R) is due to Sharp, [19; (2.9)].

Finally, we record some stability properties of A(R).
(3.7) Proposition. Let ¢: R — S be a local homomorphism and let N € D(S).
(a) N € A(R) if and only if N ®s S € A(R).
(b) If ¢ is Gorenstein, then N € A(R) if and only N € A(S).
(¢) If S — S’ is alocal flat extension, then N € A(R) if and only if N ®s S’ € A(R).
(d) If g € Spec S and p =qN R, then N € A(R) implies Ng € A(Ry).

Proof. When ¢ is Gorenstein, E = D ®% S is a dualizing complex for S by (2.11), hence
(b) results from the canonical isomorphisms

DRYN~E®YN, RHomp (D, D ®% N) ~ RHomg(E, E Q% N).
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(c) follows by faithful flatness from the canonical isomorphisms

H(D Y N)®s 8"~ H(D LY Nws S,
RHomp(D, D @5 N)®s S’ ~ RHomg(D,D % N ®s S').
By (c), N is in A(R) if and only if N ®g S is in A(R), and by (b) the last condition is

equivalent to N ®g S being in A(R). This establishes (a).
As D, is a dualizing complex for R, by (2.8), the canonical isomorphisms

Dy ®Equ ~ (D ®% N)g
RHomg, (D,, Dy ® Ny) ~ RHomg (D, D @ N),

yield (d). O

4. GORENSTEIN DIMENSION
In this section R denotes a local ring.
The dimension discussed below is introduced for modules by Auslander [1], [2].

(4.1) Gorenstein dimension. A finite R-module M has G-dimension 0 if Ext% (M, R) =
0 = Extiz(Hompg (M, R), R) for i > 0, and the canonical map M — Hompg(Hompg(M, R), R)

3

is bijective. It is of G-dimension at most n if there exists an exact sequence
0—-G,—>Gpy — ... > G -Gy —> M —0

in which G; has G-dimension 0 for 0 < j < m; in this case we write G-dimg M < n.
For each finite R-module M the following hold:

(4.1.1) G-dimp M < pdp M, with equality if pdp M < oo, cf. [2; (3.14)].

(4.1.2) If G-dimp M < oc, then G-dimg M = depth R — depthp M, cf. [2; (4.13.b)].

(4.1.3) If G-dimp M < oc, then G-dimg M = — inf RHompg (M, R), cf. [2; (4.13.a)].

(4.1.4) If R — S is a flat local homomorphism, then G-dimg(M ®pg S) = G-dimpg M.

(4.1.5) G-dimp, M, < G-dimgr M for each p € Spec R, cf. [2; (4.15)].

(4.1.6) R is Gorenstein if and only if G-dimgr M < oo for all finite M, cf. [2; (4.20)].

~— ~—

A result of Foxby, cf. [24; (2.7)], provides a connection with Auslander categories:
(4.1.7) If R has a dualizing complex, then G-dimg M < oo if and only if M € A(R).

(4.2) Factorizations. A factorization of a local homomorphism ¢: (R,m) — (S,n) is a
commutative triangle of local homomorphisms

R/
o/ N\ o'

R — S.
(%2}
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with ¢ flat and ¢’ surjective. A factorization is said to be regular, respectively, Gorenstein,
if the local ring R'/mR’ has the corresponding property. It is clear that

(4.2.1) ¢ has a regular factorization if is essentially of finite type.

A Cohen factorization is a regular factorization with a complete local ring R'. It often
exists, by a relative form [8; (1.1)] of Cohen’s Structure Theorem for complete local rings:

(4.2.2) For each local homomorphism ¢, the composition ¢: R — S of ¢ and the n-adic
completion map S — S has a Cohen factorization.

By [7; (2.7)] or [8; (3.3)], Cohen and regular factorizations reflect the finiteness of fd ¢:

(4.2.3) If fd ¢ is finite, then pd g S is finite in each regular factorization R — R’ — S of
¢; conversely, if pdg/ S is finite in some Cohen factorization of ¢, then fd ¢ is finite.

The next theorem establishes a corresponding result for G-dimension.

(4.3) Theorem. For a local homomorphism ¢: R — S the following are equivalent.

(i) G-dimp S is finite for some Cohen factorization R — R’ — S of (p
(ii)) G-dimp S is finite for some Gorenstein factorization R — R’ — S of @.
(iii) g—dlle S is _ﬁn/z\te for each Gorenstein factorization R — R’ — S of @.
(iv) S belongs to A(R).
When ¢ has a Gorenstein factorization R — R" — S, they are also equivalent to
¥ )
(ii’) G-dimpgr S is finite.
When R has a dualizing complex, they are also equivalent to

(iv’) S belongs to A(R).

Proof. The implications (iii) = (i) = (ii) are clear.

By (4.1.4), conditions (ii) and (111) do not change if we replace R — R’ — S with the
Gorenstein factorization B — R’ — §. Once this is done, we see from (3.7.b) that (iv)
is equivalent to the condition S € A(R’). By (4.1.7) this inclusion is equivalent to the
finiteness of G-dimp S. It follows that (i) = (iv) = (iii).

If R — R" — S is a Gorenstein factorization of ¢, then R — R” — § is one of o,
hence (ii) <= (ii’) by (4.1.4).

If R has a dualizing complex, then (iv) <= (iv’) by (3.7.a). O
Definition. A local homomorphism ¢: R — S which satisfies the equivalent conditions of
the theorem is said to have finite Gorenstein dimension, denoted G-dim ¢ < oo.

Some basic properties of such homomorphisms follow easily from (4.1) and (4.3).

(4.4.1) Gorenstein source. If R is Gorenstein, then so is the ring R’ in any Cohen factor-
ization of ¢, hence by (4.1.6) each local homomorphism ¢: R — S has G-dim ¢ < cc.

(4.4.2) Finite flat dimension. If fd ¢ < oo, then G-dim ¢ < oo by (4.2.3) and (4.1.1).
(4.4.3) Completion. G-dim ¢ < oo if and only if G-dim ¢ < oo, if and only if G-dim ¢ < oc.
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(4.4.4) Finite homomorphism. When ¢ is finite, G-dim ¢ < oo if and only if G-dimg S < cc.

Indeed, by (4.1.7) the condition S € A(R) is equivalent to the finiteness of G-dim 5 S. By
(4.1.4) the latter is tantamount to the finiteness of G-dimpg S.

The property of ¢ to have finite flat dimension localizes: If fd ¢ < oo, then for each
prime ideal g in S the induced local homomorphism ¢g: Rynr — S4 satisfies fd ¢, < oo.
For the Gorenstein dimension we have the following partial results.

(4.5) Proposition. If ¢: R — S is a local homomorphism with G-dim¢ < oo, then
G-dim ¢y < oo for each q € Spec S under each one of the following conditions:

(1) ¢ is essentially of finite type; or
(2) R has Gorenstein formal fibers.

Proof. Fix q, and set p = qN R.

Under condition (1), ¢ has a regular factorization R — R’ — S in which R’ is the
localization of a ring of polynomials over R, at a prime ideal lying above m. If p’ =
q N R’, then the sequence R, — R;, — Sy is a regular factorization of ¢4, and we have
G—dimR;, Sq < G-dimps S by (4.1.5). Thus, G-dim ¢, is finite by (4.3).

By the same result, we see that under condition (2) it suffices to show that S € A(R)
implies (S,)” € A((Ry)"). Choose a prime ideal q* lying over q and set p* = q* N R.
By (3.7.d) and (3.7.a) we have (§q*)A € A((ﬁp*)/\). By hypothesis, the flat local ho-
momorphism R, — ﬁp* has a Gorenstein closed fiber, and hence so does its completion
(Rp)” — (ﬁp*)A. Thus, from (3.7.b) we see that (:S’\q*)A € A((Ry)"). The desired assertion

now follows from (3.7.c), due to the identification of (Sq+)~ with (Sq)A®(Sq)A (Sq<)". O
Next we look at the behavior of Auslander categories under descent.

(4.6) Proposition. Let R be a local ring with a dualizing complezx, and let p: R — S be
a local homomorphism.

(a) If G-dim ¢ is finite then F(S) C A(R) and I(S) C B(R).

(b) If td ¢ is finite then F(S) C F(R) and I(S) CI(R).

Proof. Let D € I*(R) be dualizing for R.

Consider first a complex M € F(S). When fd ¢ is finite, the canonical isomorphism
~ @Y M~ (- oL S)®% M and (1.3.a) yield M € F(R).

When G-dim ¢ is finite, by (4.3) we have S € A(R). On the one hand, this implies that
DeLs € D, (S), hence Wp(Dgls)M 18 an isomorphism by (1.4.2), and that amp(DR% M) =
amp((D®% S)®% M) is finite. On the other hand, it implies ys: S — RHomg(D, D®%S)
is an isomorphism, hence vg ®% M is one. Now the commutative diagram

S@YM =M —— "™ 5 RHomg(D,D ®% M)
'YS®EMJ(: :l
RHompg(D, D ®% S) % M ——=—— RHomg(D, (D @% S) ®% M)

wD(D@%S)M
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shows that 77 is an isomorphism. We have proved that M is in A(R).
The proofs for a complex M € I(S) are similar, using (1.3.b) and (1.4.3). O

(4.7) Proposition. Let ): Q — R and ¢: R — S be local homomorphisms, with fd ¢
finite. If G-dim) < oo, then G-dim gy < oo. The converse holds when ¢ is flat.

Proof. In view of (4.4.3) the assumption on G-dim is invariant under completion; that
on fd ¢ has the same property, cf. e.g. [8; (3.3)]. Thus, we may assume ) has a dualiz-
ing complex. The previous proposition then shows that S € F(R) C A(Q), and hence
G-dim ¢ is finite by (4.3). The converse follows from (3.7.c), in view of of (4.3). O

(4.8) Remark. We do not know whether the composition of local homomorphisms of finite
G-dimension has the same property. The construction of [6; (4.4)] shows that this is
equivalent to the validity of the following property of G-dimension: If ) — R — S
are surjective homomorphisms of local rings, such that G-dimg R and G-dimpg S are both
finite, then G-dimg S is finite.

Extending this to finite modules, we raise the

Question. Let () — R be a finite homomorphism of local rings, and let M be a finite
R-module. If G-dimg R and G-dimpg M, are finite, is then G-dimg M finite?

The argument for (4.7) easily generalizes to yield a positive answer when pdy N is finite,
and another case is established in (7.11), but the general case appears to be open.

5. RELATIVE DUALIZING COMPLEXES: PROPERTIES

In this section ¢: (R,m) — (S, n) denotes a local homomorphism.

When M is a finite R module, we write codimp M for the height of its annihilator ideal,
and gradep M for the maximal length of an R regular sequence contained in this ideal.
The dimension, depth, Cohen—Macaulay defect, and type of ¢ are defined from a Cohen
factorization R — R’ — S of ¢, cf. (4.2), as follows:

dim ¢ = dim R’ — dim R — codimp S ;
depth ¢ = depth S — depth R ;
cmd ¢ = dim ¢ — depth ¢ ;
type g = vgS Ext® (S, R')) for d=depthR' —depthS.
It is proved in [8; (2.1)] that the right hand side of the first (and hence, the third) formula is
independent of the factorization; the corresponding result for the last formula is established

in [6; (7.1)]. Unlike the prototype invariants for rings, the dimension, depth, or Cohen
Macaulay defect of a homomorphism may be negative, and its type may be zero.

Definition. An S complex C'is dualizing for ¢ if the homothety xc: S — RHomg(C, C) is
an isomorphism, C € Df(S), and D’ ®'}:{ (C®gsS) € I(S) for a dualizing complex D’ for R.
By applying (a) below to the local structure homomorphism Ly — S, where p =

char S/n, one sees that the properties which follow specialize to the correspondingly num-
bered in Section 2 properties of absolute dualizing complexes:
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(5.1) Examples. (a) If R is Gorenstein, then C' € D(S) is dualizing for ¢ if and only if
it is dualizing for S: this follows from (2.1).

(b) The identity homomorphism 1g has a dualizing complex, namely R.

(¢) If p: R — R* is the completion map for the adic topology defined by a proper ideal
a in R, then R* is a dualizing complex for p: as p = 15, this follows from (b) and (5.2).
(5.2) Completion. Let C' be an S-complez.

(a) C is dualizing for ¢ if and only if C ®g Se D(§) is dualizing for ¢ and/or @.
(b) If R has a dualizing complex D, then C is dualizing for ¢ if and only if xc is an
isomorphism, C € DL(S), and D @% C € I(S).

Proof. (a) By faithful flatness, x¢ is an isomorphism if and only if Xcgsg 18 one, and
C € D{(S) if and only if C ®g S € DE(S).
(b) By (2.2) D' = D ®pg R is dualizing or R. Since D’ ®% (C®sS)~ (DeLC)s S
as § complexes, D' ®% (C'®g §) € 1(S) if and only if D@} C € 1(S) by [3; (5.5.1)]. O
The proofs of the following theorems are collected at the end of Section 6.

Hypothesis for Theorems (5.3) through (5.9): G-dim ¢ is finite.

(5.3) Existence. If both R and S have dualizing complezes, or if ¢ has a Gorenstein
factorization, then ¢ has a dualizing complez.
In particular, each homomorphism to a complete ring has a dualizing complex.

Dualizing complexes are actually constructed in (6.1.b), (6.5), and (6.7) below.
(5.4) Uniqueness. If C,C' € D(S) are dualizing for ¢, then C ~ C".
(5.5) Size. Let C be a dualizing complex for ¢.
If R — R’ — S is a Gorenstein factorization for ¢, then
amp C = cmd ¢ + codimp: S - gradep, S > cmd @

with equality if fdp < 0o or if R is Cohen—Macaulay; in the latter case, ampC = cmd S.
type S

For i = inf C there are equalities vs H;(C) = type p = )
type R

We do not know if cmd ¢ > 0 when G-dim ¢ is finite, unless fd ¢ < oo, cf. [8; (3.6)].

We say a dualizing complex C for ¢ is normalized if inf C' = depth S — depth R; by (5.4)
such a complex is unique up to isomorphism. (When R is Gorenstein, C' is also dualizing
for S by (5.1.a), but as such is not normalized unless R is artinian.)

(5.6) Formal invariants. If C is a normalized dualizing complex for ¢, then

ps (1) — 15 and 1C() ~Tp(t) .
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(5.7) Biduality. If C € D(S) is dualizing for ¢, then the biduality morphism dnc: N —
RHomg(RHomg (N, C),C) is an isomorphism for each N € D{(S) with N®s S € A(R).
If R has a dualizing complex, then 0nc is an isomorphism for N € Dg(S) NA(R).

Relative dualizing complexes do not always localize nicely. Indeed, Ferrand and Ray-
naud [12; (4.2.i)] have constructed a one-dimensional local domain R, such that R has a
minimal prime q with R non-Gorenstein. From (5.1.c) we see that C' = Risa dualizing
complex for p: R — R. On the other hand, as R is a field and the ring R, is not

Gorenstein, (5.1.a) shows that Cy = R is not a dualizing complex for pq: Ry — R
Thus, the failure of the formal ﬁber% of R to be Gorenstein is an obstruction for the
dualizing complex of ¢ to localize properly. The following result proves it is the only one.

(5.8) Localization. If C € D(S) is a dualizing complex for ¢, then for each q € Spec S
the complex Cy € D(Sy) is dualizing for g, under any one of the following conditions:

(1) ¢ is essentially of finite type; or
(2) R has Gorenstein formal fibers.

(5.9) Formal fibers. If R has Gorenstein formal fibers and ¢ has a dualizing compler,
then S has Gorenstein formal fibers.

(5.10) Closed fiber. If ¢ is flat and C € D(S) is a (normalized) dualizing complex for
@, then the compler k @% C is (normalized) dualizing for k ®p S.

Theorems (5.11) through (5.13) involve a second local homomorphism, 1: Q@ — R.
(5.11) Base change. When G-dim < oo and A € D{(R) the following are equivalent.

(i) A is dualizing for 1, and ¢ is Gorenstein at n.
(ii) A®L S is dualizing for i, and ¢ has finite flat dimension.

(5.12) Finite ascent. If G-dimvy < oo, G-dim 1) < oo, the homomorphism ¢ is finite,
and the complex A € D(R) is dualizing for 1, then RHompg(S, A) is dualizing for pi.

(5.13) Composition. If G-dimy < oo, fdp < oo, A € D(R) is dualizing for v, and
C € D(S) is dualizing for ¢, then A ®% C € D(S) is dualizing for o).
6. RELATIVE DUALIZING COMPLEXES: PROOFS
In this section ¢: (R,m) — (S, n) denotes a local homomorphism.
The following result is pivotal for most of the arguments to follow.

(6.1) Theorem. Assume G-dim ¢ < oo and D is a (normalized) dualizing complez for R.
(a) C € D(S) is (normalized) dualizing for ¢ if and only if D ®% C is (normalized)
dualizing for S.
(b) E € D(S) is dualizing for S if and only if RHompg (D, E) is dualizing for .

We precede its proof by
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(6.2) Lemma. Assume that R has a dualizing complez, and let C' and E be S complexes.
When G-dim ¢ < 00, respectively, fd o < oo, the following hold.

(a) If C is dualizing for ¢, then C € A(R), respectively, C € F(R).

(b) If E is dualizing for S, then E € B(R), respectively, E € I(R).

Proof. Let D be a dualizing complex for R.

(a) By definition, D ®% C is in I(.S), hence is in B(R) by (4.6.a), respectively, in I(R)
by (4.6.b). Now C € A(R), respectively, C € F(R), from (3.2.g), respectively, (3.2.f).

(b) follows directly from (4.6.a), respectively, from (4.6.b). O

Proof of Theorem (6.1). (a’) Assume that C is dualizing for ¢. The complex E = D ®} C
is in I(S) by (5.2.b), and in Df(S) by (1.2.1). On the other hand, C € A(R) by (6.2.a),
hence v¢: C — RHompg(D, E) is an isomorphism. Thus, the commutative diagram

S X, RHomg(E, E)
XC‘J(: :J{
RHomg(C,C) ———— RHomg(C,RHomg(D, E)),

RHOmS (C,’YC)
in which the unnamed isomorphism is as in (1.4.1), implies that xg is an isomorphism, so
that F is dualizing for S.

(b’) Assume that E is dualizing for S, set C = RHomg(D, E), and note that C € D{ (5)
by (1.2.2) and (1.3.b). On the other hand, (6.2.b) yields E € B(S), hence tp: D@%XC — E
is an isomorphism, and thus D ®% C € I(S). Finally, the commutative diagram

S _Xxc RHomg(C, C)
XEJ{: :J{
RHomp(E,E) ————— RHomg(D ®% C, E)

RHom¢ (vg,E)
shows that x¢ is an isomorphism, hence C is dualizing for ¢.

(a”) Assume that ¥ = D®% C is a dualizing complex for S. By applying consecutively
(6.2.b) and (3.2.g), we see that C' belongs to A(R). It follows that C is isomorphic to
RHompg(D, F), which is a dualizing complex for ¢ by the part of (b) established in (b’).

(b”) If C = RHomg(D, E) is dualizing for ¢, then (6.2.a) and (3.2.j) yield E € B(R),
hence D @% C' ~ E. By the established part of (a), E is dualizing for S.

Finally, to get (a) in the form which involves normalizations, it suffices to remark that
inf(D ®% C) = inf D + inf C = depth R + inf C. O
(6.3) Lemma. If G-dimy < oo, the R—complex D is dualizing for R, the S—compler E
is dualizing for S, and the S complex C is dualizing for ¢, then C ~ RHompg(D, E).

Proof: Tt suffices to prove the relations C ~ RHomg (D, D @% C) ~ RHomg(D, E). The
first one is due to the inclusion C' € A(R), established in (6.2.a). The second one is induced
by the relation D ®} C ~ E, which expresses the uniqueness (2.4) of dualizing complexes
for S, since D ®% C is one by (6.1.a). O
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(6.4) Lemma. A complex C € D(S) is dualizing for ¢ if and only if the complex C®5§ €
D(S) is dualizing for ¢ and/or for @.

Proof. By the faithful flatness of S over S, the isomorphism H(C®gS) = H(C)®s S shows

-~

C®sS e th)(g) if and only if C' € D{(S). When this holds, xcg.S is an isomorphism
together with yo ®¢ S due to the commutative square

g Xc®sd, RHomg(C,C) ®s S

| !

§ ——— RHomg(C ®s 5,0 ®s 5).

Xc®5§

By faithful flatness, the latter morphism is an isomorphism together with yc. O
(6.5) Lemma. If ¢ is finite and G-dim ¢ < 0o, then RHompg(S, R) is dualizing for ¢.
Proof. By the preceding lemma, we may assume that R and S are complete, and then
choose a dualizing complex D for R. Note the canonical isomorphisms

RHompg(S, R) ~ RHompg (S, RHomg(D, D)) ~ RHomg (D, RHomg(S, D)) .

As RHompg(S, D) is a dualizing complex for S by (2.12), conclude by (6.1.b). O

(6.6) Lemma. If ¢¥: Q — R is a local homomorphism which is Gorenstein at m, and
G-dim ¢ < oo, then C' € th)(S) 1 dualizing for ¢ iof and only if it is dualizing for o).

Proof. As above, we may assume that () has a dualizing complex, B. By (2.11) the complex
D = B ®g R is dualizing for R. Using (3.7.b) and (4.3), we see that G-dim @) is finite.

In view of the isomorphism D @% C ~ B ®5 C, the assertion follows from (6.1.a). U
Combining the last two lemmas, we get:

(6.7) Lemma. If R — R' — S is a Gorenstein factorization of ¢ and G-dimp < oo,
then RHompg: (S, R') is a dualizing complex for ¢. |

The proofs of the results of Section 5 follow a logical — not numerical — order.
Proof of Theorem (5.3): apply (6.1.b) and (6.7). O
Proof of Theorem (5.7). By (6.4) the complex C ®g S is dualizing for .
The commutative triangle
RHomg(RHomg (N, C),C) ®s S

5NO®S§/] \Nz
N®g S » RHomg(RHomg(N ®5 S,C ©5 ), C ®s S)

O N©s) (Cwgd)
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and faithful flatness show that we may assume R and S are complete.
So let D and FE be dualizing complexes for R and S, respectively. By (6.3) we may further
assume that C = RHompg (D, E). Set K = D®% S and L = D ®% N. The canonical

isomorphisms RHompg (D, L) = RHomg (K, L), RHomg(L, E) = RHomg (N, C), and
C = RHomg(K, E) induce a commutative diagram

N SRLTN RHomg(RHomg(N, C),C)
YN |~ ~
RHomp(D, L) RHomg(RHomg (L, E), C)
RHomg (K, L) RHomg(RHomg(L, E), RHomg (K, E))
RHOms(K,éLE) ~ ~

RHomg (K, RHomg(RHomg(L, E),E)) ——  RHomg(K ®% RHomg (L, E), E).

Y

Thus, dy¢ is an isomorphism.
The last assertion of the theorem follows from (3.7.a). O

Proof of Theorem (5.4). Since C' ®g S and C ®g S are both dualizing for @: R — S, we
get C' ®s S ~ C ®g S by (6.3). It follows that

RHomS(C”, C) Rsg § ~ RHOIII:S:(C, Rs §, C®s §) ~ RHOl’Il:S:(C Rg §, C®g §) ~ §

Faithful flatness shows that H(RHomg(C’, (")) is concentrated in a single degree, where it
is isomorphic to S. Thus, RHomg(C’,C) ~ S. It remains to note that in the sequence

o e, RHomg(RHomg(C’, C),C) ~ RHomg(S,C) ~ C'.

Y

the morphism d¢r¢ is an isomorphism by (5.7). O]

Proof of Theorem (5.8.1). We have G-dimp, < oo by (4.5.1). Let R — R’ — S be
a regular factorization of ¢ as in the proof of that proposition. By (6.7) the complex
RHompg/ (S, R') is dualizing for ¢, hence C' ~ RHompg/ (S, R’) by (5.4). The last relation

localizes to Cy ~ RHomp: (Sq, R/), where p’ = gN R'. Since Ry, — R}, — Sy is a regular
p

factorization of ¢4, by (6.7) again we conclude that Cj is dualizing for ¢,. U
Proof of Theorem (5.13). By (4.4.2) and (4.7), all three homomorphisms v, ¢, and @i

have finite G-dimension. We may assume thatlQ has a dualizing complex B. By (6.2.a)
we have C' € F(R), hence A ®% C € Df(S) by (1.2.1) and (1.3.a). On the other hand, by
(6.1.a) B ®5 A is dualizing for R. The isomorphism (B ®5 A)ehCc~B ®5 (AL C)

and another application of (6.1.a) show that A ®} C is dualizing for ¢i. O
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Proof of Theorem (5.11). We may assume all rings are complete, and choose dualizing
complexes B for () and D for R.

(i) = (ii). The complex D ®% S is dualizing for S by (2.11). Furthermore, as fd ¢ is
finite, we have S ~ RHompg(D, D ®% S) by (3.2), hence S is a dualizing complex for ¢ by
(6.1.b). Now (5.13), shows that A ®% S is dualizing for ).

(il) = (i). By (6.1.a) the complex B ®5 (A ®L S) is dualizing for S. Since it is
isomorphic to (B ®g A) ®% S, we see from (2.11) that ¢ is Gorenstein at n and B ®f A is
dualizing for R. Applying once more (6.1.a), we conclude that A is dualizing for 1. J

Proof of Theorem (5.8.2) and Theorem (5.9). Fix q € Spec S, set p = ¢N R, and note that
the induced homomorphism ¢4: R, — Sy has finite G-dimension by (4.5.2).

In the special case when R has a dualizing complex D, the S—complex £ = D ®% C
is dualizing for S by (6.1.a), and C ~ RHompg(D, E) by (6.3). It follows that Cy ~

RHompg, (Dy, Ey). By (2.8), D, and E, are dualizing for R, and S, respectively. As
G-dim ¢4 < 0o, we conclude by (6.1.b) that Cy is dualizing for .

In general, we remark that C'®g Sisa dualizing complex for @ by (6.4), choose a prime
ideal q* € Spec§ lying over q, and set p* = q* N R. By the special case, the complex
(C®s §)q* is dualizing for Qg : Ep* — §q*. At this point, we have a commutative square

Ry —— S

of local homomorphisms, in which o is flat, p is flat with Gorenstein closed fiber, G-dim ¢,
is finite (observed above), and G-dim @4« is finite (from (4.4.3) and (4.5.2)).

The :S’\q* complex (C' ®g §)q is dualizing for @g-p by (6.6). As it is isomorphic to
Cy ®s, §q*, and Pq-p = 0@y, we see that the last complex is dualizing for og,. Since
o is flat, (5.11) applies and shows that Cy is dualizing for ¢4, and the ring §q*/q§q* is
Gorenstein. It is a localization of the formal fiber k(q) ®s S. In choosing q* we had the

freedom to pick it as the contraction of any prime ideal of k(q) ®gs S, so we conclude that
this formal fiber is Gorenstein. [

Proof of Theorem (5.6). We may assume that ¢ = @, and choose a normalized dualizing
complex D for R. By (6.1.a) the complex F = D ®} C is normalized dualizing for S.
By (1.5.3.a) we have P3(t) = PE(t)PZ(t), and (2.6) translates the preceding equality
into Ig(t) = Ip(t)P2(t), as desired. Furthermore, as C € A(R) by (6.2.a), we have
C ~ RHompg(D, E). Thus, (1.5.3.b) and (2.6) yield I§ (t) = PE#)15(t) = 15(t). O

Proof of Theorem (5.5). We may assume that S and R are complete, and let D be a
dualizing complex for R.

We start with a Gorenstein factorization R — R’ — S of ¢. By (6.7), the complex
RHompg (S, R') is dualizing for ¢. By the uniqueness (5.4) of such complexes, we may
assume C' = RHomp/ (S, R’). Note that inf C' = depth S — depth R’ by (4.1.3) and (4.1.2).
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As sup C' = —gradep, S by the homological characterization of grade, we get
amp C = depth R’ — depth S — gradeg, S.

On the other hand, since R — R’ is flat with Gorenstein closed fiber, we have dim R’ —
dim R + depth R = depth R’, hence

cmd ¢ = (dim R’ — dim R — codimp S) — (depth S — depth R)
= depth R’ — depth S — codimp: S.

Thus, we obtain amp C' — cmd ¢ = codimp' S — gradeg, S > 0, as desired.

If R is Cohen—Macaulay, then so is the ring R’, hence codimpg S = gradeg S, so
ampC = cmdg. By (6.1.a) the complex D ®} C is dualizing for S, hence ampC =
amp(D ®% C) = cmd S by (3.3) and (2.5).

From now on we assume that R — R’ — S is a Cohen factorization, cf. (4.2.2). If
fd ¢ is finite, then by (4.2.3) the projective dimension of the R'—module S is finite, hence
codimp: S = gradep, S by [6; (2.5)], and so amp C = cmd .

As noted above, i = inf C' is equal to depth S — depth R’, so that H;(C) = Extl_{f(S, R).
By definition, type ¢ is equal to the minimal number of generators of the last S—module,
hence vg H;(C) = typey. On the other hand, the equality vs H;(C) = typeS/type R
follows immediately from the expression for P2(t) obtained in (5.6). O

Proof of Theorem (5.10). We assume that the rings are complete, cf. (6.4), and choose
dualizing complexes D and E for R and S. As RHompg(k, D) ~ k by (2.6), we have

k @5 RHompg(D, E) ~ RHomg(RHomg(k, D), F)
~ RHomg(k, E)
~ RHomg(k ®r S, F),

where the first isomorphism is due to (1.4.3), which applies because E is in I(R) by
(4.6.b). As k@E RHompg(D, E) ~ k®% C by (6.3), and the complex RHomg(k®z S, E) is
dualizing for k®p S by (2.12). If furthermore C' is normalized, then inf(k®@% C) = inf C =
depth S — depth R = depth k ®g S, hence k ®% C is normalized as well. O

Proof of Theorem (5.12). Again, we may assume all rings complete, and take dualizing
complexes B and D for () and R, respectively. Consider now the canonical isomorphisms

RHompg (S, RHomg (B, D)) ~ RHompg(S ®5 B, D) ~ RHomg (B, RHompg(S, D)),
where the first one is given by (1.4.1). As RHompg(S, D) is a dualizing complex for S by

(2.12), and G-dim ¢1) is finite by assumption, we see that the isomorphic complexes above
are dualizing for ¢¢. It remains to note that A ~ RHomg (B, D) by (6.3). O
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7. BASS NUMBERS OF LOCAL HOMOMORPHISMS
In this section ¢: (R, m, k) — (S, n,£) denotes a local homomorphism.

If G-dim g is finite, then so is G-dim @ by (4.4.3), and the latter homomorphism has a
normalized dualizing complex C’ by (5.3). Its i’th Betti number 37 (C") is defined in (1.5).

Definition. The number ufp = B?(C’) is called the i’th Bass number of ¢; the formal
Laurent series 1,(t) = > plt" is called the Bass series of ¢.

Clearly, pg, = [ = -

(7.1) Theorem. When G-dim ¢ is finite there is an equality of formal Laurent series

i+depthR< i+depth S
Mg

In particular, pg for each i € 7.

Proof. The equality comes from (5.6). The inequalities follow, since for d = depth S —
depth R we have ufp = 0 when 7 < d, ,ui # 0, and ufp > 0 when ¢ > d. 0

Now we compare the present Bass invariants with those introduced in [9].

(7.2) Homotopy fiber. The homotopy fiber F(y) of ¢ is k ®% S, equipped with its natural
structure of differential graded algebra (which is unique up to isomorphism in the subcate-
gory of D(R) generated by DG R-algebras and their morphisms). The “Bass series” of ¢
is defined in [9; p. 512] to be the “series” Ip(,)(t) = ;o7 rank, Ext%(w)(ﬂ, F(p))t*, where
quotation marks indicate that the ranks involved need not be finite.

Assume that fd ¢ < co. It follows from [9; (5.1)] that then Ir(,(¢) is actually a formal
Laurent series, and satisfies Ig(¢) = Ix(¢) Ip(,)(f) . As in this case G-dim ¢ < oc by (4.4.2),
comparison of this equation with that of the theorem yields g, (t) = 1,(t) .

The following example shows that (7.1) extends part of [9; (5.1)] in an essential way.

(7.3) Example. Let (@, q) be a Gorenstein local ring, let x and y be @Q-regular sequences
such that 0 # (x) C q(y), and let ¢ be the canonical map R = Q/(x) — Q/(y) = S. As
G-dim ¢ < oo by (4.4.1), we have Ig(t) = [x(¢)1,(t) by (7.1). On the other hand, it is
shown in [9; (5.5), (5.7)] that Ip(,,)(¢) is a formal Laurent series, but I(t) # Lg(¢) Lp(,)(t) -

Next we show that the Bass series of homomorphisms exhibits the same rigidity as that
of local rings. When fd ¢ is finite, it is proved in [4; (4.4)] that conditions (i) and (ii) below
are equivalent, and the question is raised in [4; (3.11)] of their equivalence with (iii). Shida
[20] has obtained an affirmative answer when R is Cohen Macaulay, or when cmd ¢ < 1.
We get a positive answer in the wider framework of finite G-dimension.

(7.4) Theorem. If G-dim ¢ is finite, then the following conditions are equivalent.
(1) I‘p(t) _ tdepth S—depth R .
(ii) I,(¢) is a Laurent polynomial.
(iii) p,i(p =0 for some ¢ > depth S — depth R.
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Proof. We may assume ¢ has a a normalized dualizing complex C', and set d = inf C.
(iii) = (ii). Let i > d be such that p!, = 0. By [17; (I1.2.4.1)] or [15; (11.30)],
C € D! (S) is isomorphic to a complex F of finite free S modules with F,, = 0 for n < d,
and 0(F,) C nF,_; for each n € Z. We then have ranky, F,, = 35 (F) = 33 (C) = [y, and
hence F; = 0. Thus, C ~ F' @ F", where F' = F.; # 0 and F" = Fs;. Consequently:

S = Extg(C,C) = Extg(F', F') @ Extg(F', F") @ Extg(F", F') @ Extg(F", F").

The S module S is indecomposable and Extg(F', F’) # 0, hence Extg(F”, F"") = 0. This
means that F"' = 0 or, in other words, that p7} = 0 for n > 1.
(il) = (i). Our assumption means that C is in P(S), hence by (1.4.2) we have

S ~ RHomg(C,C) ~ C* ®% C,

where C* = RHomg(C, S). The latter complex is in Df(S) by (1.3.c) and (1.2.2), hence
(1.5.3.a) gives 1 = P2(t) = P2. (t)PZ(t). This implies P2 (t) = t™ for some m € Z. As
the order of Pg(t) is equal to d = depth S — depth R, it follows that m = d. O

Definition. A local homomorphism ¢ which has finite G-dimension and satisfies the equiv-
alent conditions of (7.4) is said to be quasi-Gorenstein at n.

As an immediate consequence of (7.1) and (7.4) we have

(7.5) Theorem. The following condition are equivalent when ¢ has finite G-dimension.

(i) ¢ is quasi-Gorenstein at n.
. A h A h .
(i) pirdepth B — | ikdepthS g vach i € 7.

for some © > 0. O

S
i+depth R i+depth S
(i) g P =

Condition (iii) cannot be weakened any further: equality in (ii) holds trivially for i < 0,
and the next example shows that equality for + = 0 needs not imply equalities for ¢ > 0.

(7.6) Example. The composition R — R’ = R[X,Y] — R[X,Y]/X(X,Y) = S isa
flat local homomorphism with non-Gorenstein closed fiber F' = k[ X, Y]/X(X,Y), hence
pi >0 for i > 0. Since p'% =1, and Ig(t) = [x(¢)1z(¢) by (7.1) and (5.10), we see that

udRepthR = ugepths and ,uz“depthR < u?depths for each i > 0. More precisely, we have
1+t
Io(t) =145() -t 2———
s(0) = 1(t) -1

either by expressing I (¢) from [23; Satz 8], or by noting that ¢: R’ — S is Golod by [18;
Theorem 3] and of finite flat dimension, and applying [9; (5.7.b)].

In view of (4.4.2) and (4.4.1), the following remarks result by comparison of definitions.

(7.7.1) ¢ is Gorenstein at n if and only if it is quasi-Gorenstein at n and fd ¢ is finite.
(7.7.2) The following conditions are equivalent:

(i) R and S are Gorenstein.
(ii) R is Gorenstein and ¢ is quasi-Gorenstein at n.
(iii) S is Gorenstein and G-dim ¢ is finite.
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(7.7.3) ¢ is quasi-Gorenstein at n if and only if ¢ and/or ¢ is quasi-Gorenstein at nS.
Next we describe the homomorphisms which properly base change dualizing complexs.

(7.8) Theorem. The following conditions are equivalent.

(i) ¢ is quasi-Gorenstein at n.
(ii) S is a duahzmg complex for ¢, and @ has finite G-dimension.

(iii) D’ ®L Sisa dualizing complex for S if D' is one for R.
If R has a dualzzmg complex D, they are also equivalent to

(iii") D ®% S is a dualizing complex for S.

Proof. (iil) <= (iii’) by (2.2) and (5.2.a).

By (7.7.3), (5.2.a) and (4.4.3), conditions (i) and (ii) are invariant under passage from
¢ to @, so for the rest of the proof we may assume that R has a dualizing complex D, and
¢ has a normalized dualizing complex C'. Now (ii) = (iii’) by (6.1.a).

(iii’) = (ii). As D®} S is a dualizing complex for S, it has bounded homology along
with S and, and produces a commutative diagram

XD®L

§ —*5 RHomg(D ®% S, D@k S)

| |

S ——  RHomg(D,D®% S)
vs
which shows that g is an isomorphism. This implies S € A(R), thus G-dim ¢ is finite by
(4.3). Now (6.1.b) applies and shows that RHompg(D, D ®% S) is a dualizing complex for
@. Using once more the isomorphism 7yg, we see that S has the same property.
(i) amounts by (7.1) to I§ (¢) = 1, which by (1.5.1) means C ~ S, which is (ii). O

(7.9) Corollary. Assume that ¢ is quasi-Gorenstein at n and that R has a dualizing
complex. An S—complex M is in A(S), respectively, B(S), if and only if it is in A(R),
respectively, B(R).

Proof. By (7.8) the complex E = D®% S is dualizing for S, hence the functors D®% — and
E ®% —, respectively, RHompg(D, —) and RHomg(E, —), are naturally equivalent. O

(7.10) Corollary. When a local homomorphism ¢: Q) — R is quasi-Gorenstein at m, then
G-dim ¢ < 0o if and only if G-dim @) < oco.

Proof. By (7.7.3) and (4.4.3) we may assume all rings are complete, so by (4.3) we have
to prove that R € A(Q) is equivalent to S € A(R). This follows from (7.9). O

We now recall the useful result [2; (4.32)] of Auslander and Bridger: if S = R/(x)
for an R regular z, and N is a finite S module with G-dimg N < oo, then G-dimp N =
G-dimg N + 1 < co. Since the map R — R/(z) is Gorenstein, and thus quasi-Gorenstein
by (7.7.1), the next theorem provides a broad generalization, as well as a converse. That
it holds is a remarkable property of G-dimension with (almost) no counterpart for the
familiar projective dimension: if € m Anng N, then pdg N = oo, cf. [18; §3].
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(7.11) Theorem. Let ¢: (R,m) — (S,n) be a finite local homomorphism, which is quasi-
Gorenstein at n. If N 1is a finite S—module, then

G-dimg N = G-dimg S + G-dimg N .
In particular, G-dimrp N < oo if and only if G-dimg N < oc.

Proof. By the Auslander Bridger equality (4.1.2), it suffices to prove the last assertion.
By (4.1.4) and (4.2.3) we may assume that both R and S are complete. From (4.1.7) we
see that the finiteness of G-dimpg N is equivalent to the inclusion N € A(R), and that of
G-dimg N to the inclusion N € A(S). As ¢ is quasi-Gorenstein, (7.9) shows that these

inclusions hold simultaneously. ]

8. QUASI-GORENSTEIN HOMOMORPHISMS
In this section ¢: R — S denotes a homomorphism of noetherian rings.

Definition. The homomorphism ¢ is quasi-Gorenstein at a prime q of S if the induced
local homomorphism ¢q: Rqnr — Sy is quasi-Gorenstein at qSg; it is quasi-Gorenstein if
it has this property at all g € Spec S.

We list a series of properties of quasi-Gorenstein homomorphisms, with indications of
the results from which they are obtained by localization.

(8.1) Gorenstein homomorphisms. ¢ is Gorenstein (called “locally Gorenstein” in [4])
if and only if it is quasi-Gorenstein and locally of finite flat dimension. Cf. (7.7.1).

(8.2) Ascent and Descent. When R is Gorenstein, ¢ is quasi-Gorenstein if and only
if S is Gorenstein. If S is Gorenstein and ¢ is locally of finite G-dimension, then ¢ is
quasi-Gorenstein and R is Gorenstein at the prime ideals contracted from S. Cf. (7.7.2).

(8.3) Flat homomorphisms. A flat homomorphism ¢ is quasi-Gorenstein if and only if
all the non-trivial fibers of ¢ are Gorenstein. Cf. (5.10) and (2.1).

(8.4) Essentially finite type. If ¢ is essentially of finite type and is quasi-Gorenstein
at all mazximal ideals of S, then it is quasi-Gorenstein. Cf. (4.5.1) and (5.8.1).

(8.5) Gorenstein formal fibers. If the formal fibers of R are Gorenstein and ¢ is quasi-

Gorenstein at all maximal ideals of S, then ¢ is quasi-Gorenstein and all formal fibers of
S are Gorenstein. Cf. (4.5.2), (5.8.2), and (5.9).

The proofs of the next two theorems follow those of [6; (6.10), (6.11)], and are omitted.

(8.6) Flat base change. Let ¢ be essentially of finite type, and let 7: R — T be a flat
homomorphism. If ¢ is quasi-Gorenstein, then so is the induced homomorphism ¢ Qg
T:T — S®grT; when T is faithfully flat the converse holds as well. (]

(8.7) Completion. Let a C R and b C S be ideals such that p(a) C b # S, and let
p*: R* — S* be the induced homomorphism of the corresponding ideal-adic completions.
If R has Gorenstein formal fibers and ¢ is quasi-Gorenstein, then so is p*. O

The final results, involving a second homomorphism ¢: (9 — R, have no analog for rings.
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(8.8) Flat descent. If ¢ is faithfully flat and @i is quasi-Gorenstein, then ) is quasi-
Gorenstein and ¢ is Gorenstein.

(8.9) Composition. If ¢ and ¢ are quasi-Gorenstein, then so is pi.

(8.10) Decomposition. Assume that @i is quasi-Gorenstein.

(a) If 1 is quasi-Gorenstein, then so is .
b) I an ¢ are locally of finite G-dimension, then ¢ is quasi-Gorenstein, and v is
¥ Y ¥
quasi-Gorenstein at the prime ideals of R contracted from S.

Proof of Theorems (8.8) through (8.10). We may assume that 1, ¢, and hence 1), are
local. All three homomorphisms have finite G-dimension: this is the hypothesis in (8.10.b),
follows from (4.7) in (8.8), and from (7.10) in the remaining two cases. From (7.1) we obtain
the double inequalities

MS—depthQ S Mz;—depthR < Mg—l—depthS for ic Z,

i+depth@Q _  i+depthS
o =

which become equalities if and only if pu Lg . The assertions follow. [

Precisely as the concept introduced in this section extends that of Gorenstein homo-
morphism [4], one can generalize the Cohen Macaulay homomorphisms of [6] as follows:

(8.11) Quasi-Cohen—-Macaulay homomorphisms. A local homomorphism ¢: R — (S, n)
is quasi-Cohen—-Macaulay at n if G-dimy < oo, and a dualizing complex C’ for @ has
amp C" = 0. Tt is easily seen that ¢ is quasi-Gorenstein at n if and only it is quasi-Cohen
Macaulay at n and has type 1.

Several properties of quasi-Gorenstein homomorphisms hold in the more general con-
text of quasi-Cohen—Macaulay homomorphisms. However, if S is Cohen—Macaulay and
G-dim ¢ < o0, then ¢ is quasi-Cohen—Macaulay, but we do not know whether R is Cohen—
Macaulay. This incomplete descent result is one reason not to pursue the venue. Another
is that at this time we do not know whether the larger class is closed under composition,
partly due to the unknown transitivity of the finiteness of G-dimension, cf. (4.8).
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