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AbstractThis paper presents a new algorithm for computing the minimum distance between convex poly-hedras. The algorithm of Gilbert-Johnson-Keerthi (GJK) and the algorithm of Lin-Canny (LC)are well-known fast solutions to the problem. We show how a mix between LC's idea and the GJK'salgorithm can be used to solve the problem. In our algorithm, we use local methods to calculatethe distance between features and new 'updating' conditions to add stability. These new conditionsenable us to ensure more stability when compared to GJK. We also modify our terminating con-ditions to add robustness to our approach. Our experiments also show that the expected runningtime of our approach is constant, independent of the complexity of the polyhedra. We present somecomparisons of our method with GJK.Keywords | dynamic simulation, minimum distance, contact detection.aInst. Nat. de Recherche en Informatique et en Automatique.bLab. d'Informatique GRAphique, VIsion et Robotique de Grenoble.
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algorithms and in particular, dynamic based simu-lations. In this area, distance computation becomesvery critical. We have implemented such algorithmsin our dynamic simulator - AlaDyn3D. The results ofthese tests can be found in [11], [1] and [7]Two well known algorithms for e�cient minimumdistance calculations between convex polyhedra isthe Gilbert-Johnson-Keerthi (GJK) algorithm [2] andthe Lin-Canny (LC) algorithm [3]. Sometimes, boththese algorithms su�er from several drawbacks. Naglein [8] has noted that the GJK algorithm sometimesencounter con�gurations of objects that cause itto loop in�nitely. This problem according to [6] isrelated to the Minkowski set di�erence of the objects.[6] also mentions that the main source of GJK'snumerical problems is due to the rounding errors thataccumulate in the Distance Subalgorithm of GJK.In fact, [6] goes on to explain the instability of theterminating conditions in the GJK algorithm. Onthe other hand, LC's algorithm which is based on theutilization of voronoi regions requires an exhaustivedata structure (at least when compared to GJK) tomodel the objects. [6] �nds that for large number ofvertices, LC's algorithm will su�er from translationaland rotational velocity variations as reported in[6]. A comparison of LC's performance over GJKunder various density variations is also given in [6].Nevertheless, with some minor modi�cations, bothalgorithms give almost constant time complexity formost applications as reported in [4] and [5].In this paper, we present a new algorithm for�nding and tracking the closest points on a pair ofconvex polyhedra. The method works by �nding andmaintaining the pair of closest features (vertex, edge,or facet) as LC's algorithm. At this point, we avoidtaking the Minkowski set di�erence of the cachedfeatures but use local methods to calculate the dis-tance between them as in [3]. We note that GJK usesthe Minkowski set di�erence and solves them using1



linear algebra. Unlike LC's algorithm which updatesit's features after having failed certain applicabilitycriteria using boundary and coboundary information,we update our features using GJK's support function.Here, we make some changes. Instead of modifyingboth features, we change only one and move on to theveri�cation stage. We can verify the validity of thepoints returned by the local methods by treating themdirectly to the speci�cation of the convex sets in termsof their support properties, which for polytopes, canbe obtained easily from their vertices. Finally, as forterminating conditions, we use the ones suggested in[6]. This condition seems to solve most of GJK's ter-minating problems and as such we consider it suitable.The rest of the paper is arranged as follows. Section2 outlines the required object representation and somebasic de�nitions. Section 3 will give a brief descrip-tion of the GJK and LC algorithms for the readers whoare unfamiliar with them. The advantage of our localmethods for computing the distance between featureswill be explained in Section 4. The general descrip-tion of our algorithm will be presented in Section 5.Section 6 will present some results of our approach us-ing problematic con�gurations of objects and timingcomparisons with GJK. Section 7 will end this paperwith the summary and conclusion.2 Representations and De�nitionsThe approach described in this paper assumesthe underlying model of each object as representedby a convex polyhedron or as a union of convexpolyhedra. Surface representation is represented bypolyhedral approximations which in turn dependson the resolution (number of vertices). Non-convexobjects are subdivided into convex pieces and hier-archically represented. Each polyhedra is describedby its 'Doubly Connected Edge List (DCEL)' datastructure [9]. Nevertheless, our approach will evenwork for a data structure made up of a list of verticesalone, though a bit slower.Let SA and SB de�ne the set of points that formthe surface of objects A and B respectively in R3. SA0and SB0 will then de�ne the space exterior to A andB (the interior space is also de�ned in the same way,but is irrelevant to this analysis as we do not intend totreat collision at the moment). The positive distancebetween objects A and B is de�ned as the pair offeatures which contain the closest points. The distance

between objects A and B is the shortest Euclideandistance, denoted by d(A;B), de�ned byd(A;B) = min k x� y k : x 2 A; y 2 B (1)and let XA 2 SA; XB 2 SB be such thatd(A;B) = k XA �XB k (2)where XA and XB are a pair of closest points betweenobjects A and B.3 Overview of GJK and LCGJK AlgorithmThis algorithm is an iterative method for comput-ing the distance between convex objects. It is fairlyeasy to implement, simple and applies well to generalconvex polytopes.The most important information in this algorithmis a group of 1-4 pairs of vertices which is used toconstruct the translational con�guration space obsta-cle (TCSO) [5]. The idea is that the minimum dis-tance between objects A and B is given by the distancebetween the origin, O and the TSCO in the transla-tional con�guration space. The TSCO is constructedby taking the Minkowski set di�erence of these ver-tices. We can then express the distance between x 2 Aand y 2 B in terms of their Minkowski set di�erence,A�B as d(A;B) = min k v(A�B) k (3)where v(TSCO) is de�ned as a point of the TCSOnearest to the origin, such thatk v(TCSO) k = min k z k : z 2 TCSO (4)If we consider four or fewer vertices in the point setof the TSCO, then we will have a simplex. GJKthen solves this simplex by using the Distance Sub-algorithm to �nd a witness point, u. Such a pointthen de�nes a function gu(z) wheregu(z) = u � u� u � z (5)If each vertex, z of the TSCO satis�es the terminatingcondition gu(z) = 0 (6)then u is indeed the closest point from the origin tothe TSCO. Otherwise, a point of the TSCO that2



maximizes �u �z will have to be found. The support�function of GJK does exactly this and is expressed asmax (�u � z) = max (u � x) +max (u � y) (7)Readers who would like to know how the Distance Sub-algorithm of GJK solves each simplex can refer to [2]for more details. It is in this function that most of thenumerical problems emerge and feasible solutions areproposed in [2] and [6]. Application of hill-climbingto GJK can be found in [5]. With hill-climbing, [4]reports that this algorithm has constant time com-plexity and roughly performs a total of 104 arithmeticoperations.LC AlgorithmFor this algorithm, object representation must fol-low [3]. Basically, given two initial points, say p andq, which belong to object A and B, let(SA0 ; SB0) � (VF p ; VF q) (8)where F x is the feature that point x belongs to, Vx isthe V oronoi Region [9] of feature x and Sx, the set ofpoints that de�ne Vx, LC's algorithm check ifp 2 SB0 and q 2 SA0 (9)LC uses three applicability criterion functions namelyPoint-Vertex, Point-Edge and Point-Face to verify (9)and if any of these tests fails, with some additionalreturned information using boundary and coboundaryfeatures, LC is able to 0walk0 to a new pair of featureswhose minimum distance is guaranteed to be closerthan the old one. Thus, it is clear that this algorithmwill terminate in a number of steps at most equal tothe number of feature pairs. [4] reports that LC hasthe same expected cost as the Enhanced�GJK andperforms roughly a total of 111 arithmetic operations.A detailed explanation of this algorithm can be foundin [3].4 Local Method ComputationsSince the only possible feature pairs that could re-alize the minimum distance is point-point, point-edge,point-facet and edge-edge, we only need to formulatee�cient and robust methods to solve them. We havefound the algorithms by [10] to be suitable for ourapplications. We extract some important notes fromthe web site and cite them here. The advantage isthat we arrive at the solution for each possible feature

pair with at most performing 1 division. Except forthe point-point case, the others need detailed analysis.We begin with the analysis of point-point.Point-PointThe divisionless distance function Q, between pointP0 and P1 is given byQ =k P0 � P1 k (10)Point-EdgeLet the point be P . The edge, E can be expressedas a line segment byE(t) = B + tM (11)where B is a point on the line, M is the line directionwith t 2 [0; 1]. If k M k 2 � �, where � is a userde�ned value to denote minimum edge length, thent = 0 and we consider the edge as a point and usepoint-point analysis. Otherwise, lett0 =M � (P �B) ; t00 =M �M (12)The distance function Q(t), from point P to the edgeE is given asQ(t) = 8<: k P � (B +M) k if t0 > 1; t00 < t0k P �B k if t0 � 0k P � (B + t0t00M) k otherwise (13)The operation t0t00 is left to the end and is only per-formed if necessary.Point-FacetThe problem of �nding the minimum distance be-tween a point P and a facet F , de�ned asF (s; t) = B + sE0 + tE1 (14)where E0 and E1 are two edges of the triangle,(s; t) 2 R = f(s; t) : s 2 [0; 1]; t 2 [0; 1]; s + t � 1g isobtained by computing (s0; t0) 2 R corresponding toa point on the facet closest to P .Let a = E0 �E0 ; b = E0 �E1 ; c = E1 �E1 ; d = E0 �(B�P ) ; e = �E1 � (B�P ) and f = (B �P ) � (B�P ). Ifac� b2 < �, where � is a user de�ned value, then thetwo edges of the facet are not linearly independentand we will then treat the facet as an edge and use3



point-edge to solve the problem. Else, the minimumsquared-distance function is given asQ(s; t) = k E0(s)�E1(t) k 2= as2 + 2bst+ ct2 + 2ds+ 2et+ f (15)The aim is to minimize Q(s; t) in R. The method toobtain the minimum distance for each region can beobtained from [10]. But, we would like to note that atmost 1 division is computed with the denominator asac� b2.Edge-EdgeLet us denote the two edges as line segments rep-resented byE0(s) = B0 + sM0 ; E1(t) = B1 + tM1 (16)for s 2 [0; 1] ; t 2 [0; 1]. In this case the minimumsquared distance function Q(s; t) for (s; t) 2 [0; 1]2 isgiven asQ(s; t) = k E0(s)�E1(t) k 2= as2 + 2bst+ ct2 + 2ds+ 2et+ f (17)where a = M0 � M0 ; b = �M0 � M1 ; c = M1 �M1 ; d = M0 � (B0 � B1) ; e = �M1 � (B0 � B1) andf = (B0 �B1) � (B0 �B1). For this function Qac� b2 = kM0�M1 k 2 � 0 (18)If ac� b2 > 0, then the two edges are not parallel, elseif ac � b2 = 0, then the two edges are parallel. Forthe non-parallel case, our aim is to minimized Q(s; t)in [0; 1]. Readers are referred to [10] for solutions tothe parallel and non-parallel case. In this case also,at most 1 division is required and the denominator inthis division is ac� b2.We end this section by noting that for the edge-facet case, we use methods as explained in [3] to re-duce the dimension of the combined feature. [10] givesa method to perform a similar operation for facet-facetbut in all our experiments, we have never encounteredsuch a case and thus we consider it irrelevant for ourapplication. Another method which we use is to re-cycle the features to obtained the correct minimumdistance feature.5 Description of the AlgorithmIn this section, we will explain how our approachis executed. We assume that the objects A and B are

initially separated. We begin with a random pointfrom each object. Let FA and FB de�ne the featureformed by the set of points taken from A and B re-spectively. Since our models are represented by pointsand form features of vertices, edges and facets, it isclear that for convex objects, we can uniquely expressd(FA; FB) as distance between one of the followingfeature pairs : point-point,point-edge,point-facet andedge-edge. The minimum distance between an edgeand a facet or a facet and another facet can alwaysbe expressed as one of the above feature pairs.Depending on the kind of features that we cache ateach iteration, the local distance method will calculatethe minimum distance between these features andif necessary, update the cached features. It is herethat we make some changes with respect to GJK.As we have mentioned before, we use GJK's supportfunction to update our features. In our approach, weapply this function to one object at a time. Afterapplying, if we �nd a new point, we update thisfeature and verify if the new formed feature is stableor not. If the formed feature is unstable, there couldonly be 2 possibilities: the object size is too smallor the feature of that object is too small. In eithercase we terminate immediately without moving onto the veri�cation stage. If the feature is stable,then we apply our local distance methods to get thedistance. If this distance is not the minimum, weproceed to the other object and repeat the process.Such a method ensures that all the features formedare entirely stable. Then our local distance methodshave no problems getting the distance values. Hence,the entire approach becomes stable.This minimum distance vector when obtained, isthen veri�ed using the modi�ed terminating conditionmentioned in [6]. We repeat it here for clarity sake.if { d(Fa,Fb) <= Ae } end;else if { d(Fa,Fb)-Me <= d(Fa,Fb)*Re } end;else update (Fa) or (Fb)where Ae is the user de�ned absolute error that de-notes collision and Re is the relative error at the k-thiteration derived byRe(k) = d(A;B)k�1 � d(FA; FB)kk d(A;B)k�1 kMe(k) = max f Re(k � 1) ; Re(k) g (19)If the terminating condition is not satis�ed, then weuse the support function of GJK to get the new sup-port points. These points are then added to the set4



FA or FB and the process is repeated. We note herethat with some neighbouring adjacency information ofa polytope the cost of computing a support point of aconvex polyhedra can be reduced to almost constanttime. This technique is well known as hill climbingand has been implemented in the Enhanced-GJK ver-sion [5]. Our experiments were carried out with thisoption available. Finally, at termination, XA and XB ,a pair of closest points is computed as follows.XA = nXi=1 �iFAi ; XB = mXj=1 
jFBj (20)where FAi and FBj are points that make up the setFA and FB respectively whereas �i and 
j are coe�-cients that we derived previously from the local dis-tance method. They are obtained by solving equation(10),(13),(15) or (17) depending on the features thatrealize the minimum distance.6 Experimental ResultsWe present some experimental results here toshown that our approach is workable. We compare 2main aspects of the algorithm: Robustness and Tim-ing. Robustness : There are basically 3 problemsin GJK as reported by [5]. They are the terminatingconditions, the Distance Sub-Algorithm and thegeometry of the objects. As stated before, we haveimproved our terminating conditions by using theones presented in [5]. The Distance Sub-algorithm asused in GJK has been replaced by our local methodswhich is able to handle unstable simplices such as:an edge too small, a facet with 2 dependent edgesand parallel edges. Further constraints can also beadded such as when the objects are too far away.Thus what remains to be veri�ed in our approach isfor certain con�gurations of objects. According to [9],two problematic con�gurations are when the objectsare too close and when they di�er in a few orders ofmagnitude. We used 2 cubes and 2 tetrahedrons totest our approach. The results are given belowExperiment 1 : 2 very small tetrahedrons very nearObject Edge Length VerticesTetra1 1e-23 4Tetra2 1e-23 4Distance apart : 20e-23Experiment 2 : 2 cubes very close and of di�erentorders in magnitude

Object Edge Length VerticesCube1 2000 8Cube2 1e-15 8Scaling Factor : 10e39Distance apart : 1e-10Each of the above experiment was repeated about100 times under di�erent rotational velocities. Weencountered no numerical problems for any of theabove using our approach. Timing : We comparedthe execution times of the algorithm with Cameron'senhanced GJK hill-climbing algorithm1. he objectstested are randomly generated convex polyhedra. Fora pair of objects one is placed at the origin whilewe apply a continuous translation to the other objectthrough 10e4 little incremental displacements.

Figure 1: Enhanced GJK: Time for continuous trans-lation with (dashed) & without (solid) tracking info.Figure 1 shows how the timings evolve with increas-ing object complexity. When no tracking informa-tion is used we obtain a linear relationship betweencomplexity and execution time. However, when mak-ing use of this information the time is almost con-stant (0:36s on average). When repeating this ex-periment with our approach we obtain the plot givenin Figure 2. We observe the same linear and near-constant relationship without and with tracking in-formation. However, with our approach the time in-crease is slower with rising complexity of the objects,and the near-constant time drops to 0:24s on aver-age. For the experimental results shown in Figure 3we placed two objects with 50 points each a given dis-tance apart and then applied a continuous rotation1The code used was downloaded fromhttp://www.comlab.ox.ac.uk/ cameron/distances.html5



over 10e4 steps to one of them. The plot shows howthe timings evolve for di�erent rotational velocities.The tracking information is used, of course. We ob-serve that our approach gives lower timings even athigh rotational speeds as compared to the enhancedGJK method. These results were obtained using a SGIOctane (195MHz), and the code was compiled usingthe CC compiler with -Ofast optimisation. However,some caution should be taken when interpreting theseresults, since they represent a purely practical analy-sis.

Figure 2: Our approach: Time for continuous trans-lation with (dashed) & without (solid) tracking info.

Figure 3: Evolution of the time for a continuous rota-tion with di�erent rotational velocities (x-axis).

7 Summary and ConclusionsWe have shown in this paper a new algorithm tosolve the minimum distance problem. This can bedone by using the caching of features method like inLC's algorithm and using local methods to computethe distance between them. With our local meth-ods and the 'updating conditions' using GJK's supportfunction, we are able to add more stability. With ex-periments using problematic con�guration of objectsas described in [6], we have no numerical problems.References[1] A.Joukhadar and C.Laugier, \Dynamic Modeling andits Robotic Application," IEEE/ICRA, May 1995.[2] E.G.Gilbert, D.W.Johnson and S.S.Keerthi, \A FastProcedure for Computing the Distance BetweenComplex Objects in Three Dimensional Space,"IEEE Journal of Robotics and Automation, 4(2),1988.[3] M.C.Lin and J.F.Canny, \A Fast Algorithm for In-cremental Distance Calculation," Proc. of IEEE In-ternational Conference on Robotics and Automation,pp. 1008-1014, 1991.[4] Stephen Cameron, \A Comparison of Two Fast Algo-rithms for Computing the Distance between ConvexPolyhedra," Proc. of IEEE Transactions on Roboticsand Automation, 1996.[5] Stephen Cameron, \Enhancing GJK: ComputingMinimum and Penetrating Distances between ConvexPolyhedra," Proc. of IEEE International Conferenceon Robotics and Automation, pp. 3112-3117, 1997.[6] Gino Van der Bergen, \A Fast and Robust GJK Im-plementation for Collision Detection of Convex Ob-jects," To appear, 1999.[7] A.Joukhadar, A.Wabbi and C.Laugier, \Fast ContactLocalisation between Deformable Polyhedra in Mo-tion," Computer Animation, 1996.[8] J.Nagel, \GJK collision detection algorithm wanted,"comp.graphics.algorithms newsgroup, 1998.[9] F.P.Preparata and M.I.Shamos, \Computational Ge-ometry," An Introduction, 1985.[10] Dave Eberly, \Source Code for Computer Graph-ics, Image Analysis and Numerical Methods,"http://www.magic-software.com[11] A.Joukhadar and C.Laugier, \Dynamic Modeling ofRigid and Deformable objects for Robotic Tasks," In-ternational Conference ORIA, 1994.6


