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We consider the problem of throughput-optimal cross-layer design of wireless networks. We pro-
pose a joint congestion control and scheduling algorithm that achieves a fraction 1/dI (G) of the
capacity region, where dI(G) depends on certain structural properties of the underlying connec-
tivity graph G of the wireless network, and also on the type of interference constraints. For a wide
range of wireless networks, dI(G) can be upper bounded by a constant, independent of the num-
ber of nodes in the network. The scheduling element of our algorithm is the maximal scheduling
policy. Although this scheduling policy has been considered in several previous works, the chal-
lenges underlying its practical implementation in a fully distributed manner while accounting for
necessary message exchanges have not been addressed in the literature. In this paper, we propose
two algorithms for the distributed implementation of the maximal scheduling policy accounting
for message exchanges, and analytically show that they still can achieve the performance guar-
antee under the 1-hop and 2-hop interference models. We also evaluate the performance of our
cross-layer solutions in more realistic network settings with imperfect synchronization under the
signal-to-interference-plus-noise ratio (SINR) interference model, and compare with the standard
layered approaches such as TCP over IEEE 802.11b DCF networks.

Categories and Subject Descriptors: C.2.1 [Computer-communication networks]: Network
architecture and design; C.4 [Performance of systems]: Design studies; I.6.4 [Simulation and

modeling]: Model validation and analysis

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Cross-layer design, wireless communication systems simula-
tion and modeling: general, distributed algorithm, maximal scheduling

1. INTRODUCTION

Wireless networks have become a ubiquitous part of all modern day communica-
tion systems. Unlike wireline networks, where bandwidth and other resources are
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plentiful, wireless networks are highly resource constrained, thus underscoring the
need for efficient utilization of the wireless resources. A seminal contribution in
this direction was made by Tassiulas and Ephremides [1992b]. They characterized
the capacity region of constrained queuing systems, such as a wireless network, and
developed a queue length based scheduling scheme that is throughput-optimal, i.e.,
it stabilizes the network provided the user rates fall within the capacity region of
the network, where the capacity region is defined to be the set of user arrival rates
under which the network is stable (i.e., average queue lengths of all the links are
kept finite; See Definition 3 for a formal definition).

Unlike wireline networks, where each link has a fixed capacity, the capacity of
a wireless link varies with channel variations due to fading; changes in power al-
location, link scheduling, or routing; and changes in network topology, etc. These
types of dependencies make the traditional layered design approaches less effective
in the case of wireless networks and demand a new cross-layer design approach,
which has spurred the recent interest in developing cross-layer optimization algo-
rithms for wireless networks (see, for example, [Xiao et al. 2004], [Neely et al. 2003],
[Tassiulas and Ephremides 1992a]).

Motivated by the work of Kelly et al. [1998] on fair resource allocation in wire-
line networks, researchers have incorporated congestion control and link scheduling
into the cross-layer optimization framework. The congestion control component
determines the rates at which users inject data into the network so as to ensure
that they fall within the capacity region of the network, and the scheduling com-
ponent decides which links should be active at what time and in what sequence to
accommodate the rates allocated by the congestion control. In this case, it turns
out that the most complex part of cross-layer optimization is the scheduling that
has to solve a very difficult global optimization problem of the form:

maximize
∑

l∈L

qlrl

subject to r ∈ ∆,

(1)

where L denotes the set of wireless links, r is the vector of rates rl of link l ∈ L, ql

is the congestion price or possibly some function of the backlog at link l ∈ L, and
∆ is the stability region of the network. The main difficulty in solving the problem
is that the stability region ∆ depends on the complete network topology and has
no simple representation in terms of the power constraints on the individual links
or nodes.

A scheduling scheme is said to be throughput-optimal if it stabilizes the network
for all rate vectors strictly within ∆. A throughput-optimal scheduling scheme
has been known, but it requires a centralized coordinator with high computational
complexity, and is, in general, NP-Hard. Since distributed algorithms are highly
preferred in ad hoc settings, a considerable amount of effort has been put forth in
devising the simple distributed schemes that can achieve a certain fraction of the
stability region.

To this end, the scheduling problem has been studied under several special cases of
particular interest, e.g., under a simplified interference model with no power control,
including the node-exclusive (or primary) interference model, which can be used for
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Bluetooth and FH-CDMA networks (see [Hajek and Sasaki 1988] and [Sarkar and
Tassiulas 2005]), and the IEEE 802.11 DCF type (or secondary) interference model
(see [Chaporkar et al. 2005] and [Wu et al. 2007]). The works of [Sharma et al.
2006a] and [Sharma et al. 2006b] considered the two models as an instance of
the class of K-hop interference models, under which no two links within a K-hop
distance can transmit simultaneously. It captures some of the essential properties
of the signal-to-interference-plus-noise ratio (SINR) based interference model and
includes the node-exclusive model as the 1-hop interference model and the IEEE
802.11 DCF type as the 2-hop interference model. By increasing K, one can model
even more stringent interference constraints. It has been known that the scheduling
problem (1) is polynomial time solvable under the 1-hop interference model, but it
is NP-Hard and Non-Approximable1 under K-hop interference models for K > 1.
[Sharma et al. 2006b] showed that the optimal solution can be approximated within
a constant factor in a geometric network graph, such as unit-disk graph and (r, s)-
civilized graph. These results are encouraging as a wide variety of wireless networks
can be modeled using these families of graphs.

There are several recent works in the literature that propose cross-layer optimiza-
tion solutions with provable throughput guarantees. Sarkar and Tassiulas [2005]
developed a distributed congestion control scheme with centralized scheduling to
achieve maxmin fair end-to-end performance. Stolyar [2005] reformulated the cross-
layer throughput-optimality problem to a utility maximization problem, and Neely
et al. [2008] extended the idea to time-varying channels. Bui et al. [2006] has shown
that using regulator, a distributed scheduling algorithm can operate in conjunction
with an asynchronous congestion control scheme. Lin and Shroff [2005] studied the
cross-layer interactions with the imperfect scheduling scheme that achieves a frac-
tion of the optimal weighted rate sum (1). Eryilmaz et al. [2009] generalized the
notion of imperfectness in routing, scheduling, and congestion control algorithms.

Due to high complexity involved in the scheduling component, maximal schedul-
ing policy2 has been widely studied in the context of the cross-layer design since
it is amenable to implement in a distributed manner. A schedule is said to be
maximal if it cannot add a link without violating the underlying interference con-
straints. The maximal scheduling policy chooses a maximal schedule at every time
slot. Wu et al. [2007] have studied the performance of the maximal scheduling
policy under a joint congestion control and scheduling framework with multi-hop
traffic in a static setting. Lin and Shroff [2005] have extended the results to the
case that users arrive departure dynamically. Chaporkar et al. [2005] and Sharma
et al. [2006b] considered a slightly more restrictive setting of single-hop traffic and
no congestion control under the matrix based interference model and the K-hop
interference model, respectively. Other distributed scheduling policies have been
also developed to improve the throughput performance with low complexity. They
include Greedy Maximal Scheduling studied by McKeown [1995] and Hoepman
[2004], Pick-and-Compare type scheduling by Tassiulas [1998] and Modiano et al.

1A problem is said to be Non-Approximable if it does not admit any constant factor polynomial
time approximation algorithm.
2Note that the terminologies used in these works and some minor details of the schemes differ
slightly from each other, but the main idea is essentially the same.
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[2006], and constant-time random access scheduling by Lin and Rasool [2006] and
Joo and Shroff [2007]. However, these scheduling schemes suffer from lack of the
corresponding congestion control counterpart that can deliver the performance im-
provement of scheduling to the end user.

Most previous cross-layer solutions are limited to specific interference models
(i.e., the 1-hop or 2-hop interference model), or require that the scheduling com-
ponent guarantee a fraction of the optimal value of (1), which is stronger than
guarantee a fraction of throughput performance. Moreover, they require informa-
tion exchanges among neighboring links and nodes, which is often assumed to be
provided. However, in practice, these message exchanges are non-trivial especially
under the presence of wireless interference, and becomes a major obstacle for prac-
tical use.

In this paper, we propose a cross-layer solution for the joint congestion control
and scheduling problem that achieves provable throughput guarantees under general
interference models, and provide randomized and fully distributed implementations
of the maximal scheduling policy taking into account message exchanges. Next, we
highlight the main contributions of this paper.

—We propose a cross-layer solution based on the maximal scheduling policy under
a multi-hop setting with general interference constraints described by a matrix,
and show that it achieves a fraction 1/dI(G) of the capacity region, where dI(G)
denotes the largest number of links that can be activated simultaneously in the
interfering neighborhood of a link (see Definition 2). It extends earlier results
in [Chaporkar et al. 2005] and [Sharma et al. 2006b] under a single-hop (MAC
layer) setting with no congestion control.

—We develop randomized distributed algorithms that fully account for control mes-
sage exchanges in wireless settings for the maximal scheduling policy under 1-hop
and 2-hop interference models. They have Θ(δ log2 |V |) and Θ(δ2 log2 |V |) com-
plexity, respectively, for scheduling computation and local message exchanges,
where |V | is the number nodes in the network and δ is the maximum node de-
gree. We show that the proposed practical algorithms still achieve the same
performance guarantee.

—We evaluate the performance of our cross-layer solution through simulations. We
show that our algorithms work well with a small amount of overhead, and that
the performance can improve further if more information on the queue lengths is
available at the scheduling component. We also simulate our cross-layer solution
under more realistic settings, i.e., under an asynchronous system with SINR-
based interference model, and clarify its advantage over the conventional layered
solutions such as TCP over IEEE 802.11b DCF.

The rest of the paper is organized as follows. We describe our system model
in Section 2. The joint solution of congestion control and scheduling is developed
with analysis providing a lower bound on the performance in Section 3. We develop
randomized distributed algorithms for the maximal scheduling policy accounting
for message exchanges in Section 4. We numerically evaluate our joint cross-layer
solution under realistic network settings, and compare with the layered solution of
TCP over IEEE 802.11b DCF in Section 5. Finally, we present concluding remarks
in Section 6.
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2. SYSTEM MODEL AND RELATED WORK

We consider a set V of nodes, labeled 1, 2, ..., |V |, communicating with each other
using wireless means. We say that link (u, v) joining node u to node v exists if node u
can successfully transmit to node v, provided no other node in the network transmits
at the same time. The set of undirected links (or edge) so formed is denoted by E.
We consider a time-slotted system where a single frequency is used for the whole
system. Then due to wireless interference, two links cannot transmit simultaneously
if they interfere with each other. We model the interference constraints using a
contention matrix C := [Cij ]i,j∈E , where Cij = 1 if link i interferes with link j,
and Cij = 0 otherwise. If link i interferes with link j, it cannot be scheduled with
link j at the same time. All diagonal entries of C are set to 1. The contention
matrix based interference model captures some of the essential properties of the
SINR-based interference model and includes several interference models studied in
the literature as special cases (see, for example, [Chaporkar et al. 2005], [Sharma
et al. 2006a], [Sharma et al. 2006b], [Lin and Shroff 2005], [Lin et al. 2008], [Wu
et al. 2007], and [Bui et al. 2006]), which can be obtained by imposing certain
constraints on the matrix. The only constraint we impose on [Cij ] in the paper is
that it should be symmetric, i.e., Cij = Cji for all i, j ∈ E. We denote a schedule
by a set S ∈ {0, 1}|E| of link, where | · | denote the cardinality of the set. We have
Sl = 1 if link l is active and Sl = 0 if it is not. Slightly abusing the notation, we also
denote the set of active links by S. A schedule is said to be feasible if it does not
violate the interference constraints defined by C. We denote the set of all feasible
schedules by S := {S1,S2, . . . }.

We assume that link l can transmit at rate cl during a time slot if no other
interfering link transmits at the same time slot. Note that in wireless environments,
the link rate may depend on many factors (e.g., noise variance at the receiving
node, coding and modulation scheme used by the nodes), but in certain network
scenarios, e.g., wireless mesh networks, wireless channels are quite stable and the
link rates do not change frequently. However, the system dynamics across layers
are still very complex due to wireless interference. Note that our model can be
also incorporated with techniques dealing with time-varying channels, for which we
refer the interested reader to [Neely et al. 2003] and [Lin et al. 2008].

We consider K types of users, labeled 1, 2, . . . ,K, sending data via multiple hops
over the network. We assume that type k users arrive into the network according
to a Poisson process with rate λk. Each user of type k, brings with it a file, whose
size is exponentially distributed with mean 1/µk. We assume that all users of any
given type send their data over a predetermined loop-free route. The extension to
multi-route case is straightforward and discussed in Section 3.2. The user routes
are stored in an incidence matrix [H l

k], where H l
k = 1 if link l belongs to the route

of type k users; and 0 otherwise.
Let ~λ = (λ1, λ2, ..., λK) be the vector of user arrival rates. Let nk(t) and Ql(t)

denote the number of type k users and queue backlog at link l in the network at
time t, respectively. As in [Lin and Shroff 2005] and [Neely et al. 2003], we say that
the network is stable if

lim sup
t→∞

1

t

∫ t

0

1{P

K

k=1 nk(t)+
P

l∈E
Ql(t)>η}dt→ 0, as η →∞, (2)
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where 1{·} denotes the indicator function. The capacity region3 of the network is
defined as the set of user arrival rate vectors, for which the network can be stabilized
by some scheduling policy. Tassiulas and Ephremides [1992b] characterized the
capacity region of a constrained queuing system, such as a wireless network. For
our model, the capacity region Ω can be presented as

Ω :=

{

~λ
∣

∣

∣

[

K
∑

k=1

H l
kλk

µkcl

]

l∈E

∈ Co(S)

}

, (3)

where Co(S) denotes the convex hull of S, i.e.,

Co(S) := {∑i wiSi | Si ∈ S, wi ≥ 0,
∑

i wi = 1}.
In the following, we derive an upper bound on the capacity region under the

contention matrix based interference model. The bound will be used to analyze
the performance of the maximal scheduling policy. We start with some definitions
related to the underlying network graph.

We define the interference set of link e as the set of links that interfere with link
e, and denote by I(e) := {l ∈ E | Cel = 1}. Note that e ∈ I(e) from Cll = 1 for all
l ∈ E. We define the interference degree of a link as follows.

Definition 1. The interference degree dI(e) of link e is the maximum number
of links can be active at the same time, i.e.,

dI(e) := max
S∈S |S ∩ I(e)|.

Note that since the singleton {e} ∈ S, we have dI(e) ≥ 1 for all e ∈ E. We now
characterize the upper bound of the capacity region.

Theorem 1. All user arrival rate vectors ~λ within the capacity region Ω specified
by (3) must satisfy

∑

l∈I(e)

K
∑

k=1

H l
kλk

µkcl
≤ dI(e) for all e ∈ E.

Proof. Let us consider a link e ∈ E and a feasible schedule S that contains e.
Since all links in S do not interfere with each other, S contains at most dI(e) links
from I(e). Thus, the link rate vectors [xl]l∈E under S must satisfy that

∑

l∈I(e)

xl

cl
≤ dI(e) for all e ∈ E. (4)

Note that the constraint (4) holds for all feasible link schedules S ∈ S, and thus,
any feasible link rate vectors in Co(S) must also satisfy the constraint (4) due to

the convexity. Since a user arrival rate vector ~λ ∈ Ω induces a feasible link rate
vector [

∑K
k=1 H l

kλk/µk]l∈E from (3), the result follows.

3It is worth noting the difference between the capacity region Ω and the stability region ∆ in (1).
In brief, the stability region ∆ can be interpreted as the capacity region with single-hop traffics
only.
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Using the following definition, we can also obtain a network-wide bound on the
capacity region from Theorem 1.

Definition 2. The interference degree dI(G) of graph G(V, E) is the maximum
interference degree across its constituent links, i.e.,

dI(G) := max
e∈E

dI(e). (5)

Corollary 1. All user arrival rate vectors ~λ that belongs to the capacity region
Ω must satisfy that

∑

l∈I(e)

K
∑

k=1

H l
kλk

µkcl
≤ dI(G) for all e ∈ E.

3. JOINT CONGESTION CONTROL AND SCHEDULING FOR THROUGHPUT GUAR-

ANTEES

3.1 Algorithm

We now propose a joint congestion control and scheduling (CCS) algorithm that is
guaranteed to achieve a fraction 1/dI(G) of the capacity region under the contention
matrix based interference model. Each link l ∈ E maintains congestion price ql(t)
to estimate the level of congestion at time t. Both congestion control and scheduling
algorithms make use of these congestion prices. Time is divided into slots of unit
duration. Congestion prices and user rates are updated at the beginning of each
time slot.

The proposed algorithm is similar in spirit to the joint congestion control and
scheduling algorithm proposed by [Lin and Shroff 2005] under the 1-hop interference
model. However, our algorithm is significantly more general and works under the
contention matrix based interference model, which includes the 1-hop interference
model. To this end, we have to involve more information to control the user rates
and use different congestion prices. The detailed description of the algorithm is as
follows.

CCS Algorithm:

—Congestion price update: The congestion prices are updated as

ql(t + 1) = (ql(t) + α∆ql(t))
+ , (6)

where (q)+ := max{q, 0} represents a projection, and

∆ql(t) =
∑

j∈I(l)

(

K
∑

k=1

Hj
k

∫ t+1

t

nk(t)xk(t)

cj
dt− 1{j∈S(t)}

)

, (7)

where S(t) denotes the set of links scheduled to transmit during time slot t.
Note that the congestion price is strongly connected to backlogs of links since
∑K

k=1 Hj
k

∫ t+1

t
nk(t)xk(t)

cj
dt− 1{j∈S(t)} =: ∆Qj(t) is the change of backlog of link

j during [t, t + 1]. Different from the previous work by [Lin and Shroff 2005], the
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congestion price of link l depends not only on the backlog of link l, but also on
the backlogs of its neighboring links j ∈ I(l). Hence, if the network is stabilized
and the backlogs converge, we will have ql(t) = α

∑

j∈I(l) Qj(t). Clearly, the
price update can be implemented in a distributed manner.

—User rate update: The data rate of type-k users are updated as

xk(t + 1) = min







1
∑

l∈E ql(t + 1)
∑

j∈I(l)
Hj

k

cj

, Mk







, (8)

where Mk is the maximum data rate of type-k users. The data rate of type-k
users depends on the congestion prices of all the links l that either belong to the
route of type-k users (i.e., H l

k = 1) or interfere with such a link (i.e., Hj
k = 1 for

some j ∈ I(l)).

—Transmission scheduling: The link transmissions are scheduled in accordance
with the maximal scheduling policy. Specifically, at each time slot t, the set
S(t) of links chosen for transmission satisfies that for all links l ∈ E, either
I(l) ∩ S(t) 6= ∅ or ql(t) ≤ 1. For the sake of concreteness, we assume that link
l can be scheduled when its congestion price ql(t) is greater than 1. Clearly, a
schedule that satisfies the condition is maximal, and no other link l with ql(t) > 1
can be added to S(t) without violating the interference constraints.

These settings of the user rates and congestion prices allow CCS to achieve a fraction
1/dI(G) of the capacity region, as stated in the following theorem:

Theorem 2. If the stepsize α is chosen to be small enough, CCS stabilizes the
network for all user arrival rate vectors ~λ ∈ Ωo/dI(G), where Ωo denotes the inte-
rior of the capacity region Ω.

Proof. We use the Lyapunov technique to show the system stability as Geor-
giadis et al. [2006] and Neely et al. [2003]. In queueing processes that evolve ac-
cording to ergodic Markov chains, if there is a Lyapunov function whose drift is
negative whenever the queue state is outside of a bound region of the state space,
the Markov chain has a well defined steady state, and the system is stable.

The main difficulty is to construct an appropriate Lyapunov function that ex-
hibits the required negative drift for all ~λ ∈ Ωo/dI(G). We shall use the Lyapunov
function

V (~n, ~q) := Vn(~n) + Vq(~q), where Vn(~n) :=
∑K

k=1
βn2

k

2λk
, and Vq(~q) :=

∑

l∈E
q2

l

2α .

In the following, we show that the Lyapunov function has a negative drift, i.e.,E[V (~n(t + 1), ~q(t + 1)) − V (~n(t), ~q(t)) | ~n(t), ~q(t)] < 0 for a large ~n(t) and ~q(t).
Then, the result follows using Theorem 2 of [Neely et al. 2003].

Let ∆Vq := E[Vq(~q(t + 1)) − Vq(~q(t))|~n(t), ~q(t)], and ∆Vn := E[Vn(~n(t + 1)) −
Vn(~n(t))|~n(t), ~q(t)]. Also, let Et[·] denote the conditional expectation E[·|~n(t), ~q(t)]
for notational convenience. We first obtain intermediate results for ∆Vq and ∆Vn,
and then combine them. For ∆Vq, since all scheduled links l must have a congestion
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price ql > 1, the projection operator in (6) can be removed if α ≤ 1, and we have

∆Vq =
∑

l∈E

E [ql(t)∆ql(t) +
α

2
(∆ql(t))

2 | ~n(t), ~q(t)
]

≤
∑

l∈E

ql(t)
∑

j∈I(l)

K
∑

k=1

Hj
k

cj

∫ t+1

t

Et [nk(τ)xk(τ)] dτ

−
∑

l∈E

ql(t)1{ql(t)>1} +
α

2
Et

[

(∆ql(t))
2
]

.

(9)

For the last term of (9), we can obtain the following from (7) after some algebraic
manipulations: Et[(∆ql(t))

2] ≤ |E|+ θaθb

∫ t+1

t

Et

[

n2
k(τ)x2

k(τ)
]

dτ, (10)

where θa := maxl∈E

∑K
k=1

∑

j∈I(l)
Hj

k

cj
, and θb := maxk=1,2,...,K

∑

l∈E

∑

j∈I(l)
Hj

k

cj
.

Combining (9) and (10), we get

∆Vq ≤
αθaθb

2

K
∑

k=1

∫ t+1

t

Et

[

n2
k(τ)x2

k(τ)
]

dτ +
α

2
|E| −

∑

l∈E

ql(t)1{ql(t)>1}

+
∑

l∈E

ql(t)
∑

j∈I(l)

K
∑

k=1

Hj
k

cj

∫ t+1

t

Et [nk(τ)xk(τ)] dτ.

(11)

For ∆Vn, we can follow the line of analysis used by Lin and Shroff [2005]. That
is, using the user rate update (8), we can obtain that

∆Vn ≤ β
∑

l∈E

ql(t)
∑

j∈I(l)

K
∑

k=1

λkHj
k

µkcj

−
∑

l∈E

ql(t)
∑

j∈I(l)

K
∑

k=1

Hj
k

cj

∫ t+1

t

Et [nk(τ)xk(τ)] dτ

− (β − 1)
K
∑

k=1

∫ t+1

t

Et [nk(τ)] dτ + θ1

−
K
∑

k=1

µk

4λkMk

∫ t+1

t

Et

[

n2
k(τ)x2

k(τ)
]

dτ,

(12)

where θ1 is a constant, which results from bounded change of the congestion prices
and the user rates during a time slot. We omit the detailed derivations and refer
the interested reader to the proof of Theorem 7 of [Lin and Shroff 2005].

Now, we add (11) and (12). Since the third term of (11) can be bounded by
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∑

l∈E ql(t)1{ql(t)>1} ≥
∑

l∈E ql(t)− |E|, we have that

∆Vn + ∆Vq ≤
K
∑

k=1

(

αθaθb

2
− µk

4λkMk

)∫ t+1

t

Et

[

n2
k(τ)x2

k(τ)
]

dτ

+
∑

l∈E

ql(t)



β
∑

j∈I(l)

K
∑

k=1

λkHj
k

µkcj
− 1



+
(

1 +
α

2

)

|E|

− (β − 1)

K
∑

k=1

∫ t+1

t

Et [nk(τ)] dτ + θ1.

Note that in the second term, we have
∑

j∈I(l)

∑K
k=1

λkHj

k

µkcj
< 1 for all l ∈ E and

any λ ∈ Ωo/dI(G) from Corollary 1. Hence, given any ǫ > 0, we can choose a small
α(> 0) and a β(> 1) close to 1 such that

∆Vn + ∆Vq ≤ θ2 − ǫ
(

∑

l∈E ql(t) +
∑K

k=1

∫ t+1

t Et [nk(τ)] dτ
)

, (13)

where θ2 = θ1 +
(

1 + α
2

)

|E|.
Theorem 2 provides a lower bound on the performance of CCS in wireless networks
under arbitrary (symmetric) interference constraints.

In the following, we provide an example analysis for the performance bounds of
CCS by applying Theorem 2 to more restricted network settings, i.e., a geometric
network where connectivity between nodes is determined by geometric properties.
If all transmissions in the network employ the same power level and the statistical
properties of the noise are the same at each node, then the connectivity graph of
the network is indeed a geometric graph. Let us restrict our attention to the K-hop
interference models, which enforce further structure on the graph.

Proposition 1. In a wireless network, whose connectivity graph is a geometric
graph and the interference constraints are described by the K-hop interference model
for some K ≥ 1, CCS can stabilize the network for all user arrival rate vectors
~λ ∈ 1

2Ωo for K = 1, and for ~λ ∈ ⌊K/2⌋2

(2K+1)2 Ωo for K ≥ 2 by choosing the stepsize α

sufficiently small.

Proof. Sharma et al. [2006b] have showed that if the underlying connectivity
graph is a geometric graph and interference constraints correspond to the K-hop
interference model, then the interference degree of the graph satisfies that dI(G) ≤ 2

for K = 1 and dI(G) ≤ (2K+1)2

⌊K/2⌋2 for K ≥ 2. Then, the result directly follows from

Theorem 2.

Similar results can be obtained for disk graphs and (r, s)-civilized graphs.

3.2 Implementation issues and extensions

In this section, we identify some implementation issues related to CCS including
local message exchanges, time synchronization, multi-scale decomposition, multi-
route extension, and distributed implementation. We discuss how they can be dealt
with.
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The congestion price update in (6) requires each link to track the changes in
the backlogs at all its interfering links from the summation over I(l). This can
be done with the help of local message exchanges: Each link l floods relevant
information (e.g., whether the link was active in the previous time slot) within
its local neighborhood including all links j ∈ I(l). However, under an arbitrary
contention matrix based interference model, in which two interfering links can be
several hops away from each other, the congestion price update would incur a
considerable amount of overhead. In practice, however, the scope of interference is
limited to a small number of hops, typically 1 or 2. In such settings, the overhead
due to congestion price update is expected to be small. A detailed discussion of
this issue in the context of specific interference models can be found in Section 4.

Further, the congestion price update assumes that a user rate change is instan-
taneously informed to all links on its route. In practice, however, there is some
delay for the information to propagate to the links on the route. In addition,
if user clocks are not perfectly synchronized with each other, their rate changes
would be asynchronous. Bui et al. [2006] have dealt with both these issues by
introducing a regulator at each link, in the context of a joint congestion control
and scheduling under the 1-hop interference model. It is straightforward to extend
the techniques to our case. The regulators smooth incoming traffic to queues, and
make the packet arrivals in a good shape. Since they effectively average the rates,
we can utilize stochastic tools as before to design the cross-layer system achieving
the same performance guarantee.

The rate update for type-k users requires the knowledge of congestion prices of
all the links j ∈ I(l) for each link l on the route. Note that this kind of behavior
is common to many end-to-end congestion control protocols, e.g., TCP, and can be
seen even under a wireline setting. In view of the results by Yaiche et al. [2000],
Low and Lapsley [1999] and Bui et al. [2006], one would expect that the stability
properties of CCS should be preserved even when the rate updates are performed
at a much slower time scale as compared to the congestion price updates. This
time-scale decomposition issue will be addressed in our future work.

Our results can be also extended to multi-route case. Note that (8) is a solution

to the optimization problem that maximizes Uk(xk) − ∑l∈E ql

∑

j∈I(l)
Hj

k
xk

cj
for

0 ≤ xk ≤Mk, where Uk(xk) is the logarithmic utility function. The idea for multi-
route extension is to divide the traffic belongs to a type into multiple routes and
solve a modified optimization problem with an addition of a quadratic form of rates.
The new term (i.e., the quadratic form of rates) helps the traffic assignment to be
a continuous function across time. The resultant solution will be still amenable to
implement in a distributed manner with local information. The techniques have
been developed by Tassiulas and Ephremides [1992a] and further exploited by Neely
et al. [2003] and Lin et al. [2008].

Another important issue is distributed implementations of the scheduling com-
ponent of CCS. Generating a maximal schedule accounting for the local message
exchanges might be computationally expensive under the contention matrix based
interference model. The problem becomes more complex if two end nodes of a link
have a different view on the network. To this end, we provide in the next section
two randomized distributed algorithms that are described by nodes’ behavior, and
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that compute a maximal schedule accounting for message exchanges. Assuming a
time-slotted system, we show that the proposed distributed implementations for
the maximal scheduling still achieve the provable performance guarantee with low
complexity. Note that the assumption on the system synchronization is for the
analytical purpose. In Section 5, we show through simulations that in realistic net-
work environments, i.e., with imperfect synchronization and under the SINR-based
interference model, the proposed cross-layer solution significantly outperforms the
layered solution like TCP over IEEE 802.11b network.

4. RANDOMIZED DISTRIBUTED ALGORITHMS FOR MAXIMAL SCHEDULING

POLICY

The maximal scheduling policy has been studied in [Lin and Shroff 2005], [Cha-
porkar et al. 2005], and [Sharma et al. 2006b]. However, the difficulties that arise in
its distributed implementation (i.e., local message exchanges and operations based
on the node behavior) under the presence of interference have not previously been
dealt with. In this section, we provide randomized distributed algorithms of the
maximal scheduling policy under the 1-hop and 2-hop interference models. They
are inspired by the classical algorithm by [Peleg 2000] for constructing a maximal
independent set.

We start with describing our distributed computing model. As in [H. Balakr-
ishnan et al. 2004] and other related works, we assume a synchronous message
passing distributed computing model : We describe the network G(V, E) as a set V
of nodes and a set E of directed4 links (or edges), where a link is placed between
two nodes if one can make a direct transmission to the other. We assume that links
are bidirectional (i.e., if (u, v) ∈ E, then (v, u) ∈ E) and the interference between
links can be specified by the K-hop interference model for K = 1 or 2. The clocks
at all the nodes are synchronized, and time is divided into slots of unit length. A
transmission from node u can be heard by each node v with (u, v) ∈ E, unless node
v or some of v’s neighbors transmits at the same time. Hence, a node can broadcast
a packet to all its connected neighbors, but the interference between simultaneous
transmissions prevents the packet from successfully being delivered, and becomes
a major obstacle in the implementation of the maximal scheduling policy.

A time slot consists of two periods for scheduling and data transmission, respec-
tively. The scheduling period is used to choose a set of non-interfering links, and
the data transmission period is used to transmit data packets over the chosen links.
The scheduling period is further divided into mini-slots. We assume that the trans-
mission of control message takes place in rounds, each occupying a mini-slot. We
focus on the scheduling period and develop a distributed algorithm that yields a
maximal schedule S(t) at each time slot t (i.e., for all links l ∈ E, the schedule S(t)
satisfies that I(l) ∩ S(t) 6= ∅ or ql(t) < 1).

4.1 Maximal scheduling under the 1-hop interference model

We first propose a randomized distributed algorithm, namely MaxScheduleOne-
Hop, that implements the maximal scheduling policy under the 1-hop interference

4We use directed links for price estimation of a link at each node. Once all the prices are calculated,
the behavior of each node can be described using undirected links.
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model. MaxScheduleOneHop has two levels of iterations. We denote the lower level
by iteration and the higher level by phase, respectively, and label an instance as
iteration i of phase p.

We start with some definitions of terminology that will be used in the sequel.
New notations are node-based and deal with direct links. Though some of them
are conceptually similar to the previously defined (link-based) notations, they will
greatly simplify algorithm descriptions and performance analysis.

—N(u): Set of nodes v directly connected with node u, i.e., N(u) := {v ∈
V | (u, v) ∈ E}. Note that u /∈ N(u), and the set denotes the connected neigh-
boring nodes.

—d(u) := maxv∈N(u)∪{u} |N(v)|.
—δ := maxu∈V |N(u)|.
—Si

p: Set of links that are included in the schedule before iteration i of phase
p. Slightly abusing the notation, we also denote it as the set of nodes that are
connected to one of those links. The meaning should be clear by context. Note
that this set monotonically grows as iterations and phases proceed.

—Sp: Set of links (or nodes) after all iterations in phase p. After all the phases
end, the final value will be used as the schedule S(t) for data transmission.

—b(u): Indicator that denotes whether node u is eligible for a schedule or not, i.e.,
at iteration i of phase p, b(u) = 1 if u ∈ Si

p, and b(u) = 0 otherwise.

—Np(u): Knowledge of node u about its neighborhood during phase p. Specifically,
Np(u) = {v ∈ N(u) | b(v) = 0 at the beginning of phase p, and q(u,v)(t) > 1}.
This information is updated at the end of each phase p (which implies that each
node u obtains its local knowledge about Sp), and fixed during the next phase.

We assume that the information N(u), d(u), and δ has been known to each node
u after initial network setup. The congestion price of a directed link l = (u, v) can
be defined as in (6) and (7), where I(l) denotes the set of all directed links that
interfere with the link. Then it is clear that q(u,v)(t) = q(v,u)(t) from (7).

The algorithm of MaxScheduleOneHop is provided in Algorithm 1, which has two
subroutines: UpdatePrices and UpdateAndDistNeighborhoods. At the beginning of
the procedure, UpdatePrices allows each node to update the congestion prices of
its outgoing links. At the end of each phase p, UpdateAndDistNeighborhoods

allows each node to update its local knowledge on the schedule.
Detailed operations are as follows. At each time slot t, MaxScheduleOneHop

calculates new prices based on the schedule in the previous time slot. Then, it has
two hierarchical loops to compute the schedule in a distributed fashion: ⌈CP log |V |⌉
phases, and CIδ log |V | iterations for each phase, where CP and CI are constants
whose value will be determined later (see Proposition 2). At each iteration i, each
node u tries to transmit an Request-To-Send (RTS) message with probability based
on d(u) if the node is eligible (i.e., if b(u) = 0). If the RTS is responded with a
Clear-To-Send (CTS) by the receiver v, then both u and v are set to be ineligible
(i.e., b(u)← 1, b(v)← 1), and the link (u, v) is included in the schedule Si

p. When
phase p ends, all nodes u update their local knowledge Np(u) based on the change
of the schedule Sp\Sp−1 through UpdateAndDistNeighborhoods. When all phases
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end, if node u has a link (u, v) ∈ S(t), it transmits data packets to v during the
data transmission period.

Algorithm 1 MaxScheduleOneHop(G, ~q(t− 1),S(t− 1))

1: ~q(t)← UpdatePrices(G, ~q(t− 1),S(t− 1))
2: S0 ← φ and b(u)← 0 for all u ∈ V
3: Compute N1(u) for all u ∈ V
4: for p = 1 to ⌈CP log |V |⌉ do

5: S1
p ← Sp−1

6: for i = 1 to CIδ log |V | do

7: Each node u with b(u) = 0 chooses to transmit with probability
1/(d(u) + 1). Upon deciding to transmit, it chooses a node v
at random from Np(u) and sends an RTS message to node v.

8: If node v successfully receives the RTS,
it responds with a CTS message and sets b(v)← 1

9: Upon receiving the CTS, set b(u)← 1
10: Si+1

p ← Si
p ∪ (u, v)

11: end for

12: Sp ← Si+1
p

13: Np+1(u)← UpdateAndDistNeighborhoods(G,Sp−1,Sp) for all u ∈ V
14: end for

15: cs(t)← Sp

Note that during each phase p, each node u has only local information of Sp,
i.e., whether v ∈ Np(u) or not. This also implies that, if node u transmits an RTS
to node v at iteration i of phase p, it may fail due to i) simultaneous transmission
of neighboring nodes (i.e., some node w ∈ N(u) ∪ N(v)\{u} transmits an RTS
simultaneously), or ii) inaccuracy of scheduling information (i.e., v /∈ Sp but v ∈
Si

p). Later we consider both scenarios carefully in our analysis. We first describe
the subroutines used by MaxScheduleOneHop, beginning with UpdatePrices.

Algorithm 2 UpdatePrices(G, ~q(t− 1),S(t− 1))

For each u ∈ V ,
1: if (u, v) ∈ S(t− 1) or (v, u) ∈ S(t− 1) for some v ∈ N(u) then

2: ReliablyBroadcast(u, “matched to v”)
3: end if

4: Compute the new congestion prices of outgoing links q(u,w)(t) for all w ∈ N(u)
based on the local knowledge of S(t− 1).

UpdatePrices allows each node to compute the congestion prices of its outgoing
links by extending the local knowledge of the schedule S(t − 1). Specifically, each
node u is included in the schedule S(t−1), during slot t, broadcasts this information
to its neighbors using subroutine ReliablyBroadcast, which will be explained in a
short while. Then, node u and all its neighbors can compute new congestion price
for all their own outgoing links using this information and their local knowledge
of user routes and data rates. For example, under the 1-hop interference model,
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we can compute the prices as q(u,v)(t) = (q(u,v)(t − 1) + α∆q(u,v)(t − 1))+, where
∆q(u,v)(t) can be rewritten from (7) as

∆q(u,v)(t) =
∑

w∈N(u)

∆X(u,w)(t) +
∑

w∈N(v)\{u}

∆X(v,w)(t),

and ∆X(u,w)(t) :=
∑K

k=1 H
(u,w)
k

(

∫ t+1

t
nk(τ)xk(τ)

c(u,w)
dτ − 1{(u,w)∈S(t)}

)

+
∑K

k=1 H
(w,u)
k

(

∫ t+1

t
nk(τ)xk(τ)

c(w,u)
dτ − 1{(w,u)∈S(t)}

)

.

Note that for all u, v ∈ V , we have ∆X(u,v)(t) = ∆Q(u,v)(t) + ∆Q(v,u)(t) =
∆X(v,u)(t), and hence, ∆q(u,v)(t) = ∆q(v,u)(t). Node u can compute ∆q(u,v)(t)
for each of its outgoing links (u, v), provided that it has the local knowledge of user

routes [H
(u,v)
k ], data rates [xk], and scheduling information during the previous

time slot S(t). The information of user routes and data rates are maintained by
the congestion control component, and the scheduling information can be provided
by the following subroutine ReliablyBroadcast.

The subroutine ReliablyBroadcast requires ⌈CBδ log |V |⌉ rounds, where CB is a
constant whose value will be determined later (see Lemma 1).

Algorithm 3 ReliablyBroadcast(v, data)

1: for k = 1 to ⌈CBδ log |V |⌉ do

2: Node u broadcasts “data” with probability 1/(d(u) + 1) to its neighbors.
3: end for

Finally, UpdateAndDistNeighborhoods allows each node u to update Np(u) when
a phase of MaxScheduleOneHop ends (see Algorithm 4). If node u is matched
during the current phase p (i.e., if u ∈ Sp\Sp−1), it broadcasts this information to
its neighbors using the subroutine ReliablyBroadcast. With this knowledge, each
node w can update Np(w) by deleting those neighboring nodes included in the
schedule during the current phase, i.e., Np+1(w) ← Np(w)\{Sp\Sp−1}, which is
equal to N1(w)\Sp.

Algorithm 4 UpdateAndDistNeighborhoods(G, Spr , Scr)

For each u ∈ V ,
1: if (u, v) ∈ Scr\Spr or (v, u) ∈ Scr\Spr for some v ∈ N(u) then

2: ReliablyBroadcast(u, “matched to v”)
3: endif

4: Update Np(u) considering only those nodes that are currently not scheduled.

We now show that if the constants CP , CI , and CB in MaxScheduleOneHop
and ReliablyBroadcast are appropriately chosen the scheduling algorithm returns
a maximal schedule with high probability. We begin with the performance analysis
of ReliablyBroadcast:

Lemma 1. Using ReliablyBroadcast with CB ≥ 8e, all nodes can forward its
“data” to all its own neighbors with probability no smaller than 1− 1

|V |2 .
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The proof is given in the supplement for this article [Sharma et al. 2009].
Using Lemma 1, we obtain the performance of MaxScheduleOneHop as follows.

Proposition 2. If CP > 1, CI ≥ 12e2, and CB ≥ 8e, then the schedule of
MaxScheduleOneHop is maximal with probability no smaller than 1− 2

|V | .

The proof is given in the supplement for this article [Sharma et al. 2009].
Note that MaxScheduleOneHop has Θ(log |V |) phases, and each phase has Θ(δ log |V |)

iterations. UpdateAndDistNeighborhoods that runs at the end of each phase also
involves Θ(δ log |V |) rounds of computation and local message exchange. Hence,
MaxScheduleOneHop needs total Θ(δ log2 |V |) rounds of computation and local
message exchange.

Remark: If the maximum node degree in the network is significantly smaller
than |V | − 1, then one can reduce the number of phases in MaxScheduleOneHop
to ⌈CP log δ⌉. MaxScheduleOneHop would then require Θ(δ log δ · log |V |) rounds
of computation and local message exchange. For example, if the maximum node
degree in the network is Θ(log |V |), as in the case of random geometric graphs,
then by reducing the number of phases in MaxScheduleOneHop from Θ(log |V |)
to Θ(log log |V |), we can reduce its running time from Θ(log3 |V |) to Θ(log2 |V | ·
log log |V |).

4.2 Maximal scheduling under 2-hop interference model

In this section, we propose a randomized distributed algorithm for implementing
the maximal scheduling policy under the 2-hop interference model. The interfer-
ence model now requires that no two links within a two-hop distance can transmit
simultaneously. However, we assume the same distributed computing model that
we adopt in Section 4.1 for the control messages. In particular, control messages
can be broadcasted and can be heard by each (one-hop) neighboring node v, unless
node v or some of v’s neighbors transmits at the same time. The reason for having
a different interference model for data and control packets is that in most networks
(e.g., IEEE 802.11b-based networks) the control packets are usually much smaller
in size than the data packets and are often transmitted at a much smaller rate than
the data packets. Correspondingly, successful reception of a control packet requires
much less SINR as compared to that of a data packet; thereby motivating the use
of different interference models.

The algorithm we propose in this section, namely MaxScheduleTwoHop, is con-
ceptually very similar to MaxScheduleOneHop. However, there are some additional
difficulties that arise due to the 2-hop interference, and have to be dealt with. In-
deed, a distinguishing feature of MaxScheduleTwoHop is the exchange of collision
(COL) messages to ensure that no two links within two-hop distance decide to
transmit or receive at the same time. To elaborate, if a sender detects an ongoing
transmission while transmitting an RTS, it sends a subsequent COL immediately.
Successful reception of an RTS by the receiver guarantees that no other transmitter
can be within one-hop distance from the receiver. Further, no following COL mes-
sage guarantees interference-free transmission at the sender side. If the receiver does
not hear a COL or a collision due to multiple such messages, it sends a CTS message.
If it detects an ongoing transmission while transmitting the CTS, it subsequently
sends a COL. Then the sender can ensure that the transmission is interference-free
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at the receiver side if no COL has been heard after the CTS. Let N ′(u) denote the
set of nodes u within two-hop distance, i.e., N ′(u) := ∪v∈N(u)∪{u}N(v)\{u}. Also
let d′(u) := maxv∈N ′(u) |N ′(v)|. We provide the detailed description in Algorithm
5.

Algorithm 5 MaxScheduleTwoHop(G, q(t))

1: ~q(t)← UpdateAndDistPrices(G, ~q(t− 1),S(t− 1))
2: S0 ← φ and b(u)← 0 for all u ∈ V .
3: Compute N1(u) for all u ∈ V
4: for p = 1 to ⌈CP log |V |⌉ do

5: S1
p ← Sp−1

6: for i = 1 to CIδ
2 log |V | do

7: Each node u with b(u) = 0 chooses to transmit with probability
1/(d′(u) + 1). Upon deciding to transmit, it chooses a node v
at random from Np(u) and sends an RTS to node v.

8: If node u detects any other transmission while transmitting,
then it sends a COL immediately after the RTS.

9: If node v successfully receives the RTS and does not subsequently
hear a COL (or a collision due to multiple such messages),
then it sends a CTS message.

10: If node v detects any other transmission while transmitting the CTS,
then it sends a COL immediately after the CTS.
Otherwise, it sets b(v)← 1.

11: If node u hears the CTS from v but no subsequent COL, it sets b(u)← 1.
12: Si+1

p ← Si
p ∪ (u, v)

13: end for

14: Sp ← Si+1
p

15: Np+1(u)← UpdateAndDistTwoHopNeighborhoods (G,Sp−1,Sp)
for all u ∈ V .

16: end for

17: S(t)← Sp

The overall operation of MaxScheduleTwoHop can be explained as follows. MaxSched-
uleTwoHop also has two subroutines: UpdateAndDistPrices and UpdateAndDistTwoHop-
Neighborhoods, which are very similar to their counterparts in case of MaxSched-
uleOneHop. The main difference, however, is that these subroutines must deliver
information over two hops for each node u i) to compute the congestion price of its
outgoing links (u, v), which now can be obtained by summing additional ∆X(x,y)(t)
for all x ∈ N(u) ∪N(v) and y ∈ {N ′(u) ∪N ′(v)}\{N(u) ∪N(v)}, and ii) to com-
pute Np+1(u), which now requires the knowledge of Si

p within two-hop distance.
Broadcasting information over two-hop distance can be accomplished by using Reli-
ablyBroadcast twice. Detailed descriptions of these algorithms with the same spirit
can be found in [Sharma et al. 2006].
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5. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the cross-layer solution of the rate
controller (8) and randomized distributed scheduling algorithms provided in the
previous section. We first simulate the cross-layer solution in a random topology
under a restrictive scenario, i.e., with a time-slotted synchronous system under the
1-hop interference model. In this experiment, we show the impact of system param-
eters on the performance of the solution. Second, we suggest a heuristic scheduling
scheme that further exploits the queue length information of neighboring links,
and compare the performance of the original randomized algorithm, the heuristic,
and the centralized Greedy Maximal Scheduling (GMS) policy. We introduce the
heuristic scheduling since it inherits the distributed feature of the original random-
ized maximal scheduling and at the same time, it can be easily modified for asyn-
chronous systems. Finally, we compare the modified heuristic cross-layer solution
and the conventional layered solution (i.e., TCP over IEEE 802.11b DCF) under
more realistic scenarios, i.e., with inaccurate synchronization under the SINR-based
interference model.

We construct a network topology by placing 20 nodes randomly in 1x1 square
area. Links are connected between two nodes if their distance is less than 0.3. Link
capacity is set uniformly at random between [5, 10] per time slot5. The interference
constraints between links are modeled as the 1-hop interference model. We establish
5 sessions, whose source and destination nodes are chosen at random. For each
session, route is pre-calculated using the shortest-path-first or Dijkstra’s algorithm
and fixed during the simulation. Users arrive at each source node according to a
Poisson distribution, carry a file, the size of which is exponentially distributed with
mean 10, and injects data at the rate governed by (8). Each user remains in the
system until it finishes the file transfer. To examine the capacity of the solution, we
fix a user arrival rate vector and scale it by multiplying a scalar ρ > 0. Increasing
ρ, we can observe a steep increase of the number of users remained in the system
when the traffic load approaches to the capacity bound. In simulations, we measure
the total number of users in the system after 5000 time slots.

We first examine the performance of the cross-layer solution with our random-
ized distributed maximal scheduling (RMS). In our simulation settings, we assume
that the complexity of the scheduling scheme is dominated by the iterations of
MaxScheduleOneHop, and that the cost of computations and information exchanges
between neighbors for UpdatePrices and UpdateAndDistNeighborhoods are negligi-
ble. In this case, RMS has O(δ log2 |V |) complexity. We evaluate the performance
changing the total number of iterations of MaxScheduleOneHop. Implementing
MaxScheduleOneHop, we divide the scheduling period into M mini-slots of unit
length. During each mini-slot, nodes can finish an exchange of an RTS and a CTS.
Then, we have M = ⌈CP log |V |⌉ ·CIδ log |V | from Algorithm 1, and further denote
the number of phases for information updates by R, i.e., R = ⌈CP log |V |⌉. We also
set α = 0.1.

Figs. 1(a) and 1(b) show the simulation results with different M ’s and R’s. Each
result is an average of 10 simulation runs. Fig. 1(a) shows the performance of cross-

5We normalize the unit of transmission allowing packets to be as small as possible.
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(c) Performance comparison of different
scheduling policies; M = 32, R = 1
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Fig. 1. Performance of cross-layer solutions with Randomized Maximal Scheduling
(RMS) and other comparable scheduling policies.

layer solution with RMS for R = 1 (i.e., ⌈CP log |V |⌉ = 1 and CIδ log |V | = M in
Algorithm 1). As expected, the performance improves with a larger M . However,
it saturates with a small number of mini-slots. We also change R to see the effect
of information updates with intermediate scheduling results. Fig. 1(b) illustrates
the results with and without the updates, showing that there is no significant
performance difference. The performance when M = 16 and R = 1 is almost
the same as when M = 16 and R = 16.

Next, we simulate the solution with other comparable scheduling algorithms. The
same rate controller (8) has been used for all scheduling schemes. We first suggest
a heuristic modification of RMS, which is denoted by Weighted Random Maximal
Scheduling (WRMS). WRMS operates as RMS except that each node attempts to
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transmit an RTS message with a weighted probability. Specifically, for WRMS,
we replace line 7 of Algorithm 1 with the following: “Each node u with b(u) = 0
chooses to transmit with probability p(u)/

√
M , where

p(u) =

∑

v∈Np(u) q(u,v)
∑

v∈Np(u)∪{u}

∑

w∈Np(v) q(v,w)
. (14)

Upon deciding to transmit, it chooses a node v at random from Np(u) and sends

an RTS message to node v.” The factor 1/
√

M is motivated by [Joo and Shroff
2007], in which authors have shown that the probability of successful transmission
can improve by decreasing the attempt probability at each mini-slot in the order
of 1/

√
M . We also compare Greedy Maximal Scheduling (GMS), under which a

maximal schedule is chosen in decreasing order of queue length. Note that unlike
RMS and WRMS, GMS is a centralized algorithm and known to empirically achieve
the optimal performance in many network settings.

Fig. 1(c) illustrate the performance differences among RMS, WRMS, and GMS.
We set the number of mini-slots M to 32 for RMS and WRMS, while the centralized
GMS algorithm has M = 0. The results show that the scheduling schemes that
further utilize queue length information achieve better performance. RMS requires
the least information among three schemes, i.e., under RMS, each node has to know
which of its neighbors are eligible (unscheduled and the link has a sufficiently high
price (> 1)). On the other hand, WRMS needs more detailed information, i.e.,
the price values. GMS requires to know which link has the longest queue over the
network. Hence, Fig. 1(c) implies that the performance of the cross-layer solution
depends on accessibility to the queue (price) information in the network. So far,
our results do not take into account the cost of mini-slots. In practice, however, the
increase of contention mini-slots immediately implies the reduction of time for data
transmission, which deteriorates the throughput performance. Let c denote the cost
of a mini-slot, i.e., the time ratio of a mini-slot to a time slot. Fig. 1(d) shows that
the performance of scheduling policies with M = 32 and c = 0.0016. We observe
that the performance of RMS and WRMS retreats slightly. (The performance of
GMS remains unchanged since it is a centralized algorithm with M = 0.) However,
the differences are not significant and we can make the same conclusion as in the
previous simulations with zero cost.

In the next experiment, we compare the performance of our cross-layer solu-
tion under more realistic network environments. We use NS-2 simulator, which
considers transmitter power of each node and its attenuation, and a successful re-
ception is determined by the SINR level at the receiver. Basically, it operates in
an asynchronous manner. However, it is also possible to provide an imperfect syn-
chronization using a guard time between intervals as IEEE 802.11b DCF networks.
(See [Gast 2005] for the details.)

Under this asynchronous system with the SINR-based interference model, we
compare our cross-layer solution with the existing TCP and IEEE 802.11b DCF
networks. We use the default settings of NS-2 except the following. For IEEE

6Since IEEE 802.11b DCF has a mini-slot of 20 µs, we can make the ratio c less than 0.001 by
transmitting a few packets during a time slot.
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802.11b DCF, we enable RTS/CTS exchange for all data transmissions and set the
maximum number of retransmissions7 to 100 to remove the effect of packet drops.
For the same reason, we set the queue size (IFQ) at each node to 100 packets.
Physical link rate is set to 2Mbps and the packet size is fixed to 1460 bytes. We
construct a 5x5 grid topology with 25 nodes. Distance between two neighboring
nodes is 200m. All nodes use the same fixed transmission power achieving the trans-
mission range of about 250m when there is no interference, which, however, does
not imply that all transmissions within 250m distance are successful. A successful
transmission/reception is determined by the received SINR level at the receiver.
We establish four multi-hop UDP sessions with a fixed route. As before, for each
session, users arrive at the source node according to a Poisson distribution, carry
a file, the size of which is exponentially distributed, and injects packets at the rate
governed by (8). The user arrival rate vector is fixed again and scaled by multiply-
ing a scalar ρ > 0. We observe the number of users and packets remained in the
system varying ρ.

Since we developed the distributed randomized scheduling algorithms for the
time-slotted systems, we need the following modifications for asynchronous opera-
tions. We recompile the WRMS algorithm accordingly based on the IEEE 802.11b
DCF protocol. Specifically, we have WRMS operate as 802.11b except:

(1) The maximum congestion window is fixed to 32 (i.e., M = 32 mini-slots) and
there is no exponential backoff for WRMS. At each mini-slot, WRMS attempts
to transmit an RTS in a probabilistic manner.

(2) At the beginning of a time slot, which can be defined as a series of mini-slots
(≤ 32) followed by data transmission, each node is assumed to have the queue
information of its neighbors.

(3) At each mini-slot, a node n attempts to transmit an RTS with probability
p̄(n)/

√
M , where

p̄(n) =
q̄n

∑

m∈N(n)∪{u} q̄m
,

where q̄n =
∑

k∈N(n)∪{n}

∑

m∈N(k) Q(k,m), and
∑

m∈N(k) Q(k,m) corresponds

the total queue length in node k. (Hence, the modified WRMS works with
per-node queue instead of per-link queue.) If node n have not attempted for
successive 32 mini-slots, the node updates the queue information of its neighbors
and starts a new time slot, i.e., another scheduling period of 32 mini-slots.
Hence, each node starts its own time slot asynchronously.

Note that in this asynchronous version of WRMS, if a node overhears neighbor’s
transmissions, it freezes its contention until the transmission ends.

For GMS, unfortunately, we cannot apply the same approach, and we are un-
able to convert it to fit in asynchronous systems. Indeed, the concept of greedy
maximal schedule becomes unclear when nodes operates asynchronously. Hence, in
asynchronous systems, we only use the modified WRMS and the standard IEEE
802.11b DCF as a scheduling policy.

7We also run simulations with the default value of 7 and obtain similar results.
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Fig. 2. Performance evaluation under asynchronous system and the SINR-based interference
model. The cross-layer solution of rate controller over Weighted RMS (WRMS) is compared with
the standard layered solution of TCP over IEEE 802.11b DCF.

We run simulations for 2000 seconds, and measure the maximum total number
of users and the total number of packets in the system during the simulation time.
We compare the performance of TCP over 802.11b, rate controller (8) over 802.11b,
and rate controller (8) over modified WRMS. Fig. 2(a) shows the results on the
number users, in which it is clear that rate controller over WRMS significantly
outperforms others. Although TCP over 802.11b works well under light loads,
the number of users in the system rapidly increases as the load increases beyond
a certain threshold. Under light loads, rate controller over 802.11b has a larger
queue length than TCP over 802.11b, but in terms of capacity region, it performs
slightly better than that of TCP over 802.11b, though the difference is marginal.
In contrast, rate controller over WRMS succeeds in maintaining a small number
of users in the system with heavier loads (ρ > 2.0), and thus achieves the largest
capacity region among three.

Fig. 2(b) illustrates the total number of packets in the network when the sim-
ulations end. Roughly, a large queue length can be interpreted as a high delay.
The results show that our cross-layer solution significantly outperforms the layered
solutions over 802.11b, even under light loads.

6. CONCLUDING REMARKS

In this paper, we considered the problem of throughput-optimal cross-layer design
of wireless networks. We propose a joint congestion control and scheduling algo-
rithm that works under a general contention matrix based interference model and
stabilizes the network for all user arrival rate vectors within a fraction 1/dI(G) of
the capacity region, where dI(G) is the interference degree of the underlying con-
nectivity graph G (see Definition 2). Upper bounds on the interference degree can
be obtained under a large set of graphs and interference models that are of practi-
cal interest. For example, with geometric unit-disk graphs and K-hop interference
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models, it is known that dI(G) ≤ 49.
For practical implementation of the cross-layer solution, developing a simple dis-

tributed scheduling algorithm is essential. In this paper, we develop two randomized
distributed algorithms for the maximal scheduling policy under 1-hop and 2-hop
interference models. Although the performance of the maximal scheduling policy
has been studied under various network settings, to the best of our knowledge, it
is for the first time in the literature that the difficulties involved in its distributed
implementation in the presence of interference have been discussed in detail and
fully accounted for in the analysis.

In view of our results, it appears that a distributed implementation of maxi-
mal scheduling would incur significant overhead in networks where the maximum
node degree is large. For example, our algorithms require Θ(δ log2 |V |) rounds of
computation and local message exchange under the 1-hop interference model, and
Θ(δ2 log2 |V |) under the 2-hop interference model. Thus, the actual throughput
obtained with the maximal scheduling policy might be considerably smaller than
the theoretically guaranteed throughput. It remains to be determined if there exist
other distributed scheduling policies that can provide better throughput guaran-
tees and have lower complexity than the maximal scheduling policy under various
interference models. Recently, Joo et al. [2008] have shown that under the K-hop
interference models, GMS significantly outperforms the maximal scheduling policy
and achieves the optimal throughput in many network settings. However, its dis-
tributed version developed by Hoepman [2004] still requires a higher complexity
O(|V |).

We evaluate the performance of our cross-layer solution under more realistic net-
work settings, i.e., under the SINR-based interference model and with imperfect
synchronization. The numerical results show that the cross-layer solution signifi-
cantly outperforms the layered solution like TCP over IEEE 802.11 DCF network.
In this direction, it also remains as an interesting open problem whether one can
develop a distributed cross-layer solution with a provable performance guarantee
under the SINR-based interference model and/or time-varying wireless channels.
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