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Abstract 

This paper presents the m e w  of sensor fusion 
based on the Adaptive Fuzzy Kalman Filtering. 
This method has been applied to fuse position 
signals from the Global Positioning System 
(GPS) and Inertial Navigation System (INS) for 
the autonomous mobile vehicles. The presented 
method has been validated in 3-0 environment 
and is of particular importance for guidance, 
navigation, and control of flying vehicles. The 
Exten&d Kalman Filter (EKF) and the noise 
characteristic has been modifwd using the Fuzzy 
Logic Adaptive System and compared with the 
performance of regular E m .  
It has been demonstrated that the Fuzzy 

Adaptive Kalman Filter gives better results 
(more accurate) than the EKF. 

Introduction 

When navigating and guiding an autonomous 
vehicle, the position and velocity of the vehicle 
must be determined. The Global Positioning 
System (GPS) is a satellite-based navigation 
system that provides a user with the proper 
equipment access to useful and accurate 
positioning information anywhere on the globe 
[l]. However, several errors are associated with 
the GPS measurement. It has superior long-term 
error performance, but poor short-term accuracy. 
For many vehicle navigation systems, GPS is 
insufficient as a stand-alone position system. The 
integration of GPS and Inertial Navigation 
System (INS) is ideal for vehicle navigation 
systems. In generally, the short-term accuracy of 
INS is good; the long-term accuracy is poor. The 
disadvantages of GPSDNS are ideally cancelled. 
If the signal of GPS is interrupted, the INS 

enables the navigation system to coast along 
until GPS signal is reestablished [l]. The 
requirements for accuracy, availability and 
robustness are therefore achieved. 

Kalman filtering is a form of optimal 
estimation characterized by recursive evaluation, 
and an internal model of the dynamics of the 
system being estimated. The dynamic weighting 
of incoming evidence with ongoing expectation 
produces estimates of the state of the observed 
system [2]. An extended Kalman filter (EKF) 
can be used to fuse measurements from GPS and 
INS. In this EKF, the INS data are used as a 
reference trajectory, and GPS data are applied to 
update and estimate the error states of this 
trajectory. The Kalman filter requires that all the 
plant dynamics and noise processes are exactly 
known and the noise processes are zero mean 
white noise. If the theoretical behavior of a filter 
and its actual behavior do not agree, divergence 
problems will occur. There are two kinds of 
divergence: Apparent divergence and True 
divergence [3][4]. In the apparent divergence, 
the actual estimate error covariance remains 
bounded, but it approaches a larger bound than 
does predicted error covariance. In true 
divergence, the actual estimation covariance 
eventually becomes infinite. The divergence due 
to modeling errors is critical in K a h n  filter 
application. If, the Kalman filter is fed 
information that the process behaved one way, 
whereas, in fact, it behaves another way, the 
filter will try to continually fit a wrong process. 
When the measurement situation does not 
provide enough information to estimate all the 
state variables of the system, in other words, the 
computed estimation error matrix becomes 
unrealistically small, and the filter disregards the 
measurement, then the problem is particularly 
severe. Thus, in order to solve the divergence 
due to modeling errors, we can estimate 
unmodeled states, but it add complexity to the 
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filter and one can never be sure that all of the 
suspected unstable states are indeed model 
states[3]. Another possibility is to add process 
noise. It makes sure that the Kalman filter is 
driven by white noise, and prevents the filter 
from disregarding new measurement. In this 
paper, a fuzzy logic adaptive system (FLAS) is 
used to prevent the Kalman filter from 
divergence. The fuzzy logic adaptive controller 
(FLAC) will continually adjust the noise 
strengths in the filter's internal model, and tune 
the filter as well as possible. The FLAC 
performance is evaluated by simulation of the 
fuzzy adaptive extended Kalman filtering 
scheme of Fig.1. 

Estimated INS errors 

EKF 
Pseudo-range - 

Predicted measurements 

Fig.1. Fuzzy adaptive extended Kalman filter 

Weighted EKF 
Because the processes of both GPS and INS 

are nonlinear, a linearization is necessary. An 
extended Kalman filter is used to fuse the 
measurements from the GPS and INS. To 
prevent divergence by keeping the filter from 
discounting measurements for large k, the 
exponential data weighting [4] is used. 
The models and implementation equations for 

the weighted extended Kalman filter are: 

Nonlinear dynamic model 

' k + l  a f ( 'k  9 k, + w k  (1) 

Nonlinear measurement model 

Let us set the model covariance matrices equal to 

(3) 

(4) 

R ,  I Ra-2(k") 

Qk Q a - 2 ( k + l )  

where, ail, and constant matrices Q and R. For 
a>l, as time k increases, the R and Q decrease, 
so that the most recent measurement is given 
higher weighting. If a=l, it  is a regular EKF. 

By defining the weighted covariance 

P:- = PiaZk (5)  

The Kalman gain can be computed: 

K, = PlH:(H,PiHT + Ra-*("'))-' 

The predicted state estimate is: 

ki+l f ( 'k  9k) (7) 

The predicted measurement is: 

f k  =h(%;,k)  (8) 

The linear approximation equations can be 
presented in form: 

(9) 

The predicted estimate on the measurement can 
be computed: 

Computing the a priori covariance matrix: 

Pi+' = <D,P,@: + Qa-2(k+1) (12) 
Re-writing (12) gives: 
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Computing the U posteriori covariance matrix 
gives: 

P: = (I  - K,H,)P,"- (14) 
The initial condition is: 

p,"- =Po 

In equation (lo), the term a-& is called 
residuals or innovations. It reflects the degree to 
which the model fits the data. 

INS and GPS 

The inertial navigation system (INS) consists 
of a sensor package, which includes 
accelerometers and gyros to measure 
accelerations and angular rates. By using these 
signals as input, the attitude angle and three- 
dimensional vectors of velocity and position are 
computed [SI. The errors in the measurements of 
force made by the accelerometers and the errors 
in the measurement of angular change in 
orientation with respect to inertial space made by 
gyroscopes are two fundamental error sources, 
which affect the error behavior of an inertial 
system. The inertial system error response, 
related to position, velocity, and orientation is 
divergent with time due to noise input [6]. There 
are biases associated with the accelerometers and 
gyros. In order to correct the errors of INS, the 
GPS measurements are used to estimate the 
inertial system errors, subtract them from the 
INS outputs, and then obtain the corrected INS 
outputs. There is number of errors in GPS, such 
as ephemeris errors, propagation errors, selective 
availability, multi-path, and receiver noise, etc. 
By using differential GPS (DGPS), most of the 
errors can be corrected, but the multi-path and 
receiver noise cannot be eliminated. 

Fuzzy Logic Adaptive System 

It is assumed that both, the process noise wk 
and the measurement noise vk are zero-mean 
white sequences with known covariance Q and R 
in the Kalman filter. If the Kalman filter is based 
on a complete and perfectly tuned model, the 
residuals should be a zero-mean white noise 
process. If the residuals are not white noise, there 

is something wrong with the design and the filter 
is not performing optimally [4]. The Kalman 
filters will diverge or coverage to a large bound. 
In practice, it is dificult to know the exact value 
for Q and R. In order to reduce computation, we 
have to ignore some errors, but sometimes those 
unmodeled errors will become significant. These 
are the instrument bias errors of INS. Generally 
the Wk does not always have zero mean. In those 
cases, the residuals can be used to adapt the 
filter. In fact, the residuals are the differences 
between actual measurements and best 
measurement predictions based on the filter's 
internal model. A well-tuned filter is that where 
the 95% of the autocorrelation function of 
innovation series should fall within the 2 2a 
boundary [7]. If the filter diverges, the residuals 
will not be zero mean and become larger. 

There are very few papers on application of 
fuzzy logic to adapt the Kalman filter. In (81, 
fuzzy logic is used to the on-line detection and 
correction of divergence in a single state Kalman 
filter. There were three inputs and two outputs to 
fuzzy logic controller (FLC), and 24 NI= were 
used. The purpose of our fuzzy logic adaptive 
system (FLAS) is to detect the bias of 
measurements and prevent divergence of the 
extended Kalman filter. It has been applied in 
three axes - East (x), North (y), and Altitude 
(z). The covariance of the residuals and the mean 
of residuals are used as the inputs to FLAS for 
all three fuzzy inference engines. The 
exponential weighting a for three axes are the 
outputs. As an input to FLAS, the covariance of 
the residuals and mean values of residuals are 
used to decide the degree of divergence. The 
value of covariances relates to R. The equation 
for covariance of the residual is: 

P, = H,P;Hi + R 

When the Kaliilan filter is performing 
optimally, the mean values of residuals are near 
zero. Generally, when the covariance is 
becoming large, and mean value is moving away 
from zero, the K a h n  filter is becoming 
unstable. In this case, a large a will be applied. 
A large a means that process noises are added. It 
can ensure that in the model all states are 
sufficiently excited by the process noise. When 
the covariance is extremely large, there are some 
problems with the GPS measurements, so the 
filter cannot depend on these measurements 
anymore, and a small a will be used. The perfect 
measurements are given more weighting. By 
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selecting appropriate a, the FLAS will adapt the 
Kalman filter optimally and try to keep the 
innovation sequence acting as  zero-mean white 
noise. 

Table. 1. Rule Table for FLAS 

I I Mean Value I 

small large 

Fig.2. Covariance Membership Functions 

large 

S --- Small; 
L --- Large; 

M --- Medium; 
Z --- Zero; 

Simulation 

M A W  codes developed by authors has 
been used to simulate and test the proposed 
method. 

Fig.3. Mean Value Membership Functions 
The state variables used in simulation are: 

$m small meciium large 

1 1.02 1.1 1.2 a 
Fig.4. a Membership Functions 

The FLAS uses 9 rules, such as: 

If the covariance of residuals is large and the 
mean values are zero Then a is large. 

If the covariance of residuals is zero and the 
mean values are large Then a is zero. 

The fuzzy adaptive Kalman filtering has been 
used for guidance and navigation of mobile 
robots, especially for 3-D environment. The 
navigation of flying robots requires fast, on-line 
control algorithms. The “regular” Extended 
Kalman Filter requires high number of states for 
accurate navigation and positioning. The FLAC 
requires smaller number of states for the same 
accuracy and therefore it would need less 
computational effort. Alternatively, the same 
number of states (as in “regular” filter) would 
allow for more accurate navigation. 

The states are position, and velocity errors of the 
INS East, North, Altitude, GPS range bias and 
range drift. The covariance of GPS measurement 
R is 5 [m’]. It is assumed that the measurements 
of INS have some biases. In the first simulation 
(Fig. 5),  the mean values of INS are 0.0014 
meter, 0.00035 meter, and 0.0007 meter for the 
East (x), North (y), and Altitude (z) respectively. 
A white noise with a standard deviation of 3 
meter is added to GPS measurements. ‘Ibe 
sample period is 1 second. The first row in Fig. 5 
is the innovations of fuzzy adaptive EKF and 
EKF in East (x). The innovation of EKF had a 
large drift, and was stable a t  a high mean value. 
The fuzzy adaptive EKF clearly improved the 
performance of EKF, and the mean value was 
much smaller than that of EKF. Other figures 
present the corrected position (first column) and 
velocity (second column) errors. The corrected 
error is the current INS error minus estimated 
INS error. The dashed lines are the corrected 
errors of EKF, and the solid lines are the 
corrected errors of fuzzy adaptive EKF. The 
fuzzy adaptive EKF significantly reduced the 
corrected position and velocity errors. In the 
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second simulation (Fig. 6), the same 
measurements as in the first simulation for INS 
were used. A white noise with a standard 
deviation of 2 meter from 0 s to loo0 s and 1500 
s to 2oooS was applied to GPS measurements. 
From loo0 s to 1500 s, the standard deviation of 
6 meter with mean value of 6 meter was added to 
GPS measurements. Although, the GPS 
measurement noises features were changed, the 
fuzzy adaptive EKF still worked well. Those 
simulations also showed that the corrected errors 
of EKF were proportional to the mean values of 
INS measurements. In other word, the more 
errors are not modeled, the worse the EKF 
performs. 

Conclusions 

In this paper, a fuzzy adaptive extended 
Kalman filter has been developed to detect and 
prevent the EKF from divergence. By 
monitoring the innovations sequence, the FLAS 
can evaluate the performance of an EKF. If the 
filter does not perform well, it would apply an 
appropriate weighting factor a to improve the 
accuracy of an EKF. 

The simulation results show that the FLAS 
significantly reduces the corrected position and 
velocity errors when the EKF results diverge. In 
FLM, there are 9 rules and therefore, little 
computational time is needed. It can be used to 
navigate and guide autonomous vehicles or 
robots [9] and achieved a relatively accurate 
performance. Also, the FLAS can use lower 
order state-model without compromising 
accuracy significantly. Another words, for any 
given accuracy, the fuzzy adaptive Kalman filter 
may be able to use a lower order state model. 
The FLAS makes the necessary trade-off 
between accuracy and computational burden due 
to the increased dimension of the error state 
vector and associated matrices. 
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