
Object{Oriented Distributed Programming with Objective Linda�Thilo KielmannUniversity of SiegenDept. of Computer Science and Electrical EngineeringH�olderlinstr. 3D{57068 Siegen, Germanykielmann@informatik.uni-siegen.deAbstractIn this paper we introduce the coordination model Objective Linda which has been designed tomeet the needs of open distributed systems by rigorously combining object orientation with un-coupled communication. Hierarchical abstractions are provided for structuring large systems. Itwill be shown that using Objective Linda, interoperability can be achieved between di�erent pro-gramming languages and heterogeneous system architectures. Its usefulness for open distributedsystems will be illustrated by examples.1 IntroductionProgramming of open distributed systems is primarily concerned with coordinating concurrentlyoperating active entities. In traditional concurrent programming, there are only three basic kindsof mechanisms and corresponding models [4]: shared variables, message passing, and remoteprocedure calls. However, parallel programming languages based on these concepts are not fullysuitable to program open distributed architectures.A fourth basic model called generative communication was introduced in [6]. Concurrentlanguages based on this concept initiated the research area of coordination [8]. Today, theinteraction between active entities is typically investigated based on the notion of coordination,and by introducing a variety of non{conventional computing models, like for example the veryinuential work in [3].Object{Orientation has been well established as an approach to the design and implementa-tion of large application systems. The central notions exploited by object{oriented programmingare objects, classes, and inheritance as means to structure applications and libraries of reusablesoftware components. Hence, the way object{orientation is used in traditional sequential pro-gramming, objects are building blocks de�ned as abstract data types, which encapsulate theirinternal state through well-de�ned interfaces [15]. This traditional kind of objects simply repre-sents passive data containers.Because objects represent units of data encapsulation, the obvious idea of exploiting this prop-erty for purposes of concurrent programming has generated a lot of research work [1, 2, 9, 23].The simplest way to achieve concurrent object{oriented programming is to add the notion ofprocesses (usually in the form of lightweight processes, or \threads") to a given object{orientedlanguage. In this way, all three classical models of concurrent programming can be realized [19]:Shared{variables programming can be done by adding monitor semantics to the objects. Message�Proc. First International Workshop on High Speed Networks and Open Distributed Platforms, St. Petersburg(Russia), June 12 { 15, 1995 1



passing can be realized by giving method invocations the semantics of messages being exchanged.Finally, it is possible to model remote procedure calls by treating method invocations as pro-cedure calls (as within most sequential object{oriented programming languages), but allowingobjects being called to be \remote".Independently from which one of these concurrency models is actually in use, it is in theresponsibility of every object to keep its own state consistent. Therefore, it is necessary tocontrol the operations concurrently executing on a given object. This problem is subject to alot of ongoing research work. The fundamental problem is based on the interferences betweenconcurrency control mechanisms and notions of reuse based on inheritance. This phenomenon isknown as \inheritance anomaly" [14] and can be seen as the main obstacle prohibiting the wideuse of this style of object{oriented concurrent programming.By keeping the key idea of encapsulated entities, an alternative and much more attractiveway of system modelling can be used. Here, active objects unify the notions of (passive) objectsand processes. More speci�cally, an active object contains its own thread of control while it isstill protected by its interface. This approach eliminates the consistency problems mentionedabove because there is exactly one thread operating in an active object. Furthermore, the active{object approach enables generative communication to be included in object{oriented concurrentsystems.To conclude, active objects are well-suited to be used as active components in concurrentsystems, because they combine the notions of encapsulated active entities with the power ofobject{oriented software development techniques.In the following sections we concisely introduce the notions of coordination and of open dis-tributed systems after which we identify properties of coordination models suitable for modellingthem. Then, we investigate existing approaches to programming open distributed systems basedon services and on generative communication. On the basis of this foundation we introducethe coordination model Objective Linda. We explain its principal properties and componentsafter which we exemplify Objective Linda's usefulness for modelling and programming opendistributed systems.2 CoordinationCoordination as the key concept for modelling concurrent systems is concerned with managingthe communication which is necessary due to the distributed nature of a system, with the ex-pression of parallel and distributed algorithms, as well as with all aspects of the composition ofconcurrent systems. We can characterize coordination by the following notions:Agent Agents are active, self{contained entities performing actions on their own behalf.Action Actions can be divided into two di�erent classes:1. Inter{Agent actions. These actions perform the communication between di�erentagents. They are the subject of coordination models.2. Intra{Agent actions. These are all actions belonging to a single agent. They performcomputations as well as all communication of an agent outside the coordination model,like primitive I/O operations or interactions with users.2



Con�guration We call a collection (or a system of) interacting agents a con�guration.Coordination Coordination is managing the inter{agent activities of agents collected in a con-�guration.Coordination of agents can be expressed in terms of coordination models and languages. Inthe following, we try to clarify these two di�erent notions. For coordination models we prefer thefollowing intuitive de�nition: \A coordination model is the glue that binds separate activitiesinto an ensemble" [8]. In other words, a coordination model provides a framework in whichthe interaction of individual agents can be expressed. This covers the aspects of creation anddestruction of agents, communication among agents, spatial distribution of agents, as well assynchronization and distribution of actions over time.A coordination language is \the linguistic embodiment of a coordination model" [8]. Thus, acoordination language should orthogonally combine two models: one for coordination (the inter{agent actions) and one for (sequential) computation (the intra{agent actions). The presumablymost famous example of a coordination model is the Tuple Space in Linda which encounteredseveral linguistic embodiments like C{Linda or FORTRAN{Linda, both on workstation networksand on massively parallel architectures.3 Open distributed systemsOpen distributed processing is a currently evolving �eld. It is characterized by the ISO stan-dard on open distributed processing (ODP), the current draft of which can be found in [11].It describes open distributed systems from di�erent viewpoints. In the following, we will ex-tract the parts of these descriptions relevant to programming models. Here, the objective ofODP is to \allow the bene�ts of distribution of information processing services to be realised inan environment of heterogeneous information technology resources and multiple organizationaldomains."In the ODP de�nition, distributed systems have to cope inherently with remoteness of compo-nents, with concurrency, the lack of a global state, and asynchrony of state changes. In addition,open distributed systems are characterized by heterogeneity in all parts of the involved systems,autonomy of various management or control authorities and organizational entities, evolution ofthe system con�guration, and to some extent mobility of programs and data.We can identify the requirements of open distributed systems on programming models bythe notions of heterogeneity in the following senses:1. Heterogeneity of hardware.Open distributed systems may consist of computers of various architectures, from di�erentvendors, and with di�erent data representations. Furthermore, there may be very di�erentinterconnection media and topologies. As a result, coordination models for open distributedsystems cannot rely on speci�c data representations or communication structures.2. Heterogeneity of software.Computers in open distributed systems of course run di�erent operating systems. Also,programming languages in use may vary depending on the purposes of every system. Con-3



sequently, coordination models trying to integrate such systems cannot be bound to speci�clanguage interfaces or communication protocols.3. Heterogeneity of con�gurations over time.Besides the di�erent kinds of the involved systems, the most challenging property of opendistributed systems is their dynamic nature. Examples are situations in which additionalmachines will be brought into the system, dial-up lines connect and disconnect, new ma-chines replace older ones, new operating systems or communication protocols have to beintegrated etc.Thus, agents in an open distributed system must be allowed to appear and disappear com-pletely on their own behalf. This forbids coordination models to rely on speci�c (central)units or to make use of communication schemes based on static connections or speci�cidenti�ers (addresses).4 Service{Oriented ModelsWe now investigate the traditional approach to programming of open distributed systems whichfocusses on providing and requesting services. Models following this approach are typicallyfocussed around the notion of objects which provide the methods of their interfaces as servicesto other objects. Main objectives of such models are remoteness and service identi�cation.4.1 The ISO/IEC Reference Model of Open Distributed ProcessingThe upcoming ODP standard [11] uses objects as its basic modelling concept: \Object modellingwas chosen because : : : objects are useful for structuring and speci�cation purposes, because theyembody ideas of modularity and data abstraction. : : :They embody ideas of services o�ered byan object to its environments, that is, to other objects."This notion of objects originates in traditional passive objects and hence bears the problemsof that approach as outline above. It focusses on encapsulation and abstract data types whichare only weak concepts for modularization and system structuring purposes. Furthermore, itenforces a request{reply communication structure which directly reects objects as providersof services de�ned by their interface speci�cation. This service{oriented communication styleseems to be appropriate for open distributed systems on �rst sight. It reects applications withtransaction{like operations, but it excludes di�erent communication structures like for examplegroup communications.In the ODP model, services are identi�ed using a so{called trading function [10]. O�eringand using services is done by communicating with a trader, which uses a repository of typede�nitions in order to identify o�ered and requested service types. A subtype relation betweeninterface types can be explicitly declared or derived from subtyping rules. After the trader haso�ered the identi�cation of an object capable to provide the requested service, client and server(in this model called importer and exporter) directly connect to each other. The trading functionstandard simply provides a framework which might be embodied by di�erent services like theX.500 directory service or OMG's CORBA IDL [17].4



4.2 LAURAThe LAURA model [22] introduces agents using and o�ering services which are exchanged in aservice space shared by all agents. This space is an equivalent to Linda's tuple space and enablesuncoupled communication in the context of exchanging services. Therefore, LAURA providesthree operations for service providers and requestors. First, a provider can use SERVE to puta serve form into the service space. The operation blocks the provider until a matching requestform is found. After completing a service request, the provider performs the RESULT operationwhich puts a result form into the service space.A client, on the other hand, uses a SERVICE operation to put a service{request form intothe service space. This operation blocks the client until the results are available. The realizationof this operation introduces uncoupled communication to service exchange: Instead of a singleservice{request there will be a service{put form and a service{get form inserted in the servicespace. The service{put form will be matched against a serve form whereas the service{getwill match the corresponding result. Both forms, service{put and service{get will internally beaugmented by a unique request ID which is used to relate the result to the correct request.This way, provider and client are anonymous to each other, and can exchange services in aconnectionless and hence uncoupled manner.5 Objective LindaAs we have seen so far, the service{oriented communication model inherently uses request{reply pairs of messages which typically force direct connections between client and server inorder to relate a reply to its corresponding request. The restricted RPC{like communicationstyle is one disadvantage of this modelling. Even worse is the connection{based communicationwhich hampers dynamically changing con�gurations with agents eventually appearing in anddisappearing from a system. An approach to overcome the de�ciencies of connection{basedcommunication is LAURA which introduces uncoupled communication for implementing theservice{oriented style. But none of those models provides suitable abstractions in order tostructure large systems.The requirements analysis for general{purpose coordination models performed so far exhib-ited the necessity of uncoupled communication in order to cope with open distributed systems.As the communication style should not be con�ned to RPC, we have to keep the models moreopen. Therefore, we can identify the following four basic elements:1. Active ObjectsObjects are the building blocks of concurrent systems. More speci�cally, objects denoteinstances of abstract data types which enable the exploitation of software design and reuseknown from classical object{oriented technology. Making objects active furthermore al-lows programming without the intra{object concurrency problems of the passive objectapproach.2. Generative CommunicationGenerative Communication, known from the Linda coordination model, enables uncoupledcommunication with anonymous peers and hence introduces the possibility of agents which5



dynamically enter and leave running con�gurations.3. HomogeneityA single homogeneous model should be introduced, which is suited to be applied in a rangefrom �ne{grain parallelism to world{wide open distributed systems. Ideally, there shall beonly one sort of objects which uni�es the notions of agent, data, and unit of applicationstructuring.4. Hierarchical AbstractionsWhole con�gurations should be treatable like single agents. This demands for hierarchiesof nested object spaces which represent application structure and enable concurrency insidecomposed active objects.In the following, we introduce a coordination model called Objective Linda which is intendedto be suitable for various kinds of concurrent systems and especially open distributed systems.Because it is designed around a rigorous combination of object orientation and the Linda coor-dination model, we have to recall the latter �rst:The Linda coordination model has been introduced to incorporate the idea of generativecommunication [6]. In Linda, processes communicate by putting tuples (in the mathematicalsense; consisting of basic data items like numbers and strings) into the so{called \tuple space"(by the out operation) and by reading or removing tuples from it (by the read and in operations).Synchronization is performed by letting processes wait until a suitable tuple to be read has beeninserted into the tuple space. Furthermore, new processes can be invoked by putting activetuples into the tuple space (by the eval operation) which are in turn evaluated. Active tuplesproduce results in form of passive tuples to which they are converted on termination of theircomputation.The main coordination law de�nes how tuples are selected to be read from the tuple space.The potential reader speci�es a template for a tuple it wishes to obtain. The tuple spaceperforms a matching operation in order to �nd an appropriate tuple. Both tuples and templatesmay consist of actual �elds (values) and formal �elds (placeholders for speci�c data types). Atuple matches a given template if the arities of both correspond and if each actual �eld matchesone of the same type and value or a formal �eld of the corresponding type.Of course, Objective Linda is to some degree inspired by other approaches to improve thepure Linda model: Bauhaus Linda [5] uni�es tuples and tuple spaces by replacing both bymultisets. Objective Linda extends this to a model with a unique kind of entities: Objects serveas data units, as active agents, as object spaces, and as units of application structure. So, thematching process for reading from object spaces can be based on predicates from the objects'abstract data types which signi�cantly improves expressive power.The object space approach [20] attempts to uncouple object matching performed by Linda'sin and rd operations from the object implementation by letting programmers describe \impor-tant" parts of the implementations which become subject to matching. So, objects loose theirtuple character as ordered sequences of typed slots. Objective Linda expands this idea conse-quently: Objects are matched based on predicates out of the interface of their abstract datatypes. This property completely separates implementation from speci�cation and enables the6



latter to become the basis of object interaction in the presence of hererogeneous systems. Fur-thermore, it removes all implementation details from the realization of agent interaction andhence applies this idea from sequential programming to agent interaction in concurrent systems.The work in [7, 12, 13] proposes hierarchies of nested tuples spaces by introducing tuplespaces as �rst{class entities of the model. All of them introduce names (or references) to tuplespaces, whereas [12] additionally introduces \relative" references by a special reference calledthe context which denotes the tuple space in which a given tuple space is located. Such tuplespace hierarchies contribute to the introduction of hierarchical abstractions over con�gurations.Unfortunately, references to tuple spaces destroy the strict hierarchy by imposing a at andglobal namespace over the whole concurrent system. Consequently, Objective Linda provideshierarchies of nested object spaces in which only the current object space and its direct contextare accessible. So, there are no global or shared objects in an Objective Linda con�guration.The work in [5, 7, 12] additionally treats activities as �rst{class entities and hence allowsscheduling by explicitly starting and freezing them. In Objective Linda, objects are introducedby abstract data types. Operations on objects are hence de�ned by their interface speci�cationswhich assume operation atomicity. This contradicts to freezing active operations because in-termediate states are unde�ned. Because the motivations for introducing operations on activetuples in the work quoted above are not too convincing, Objective Linda has no such concepts.5.1 The Coordination ModelWe will now introduce the core concepts of Objective Linda. Here we unify Linda's notions oftuples and tuple spaces and replace both by objects. The objects themselves are instances ofabstract data types which are de�ned by class hierarchies in a language{independent notation,called Object Interchange Language (OIL) which we unfortunately cannot present here due tospace limitations. Actual programs may then be written in traditional (sequential) object{oriented languages to which language bindings of the OIL classes can be declared. ObjectiveLinda has a strong emphasis on using the abstract data types for selecting objects to be consumedfrom an object space which, on one hand, introduces a higher abstraction level compared toLinda's pattern matching, and on the other hand enables interoperability between heterogeneoussystems.Objective Linda computations are performed in hierarchies of objects containing other ob-jects. Coordination between objects is only performed by producing and consuming other objects(in a generative manner). Objects are instances of OIL classes which de�ne the sets of methodsthe objects can execute. Objects may be passive data or may be active, executing their ownactivity. Due to hierarchical decompositions, it is possible to have several activities concurrentlyoperating on complex objects. Active objects act also as object spaces (short: OS). These objectspaces form the coordination part of the objects whereas the activities make up the computa-tional part of the objects. Between these two parts, there is absolutely no information sharing.All objects either are part of a computation, or stored in an object space, but never both. Everyactive object knows exactly two object spaces in can operate with: Its own OS, called self andthe OS it is directly included in, called its context. Finally, objects residing in the same objectspace are called peer objects.The tuple space operations from the original Linda model inspired the core operations neededfor object spaces. We show how they have to be adapted to �t into the object{oriented setting7



of Objective Linda by informally introducing the following operations of the abstract data typeobject space:1. out. When an object o out's another object o2 from its computational part into an OS,o2 is moved into the OS. As an e�ect of this operation, o has lost connection and accessto o2.2. in. When an object o in's an object i from an OS, i is moved into the computational partof o. in arbitrary selects an object in the OS which matches the given requirements (seebelow). If there is no such object, the in operation blocks until there is one.3. rd. When an object o rd's another object r from an OS, it moves a clone of r into itscomputational part.4. For completeness there are two predicative versions of in and rd, called inp and rdp whichimmediately deliver an object if the OS actually contains (at least) one matching the givenrequirements. If not, inp and rdp return without delivering an object instead of blocking.5. eval. An eval operation is identical to out except that after out'ing, object e will becomeactive and process a method m out of its class interface. When m terminates, object e inturn disappears from the OS it was in. (When method m has to deliver results, objecte has to out result objects.) Termination and removal of active objects is a bit morecomplicated in the presence of nested active objects. Hence, an active object o is removedfrom its context OS only as soon as its own method has terminated and all active objectsin o's self{OS have terminated and disappeared.In one point active objects di�er from passive ones: They are invisible to in and rdoperations. This is important to avoid interrupting running activities which would makeno sense with respect to the (atomic) semantics of the methods being executed.All operations on an object space must be executed in a serializable order [21] which meansthat if two or more operations are running at the same time, to each of them and to otheroperations, the �nal result looks as though all operations ran sequentially in some (systemdependent) order. This is necessary in order to cope with concurrent operations which changethe state of object spaces. This way, operation semantics of the abstract data type object spaceare preserved. Of course, operations on di�erent object spaces may be performed concurrentlywithout any restrictions.Figure 1 shows as an example a con�guration consisting of six nested objects. Objects aredepicted by ovals and are either active or passive. The latter ones simply contain data. Activeobjects are invisible from their outside and may only be noticed by monitoring their passivepeers which are produced and consumed by them. Internally, they consist of the activity (theobject's computational part), depicted by a circle, and of an associated object space which isseparated by a dashed line. This line separates the computational from the coordination partand illustrates the absence of sharing between both parts.The active object A has created object B by performing self.eval. This is the way howa computation may be decomposed into several subtasks. B has created a peer object C byinvoking context.eval. This way, new computations can be started without control of the8



invoker. C has created a peer D by context.out which is hence simply a passive object. Thisway, B may receive results from its peer C. E and F are located in object space C. The latterone must have created at least one of them; the other one might have also been created by itspeer.
F

context.out

self.eval

context.eval
A

B

C

D

E

Figure 1: Some abstract nested objects5.2 Object Matching and Method EvaluationThe conceptual framework for in, rd, and eval operations needs further elaboration. Thisis necessary because the corresponding operations of the traditional Linda model have to beadapted to our object{oriented framework. Furthermore, the way in, rd, and eval are modeledsigni�cantly inuences the expressive power of Objective Linda.Matching in the traditional Linda model is based on the data representation, in fact theimplementation, of tuples. There is no other mechanism for reasoning about tuples than justinterpreting tuple arity, types, and values of the tuple elements. The only degree of freedom isintroduced by formal �elds which allow to match every value of a given type. But this is notsuitable for matching objects which are instances of given abstract data types. Because objectsmay only be accessed based on their class interface, matching must also be performed thatway. This forbids the examination of implementation aspects and hence enables interoperabilityin heterogeneous systems because objects are only examined by using their abstract interface.Object matching based on abstract data types additionally enables arbitrary predicates to beused for this purpose which is much more exible than just matching one or all values of a type.Unfortunately, usual object{oriented languages do not allow to have types or predicates asparameters to a given routine like in. The only possible kind of parameters are objects. So wehave to pass types and predicates by passing objects. Passing a type is simple because whenwe pass an object its actual type can be taken as the desired one. Passing di�erent predicateswhich parameterize the matching process can be achieved in several more or less elegant waysin object{oriented systems. 9



In Objective Linda, we have to specify the type of object we wish to receive, so we have topass an object of the corresponding class to the in and rd operations anyway. So it is an obviousidea to pass the matching predicates inside this object, too. This resembles a concept introducedin [13] where in and rd operations are performed by putting a so{called reader object into theobject space. In our case, a reader object would be an object of the type to be matched and thestate of which contains all necessary information to parameterize the function (e.g. called) matchwhich becomes a mandatory routine of all classes of objects to be included in object spaces.This approach has the advantage of concentrating the information concerning a given classand especially concerning the matching of objects of this class inside the class itself. Objectencapsulation is still kept because all objects (even of the same class) have to use the classinterface to reason on properties of a given object.With the solution developed so far, it is simple to realize the eval operation of the OS,too: Every class gets another mandatory routine called evaluate which is executed when thecorresponding object is put into an OS by eval. As with match, the necessary parameterizationhas to be performed by other operations on the object before it is put into the OS.5.3 Mobile ObjectsThe core coordination model introduced so far directly adapts the traditional Linda operations toour object{oriented setting of hierarchically structured object spaces. Open distributed systemsrequire to additionally model agents eventually entering or leaving con�gurations. Especiallyagents occasionally wishing to enter a running system require to model activities which areinitiated outside the system (as opposed to new active agents created by the eval operation).Furthermore, mobile agents are a requirement of open distributed processing [11]. ObjectiveLinda models both requirements by a special operation which allows agents to move from oneobject space to another.The principal problem in introducing the new operation is to seamlessly embed it into themodel while not violating its properties, namely encapsulation of object spaces and their stricthierarchy. For this reason, it must not be allowed to give active objects direct access to objectspaces even in the form of handles as it is the case for tuple spaces in [12]. Such handles to objectspaces would immediately destroy the object{space hierarchy, because an agent might \keep inmind" a set of handles while \travelling" and hence become able to arbitrarily move around ina con�guration ignoring each and every hierarchical structure. Finally, the possiblity of enteringa given object space must be under the control of the object space itself in order to keep itsencapsulation property.These considerations led to the introduction of a new concept: object space logicals (orlogicals, for short). These logicals are special OIL objects which provide logical identi�cationsfor object spaces. Logicals are intended to be used as ordinary passive objects: Active objectswilling to let others enter their object space out a logical into their context. Others may usesuch a logical to enter the other object space by executing the new operation introduced in thissection. The basic idea behind this operation is that only the object space containing the logicalis able to relate it to its source. One might compare logicals with keys while only the surroundingcontext object space knows the corresponding locks where they �t into. In order to �t for di�erentpurposes, there will be multiple classes for logicals which di�er in the way their match routineis implemented. Hence, di�erent identi�cation mechanisms can be realized. Examples may be10



numerical values, strings, network addresses, or even \Uniform Resource Locators" (URLs) asthey are used in the World{Wide{Web. Object space logicals are primarily passive objects.Additionally, they may be used for the following operations:1. join (l : OS LOGICAL). When an object o wants to join another object space, it callsthe join operation on its current context OS and speci�es the desired target OS by l.l is moved into context (like a reader object used by an in operation). join arbitrarilyselects a logical m it contains which matches l. o then joins the object space which isdenoted by m. As long as there is no matching logical denoting an object space for whichthe movement operation succeeds, the join operation blocks.2. enter (l : OS LOGICAL). enter operates exactly like join. Additionally, the matchinglogical m is consumed from the context OS.3. Additionally, there are predicative versions of join and enter, called joinp and enterpwhich either move object o to an object space or alternatively return immediately, indicat-ing the failure. In the latter case, the operations have no e�ects besides failure indication.Figure 2 shows how the concept of object mobility can be used to model new agents willingto join running con�gurations in an open distributed system. In our model, agents have a defaultcontext OS on initialization of their activity, in the example called \World". This OS might beimplemented using some standardized network communication protocol. Possible implementa-tions may be based on broadcast messages or on dedicated servers. Once initialized, this defaultcontext OS can be accessed in order to get a logical for any con�guration an agent wishes tojoin, e.g. some given information system.
X

X

A(t1)

A(t2)

World

Figure 2: A new agent A entering con�guration X
11



6 ExamplesWe will now provide two examples for the use of Objective Linda in open distributed systems.First, we present an improved scheme for providing services. The second example outlines theuse of Objective Linda for retrieving information in the WWW.6.1 Providing ServicesThe software architectures for open distributed processing, as introduced in Section 4, are basedon providing and requesting services. Of course, this communication style can be modelled withObjective Linda, too. In the following, we introduce two classes, namely SERVICE REQUESTand SERVICE RESULT. Clients put service requests into an object space from which serversmay take them in order to compute results which they return to the object space. Due toObjective Linda's uncoupled communication style, we additionally have to relate results to theircorresponding requests. For this purpose, Laura [22] introduces unique identi�ers into thesystem internal communication. In Objective Linda, we do not need to implement this on thesystem level. We can simply make use of unique identi�cations in the classes built for thispurpose. On creating a SERVICE REQUEST object, a unique identi�er is created for andstored in it. The server may take this and put it into the SERVICE RESULT object it creates.The match routine of this class then simply compares the identi�ers. A possible realization ofsuch identi�ers might be the \universal unique ID's" from OSF DCE [18] which globally uniquecombine host ids with timestamps.The code fragments of clients and servers may look as outlined in Figure 3 which usesEi�el [16] notation. The communication shown is furthermore improved comparing to the RPCstyle of classical service{oriented systems: Here, servers are not forced to process a request bybeing called. Instead, they are free to process it or to reject it. This is simply due to generativecommunication. Clients Serversreq : SERVICE REQUEST; req : SERVICE REQUEST;res : SERVICE RESULT; res : SERVICE RESULT;id : UUID;!!req.make; !!req.make;!!id.make;req.put uuid(id);context.out(req); context.in(req);if req.is validthen -- compute service!!res.make;!!res.make; res.put uuid(req.get uuid);context.in(res); context.out(res);else -- reject requestcontext.out(req);Figure 3: Providing Services with Objective Linda12



6.2 Information Retrieval in the WWWAs another example for the usefulness of Objective Linda for open distributed systems, wenow try to outline how Objective Linda can contribute to improve the capabilities for �ndinginformation in the World{Wide{Web.In general, the WWW can be seen as a at space of objects of various (document) types withinnumerable references between them. Basically, a document can only be found by its UniformResource Locator (URL) which a potential reader has to know or to guess. With the growingsize of the net, �nding information has become more and more di�cult. Consequently, severalsites started to maintain lists of interesting URLs and special search engines. But these listsand search engines locally gather information which is always endangered to become out of date.The core problem here is that information is only available via URLs and not by its content. Inthe following, we propose three steps which make use of Objective Linda in order to improve theWWW with respect to retrieving information stored in it.The �rst step would be to use object spaces as search engines. Therefore, each Web server(willing to provide the retrieval service) would additionally implement an object space in which itsdocuments are represented by objects. Because this object space would directly be implementedon top of the server's �le system, this would be an example of a persistent object space. Accessto this object space could then be provided by network communication. Match operationsbased on document contents like keywords, full text search, or similiar mechanisms for image oraudio data could facilitate searching on a given server. This search facility obviously superseedsmechanisms based on dedicated data collections because now searching could be performed basedon the documents themselves which removes problems with out-of-date information.The second step would be to organize Web servers in object space hierarchies. So far, usersstill had to know where to search. Representing the servers hierarchically alleviates this problem,too. There could be several subhierarchies providing di�erent views on the information. Viewscould be geographically, organizationally, or oriented on topics. For example, Web servers ofSiegen University should provide their information in object spaces of German sites, of educa-tional institutions, and the server of the CS department should also be found in an object spacerelated to computer science.On �rst sight, such an organization contradicts to Objective Linda's property of non{inter-secting object spaces which would prevent servers being represented in more than one objectspace. Instead, Web servers could create active objects as \proxy agents" which could moveinside the object space hierarchy into the object spaces in which servers wish to be \classi�ed".Such a scheme would again be superior to others because there is no centralized informationrepository. Instead, information providers themselves would be responsible for and able tomake their information accessible in ways suitable for them. Furthermore, a client's informationsearch could also be performed by an active agent object which moves around in the object spacehierarchy.As a last step, the WWW servers themselves could be organized as object space hierarchiesin order to simplify and to improve the information retrieval tasks performed by them.
13



ConclusionIn this paper we introduced the coordination model Objective Linda. Therefore, we discussedthe notion of coordination in the context of open distributed systems which are characterized byheterogeneous components as well as dynamically changing con�gurations. We identi�ed activeobjects and generative communication as necessary elements of coordination models for opendistributed systems whereas homogeneity and hierarchical abstractions have to be considered asvital requirements for building really large systems. We then introduced Objective Linda whichconsequently realizes these properties by providing a coordination model in which communicationis performed generatively in hierarchies of nested homogeneous objects.In Objective Linda, uncoupled communication, encapsulated objects, a language{indepen-dent description of object classes, and the possibility to implement object spaces di�erently inorder to suit the needs of various concurrent systems by inheriting from the general class forobject spaces all together contribute to programming open distributed systems with powerfuland exible abstractions.References[1] Gul Agha, Carl Hewitt, Peter Wegner, and Akinori Yonezawa, editors. Proc. of the ECOOP{OOPSLA Workshop on Object{Based Concurrent Programming, Ottawa, Canada, 1990.Published as OOPS Messenger2(2), 1991.[2] Gul Agha, Peter Wegner, and Akinori Yonezawa (Eds.). Research Directions in ConcurrentObject{Oriented Programming. MIT Press, Cambridge, Mass., 1993.[3] J. M. Andreoli, P. Ciancarini, and R. Pareschi. Interaction Abstract Machines. In ResearchDirections in Concurrent Object{Oriented Programming [2], pages 257{280.[4] G. Andrews. Synchronizing Resources. ACM Transactions on Programming Languages andSystems, 3(4):405{430, 1981.[5] Nicholas Carriero, David Gelernter, Susanne Hupfer, and Lenore Zuck. Bauhaus{Linda. InProc. of ECOOP'94 Workshop on Languages and Models for Coordination, Bologna, Italy,1994.[6] David Gelernter. Generative Communication in Linda. ACM Transactions on ProgrammingLanguages and Systems, 7(1):80{112, 1985.[7] David Gelernter. Multiple Tuple Spaces in Linda. In E. Odijk, M. Rem, and J.-C. Syre,editors, PARLE'89, Parallel Architectures and Languages Europe, number 366 in LectureNotes in Computer Science, pages 20{27, Eindhoven, The Netherlands, 1989. Springer.[8] David Gelernter and Nicholas Carriero. Coordination Languages and their Signi�cance.Communications of the ACM, 35(2):96{107, 1992.[9] R. Guerraoui, O. Nierstrasz, and M. Riveill, editors. Proceedings of the ECOOP '93 Work-shop on Object{Based Distributed Programming, number 791 in Lecture Notes in ComputerScience, Kaiserslautern, Germany, 1993. Springer.14



[10] ISO/IEC JTC1/SC21/WG7. Information Technology { Open Distributed Processing { ODPTrading Function. Draft ISO/IEC Standard 13235, Draft ITU{T Recommendation X.9tr,July 1994.[11] ISO/IEC JTC1/SC21/WG7. Reference Model of Open Distributed Processing. DraftISO/IEC Standard 10746{1 to 10746{4, Draft ITU{T Recommendation X.901 to X.904,July 1994.[12] Keld K. Jensen. Towards a Multiple Tuple Space Model. PhD dissertation, Aalborg Uni-versity, Dept. of Mathematics and Computer Science, Inst. for Electronic Systems, FredrikBajers Vej 7E, DK-9220 Aalborg �, Denmark, 1994.[13] Satoshi Matsuoka and Satoru Kawai. Using Tuple Space Communication in DistributedObject-Oriented Languages. In ACM Conference Procedings, Object Oriented ProgrammingSystems, Languages and Applications, San Diego California, pages 276{284, 1988.[14] Satoshi Matsuoka and Akinori Yonezawa. Analysis of Inheritance Anomaly in Object{Oriented Concurrent Programming Languages. In Research Directions in ConcurrentObject{Oriented Programming [2], pages 107{150.[15] Bertrand Meyer. Object{oriented Software Construction. Prentice Hall, New York, 1988.[16] Bertrand Meyer. Ei�el the Language. Prentice Hall, 1992.[17] Object Management Group. The Common Object Request Broker: Architecture and Spec-i�cation. OMG Document Number 93.12.43, 1993.[18] Open Software Foundation. Introduction to OSF DCE. Open Software Foundation, Cam-bridge, USA, 1992.[19] Michael Papathomas. Concurrency in Object{Oriented Programming Languages. InO. Nierstrasz and D. Tsichritzis, editors, Object-Oriented Software Composition, chapter 2,pages 31{68. Prentice Hall, 1995.[20] Andreas Polze. The Object Space Approach: Decoupled Communication in C++. InProc. of Technology of Object{Oriented Languages and Systems (TOOLS) USA'93, SantaBarbara, 1993. Prentice Hall.[21] Andrew S. Tanenbaum. Distributed Operating Systems. Prentice Hall, 1995.[22] Robert Tolksdorf. Coordination in Open Distributed Systems. PhD dissertation, TechnicalUniversity of Berlin, Berlin, Germany, 1994.[23] Akinori Yonezawa and Mario Tokoro, editors. Object{Oriented Concurrent Programming.The MIT Press, Cambridge, Mass., 1987.
15


