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In this article we present a novel surface reconstruction method for particle-
based fluid simulators such as smoothed particle hydrodynamics. In particle-
based simulations, fluid surfaces are usually defined as a level set of an
implicit function. We formulate the implicit function as a sum of anisotropic
smoothing kernels, and the direction of anisotropy at a particle is determined
by performing Principal Component Analysis (PCA) over the neighboring
particles. In addition, we perform a smoothing step that repositions the
centers of these smoothing kernels. Since these anisotropic smoothing ker-
nels capture the local particle distributions more accurately, our method
has advantages over existing methods in representing smooth surfaces, thin
streams, and sharp features of fluids. Our method is fast, easy to imple-
ment, and our results demonstrate a significant improvement in the quality
of reconstructed surfaces as compared to existing methods.
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1. INTRODUCTION

It is becoming increasingly popular to create animated liquids
using physics-based simulation methods for feature film effects
and interactive applications. There exist two broad categories for
simulation methods based on their different approaches to spatial
discretization: mesh-based methods and mesh-free methods. In
mesh-based methods, the simulation domain is discretized into
mesh grids and the values of physical properties on grid points are
determined by solving the governing equations. In mesh-free meth-
ods, on the other hand, the fluid volume is discretized into sampled
particles that carry physical properties and that are advected in
space by the governing equations. In recent years, mesh-free
methods have become a competitive alternative to mesh-based
methods due to various advantages such as their inherent mass
conservation, the flexibility of simulation in unbounded domains,
and ease of implementation. Among various mesh-free methods,
Smoothed Particle Hydrodynamics (SPH) is the most popular
approach for simulating fluid since it is computationally simple and
efficient compared to others. In computer graphics, SPH has been
successfully used for the simulation of free-surface fluids [Müller
et al. 2003], fluid interface [Müller et al. 2005; Solenthaler and
Pajarola 2008], fluid-solid coupling [Müller et al. 2004b, Lenaerts
et al. 2008; Becker et al. 2009b], deformable body [Becker et al.
2009a], multiphase fluid [Müller et al. 2004a; Keiser et al. 2005;
Solenthaler et al. 2007], and fluid control [Thürey et al. 2006].

Although SPH has been used to simulate various fluid phenom-
ena, extracting high-quality fluid surfaces from the particle loca-
tions is not straightforward. Classical surface reconstruction meth-
ods have difficulties in producing smooth surfaces due to irregularly
placed particles. Few researchers have successfully addressed this
issue of reconstructing smooth fluid surfaces from particles. In this
article, which is an expanded version of our earlier paper [Yu and
Turk 2010], we propose a novel surface extraction method that sig-
nificantly improves the quality of the reconstructed surfaces. Our
new method can create smooth surfaces and thin streams along with
sharp features such as edges and corners. The key to our method
is to use a stretched, anisotropic smoothing kernel to represent
each particle in the simulation. The orientation and scale of the
anisotropy is determined by capturing each particle’s neighborhood
spatial distribution. We obtain the neighborhood distribution in the
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Fig. 1. Water splash. Top: Particle view. Middle: Opaque rendereing from our surface reconstruction. Bottom: Transparent rendering.

form of covariance tensor and analyze it through Principle Com-
ponent Analysis (PCA). We then use these principal components
to orient and scale the anisotropic kernel. We adjust the centers of
these kernels using a variant of Laplacian smoothing to counteract
the irregular placement of particles. A new density field is then
constructed by the weighted mass contribution from the smoothing
kernels. Finally, the renderable surface is reconstructed from the
iso-surface of the given density field. We show that our new method
leads to the realistic visualization of fluid surfaces and that it outper-
forms existing methods for handling smooth and thin surfaces with
sharp features. The simplicity and efficiency of our method facili-
tates the incorporation of our method with existing SPH simulation
schemes with little additional effort.

2. RELATED WORK

Because the surface representation of a fluid is crucial for realistic
animation, methods for reconstructing and tracking fluid surfaces
have been a topic of research since fluid simulation was first intro-
duced in computer graphics. In mesh-based simulation frameworks,
numerous methods have been proposed such as level-set methods
[Osher and Fedkiw 2002], particle level-set methods [Enright et al.

2002a, 2002b, 2005], semi-Lagrangian contouring [Strain 2001;
Bargteil et al. 2006], Volume-Of-Fluid methods (VOF) [Hirt and
Nichols 1981] and explicit surface tracking [Brochu and Bridson
2006, 2009; Wojtan et al. 2009; Müller 2009].

In mesh-free (Lagrangian) simulation frameworks, Blinn [1982]
introduced the classic blobby spheres approach. In this method, an
iso-surface is extracted from a scalar field that is constructed from a
sum of radial basis functions that are placed at each particle center.
One of the drawbacks of Blinn’s original formulation is that high
or low densities of particles will cause bumps or indentations on
the surface. Noting this problem, Zhu and Bridson [2005] modify
this basic algorithm to compensate for local particle density varia-
tions. They calculate a scalar field from the particle positions that
is much like a radial basis function that is centered at a particle. For
a given location in space, they calculate a scalar value from a basis
function whose center is a weighted sum of nearby particle centers,
and whose radius is a weighted sum of particle radii. They then
sample this scalar distance function on a grid, perform a smooth-
ing pass over the grid, and then extract an iso-surface mesh from
the grid. Their results are considerably smoother than the classic
blobby spheres surface. Adams et al. [2007] further improved upon
the method of Zhu and Bridson by tracking the particle-to-surface
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distances over time. Specifically, they retain a sampled version of a
signed distance field at each time step, and they use this to adjust per-
particle distances to the surface. They perform particle redistancing
by propagating the distance information from surface particles to
interior particles using a fast marching scheme. The final surface is
from the Zhu and Bridson scalar field, but calculated using these
new per-particle distances. This method is successful at generating
smooth surfaces both for fixed-radius and adaptively sized particles.

One drawback of these aforementioned methods is a typical as-
sumption that the smoothing kernel of each particle is isotropic,
and the spherical shape of the kernel makes it difficult to produce
flat surfaces and sharp features. In contrast to these methods, our
approach uses anisotropic kernels to stretch spheres into ellipsoids
in order to alleviate those limitations.

Desbrun and Cani-Gascuel [1998] and Premoze et al. [2003] use a
different surface tracking method in which a scalar field is advected
on a Eulerian grid. Unfortunately this approach is more difficult to
use for unbounded simulations.

Recently, an alternative method of surface reconstruction was
proposed by Williams [2008]. In his method, a nonlinear optimiza-
tion problem is solved iteratively to achieve global smoothness on
surface mesh. An important contribution of the method is that the
perfectly flat surfaces can be generated under certain conditions.
Sin et al. [2009] use a level-set variant of the original method to
alleviate the problem of temporal coherence. This method is ex-
tended in the work of Bhattacharya et al. [2011], in which they
minimize thin-plate energy on an implicit level-set surface instead
of smoothing an explicit mesh.

The idea of using anisotropic particles for surfacing of particle-
based fluids was first reported in the work of Museth et al. [2007].
In their work, a similar technique to our approach was introduced
where implicit ellipsoids are derived as eigenvalues and eigenvec-
tors of a covariant matrix, and these ellipsoids are used to reduce
the blobby look of the surfaces.

After the earlier version of our article was published [Yu and Turk
2010], Müller and Chentanez [2011] used the anisotropy concept
presented in our original paper to create tight collision volumes for
point-based solids, and this shows that this approach is applicable
to solids as well. Our approach was also discussed in the work of
Chris et al. [2011] as prior work on Lagrangian surface tracking.

Our anisotropic kernel approach is inspired by the work of Owen
et al. [1995] and Liu et al. [2006]. They adapt anisotropic kernels to
simulate large deformations of materials in the SPH framework, and
their primary interest is in simulation accuracy. In their approach,
the axes of their anisotropic kernels evolve in time according
to the strain-rate tensor estimates. Our approach is also related to
the work of Kalaiah and Varshney [2003] and Dinh et al. [2001].
Kalaiah and Varshney apply PCA to point clouds for point-based
modeling. Dinh et al. reconstruct surfaces from voxel carving data
by combining anisotropic kernels with variational implicit surfaces.

3. SPH FRAMEWORK

In SPH, the fluid volume is described as a set of particles with
prescribed masses. In a given simulation step, physical quantities
such as density and pressure are represented by values that are
associated with each particle. For particle i at location xi , the density
ρi is interpolated by a sum of the weighted contributions of nearby
particle masses mj .

ρi =
∑

j

mjW (xj − xi , hj ), (1)

where W is the smoothing kernel and hj is the smoothing radius
associated with particle j . The pressure pi of particle i is typically
described as a function of the density of the fluid such as given by
the Tait equation [Monaghan 1994], which is

pi = kρ0

((
ρi

ρ0

)γ

− 1

)
, (2)

where k and γ are stiffness parameters and ρ0 is the rest density
of the fluid. In the SPH framework, the Navier Stokes equation,
discretized on particle locations, becomes an Ordinary Differential
Equation (ODE) of the form

ρi

∂vi

∂t
= −〈∇p〉(xi) + μ〈�v〉(xi) + f ext

i , (3)

where vi is the velocity, f ext
i is an external force (such as gravity),

μ is the viscosity constant, and 〈∇p〉(xi) and 〈�v〉(xi) are approx-
imations of the pressure gradient and the velocity Laplacian at xi

in the SPH framework. For various approximations of differential
operators in SPH framework, we refer the readers to Adams and
Wicke [2009].

In this article, we simulate all of our examples using the Weakly
Compressible SPH (WCSPH) framework [Becker and Teschner
2007]. Note that our method can be used with any SPH framework,
as long as the simulator provides particle positions, radii, masses,
and densities. In the case that mass and radius are global constants,
our approach can be generalized to work with other Lagrangian
simulation frameworks such as Particle-in-Cell (PIC) and Fluid-
Implicit Particle (FLIP) [Zhu and Bridson 2005].

4. SURFACE RECONSTRUCTION

4.1 Surface Definition

Our surface definition is based on the approach proposed in Müller
et al. [2003], where the surface is defined as an iso-surface of a
scalar field

φ(x) =
∑

j

mj

ρj

W (x − xj , hj ), (4)

and W is an isotropic smoothing kernel of the form

W (r, h) = σ

hd
P

(‖r‖
h

)
. (5)

In the preceding equation, σ is a scaling factor, d is the dimension
of the simulation, r is a radial vector, and P is a symmetric de-
caying spline with finite support. The scalar field φ(x) is designed
as a normalized density field that smooths out the scalar value of
1 at each particle’s position over a continuous domain, and an iso-
surface from φ(x) gives a surface representation that coats the par-
ticles. However, the resulting surfaces often have bumps, and there
are two reasons for this. First, the irregular placement of particles
makes it difficult to represent an absolutely flat surface. Although
irregular sampling is an essential feature of any Lagrangian scheme,
this irregularity of the positions of the boundary particles can make
surfaces appear blobby. Second, the spherical shape of the smooth-
ing kernels is not suitable to describe the density distribution near
a surface. That is, in order to correctly model surface geometry, it
is necessary for the density of the near-surface particles to decrease
at different rates in different directions.

To resolve the problem of irregular particle placement, we apply
one step of diffusion smoothing to the location of the kernel cen-
ters. This process can be interpreted as a 3D variant of Laplacian
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smoothing as described in Taubin [2000], and has the effect of de-
noising point clouds. The updated kernel centers xi are calculated
by

xi = (1 − λ)xi + λ
∑

j

wij xj /
∑

j

wij , (6)

where w is a suitable finite support weighting function and λ is a
constant with 0 < λ < 1. We use λ between 0.9 and 1 in our ex-
amples to maximize the smoothing effect. Note that this smoothing
process is used only for surface reconstruction, and the averaged
positions are not carried back into the simulation. Typically, Lapla-
cian smoothing results in volume shrinking, and our approach also
shrinks the fluid volume slightly by moving the kernels for bound-
ary particles towards the inside. However, in contrast to level-set
methods, our approach does not shrink volume continuously as the
simulation evolves. Furthermore, the analysis in Appendix A shows
that the maximum distance from our reconstructed surfaces to the
original particle positions is within a small constant of the particle
radius scale.

To cope with the problem of density distributions near the sur-
face, our new approach is designed to capture the density distri-
bution more accurately by allowing the smoothing kernels to be
anisotropic. By replacing h with a d × d real positive definite ma-
trix G, we can simply redefine W to be an anisotropic kernel

W (r, G) = σdet(G)P (‖Gr‖). (7)

The linear transformation G rotates and stretches the radial
vector r. Therefore W (r, G) becomes an anisotropic kernel, and
iso-surfaces of W are ellipsoids instead of spheres. Note that the
isotropic kernel can be treated as a special case of the anisotropic
kernel by letting G = h−1I where I is an identity matrix. The
key idea of our new method is to associate an anisotropy matrix
G with each particle so that for particle j , Gj describes better the
neighborhood density distribution.

Once all Gj ’s and xj ’s have been computed, we extract an iso-
surface from a redefined scalar field

φnew(x) =
∑

j

mj

ρj

W (x − xj , Gj ). (8)

It is necessary to point out that the equation of W is depending on
the SPH simulation, since different SPH schemes can use different
W ’s for density computation. For our examples, we use the B-cubic
spline kernel from Becker and Teschner [2007].

4.2 Determining the Anisotropy

As mentioned in the previous subsection, our new approach deter-
mines an anisotropy matrix G for each particle in order to more
accurately describe the density distribution around the particle. For
example, in the neighborhood of a particle that is inside the fluid
volume, the density is likely to be constant in all directions, mak-
ing the corresponding G a scalar multiple of an identity matrix to
keep the smoothing kernel W isotropic. On the other hand, around
a particle that is near a flat surface, the particle density will decay
faster along the normal axis than along the tangential axes. Then G
should stretch W along the tangential axes and shrink W along the
normal axis. At a sharp feature, the density will decay sharply in
several directions, and G should shrink W in order to capture the
sharp feature. See Figure 2 for a comparison between isotropic and
anisotropic kernels that are near the surface of a region of fluid.

In order to determine G, we apply the weighted version of Prin-
cipal Component Analysis (WPCA) that is proposed in Koren and
Carmel [2003] to the neighborhood particle positions. A drawback

Fig. 2. Comparison between the surface reconstruction using isotropic
kernels (a) and our anisotropic kernels (b). Top row: the surface of SPH
particles from a single dam break simulation. Bottom row: Illustration of
particles at the top right corner. The shape of a particle in (b) represents the
anisotropy of the corresponding smoothing kernel. Note that our approach
constructs a flat surface with sharp edges and corners from properly stretched
particles.

of the conventional PCA is its sensitivity to outliers, and it often
produces inaccurate information when the number of samples is
small and the sample positions are noisy, which commonly happens
in particle-based fluids. In contrast, WPCA achieves significant ro-
bustness towards outliers and noisy data by assigning appropriate
weights to the data points. Specifically, WPCA begins by comput-
ing a weighted mean of the data points. Next, WPCA constructs
a weighted covariance matrix C with a zero empirical mean and
performs an eigendecomposition on C. The resulting eigenvectors
give the principal axes, and the eigenvalues indicate the variance
of points along the corresponding eigenvalues. We then construct
an anisotropy matrix G to match the smoothing kernel W with the
output of WPCA.

In our approach, the weighted mean xw
i and the covariance matrix

Ci of particle i are formulated as

Ci =
∑

j

wij (xj − xw
i )(xj − xw

i )T /
∑

j

wij , (9)

xw
i =

∑
j

wij xj /
∑

j

wij . (10)

The function wij is an isotropic weighting function with respect
to particle i and j with support ri .

wij =
{

1 − (‖xi − xj‖)/ri)3 if ‖xi − xj‖ < ri

0 otherwise
(11)

With the finite support of wij , the computation is confined to
the neighborhood particles within the radius ri . In our examples,
we choose ri to be 2hi in order to include enough neighborhood
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Fig. 3. Melted chocolate falling on a bunny.

particles and obtain reasonable anisotropy information. This kernel
is also used to compute the averaged position of the particles in
Eq. (6).

With each particle, the Singular Value Decomposition (SVD) of
the associated C gives the directions of stretch or compression for
deforming the smoothing kernel W in terms of eigenvectors and
eigenvalues. The SVD yields

C = R	RT , (12)

	 = diag(σ1, . . . , σd ), (13)

where R is a rotation matrix with principal axes as column vectors,
and 	 is a diagonal matrix with eigenvalues σ1 ≥ . . . ≥ σd . In order
to deal with singular matrices and prevent extreme deformations, we
check whether σ1 ≥ krσd with a suitable positive constant kr > 1.
This condition is true when the largest variance in one principal axis
is much bigger than the smallest variance in another axis. In this
case, we modify C so that the ratio between any two eigenvalues is
with in kr . Also, when the number of particles in the neighborhood
is small, we reset W to a spherical shape by setting G = knI in order
to prevent poor particle deformations for nearly isolated particles.
In addition, we multiply C by scaling factor ks such that ‖ksC‖ ≈ 1
for the associated particle inside fluid volume, in order to keep
the volume of W constant for particles with the full neighborhood.
The aforementioned processes are formulated as follows to obtain
a modified covariance matrix C̃. We have

C̃ = R	̃RT (14)

	̃ =
{

ksdiag(σ1, σ̃2, . . . , σ̃d ) if N > Nε,

knI otherwise
(15)

where σ̃k = max(σk, σ1/kr ), N is the number of neighboring parti-
cles, and Nε is a threshold constant. In our examples, we use kr = 4,
ks = 1400, kn = 0.5, and Nε = 25.

In order to make the kernel W of particle i deform according to
C̃i , Gi must be an inversion of C̃i and scaled by 1/hi to reflect the
original radius of particle i. Then our approach produces Gi as a
symmetric matrix of the form

Gi = 1

hi

R	̃−1RT . (16)

4.3 Alleviating Attraction Artifact

Our particle relocation approach improves the qualify of fluid sur-
faces by denoising particle samples. However, as a side-effect, the
particle relocation may introduce unphysical attraction effects be-
tween fluid components. These artifacts are mainly noticeable in
the case where two separate fluid components are approaching one
another. When two separate fluid components become closer than
the radial support ri of Eq. (11), particles in one component begin to
classify particles in the other component as neighbors, and thus are
moved closer to the other component by the relocation step. This
artifact occurs because we use a large support ri = 2hi , where hi is
approximately twice the average particle spacing ra . Therefore, the
relocation step pulls particles together even when they are further
apart than ra , as long as they are within the range of 4ra .

In order to alleviate this problem, we use a Connected Component
(CC) algorithm to mark simulation particles. We define two particles
i and j as being connected if ‖xi − xj‖ ≤ ra . For a given particle,
other connected particles are those neighboring particles within
ra . These nearby particles are easily identified by a neighborhood
search. Starting with a seed particle, we compute its CC by a depth-
first search graph traversal, and we label these connected particles
with the index of the seed particle. To find all the CC’s, we iterate
through all the particles, and start a new traversal whenever we find
a particle that has not yet been labeled. Once all of the particles
have been labeled, we use a modified version of the weight wij of
Eq. (11) that uses the CC information. Let the label of a particle i
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Fig. 4. Merging spheres. Top: Not accounting for components. Bottom:
Correction using connected components.

be denoted by ci . The definition of wij is then modified to be

wij =
{

1 − (‖xi − xj‖)/ri)3 if ‖xi − xj‖ < ri and ci = cj .

0 otherwise
(17)

With modified wij , the covariance matrix Ci and the anisotropic ker-
nel W (x−xi , Gi) is no longer affected by the neighbors that belong
to different components. As a comparison between the original ap-
proach and the modified CC approach, Figure 4 shows two spheres
approaching each other. As shown in the top row, the two spheres
begin attracting each other before the collision when not using the
CC labels. In contrast, the bottom row shows that the CC approach
avoids this artifact and delays the merge due to the collision until
the two spheres are much closer. This simulation used 23k particles.
The overhead imposed by the CC computation is rather small. On
average, the CC computation required 0.17 seconds per frame,
while the surface reconstruction took 1.69 seconds per frame.

5. IMPLEMENTATION

We use the marching cubes algorithm [Lorensen and Cline 1987]
to create a mesh that represents the fluid surface from the scalar
field of Eq. (8). We represent obstacles as signed distance fields for
collision detection with particles.

5.1 Singular Value Decomposition

In order to capture the anisotropy for each particle, a robust and effi-
cient SVD algorithm needs to be implemented. In our 3D examples,
we use Cardano’s method [Smith 1961; Kopp 2008] to determine
three singular values of the symmetric matrix C of Eq. (12).
Although iterative methods such as two-sided Jacobi or QL are
numerically more stable, Cardano’s method is efficient because
it analytically determines singular values, and it is robust enough
for our approach because C is not ill-conditioned in most cases.
From Cardano’s method, we obtain three singular values σ1, σ2, σ3

(Eq. (13). Then we use a cofactor matrix of C − σiI to determine
a corresponding normalized singular vector vi [Carchid 1986].

Since the cofactor method works best for singular values of mul-
tiplicity one, we identify different cases based upon the multiplicity
of the singular values. Let us denote the machine precision by ε, and
define a relation a ≈ b to be true when |a−b| < εa. When σ1 ≈ σ3

we assume that the three singular values are nearly identical, and
we set the singular vectors to be the column vectors of an identity
matrix. When σ1 	≈ σ2 and σ2 ≈ σ3, we compute a singular vector
v1, and choose v2 and v3 as two arbitrary orthonormal vectors in the
plane normal to v1. The other multiplicity two case is handled by

exchanging σ1 and σ3 in the previous case. If the singular values do
not match any of the previous cases, we assume that they all have
multiplicity one. We first compute v1 and v3. In order to correct the
numerical error, we make sure that v1 are v3 orthogonal by comput-
ing v3 −v1(v1 ·v3) and using this as an updated version of v3. The re-
maining singular vector v2 is computed by the cross-product v1×v3.

5.2 Neighborhood Search

For neighborhood searches, we use a variation of the hash grid
described in Adams and Wicke [2009] that handles the ellipsoidal
support of our smoothing kernels. At every reconstruction step,
we first compute an Axis Aligned Bounding Box (AABB) for the
ellipsoid that is associated with each particle. Then we select the
uniform grid cells that overlap with the AABB and retrieve the hash
grid cells corresponding to these selected cells. We then store an
index of the particle in these retrieved cells. In order to find the
neighboring particles at an given point, we determine the hash grid
cell that contains the point, examine the particles whose indices are
stored in the cell, and tag as neighbors the ones whose ellipsoids
contain the point.

5.3 Optimization of Performance

One bottleneck of our approach is that we perform SVD on all par-
ticles in order to stretch them. A simple performance optimization
is to only create stretched particles near the surface of the fluid, and
not in the fluid bulk, in order to accelerate the process of surface
reconstruction. When simulation particles are regularly sampled,
we use a simple criterion to isolate the near-surface particles: For
a particle i, we count the number N of neighborhood particles
within the smoothing radius ri and compute the center of mass m
of these particles. A particle i is tagged as near-surface particles if
|N − Ns | > 0.1Ns or ‖m − xi‖ > 0.1ri , where Ns is the number
of neighborhood particles for an inner-volume particle with rest
density. Once all of the particles have been examined, we perform
SVD only on the tagged particles, while untagged particles remain
unstretched using G = I.

Another bottleneck of our approach comes from the evaluation
of the scalar field φ at the marching cubes grid points. In contrast
to the isotropic kernel, the anisotropic kernel involves an extra
matrix-vector multiplication ‖G(x − xi)‖, and the scalar field
value at one grid point is usually contributed to by multiple
neighborhood kernels. In order to reduce this extra computational
cost, we first introduce a fast exclusion test to check whether a
grid point is out of the smoothing kernel support, formulated as
‖G(x − xi)‖ > hi . Because G transforms a sphere into an ellipsoid,
the smallest singular value σmin of G determines a radius of the
inner sphere bounded by an ellipsoid that is transformed from the
unit sphere. Therefore σmin‖(x − xi)‖ > hi is a sufficient condition
for ‖G(x − xi)‖ > hi , and a matrix-vector multiplication can be
avoided when this condition holds. In addition to the exclusion test,
we further reduce the computation cost by observing that the value
of φ is close to zero near the surface and increases to one towards
the inside of the fluid volume. Therefore, we can assume that a
grid point at x is inside the volume and far away from the surface
if φ(x) > t , where t is a positive threshold less than one. At each
grid point, we start adding contributions from the nearby particles
to the grid point’s scalar value. Once the scalar value reaches t ,
we stop adding contributions for the remaining particles and use t
as a scalar field value for the point. For our simulation examples,
the value t = 0.2 is used. This technique eliminates many of the
smoothing kernel evaluations for a given simulation. We refer
readers Section 6 for the timings on the performance improvement.

ACM Transactions on Graphics, Vol. 32, No. 1, Article 5, Publication date: January 2013.



Reconstructing Surfaces of Particle-Based Fluids Using Anisotropic Kernels • 5:7

Fig. 5. Falling armadillo and bunny (one million particles).

Fig. 6. Double dam break simulation.

6. RESULTS

In this section, we describe five simulations that were used to
evaluate our surface reconstruction method: a water crown, flow on
the bunny, a double dam break, falling figures, and agitated water.
All of our surface reconstruction algorithms were run on a 2.4 GHz
Intel Core2 Duo CPU with 1.72GB of memory. We use NVIDIA
Gelato for rendering the resulting animations except the case of
Figure 8 and Figure 5 which were rendered with Maya. All of our
results but the agitated water were simulated using the Weakly
Compressible SPH (WCSPH) approach of Becker and Teschner
[2007]. We used a fixed time step of 0.0002s for running our simu-
lations. The agitated water example was created by Robert Bridson
at University of British Columbia using Naiad simulator. For the
double dam break example, we present an interactive animation cre-
ated by Simon Green at NVIDIA, who parallelized our method on
the GPU.

Figure 1 shows an animation of a small drop of water that splashes
into a larger body of water, causing a water crown. Only 24k parti-
cles were used to create this simulation. Note that even at this low
particle count, the particle-based nature of the simulation is difficult
to discern from the images. Our anisotropic kernel reconstruction
of the surface creates a water crown that is smooth and unbroken
near its base, and produces plausible pinch-off at the top. When the
fluid rebounds in the center, a thin spike of water is maintained due

Fig. 7. Interactive double dam break (image courtesy of Simon Green).

to the stretching of the smoothing kernels along the spike’s axis.
When the water settles, the surface is smooth.

Figure 3 shows a viscous fluid that is poured over the Stanford
bunny. The fluid sheet that falls runs off the bunny is thin, usually
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Fig. 8. This animation shows water spilling out of a spherical source and being agitated in a pool. FLIP was used to simulate this sequence, and it contains
ten million particles. (This Naiad simulation data is courtesy of Robert Bridson and Exotic Matter AB.)

Table I. Average per Frame Timings (in minutes) and
Speed Gains for Optimized Surface Reconstruction

Methods on Two Examples

Falling Figures Agitated Water

Marching Cubes 0.59[3.09], 5.2x 5.40[23.90], 4.4x

Anisotropy 0.83[1.07], 1.3x 12.71[-], -

Total 1.42[4.16], 2.9x 18.11[36.61], 2.0x
The timings for unoptimized methods are shown in brackets.

just one particle thick, and yet the sheet is flat and smooth. In
this sheet, the kernels are stretched in the two dimensions that run
parallel to the sheet, and are compressed perpendicular to the sheet.

In the animation of Figure 5, we demonstrate the performance of
our approach on a large-scale simulation with one million particles.
Two fluid versions of the bunny and the armadillo fall down an
inclined plane into a pool. In this example, our optimization tech-
niques from Section 5.3 are used. Table I shows the improvement
on the timings when these optimization techniques are applied.

Our next simulation is a double dam break (Figure 6), in which
two blocks of water at opposite sides of a tank are suddenly released.
The two parcels of water rush towards each other, collide in the
center of the tank, and this throws up a thin sheet of water that runs
diagonally across the tank. Similar to the bunny simulation, this thin
sheet is often just one particle thick.

Figure 7 shows an interactive animation of the double dam break,
using NVIDIA’s CUDA as our parallel programming architecture.
For the surface reconstruction, a CUDA kernel with a thread per par-
ticle is used for point denoising and anisotropic kernel computation.
The fluid surfaces are rendered using ray-casting in a pixel shader
instead of marching cubes. For each particle, only a bounding quad
is rendered. The pixel shader calculates the intersection between
the view ray and the ellipsoid (defined by the matrix), and also cal-
culates the depth and surface normal. 128k particles were used for
this example. The simulation, surface reconstruction, and rendering
were simultaneously run on a GeForce GTX 460 video card and the
interactive frame rate of 25fps was achieved. This example success-
fully demonstrates that parallelizing the surface creation process
is simple and effective, since the approach only depends on local
information about particle information.

In the animation of Figure 8, we show the result of our approach
applied to an example that was simulated using FLIP. The fluid
falls down from an emitter in the air into a pool, and it is agitated
by an elongated block inside the pool. The simulation was run on
a 2.3 GHz Intel Core i7 MacBook Pro laptop (4GB 1333 MHz
DDR3 RAM). There were ten million particles used by the end
of the simulation, and simulating each rendering frame took about
15 minutes per frame in worst case with 3.3 million grid voxels.
A maximum of roughly 20 particles per voxel were allowed and
the regularization was performed by deleting particles from overly
full voxels. During emission, particles near the surface were also
supersampled. This example demonstrates that our approach is not
specific to SPH, but is also applicable to FLIP, which is widely
used in production studios. Because particles near the surface were
adaptively sampled during the emission, the simple optimization of
isolating near-surface particles from Section 5.3 was not applicable
for this example. However the other optimization to the evaluation
of the scalar field was used, and the improvement in timings are
shown in Table I.

6.1 Comparison and Limitations

Figure 9 shows a comparison between an isotropic surface re-
construction approach [Müller et al. 2003], Zhu and Bridson’s
approach [2005], the method of Adams et al. [2007], and our
anisotropic kernel approach. The simulation that is used for com-
parison is the double dam break simulation with 140K particles.
As the figure shows, the isotropic reconstruction method produces
unacceptably bumpy surfaces. Zhu and Bridson’s approach creates
noticeably smoother surfaces, but some surface bumps are still ap-
parent. In fairness to their method, Zhu and Bridson also perform
a small amount of additional grid-based smoothing that we have
omitted. The method of Adams et al. produces a still smoother
surface, and this method creates the highest-quality surfaces from
among the prior methods that we have tested. Our anisotropic kernel
method produces surfaces that are even smoother than the method
of Adams et al. Moreover, our method creates a thin sheet of water
in the center of the image that is largely unbroken, where the method
of Adams et al. creates a sheet with many holes in a lace-like pattern.
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Fig. 9. Comparison between different surface reconstruction approaches on the Double dam break animation.

Table II. Average per Frame Timings (in minutes) for Four Surface Reconstruction Methods on the
Double Dam Break Simulation

Reconstruction method Surface reconstruction Simulation Opaque rendering Transparent rendering

Isotropic 0.39

2.19 0.64 20.08
Zhu and Bridson 0.50

Adams 1.76

Anisotropic 0.96

Table II shows timings for the double dam break example.
The dimensions of the marching cubes grid for these results is
230 × 190 × 350. The timings are per-frame averages (in minutes)
across all of the frames of the animation. Our surface reconstruc-
tion approach is roughly twice as expensive as the isotropic kernel
method and Zhu and Bridson’s approach. The method of Adams
et al. is the most time consuming of the four methods, due to the
need to recalculate the signed distance field at a rate of 300 frames
per second. When we dropped this recalculation to a lower rate, the
surface results from the Adams method became noticeably lower in
quality.

In Figure 10, we compare the effects of our approach’s two
main components: diffusion smoothing of particle positions and
anisotropic kernels. The figure shows the result of using just one
of these methods at a time. The top image shows a surface re-
constructed from relocated particles after diffusion smoothing, but
that uses only isotropic kernels. The middle image shows a sur-
face reconstructed using anisotropic kernels, but without performing
any smoothing of the particle positions. The bottom image shows
the result of our full algorithm: a surface reconstructed from relo-
cated particles and with anisotropic kernels. As the figure shows,
the relocation step alone apparently reduces the surface bumps by
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Fig. 10. Comparison between surface reconstruction variations. Top image
shows smoothing of particle positions using isotropic kernels, middle shows
use of anisotropic kernels but no positional smoothing, and bottom shows
both anisotropic kernels and smoothing of the particle positions.

smoothing out irregular particle distributions, but small-scale noise
is still visible due to the spherical shapes of the isotropic kernels.
Even though unaltered particles with anisotropic kernels produce
a smoother surface, the unsmoothed particle positions reveal the

pattern of ellipsoidal particle shapes as ripples on the surface. This
test demonstrates that our approach achieves the maximum qual-
ity in surface smoothness by combining diffusion smoothing and
anisotropic kernels.

There are several limitations to our approach for surface
reconstruction. Perhaps the most important caveat is that the
surfaces that are created using this method contain less volume
than prior approaches. This is due to the averaging of particle
centers. Appendix A gives an analysis of this volume difference,
and demonstrates that a particle near a flat surface will move a
fraction of the smoothing kernel radius hi . Unlike mesh-based
smoothing approaches, however, our method does not shrink the
surface near thin sheets of fluids. Also note that this smaller volume
is only a side-effect of the surface reconstruction process, and it is
not carried into the physics of the simulation.

Even though our method produces surfaces that have less noise
than the other methods that we tested, it is still possible to see small
bumps when the surface is magnified. These slight variations in the
surface can be seen in the pattern of the caustics of the water crown
animation when the water settles. We think that these slight ripples
could easily be smoothed away using mesh-based smoothing, but
we left our meshes unaltered in order to clarify what can be achieved
using anisotropic kernels alone.

7. CONCLUSION AND FUTURE WORK

We have presented a new method of reconstructing surfaces from
particle-based fluid simulations. This method relies on reposition-
ing and stretching the kernels for each particle according to the
local distribution of particles in the surrounding area. Our method
preserves thin fluid sheets, maintains sharp features, and produces
smooth surfaces when the simulated fluid settles. This method is
also competitive in speed compared to other recent techniques for
SPH surface reconstruction.

There are several avenues for future work using this method. One
possibility is to smooth away the slight ripples on the reconstructed
surface by using the smooth particle skinning method [Williams
2008] or its level-set improvement [Sin et al. 2009] on the ellipsoidal
kernel representation. Another challenge is to apply our approach
to particle level-set simulations [Enright et al. 2002]. Finally, it
would be interesting to investigate whether there is a way to carry
texture information along with the surface, as is possible using
semi-Lagrangian contouring [Bargteil et al. 2006].

APPENDIX

A. ANALYSIS OF VOLUME SHRINKAGE

Our surface reconstruction approach applies a smoothing step to
the positions of the kernel centers, and this pulls the kernels on
the boundary towards the bulk of the fluid. Typically, this results
in a slight amount of volume shrinkage when the fluid surface
is reconstructed. In this appendix, we estimate the maximum
distance between the original positions of the kernel centers and
the smoothed positions of the kernels for particles that are on a
flat surface. Suppose that a particle i is located at the origin of
an Eulerian coordinate system and the neighboring particles are
continuously located in a hemisphere of radius ri above the xy
plane. Due to the spatial symmetry, the weighted mean is on the
positive z-axis. We compute the length of the weighted mean
‖xi‖ from Eq. (10) and Eq. (11) using spherical coordinates. The
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numerator and the denominator of ‖xw
i ‖ are formulated as

‖
∑

j

wij xj‖ = π

∫ ri

0

∫ π
2

0
sin 2φ(r3 − r6r−3

i )drdφ, (18)

and ∑
j

wij = 2π

∫ ri

0

∫ π
2

0
sin φ(r2 − r5r−3

i )drdφ. (19)

A simple algebraic manipulation yields

‖xw
i ‖ = 9ri/28. (20)

Using Eq. (6), we estimate a bound between the kernel center
position xi and the updated center position xi after the volume
smoothing by

‖xi − xi‖ = ‖λ(xw
i − xi)‖ ≤ 9λri/28. (21)

With the values λ = 0.9, ri = 2hi that we used in our examples, we
obtain ‖xi − xi‖ ≤ 0.58hi . Since the extracted iso-surface encloses
xi’s, the maximal distance from the reconstructed surface to simula-
tion particles on the surface is less than 0.58hi . This analysis shows
that the volume shrinkage effect will not cause significant visual ar-
tifacts, since hi is small compared to the size of simulation domain.
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MÜLLER, M. 2009. Fast and robust tracking of fluid surfaces. In Proceed-
ings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. ACM, 237–245.
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