
  

 

Abstract — Falls represent an important health problem for 
older adults. This issue continues to generate interest in the 
research and development of fall detection systems. In previous 
work we proposed an acoustic fall detection system 
(acoustic-FADE) that employs an 8-microphone circular array 
to automatically detect falls. Acoustic-FADE has achieved 
encouraging results: 100% detection at 3% false alarm rate in 
laboratory tests. In this paper, we use a dataset from previous 
work to investigate how to further improve AFADE 
performance. To analyze the relationship between fall and 
non-fall signatures we used the improved visual assessment of 
tendency (iVAT) clustering algorithm in conjunction with a 
nearest neighbor based distance to find the most challenging 
false alarms. Then, we employed a genetic algorithm (GA) 
framework to perform feature selection and find the 
mel-frequency cepstral coefficients (MFCC) that improve the 
classification performance. We found that using only three 
MFCC coefficients (1, 28, 29) instead of our previous choice 
(1,2,3,4,5,6) improves the classification performance.  

I. INTRODUCTION 

alls represent an important health problem for older 
adults. One in every three adults over 65 fall each year and 

acquire moderate to severe injuries, such as head traumas and 
hip fractures, that can increase the risk of early death [1-2]. In 
the mean time, less than half of the older adults who fall 
report the issues to the health caregivers [1]. If an older adult 
who lives alone falls onto the floor and is not able to ask for 
assistance in a short period of time, he or she is more likely to 
suffer from hypothermia, dehydration, pressure sores or 
rhabdomyolosis [3]. The large number of unreported falls can 
greatly raise the chances of causing more serious health 
problems due to the delay of the medical intervention. 
Therefore, it is imperative to develop a system that can 
effectively detect a fall as soon as it occurs so that an 
immediate assistance can be provided. 

To address the intervention delay problem, multiple fall 
detection methods have been investigated in the past several 
years. The fall detection systems previously reported consist 
of two types: wearable and non-wearable devices. Most 
wearable devices use accelerometers to detect a fall by 
measuring the applied acceleration along the vertical axis [4]. 
The main advantages of the wearable devices are that they are 
inexpensive and they can be deployed both indoor and 
outdoor. Their main disadvantages are that they can’t be worn 
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during night and they might be rejected by older adults. Many 
non-wearable devices, such as floor vibration sensors [5], 
video cameras [6], infrared cameras [7], bed sensors [8], radar 
sensors [9] and acoustic sensors [10-13] have been 
investigated recently. Of all the non-wearable devices, the 
acoustic sensors have the following advantages: low cost, 
wide “field of view” and night time effectiveness. 

In our latest work [13] we proposed an acoustic fall 
detection system, acoustic-FADE, which is more robust to 
background noises and reverberation effects compared to its 
previous versions [10-12]. In some conditions with low 
background noise such as night time, acoustic-FADE 
achieves 100% detection at 3% false alarm rate. Although 
acoustic-FADE performance is encouraging, we are trying to 
reduce the false alarms further while detecting all the falls. In 
this paper, we try to achieve this goal by analyzing the false 
alarms that “are close” to falls and find ways to remove them. 
We perform closeness analysis by clustering the fall, non-fall 
signature dissimilarity matrix using iVAT. Then, we 
performing feature selection we intend to make these 
false-alarms disappear, i.e. to be classified as non-falls. For 
instance, a ‘backward fall’ and ‘dropping of a book’ may be 
difficult to distinguish if the wrong features are used, 
although they can be easily differentiated by the human ear. 
To reduce the false alarms, we developed a GA-based feature 
selection method to make acoustic-FADE more robust to the 
false alarms and easier to detect falls. 

This paper has the following structure: in Section II we 
describe our acoustic-FADE system, in Section III show the 
experimental methodology, in Section IV we give the results 
and discussion and in Section V we provide conclusions and 
future work. 

II.   DESCRIPTION OF ACOUSTIC-FADE 

The proposed acoustic-FADE consists of two components 
– the acoustic sensor hardware and the data processing 
software. The acoustic sensor hardware consists of 8 
microphones uniformly located along a circular with 25cm 
radius. The picture of the modified version of acoustic-FADE 
hardware is shown in Fig. 1.  
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      (a)       (b)  
Fig. 1.  (a) Front view of acoustic-FADE hardware. (b) Back 
view of acoustic-FADE hardware. 



  

Fig. 1 (a) shows 8 microphone mounted on a wood board 
installed inside a thin box. The processing hardware including 
a DAQ (Data Acquisition) device and an EeeBox PC is 
installed inside the box, on the back of the microphone board, 
as shown in Fig. 1 (b). The sampling frequency of the DAQ is 
set to 20 KHz and each data sample is quantized to 12 bits. 

Details of the data processing algorithm used in 
acoustic-FADE are not relevant for this paper but the 
interested reader is referred to [13].  

III. EXPERIMENTAL METHODOLOGY 

A. Dataset description 

We obtained the approval for our fall detection research 
project (please refer to the University of Missouri Center for 
Eldercare and Rehabilitation Technology- 
http://eldertech.missouri.edu/, for more details) from the 
Institutional Review Board (IRB) of the University of 
Missouri, Columbia. In this paper we use a dataset (see Table 
I) that was collected in a home-like laboratory room [13]. 

 
TABLE I.  DESCRIPTION OF THE DATASET 

ID Fall types  (name format: ‘type’ 
-‘trend’) 

ID Non-fall types

1 Balance-Forwards 21 Closing window 
2 Balance-Backwards 22 Typing keyboard  
3 Balance-Left 23 Key shaking 
4 Balance-Right 24 Machine noise 
5 Lose consciousness-Forwards 25 Phone ringing 
6 Lose consciousness-Backwards 26 Knocking door 
7 Lose consciousness-Left 27 Talking 
8 Lose consciousness-Right 28 Sitting on a bed
9 Trip and fall-Forwards 29 Sitting on a couch
10 Trip and fall-Sideways 30 Sitting on a chair
11 Slip and fall-Forwards 31 Normal walking 
12 Slip and fall-Sideways 32 Slow walking 
13 Slip and fall-Backwards 33 Shoes shuffling 
14 Reach fall (chair)-Forwards 34 Dropping book 
15 Reach fall (chair)-Left 35 Dropping tennis ball 
16 Reach fall (chair)-Right 36 Dropping metal can 
17 Slide fall-Forwards 37 Dropping wood box 
18 Slide fall-Backwards 38 Dropping plastic bottle 
19 Couch fall-Upper body first 39 Rolling a can 
20 Couch fall-Hips first 40 Rolling a plastic bottle 

The dataset consists of 120 fall files (20 types, 6 files per 
type) and 120 non-fall files (20 types, 6 files per type). The 
falls were performed by 3 well-trained stunt actors instructed 
by our nursing staff. Many non-falls in the dataset shown in 
Table I consist in sounds “similar” to a fall (such as dropping 
an object or sitting hard on a piece of furniture) and were 
intentionally introduced to challenge the classifier. Note that 
the non-fall types with ID 21-30 are above-ground sound 
sources while the ones with ID 31-40 are on-the-ground 
sound sources. Details about the data collection methodology 
(how to train stunt actors to fall like elderly, information 
about the stunt actors used in the study, etc) can be found in 
[13].  

B. Dissimilarity matrix calculation 

1) MFCC features 
We calculate the MFCC features of the enhanced signal 

(the enhanced signal is described in [13]) of each file in the 
dataset. The MFCC matrix of the enhanced signal in the pth 
file has the following form [13]: 

, ⋯ ,

⋮ ⋱ ⋮
, ⋯ ,

			 1,2, … ,240     (1) 

where the rows represent the MFCC coefficient index and the 
columns is the sub-frame index. We have previously [13] 
used N=6 MFCC coefficients. In this study, we will determine 
N using a GA framework.  

2) Dissimilarity matrix 
The dissimilarity matrix D calculates the pair-wise distance 

among all the sounds (falls and non-fall) signatures. The 
ordering of the sounds in the matrix is the same as in Table I 
(i.e first 120 sounds represent falls and the last 120 represent 
non-falls). The dissimilarity matrix is computed as: 
										 ,				 , 1,2, … ,240     (2) 

where ‖∙‖ is the Frobenius norm.  is then normalized as 
Dn=D/max(D) and displayed as an intensity image in which 
each pixel represents a dissimilarity value. 

C.  Evaluation of detection effectiveness using iVAT 

The visual assessment of cluster tendency (VAT) 
algorithm [14] is used for determining the cluster tendency or 
the possible number of clusters in a set of objects, based on 
visual assessment. First, the objects are suitably reordered. 
Second the dissimilarity matrix is regenerated based on the 
new order of the objects. Finally, the reordered dissimilarity 
matrix  is normalized and displayed as an intensity image in 
which the dark blocks of pixels along the diagonal indicate 
the cluster tendency. The improved VAT (iVAT) algorithm 
proposed by [15] is used for (harder) cases where VAT fails 
to indicate any cluster tendency. 

In this study, we apply iVAT to the dissimilarity matrix Dn 
to generate the intensity image so that we can better 
understand the patterns of the dataset. In addition, the iVAT 
image can identify which types of falls or non-falls might be 
difficult to classify due to the closeness in the feature space.  

D. GA-based feature selection 

It is well known that the performance of the classifier and 
the computational cost can be greatly improved by feature 
selection. The GA framework is one of the possible solutions 
to the feature selection problem. The main idea of a GA 
framework is to try various feature combinations and choose 
the one the maximized some objective function (called 
“fitness function”). Particular solutions to the problem are 
called individuals or chromosomes. In our case the fitness 
function attempts to minimize the intra-cluster dissimilarity 
and maximize the inter-cluster dissimilarity. Suppose we take 
M MFCCs from N, then the number of possible combinations 
for the M MFCCs is . Then the fitness function of the kth, 

1,… , , combination of M MFCCs ,



  

, 1 , , 2 , … , ,  ( , (m) is the index of mth 
MFCC in the given combination and , ∈ 1, ) can 
be written as 

, 																																																																																																										 3
1

, , , , , , , ,

 

in which  is the dissimilarity matrix defined in III.B and 
∑ ∑  is the average dissimilarity. 

, 1,2 is a weighting factor and satisfies ∑ 1. 
The subscript ‘f’ and ‘nf’ denote a fall and a non-fall, 
respectively. For instance, ,  is the fall-fall sub-matrix of 

 (see Fig. 2). 
By encoding the coefficient indices , (m), m=1, 2,…, M,   

in binary format, an individual has the following form: 
                             , (1)     , (2)       		 , (M)  

                          0	1…1	1	1…0⋯	0	1…0	 
The GA runs by reproducing the ‘fittest’ individuals from 

the previous generation and terminates when the fitness 
doesn’t change significantly. For each M, we obtain the best 
fitness of all generations and the fittest overall individual ,  
(the solution). 

The most interesting part about this feature selection 
procedure is that it is independent of the algorithm employed 
for classification (SVM, neural networks, Bayes, etc). This 
procedure strictly reflects the quality of the features. We 
believe that decoupling the two problems (feature and 
classifier selection) is a better way to analyze a classification 
problem.  

IV. RESULTS AND DISCUSSIONS 

A. (Fall, non-fall) dissimilarity matrix  

The normalized gray intensity image of the dissimilarity 
matrix described in III.B is shown in Fig. 3.  

 
Fig. 2. Normalized gray intensity image of the dissimilarity matrix. 

As we see from Fig. 2, the darker block at the upper left 
indicates that falls have very low dissimilarities with each 
other. On the other hand, non-falls (bottom right block) have 
partially higher dissimilarities among themselves due to the 
variety of activities involved in false alarm production. The 
other two blocks (nonfall-fall and fall-nonfall) indicate higher 
dissimilarities between falls and non-falls although a few 
exception may be noted. 

B. iVAT clustering 

The image of ,	 the iVAT-ed Dn matrix, is shown in Fig. 
3. In Fig. 3, the large darker block included in the red square 
box represents the cluster which includes all falls, which 

means falls are more similar to themselves than to non-falls. 
There are several small darker blocks along the diagonal 
which may indicate several non-fall clusters. To have a better 
understanding of these small clusters, we need to further 
process the iVAT image. 

 
Fig.3. Normalized gray intensity iVAT image (The darker block inside the 
red square box represents the cluster including all falls). 

This could be done by converting the iVAT gray image into 
a binary image based on a properly selected threshold. We 
determine the threshold based on Otsu’s method which tries 
to separate two classes of intensity values by minimizing their 
intra-class variances [16]. The resulting Otsu threshold was 
0.67. The binary iVAT image is shown in Fig. 4. 

 
Fig.4. Binary iVAT image based on the selected threshold (The possible 
clusters are marked by the numbers. The region inside the red square box 
represents all falls in cluster 1 and the outer region of the red square box 
represents nonfalls in cluster 1). 

In Fig. 4, the 6 dark blocks along the diagonal clearly 
indicate 6 possible clusters in the dataset. Clusters 2~6 consist 
of non-falls and cluster 1 consists of both falls and non-falls. 
The non-falls present in cluster 1 are the challenging one 
since they are more similar to falls than to non-falls for the 
given threshold. The cluster number and the included non-fall 
types (type ID, see Table I) are tabulated in Table II.  
TABLE II.  CLUSTERS WITH RESPECT TO THEIR INCLUDED NON-FALL TYPES 

(THE MOST CHALLENGING NON-FALL TYPE IDS ARE HIGHLIGHTED). 
Cluster# 1  2 3 4 5 6 
Type 
IDs 

28,29,30,33 22,23,25, 
27,32 

31 33 35 36, 
37 

In Table II we found that the four most challenging non-fall 
types in the given dataset are: “sitting on a bed”, “sitting on a 
couch”, “sitting on a chair” and “shoe shuffling” (accentuated 
walking). The non-fall types found in the other 5 clusters are 
very dissimilar to falls. The non-fall types not found in any of 
the clusters have more diversity in their feature patterns; 
however, they are dissimilar to falls since they have high 
dissimilarities to falls in the non-block regions in the iVAT 
image (see Fig. 3). 

C. GA-based feature selection 

In the GA framework we set the the initial population size 
to 500, the crossover probability to 0.7, the mutation 
probability to 0.03 and the weighting factors 0.9,
0.1. We chose M=1,2,…,6 coefficients out of 30 coefficients 
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and run GA for each M. The best fitness, the indices of the 
corresponding MFCCs and the challenging non-fall types 
found by their iVATs for each M are tabulated in Table III.  
TABLE III.  THE GA-BASED FEATURE SELECTION RESULTS (THE BEST CHOICE 

IS HIGHLIGHTED). 
M 1  2 3 4 5 6 

,  1 1,27 1,28,29 1,26, 
28,29 

1,17, 
23.27.29 

1,19, 
26,27, 
29,30 

Best fitness 2.71 2.74 2.78 2.72 2.67 2.62 
Challenging 
type IDs 

28,29, 
30,33 

28,29, 
33 

28,29, 
33 

28,29, 
30,33 

28,29, 
30,33 

28,29, 
30,33 

 
As we see in Table III, the best fitness is obtained for M=3. 

Consequently, the best choice of coefficients should be ,  
(1th, 28th and 29th MFCC), which improves the fitness by more 
than 50% from 1.84 obtained using the original model (1st to 
6th MFCCs). It is worth noting that one of the challenging 
non-fall types, “sitting on a chair”, is missing in the new 
model.  

In addition, we found that the first and the last several 
MFCCs (27~30th) are significant in the selected features. 
These observations are in agreement to what we have found 
in previous work [13] that lower MFCC are important in fall 
discrimination (low frequency, 10-200 Hz) while higher 
MFCC are important in non-falls (high frequency) 
discrimination. What we did not know in [13], and we found 
here, was the particular MFCC coefficients needed to achieve 
best discrimination. 

D. Fall detection performance evaluation 

To evaluate the improvement of fall detection using the 
MFCC features selected in IV.C, we generate the 10-fold 
cross-validation ROC curves (height discriminator is 
included in the recognition) [13] for the given dataset in both 
cases: old and new features (see Fig. 5). 

 
Fig. 5. Comparison of 10-fold cross-validation ROC curves in both cases of 
using the unselected MFCCs (1~6th) and selected MFCCs (1th, 28th and 29th). 
 

As we see from Fig. 5, fall detection performance improves 
slightly (0.1%) when the new features are used.  

V. CONCLUSIONS 

This paper presents a study for investigating and improving 
the effectiveness of the proposed acoustic-FADE. By 
interpreting the information in the iVAT image, we found that 
the ability to detect falls is independent of their types since 
falls are very similar to themselves. In addition, we found 
four types of non-falls that are difficult to distinguish from 
falls.  

We introduced a feature selection method based on a GA 
framework that is independent of the type of classifier. The 
GA-based feature selection helps the classifier become more 
robust to the challenging non-fall types.  

We are currently developing a comprehensive fall 
detection system that uses sensor and classifier fusion to 
address the challenging types of false alarms that 
acoustic-FADE alone can’t eliminate. 
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1~6th MFCC AUROC: 0.997
1th,28th,29th MFCC AUROC: 0.998 


