
International Journal of Computer Applications (0975 – 8887)  

Volume 61– No.11, January 2013 

4 

Beamforming for Direction-of-Arrival (DOA) 

Estimation-A Survey 

 
V Krishnaveni, PhD. 

Associate Professor 
ECE Department 

PSG College of Technology 

 
T Kesavamurthy, PhD. 
Assistant Professor (Sr.)  

ECE Department 
PSG College of Technology 

 
Aparna.B 
PG Student 

ECE Department 
 PSG College of Technology 

 

 

ABSTRACT 

Direction-of-Arrival (DOA) estimation plays a vital role in 

many applications. Beamforming is the most prominent 

technique to estimate DOA. In this survey, a study of various 

beamforming techniques and algorithms to estimate the 

direction of arrival of a signal is made. An assessment on the 

background robust algorithms using Nyquist sampling rate 

and its Compressive sensing alternative is done. It is known 

that Bearing estimation algorithms obtain only a small 

number of direction of arrivals (DOAs) within the entire 

angle domain, when the sources are spatially sparse. Hence, 

it may be concluded that, the methods those specifically 

exploits this spatial sparsity property is advantageous. These 

methods use a very small number of measurements in the 

form of random projections of the sensor data along with one 

full waveform recording at one of the sensors.  
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1. INTRODUCTION 
The problem of estimating the wave number or angle of 

arrival of a plane wave is referred to as direction finding or 

DOA estimation problem. It has a large application in radar, 

sonar, seismic systems, electronic surveillance, medical 

diagnosis and treatment, radio astrology and other areas. 

Because of its widespread applications and difficulty of 

obtaining an optimum estimator, the topic has a received a 

significant amount of attention over the last several decades. 

Several methods exist to address the problem of estimating 

the direction-of-arrivals (DOAs) of multiple sources using 

the signals received at the sensors  The application of the 

array processing requires either the knowledge of a reference 

signal or the direction of the desired signal source to achieve 

its desired objectives. Antenna arrays are widely used to 

solve direction finding.  

Beamforming is used along with an array of antennas/sensors 

to transmit/receive signals to/from a specified spatial 

direction in the presence of interference and noise. Hence it 

acts as a spatial filter [1]. It is a classic yet continuously 

developing field that has enormous practical applications. In 

the last decade, there has been renewed interest in 

beamforming driven by applications in wireless 

communications, where multiantenna techniques have 

emerged as one of the key technologies to accommodate the 

explosive growth of the number of users and rapidly 

increasing demands for new high data-rate services.  

The techniques for estimating the directions of arrival of 

signals using an antenna array have been booming in recent 

years. Many methods exist and are classified according to the 

technique used, the information they require (external or not) 

and finally the criterion used (conventional methods, 

projection on the noise or source subspace, maximum 

likelihood method, etc. A receive beamformer is commonly 

used to estimate the signal arriving from a speτcific direction 

in the presence of noise and interfering signals. In a receive 

beamformer, the output of the array of sensors are linearly 

combined using spatial filter coefficients(weight vector) so 

that the signals coming from a desired direction are passed to 

the beamformer output undistorted, while signals from other 

directions are attenuated.  

With a central focus on bearing estimation, the prime 

objective here is to locate the source of transmitted 

communication/ radar signal. Through this paper, a detailed 

literature survey is made on the various bearing estimation 

techniques and algorithms till date. These many estimation 

algorithms which are available in the literature have different 

capabilities and limitations [2]-[3]. The DOA estimation 

problem in some cases, is first solved by estimation methods 

of the number of sources [4]-[5]-[6] and then applying a 

high-resolution method to estimate the angular position of 

these sources. These high-resolution methods are known to 

be more robust than conventional techniques. 

 The most general beamforming techniques include 

conventional as well as adaptive beamformers. For the 

conventional non-adaptive beamformers, the weight vector 

for a specific direction of arrival (DOA) depends on the array 

response alone and can be pre-calculated, independent of the 

received data. Hence they are data independent beamformers 

and they present a constant response for all 

signal/interference scenarios. The adaptive beamformers are 

data-dependent since the weight vectors are calculated as a 

function of the incoming data to optimize the performance 

subject to various constraints [2]. They have better resolution 

and much better interference rejection capability than the 

data-independent beamformers. 

However, in practical array systems, traditional adaptive 

beamforming algorithms are known to degrade, if some of 

exploited assumptions on the environment, sources, or sensor 

array become wrong or imprecise. Similar types of 

degradation can occur when the signal array response is 

known exactly, but the training sample size is small. 

Therefore, the robustness of adaptive beamforming 

techniques against environmental and array imperfections 

and uncertainties remains one of the key issues. 

The commonly used algorithms, acquires the source signals 

at the Nyquist rate and  transmits all measurements to a 

central processor in order to estimate just a small number of 

source bearings. The communication load between sensors 

can be drastically reduced, however, by exploiting spatial 

sparsity, i.e., the fact that the number of sources we are 

trying to find is much less than the total number of possible 
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source bearings. Compressive sensing (CS) is a recent 

technique which accomplishes with the concept of sparsity  

proving to be advantageous over the  popular  Nyquist 

Sampling rate. 

 In this paper, a detailed literature survey on the commonly 

used DOA estimation techniques, is made first, and later 

moving on to the Compressive Sensing (CS) technique 

which may be more advantageous for DOA estimation. 

2. BEAMFORMING 
A conventional beamformer has a structure shown in Figure 

1, where the weights are pre-calculated and are independent 

of the incoming data. The weights are basically the delay 

encountered in each sensor due to path difference, so that the 

outputs of spatially distributed sensors are coherently 

summed to improve signal reception in the presence of noise. 

  Consider a linear array of M sensors, with a uniform inter 

sensor spacing (d). The sensors spatially sample the signal 

field at the sensor locations. We assume that a narrow-band 

source x(t) is impinging upon the array from angle  , with 

respect to the array axis and that the source is in the far-field 

of the array. If x(t) is the signal that would be received at the 

origin of the coordinate system, then the signal received by 

the M sensors of the array at time instant t, x1(t)..…xM(t)   can 

be written as the vector x(t),  

                                     (1) 
where τ1,….. τM is the time delay occurred for the signal 

received at each of the sensors due to the path difference.  

For a linear array with uniform sensor spacing d, the time 

delay between the adjacent sensors is given by  

                               (2) 

where c is the velocity of medium. 

The time delay between 1st and   th sensor will be 

                      (3) 

If w1…wM are the weights to be multiplied to each of the 

sensor outputs which is  collectively represented by the 

vector w, then the scalar beamformer output y(t) generated 

by the linear combination of x(t) and w can be represented as  

                           (4) 

Different beamforming approaches correspond to different 

choices of the weighting vector w. The conventional non-

adaptive beamformers are data-independent in the sense that 

the weight vectors can be pre-calculated independent of the 

incoming data. These beamformers include the delay-and-

sum approach as well as methods based on various weight 

vectors for sidelobe control.  

2.1 Conventional Time domain 

Beamformer 
The time delay between the sensor data due to the sensor 

array geometry is compensated in time domain by giving 

appropriate time delays to the sensor data and then summing 

it together. In a broadband time domain beamformer, 

interpolation filters are used at each sensor to provide the 

true time delay for the broadband of frequencies. The filtered 

outputs of all sensors are summed to form the beamformer 

output. 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 Figure 1. Conventional Beamformer 

2.2 Conventional Frequency domain 

Beamformer 
 For a narrowband signal, the delay τn is approximated by a 

phase shift. Hence the received sensor array data vector in 

frequency domain can be written as 

                  (5) 

where X( ) is the Fourier transform of x(t). X( ) is the 

vector formed by the Fourier transform of sensor array data 

x(t) and        which is given by              
                               (6) 

is called the array manifold vector or the steering vector  

which incorporates all the spatial characteristics of the array.  

In a narrow band frequency domain beamformer, a beam is 

formed in a required direction by giving appropriate phase 

shifts to the sensor data to compensate for the phase shift 

occurred due to the path difference to different sensors in the 

wave front. These phase shifted channel outputs are summed 

together [2].  In vector form, the output of the narrowband 

frequency domain beamformer can be represented as 

                 (7) 

In a broadband frequency domain beamformer, the signal is 

broken up into different frequency components using FFT. 

The phase shift for each frequency bin is computed and 

provided as the steering vector. The data vector for each bin 

is multiplied by the corresponding steering vector and 

summed across bins to form the beamformer output. 

2.3 Adaptive Beamformer 
Adaptive beamforming is used for enhancing a desired signal 

while suppressing noise and interference at the output of an 

array of sensors. The aim of the adaptive beamforming is to 

optimize a collection of weight vectors to locate a directional 

source. There are different methods in arriving at this 

optimization problem. Figure 2 shows the structure of an 

adaptive beamformer. In applications where signal strength 

is unknown and is always present, application of linear 

constraints to the weight vector permits extensive control of 

the adaptive behavior of the beamformer. 
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Figure 2. Adaptive Beamformer 

3. LITERATURE SURVEY 
A survey of beamformers including adaptive beamformers is 

given in [1]. The conditions under which the adaptive 

beamformer performance degrades are also seen in many 

papers. There exist a number of techniques to estimate the 

DOA of signals of interest. Here, a survey on commonly 

used techniques as well as algorithms is made. In general, the 

DOA estimation adaptive beamforming algorithms may be 

classified into Beamscan Algorithms, and Beamspace 

algorithms [2].  

3.1 Diagonal Loading  
Among the many robust adaptive beamformers proposed in 

the literature, diagonal loading emerges as the most widely 

used method due to its simplicity and its effectiveness in 

handling a wide variety of errors, including steering vector 

and finite-sample errors [4]. It is robust against finite sample 

errors [5]. However, a serious drawback of the diagonal 

loading technique is that there is no reliable way to choose 

the diagonal loading factor, which directly affects its 

performance.  

3.2 Eigenspace Based Technique  
 Another popular robust adaptive beamforming technique is 

the eigenspace-based beamformer [6]. The key idea of this 

technique is to project the signal steering vector onto the 

estimated signal-plus-interference subspace obtained via the 

eigen decomposition of the sample covariance matrix. If the 

rank of signal-plus-interference subspace is low and if the 

number of interference directions , L are exactly known, the 

eigenspace-based beamformer is known to provide excellent 

robustness against arbitrary steering vector errors. 

Unfortunately, this approach may degrade severely if the 

low-rank interference-plus-signal assumption is violated or if 

the subspace dimension L is uncertain or known imprecisely. 

For example, in the presence of incoherently scattered 

(spatially dispersed) interfering sources, interferers with 

randomly fluctuating wave fronts, and moving interferers, 

the low rank interference assumption may become violated 

and L can be uncertain. Therefore, the eigenspace-based 

beamformer may be not a proper method of choice in such 

cases. Moreover, even if the low-rank model assumption 

remains relevant, the eigenspace-based beamformer can be 

only used in scenarios where the signal-to noise ratio (SNR) 

is sufficiently high.  

3.3 LCMV Beamformer  
To improve the robustness of the beamformer against the 

DOA angle mismatch error, additional derivative constraints 

[7] can be imposed to the LCMV beamformer [8] so that a 

wider main beam can be obtained to cover all the possible 

directions of the signal of interest. Derivative constraints can 

be used at the interference directions also, under conditions 

when the interfering sources are rapidly moving (non-

stationary). The data nonstationarity can cause these sources 

to may move away from the sharp notches of the adapted 

pattern, and this may lead to a strong degradation of the 

output Signal-to-Interference plus Noise ratio(SINR) . An 

efficient remedy for adaptive array performance in such 

situations is based upon artificial broadening of the null 

width toward the directions of interfering sources using 

derivative constraints [9], [10].  

 A robust beamformer for the most general case of an 

arbitrary dimension of the desired signal subspace is 

developed in [11], and is applicable to both the rank-one 

(point source) and higher rank (scattered source/fluctuating 

wavefront) desired signal models. The proposed robust 

adaptive beamformers are based on explicit modeling of 

uncertainties in the desired signal array response and data 

covariance matrix as well as worst-case performance 

optimization. Closed form solutions and computationally 

efficient online implementations of the robust algorithm are 

also developed in [11]. 

3.4 Capon Beamforming  
In [12], the Robust Capon beamformer is proposed, where 

the covariance fitting formulation of the standard capon 

beamformer, is coupled with the constraint that the 

beamformer response be above some level for all the steering 

vectors that lie in an ellipsoid (sphere) centred on the 

nominal or presumed steering vector of interest. In [13], an 

additional norm constraint is also used to get the doubly 

constrained Robust Capon Beamformer. 
  A computationally efficient robust adaptive beamforming 

scheme is developed in [14], to account for the signal array 

response mismatch and small training sample size. It 

includes a quadratic inequality constraint and is implemented 

with gradient descent method.  All the robust adaptive 

algorithms, surveyed till now, was for narrowband signals. 

But in many applications, the signals are wideband and 

hence robust wideband adaptive algorithms are essential. The 

most popular approach in the design of wideband adaptive 

beamformers is to decompose the received broadband signals 

into narrowband components (subbands) and then to apply 

separate narrowband beamformers to each subband [15]. 

3.5 Tapped Delay Line Beamformer  
An alternate approach in the design of wide band 

beamformers is to use tapped delay-lines (TDLs) [16], which 

can form a frequency dependent response for each of the 

received broadband sensor signals to compensate the phase 

difference for different frequency components. A robust 

algorithm for broadband arrays was proposed in [17] using 

worst case optimization, where a group of constraints are 

imposed on sampled frequency points over the frequency 

range of interest to prevent the mismatched desired signal 
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from being filtered out by the beamformer.  High 

computational complexity & inability to control the response 

consistency to the mismatched desired signal are the 

demerits of [17] which are being solved in the recent method 

proposed in [18-19]. Here, the robustness of the wideband 

beamforming structure is improved using a combination of 

frequency invariance constraint and worst case performance 

optimization. It is formulated as convex optimization 

problem and solved using existing convex optimisation 

techniques.  

3.6 Algorithms  
Algorithms for estimating DOA can be classified into 

beamscan algorithms and subspace algorithms [2]. The 

beamscan algorithms form a conventional beam, scans it 

over the appropriate region and plots the magnitude squared 

of output. This estimator is referred to as the Bartlett 

beamformer [20-21]. MVDR, Root MVDR are the examples 

of this. 

Subspace algorithms, are a set of algorithms, wherein the 

orthogonality between the signal and noise subspaces is 

exploited[2]. These are also referred to as high resolution 

subspace based algorithms. The modern high-resolution 

methods based on the concept of subspace, like MUSIC, 

Root-MUSIC and ESPRIT are among the most efficient for 

estimating the directions of arrival of signals using array 

antennas. These methods are based on the specific properties 

of the covariance matrix of the signal. The principle is based 

on the decomposition of the observation space into two 

subspaces: signal subspace and noise subspace. They have a 

high resolving power when sources are uncorrelated or 

weakly correlated. Their advantage is that subspaces only 

depend on the geometry of the network and the position of 

sources. 

3.6.1 MVDR Algorithms 
In Minimum Variance Distortionless Response beamformer 

the linear filter weights used in the beamformer are 

adaptively calculated depending on the environment so as to 

suppress the interferences to the maximum, leaving the 

signal of interest undistorted [22]. Here the computation of 

the inverse correlation matrix and its multiplication with 

steering vector are the most important parts in the process of 

optimal weight computation. The array correlation matrix 

(R) is a measure of the spatial correlation of the signal and 

noise arriving at the array. Adaptive beam forming 

techniques measures the array correlation matrix instead of 

assuming that the noise is white and Gaussian. This array 

correlation matrix measurement is then used to determine the 

spatial filter coefficients (weights). MVDR shows degraded 

performance compared to conventional beamformers, when 

there is position errors in sensors. 

Root MVDR performs reasonably well above threshold, but 

threshold is higher than Maximum Likelihood algorithms 

closely spaced signals. However, the threshold of MVDR 

algorithm is higher than root MVDR[2]. It is used as a 

preliminary processor to indicate the number of plane waves 

impinging on the array, their approximate location, and 

approximate signal power. However it suffers a demerit that, 

in case of 2 closely spaced plane waves, algorithms will 

think they are single plane waves and underestimate the 

number of signals. 

The performance of the MVDR beamformer is severely 

affected by the correlation between the look-direction signal 

and the interferences. Spatial smoothing is a technique used 

to alleviate the problems due to correlation where the array is 

divided into smaller sub arrays, and the average of the all the 

sub array covariance matrices are used to form a smoothed R 

matrix. In [23], it is shown that spatial smoothing 

progressively decorrelates the sources by diagonalizing the 

source covariance matrix. This decorrelation results in 

reduced signal cancellation and increased rejection of the 

coherent interference. In [24], the finite-data performance of 

the MVDR Beamformer with and without spatial smoothing 

is analyzed. It is shown that the smoothing, in addition to 

decorrelating the sources, can also alleviate the effects of 

finite-data perturbations (the covariance matrix errors due to 

the finite number of snapshots used for its estimation). 

In the recent past, some robust algorithms with clear 

theoretical background have been proposed which make 

explicit use of an uncertainty set of the array steering vector. 

In [25], spherical uncertainty sets are used and in [26] 

ellipsoidal (including flat ellipsoidal) uncertainty sets are 

used. Here, the beamformer is designed to minimize the 

output power subject to the constraint that the beamformer 

response is above some level for all the steering vectors that 

lie in an ellipsoid (sphere) centred on the nominal or 

presumed steering vector of interest. This guarantees that the 

signal of interest, whose steering vector is expected to lie in 

the ellipsoid (sphere), will not be eliminated, and hence, 

robustness is improved. When the ellipsoid is a sphere, then 

the solution to the above-mentioned problem is of the 

diagonal loading type, where the loading level is obtained 

using the covariance matrix and the radius of the sphere. In 

the case where the ellipsoid is not a sphere or is flat, the 

robust beamformer takes the form of a general (i.e., not 

necessarily diagonal) loading of the covariance matrix. In 

either case, the solution is given by (R+Q)-1s where s denotes 

the nominal steering vector (in the absence of any 

uncertainty), and Q stands for the loading matrix. 

 Classes of robust MV beamforming algorithms based on 

optimization of worst-case performance are proposed in [25-

26]. The robustness of the MVDR beamformer is improved 

in [25] where it explicitly models an arbitrary (but bounded 

in norm) mismatch in the desired signal array response for 

point source signal models and uses worst-case performance 

optimization . This method is based on a convex 

optimization using second-order cone programming (SOCP). 

Although several efficient convex optimization software 

tools are currently available, the SOCP-based method does 

not provide any closed-form solution and does not have 

simple online implementations. In [26], the approach of [25] 

is extended to a more general case where, apart from the 

steering vector mismatch, there is a nonstationarity of the 

training data also. The norms of both the steering vector 

mismatch and the data matrix mismatch are bounded by 

some known constants, and the weights are calculated by 

optimising the worst case performance 

3.6.2 MUSIC Algorithms 
Multiple Signal Classification algorithm[27-28] uses the 

eigenvectors decomposition and eigenvalues of the 

covariance matrix of the antenna array for estimating 

directions-of-arrival of sources based on the properties of the 

signal and noise subspaces. Several variants of MUSIC like 

Spectral, Unitary, Root MUSIC methods have been proposed 

to reduce complexity, increase performance and resolution 

power. The advantage of Root Music is the direct calculation 

of the DOA by the search for zeros of a polynomial, which  

replaces the search for maxima[29], necessary in the case of 

MUSIC. This method is limited to linear antennas uniformly 

spaced out. But it allows a reduction in computing time and 

so an increase in the angular resolution by exploiting certain 

properties of the received signals. The principle of the Root-
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MUSIC algorithm is to form a polynomial of degree 2(M-1) 

and extract the roots [29]. Spectral MUSIC has less 

resolution capability than ROOT MUSIC[2,29]. 

UnitaryMUSIC [30] gives the same performance of ROOT 

MUSIC with an advantage of less computational complexity. 

3.6.3 ESPIRIT Algorithms 
Estimation of Signal parameters via rotational invariance 

technique, is based on the rotational invariance property of 

the signal space [31-32] to make a direct estimation of the 

DOA and obtain the angles of arrival without the calculation 

of a pseudo-spectrum on the extent of space, nor even the 

search for roots of a polynomial.  ESPIRIT is similar to 

MUSIC algorithm with slight modifications. The main 

advantage of this method is that it avoids the heavy research 

of maxima of a pseudo-spectrum or a cost function (therefore 

a gain calculation) and the simplicity of its implementation. 

In addition, this technique is less sensitive to noise than 

MUSIC and Root-MUSIC [33]. It has been shown in [34]-

[35] that MUSIC and ESPRIT algorithms achieve almost 

identical performance in the case of unmodulated sinusoids, 

but that ESPRIT is slightly better than MUSIC. Ultimately, 

ESPRIT appears less sensitive to noise than MUSIC[36].  

These prevalent background algorithms acquire the source 

signals at the Nyquist rate and take a higher number of 

samples to estimate a parameter which is sparse in some 

other domain. Hence it is advisable to exploit this sparsity 

property to estimate the DOA of the desired signal. The 

sparsity property of signals has been utilized in a variety of 

applications including image reconstruction, medical 

imaging radar imaging , blind source separation and shape 

detection . In the literature, sparsity information has also 

been used previously for beamforming and source 

localization. 

The concept of the spatial sparsity of sources can be 

exploited to accomplish source localization in arbitrary 

shaped sensor arrays for both narrowband and wideband 

signals by using a very small number of measurements, 

thereby improving the communication efficiency of sensor 

networks [37-38]. Although prior research has validated the 

benefits of exploiting spatial sparsity in source localization, 

such as improved resolution, the methods also require a high 

sampling rate of source signals, which increases the 

communication load between sensors. This is an important 

consideration for energy efficient wireless sensor networks. 

Furthermore, in some applications, data acquisition might be 

very expensive. A comparison of the different beamforming 

techniques and algorithms is given in Table 1. 

 

Table 1. Comparison of different beamforming 

techniques for DOA estimation 

Technique Merits Demerits 

 Diagonal 

Loading 

Beamformer 

Robust against 

finite sample 

errors 

No reliable way to 

choose the diagonal 

loading factor, which 

directly affects its 

performance.  

Eigen-Space 

Based 

Excellent 

robustness 

against 

arbitrary 

steering vector 

errors . 

Degrade severely if 

the low-rank 

interference-plus-

signal assumption is 

violated or if the 

subspace dimension L 

is uncertain or known 

imprecisely 

LCMV Improved 

robustness 

Strong degradation of 

the output SINR 

MVDR- 

Minimum 

Variance 

Distortionless 

Performance 

Gives 

distortionless 

performance in 

the Direction 

of Interest 

Unable to distinguish 

between two closely 

spaced plane waves 

Root MVDR Better 

Performance 

Lesser threshold 

compared to MVDR 

MUSIC- 

Multiple Signal 

Classification 

Algorithm 

High level of 

orthogonality 

between 

signals. 

Higher 

resolution & 

accuracy  

 

Gives the 

Pseudospectrum only. 

Root MUSIC Less 

computational 

time, higher 

resolution 

Limited to linear 

antennas, equispaced. 

Unitary 

MUSIC 

Less 

Computational 

complexity 

No much 

performance 

improvement from 

Root MUSIC. 

ESPIRIT- 

Estimation of 

signal 

parameters via 

rotational 

invariance 

technique 

No need of 

searching  the  

maxima in 

Pseudo 

spectrum. 

 Less sensitive 

to noise  

 

More prone to errors. 

Compressive 

Sensing Based 

Beamforming 

Less number of 

measurements 

Increased 

resolution. 
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4. COMPRESSIVE SENSING FOR DOA 

ESTIMATION   
CS [39-41] is a recently developed mathematical framework, 

which asserts that a sparsely representable signal can be 

reconstructed using a small number of linear measurements. 

For example, consider a signal x ,  

                (8) 

which is k-sparse in the basis defined by the columns of ψ. 

According to CS, if non-traditional linear measurements in 

the form of randomized projections are taken, 

                (9) 

The signal x can be exactly reconstructed with a high 

probability with a lesser number of samples, from the 

compressive measurements by solving a convex optimization 

problem subject to :  

               (10) 

which can be solved efficiently with linear programming. 

The key result is that the required number of measurements 

is linked linearly to the sparsity-k of the signal.  

The Compression is done at Sensing level, rather after the 

sensing. This leads to a greater reduction of samples, taking 

only fewer measurements, M, with 

             (11) 

where, K is the sparsity in angle domain, N is the original 

number of samples used. The technique of Compressive 

Sensing can be used for DOA estimation, which consider 

only sparse number of samples. 

In [42], a compressive wireless array is proposed for bearing 

estimation. In [43], a compressive beamforming method is 

presented. Both approaches apply compressive sampling in 

the time domain to reduce the ADC sampling rate or the 

number of time samples for each element of the array. In 

[44] the DOA estimation of narrowband sources impinging 

on a uniform circular array was considered. In [45] the 

formulation leads to second-order cone (SOC) programming 

where the optimization is performed over the entire signal 

space. The very high computational complexity of this 

formulation can be reduced by introducing the singular value 

decomposition (SVD) of the measured data matrix. The 

method in [46] tries to reconstruct the signals for sparse 

sources in the time domain with a combined l1—l2 norm 

minimization similar to [45]. In [47] a new hardware 

architecture exploiting compressive sensing (CS) for 

direction estimation is also used. 

In [48], a Spatial Compressive Sensing (SCS) approach is 

proposed, the sensing and the reconstruction processes can 

be performed incrementally while improving the spatial 

spectrum estimation performance proportional to an increase 

in array orientation diversity (the number of array 

orientations). Finally, array orientation diversity is proposed 

to address some of the challenging problems that arise in 

passive sonar applications, such as: low bearing resolution 

when using short arrays, incoherency between sensors when 

using long arrays, poor estimation performance at endfire, 

short samples support when the temporal coherency is 

limited by the motion of the array or sources, spatial 

correlation of the ambient noise and the correlation among 

sources etc. The work shows that array orientation diversity 

provides improvement in spatial spectrum estimation which 

is not associated with a linear increase in the number of 

spatial measurements.  

The compressive bearing estimation approach based on 

spatial sparsity has several advantages over other approaches 

in the literature, such as MVDR, MUSIC, and previous 

methods using sparsity, which require Nyquist sampling at 

the sensors [48]. 

Creating a bearing spectrum with many fewer measurements 

decreases the communication load in wireless networks and 

enables lower data acquisition rates, which might be very 

important for high bandwidth applications. Moreover, the 

array geometry can be arbitrary but known. Other advantages 

include increased resolution and robust to noise. A 

considerable reduction in hardware costs may also be 

achieved. 

5. CONCLUSION 

Estimating the direction-of-arrival (DOA) of propagating 

plane waves is a problem of broad interest in a variety of 

fields including wireless communications, radar and sonar 

systems, acoustic signal processing, medical imaging and 

seismology. Through this review, a detailed survey on 

various DOA estimation beamforming algorithms existing, 

were made. Based on the literature survey made, it may be 

concluded that beamforming based on Compressive Sensing 

for DOA estimation is more advantageous. As the signal of 

interest, here is a sparse signal, it is advisable to switch on to 

Compressive sensing based beamforming for DOA 

estimation which requires only a fewer number of samples, 

rather than the Nyquist sampling. Compressive sensing based 

beamforming called Compressive Beamforming for DOA 

estimation was found to be more beneficial over Nyquist 

sampling.  
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