International Journal of Pure and Applied Mathematics Volume 87 No. 6 2013, 809-815 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v87i6.9

ON STRONG IFP NEAR-RINGS

P. Dheena¹, B. Elavarasan² ¹Department of Mathematics Annamalai University Annamalainagar, 608 002, INDIA ²Department of Mathematics Karunya University Coimbatore, 641 114, Tamilnadu, INDIA

Abstract: In this paper, we introduce the notion of strong IFP and weak IFP near-rings. Weak IFP near-ring is a generalization of IFP near-ring. We study the basic properties of right weak IFP near-rings. We show that if N is a 2-primal near-ring and if N is strong IFP, then N is left weakly regular if and only if every prime ideal of N is maximal.

AMS Subject Classification: 16Y30 **Key Words:** regular, IFP near-ring, reduced, 2-primal and weakly regular

1. Introduction

Throughout this paper, N denotes a zero-symmetric near-ring not necessarily with identity unless otherwise stated. Let P(N) denote the prime radical and N(N) the set of nilpotent elements of the near-ring N. For $X \subseteq N$, l(X) (resp. r(X)) and $\langle x \rangle$ denote the left (resp. right) annihilator of X and the ideal of N generated by x respectively.

For any subsets A, B of N, we denote $(A : B) = \{n \in N/nB \subseteq A\}$. It is trival to check that if A is left ideal of N and B is a N-subgroup of N, then (A : B) is an ideal of N by [8, Corollary 1.43].

Received: September 6, 2013

© 2013 Academic Publications, Ltd. url: www.acadpubl.eu

A near-ring N is said to be reduced if N(N) = 0. A near-ring N is said to be regular if for any $a \in N$, there exists $x \in N$ such that a = axa.

Recall that a near-ring N is said to be 2-primal if P(N) = N(N). A nearring N is subdirectly irreducible if N has nonzero intersection of nonzero ideals. A near-ring N is said to be strong IFP if $xy \in P(N)$ implies xNy = 0 for $x, y \in N$. A near-ring N is said to be IFP if ab = 0 implies anb = 0 for all $n \in N$ and $a, b \in N$. Clearly every strong IFP near-ring is a IFP near-ring. If N is reduced, then the notions of IFP and strong IFP coincide

A near-ring N is said to be left weak IFP if ab = 0 for $a(\neq 0), b \in N$ implies a'Nb = 0 for some $a'(\neq 0) \in \langle a \rangle$. The right weak *IFP* can be defined symmetrically. A near-ring N is said to be weak IFP if ab = 0 for any nonzero elements $a, b \in N$ implies a'Nb' = 0 for some $a'(\neq 0) \in \langle a \rangle$ and $b'(\neq 0) \in \langle b \rangle$.

Clearly IFP near-ring is a weak IFP near-ring, but the converse need not be true as the following example shows.

Example 1.1. Let $N = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$ where $F = \{0, 1\}$ is the field under addition and multiplication modulo 2. Then N is a weak IFP near-ring but not IFP near-ring, since if $x = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $y = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, then xy = 0 and $xNy \neq 0$. Here N is neither left weak IFP nor right weak IFP.

Clearly every strong IFP near-rings are IFP near-rings, however IFP near-ring need not be strong IFP as can be seen by the following example.

Example 1.2. Let (N, +) (where $N = \{0, a, b, c\}$) be the klein's four group. Define multiplication in N as follows

Then (N, +, .) is a near-ring (see Pilz[8], P-408, Scheme-11) which is a IFP near-ring but not a strong IFP near-ring, since $ab \in P(N)$, but $aNb \neq 0$.

Clearly every reduced near-ring is a 2-primal and strong IFP near-ring, but the converse need not be true as the following example shows.

Example 1.3. Let (N, +) (where $N = \{0, a, b, c\}$) be the klein's four group. Define multiplication in N as follows

	0	a	b	с
0	0	0	0	0
a b	0	a	0	a
	0	0	0	0
с	0	a	0	a

Then (N, +, .) is a near-ring (see Pilz[8], P-408, Scheme-12) which is a 2-primal and strong IFP near-ring, but not reduced.

G.F.Birkenmeier, J.Y.Kim and J.K.Park [2] have shown that a reduced ring R is weakly regular if and only if every prime ideal of R is maximal. We extend this result to strong IFP near-rings which are 2-primal. For basic terminology in near-ring we refer to Pilz [8].

2. Main Results

Lemma 2.1. Let N be a near-ring with identity. If N is left weak IFP, then for any $x, y \in N$ with xy = 1 implies yx = 1.

Proof. Let N be a left weak IFP near-ring and xy = 1. Suppose $yx \neq 1$. Then (1 - yx)yx = 0. Since N is left weak IFP, we have x'Nyx = 0 for some $x'(\neq 0) \in <1 - yx > .$ Now, x'Ny = x'Nyxy = 0. Then $x' = x'xy \in x'Ny = 0$, a contradiction.

Proposition 2.2. Let N be a regular near-ring. Then the following conditions are equivalent:

i) N is a right weak IFP near-ring

ii) If $x \neq 0 \in r(a)$, then r(a) contains a non-zero ideal I with $I \subseteq \langle x \rangle$

iii) If $x \neq 0 \in r(a)$, r(aN) contains a non-zero ideal I with $I \subseteq \langle x \rangle$

iv) If $x \neq 0 \in r(a)$, $i \in r(aN)$ for some $i \neq 0 \in x > a$

Proof. $i) \Rightarrow ii$ Let $x \neq 0 \in r(a)$. Then aNx' = 0 for some non-zero element $x' \in \langle x \rangle$. For any $n \in N$, x'na = (x'na)t(x'na) = x'n(atx')na = 0 for some $t \in N$. Thus x'Na = 0 and so $\langle x' \rangle Na = 0$. Let $y \in \langle x' \rangle$. Then by regularity of N, we have ay = 0. Thus $a < x' \geq 0$.

 $ii) \Rightarrow iii)$ Let $x \neq 0 \in r(a)$. Then aI = 0 and so aNI = 0.

 $iii) \Rightarrow iv$) It is obvious.

 $iv) \Rightarrow i)$ Let ab=0 for $a(\neq 0), b \in N.$ Then $b^{'} \in r(aN)$ for some $b^{'}(\neq 0) \in < b >$. Thus $aNb^{'}=0.$

We now give an example to show that Proposition 2.2 is not true if N is not a regular near-ring.

Example 2.3. Consider the dihedral group $N = \{0, a, 2a, 3a, b, a + b, 2a + b, 3a+b\}$ with addition and multiplication defined as in Pilz ([9, P-339, Scheme-2]).

	0	a	2a	3a	b	a+b	2a+b	3a+b
							0	
a	0	a	2a	3a	b	a+b	2a+b	3a+b
2a	0	2a	0	2a	0	0	0	0
3a	0	3a	2a	a	b	a+b	2a+b	3a+b
b	0	b	2a	b	b	0	2a+b	0
a+b	0	a+b	0	3a+b	0	a+b	0	3a+b
2a+b	0	2a+b	2a	2a+b	b	0	2a+b	0
3a+b	0	3a+b	0	a+b	0	a+b	0	3a+b

Then (N, +, .) is a near-ring. Clearly (N, +, .) is a right weak IFP and $a + b \in r(b)$, but r(b) does not contains a non-zero ideal I with $I \subseteq \langle a + b \rangle$.

Proposition 2.4. Let N be a near-ring with identity. Then the following conditions are equivalent:

i) N is a left weak IFP near-ring

ii) If $x \neq 0 \in l(a)$, then l(a) contains a non-zero ideal I with $I \subseteq \langle x \rangle$

iii) If $x \neq 0 \in l(a)$, then l(Na) contains a non-zero ideal I with $I \subseteq \langle x \rangle$ iv) If $x \neq 0 \in l(a)$, then $i \in l(Na)$ for some $i \neq 0 \in \langle x \rangle$

Proof. Proof is as similar in Proposition 2.2.

Lemma 2.5. Let N be a regular near-ring. If N is subdirectly irreducible, then the following conditions are equivalent:

i) N is a right weak IFP near-ring

ii) if $x \neq 0 \in r(S)$, then r(S) contains a non-zero ideal I of N with $I \subseteq \langle x \rangle$ for any subset S of N.

Proof. $i \Rightarrow ii$) Let N be a right weak IFP near-ring and $x \in r(S)$ for any subset S of N. For any $s_i \in S$, by Proposition 2.2, we have $r(s_i)$ contains a non-zero ideal I_i of N with $I_i \subseteq \langle x \rangle$ and so $0 \neq \cap I_i \subseteq \langle x \rangle$ with $S(\cap I_i) = 0$. $ii \Rightarrow i$) It is trivial.

Proposition 2.6. Let N be a regular near-ring. If N is subdirectly irreducible, then the following conditions are equivalent:

i) N is a right weak IFP near-ring

ii) N is a reduced near-ring

iii) N is a strong IFP near-ring

iv) N is a IFP near-ring.

Proof. $i) \Rightarrow ii$ Let $a(\neq 0) \in N$ such that $a^2 = 0$. Since N is regular, we have a = axa for some $x \in N$. Set e = ax. Let $S = \{n - ne/n \in N\}$. Then r(S) contains a non-zero ideal J with $J \subseteq \langle e \rangle$ and so nj = nej for all $n \in N$ and for all $j \in J$. Let $j(\neq 0) \in J$. Then there exists $y \in N$ such that $j = jyj = j(yj) = je(yj) = ja(xyj) = (ja)e(xyj) = ja^2x^2yj = 0$, a contradiction.

- $ii) \Rightarrow iii$) It follows from Proposition 2.94 of [8].
- $iii) \Rightarrow iv$ and $iv) \Rightarrow i$ are trival.

Hereafter N denote a zero-symmetric near-ring with left identity. Following G. F. Birkenmeier and N. J. Groenewald [1], a near-ring N is said to be left (resp. right) weakly π -regular if $x^n \in \langle x^n \rangle x^n$ (resp. $x^n \in x^n \langle x^n \rangle$) for all $x \in N$ and for some natural number n = n(x). A near-ring N is called weakly π -regular if N is both left and right weakly π -regular. A weakly π -regular near-ring is called weakly regular when n = 1.

A near-ring N is said to be left (resp. right) pseudo π -regular if $x^n \in \langle x \rangle x^n$ (resp. $x^n \in x^n \langle x \rangle$) for all $x \in N$ and for some natural number n = n(x). A near-ring N is called pseudo π -regular if N is both left and right pseudo π -regular.

Proposition 2.7. Let P be a completely prime ideal of N. If N/P(N) is a left weakly π -regular near-ring, then P is a maximal ideal of N.

Proof. Let P be a completely prime ideal of N and N/P(N) be a left weakly π -regular near-ring. Suppose M is an ideal of N such that $P \subset M$. Let $a \in M \setminus P$. Then $P + \langle a \rangle \subseteq M$. Since $N/P(N) = \overline{N}$ is a left weakly π -regular, we have $\overline{Na}^n = \langle \overline{a}^n \rangle \overline{a}^n$ for some positive integer n. So $\overline{Na}^n = \overline{Ma}^n$. Hence $\overline{a}^n = \overline{ba}^n$ for some $\overline{b} \in \overline{M}$ and so $(1 - b)a^n \in P$ which implies N = M.

Corollary 2.8. (5 Theorem 2.3) Let P be a completely prime ideal of a ring R. If P/P(R) is a left weakly π -regular near-ring, then P is a maximal ideal of R.

G.F.Birkenmeier, J.Y.Kim and J.K.Park [2] have shown that a reduced ring R is weakly regular if and only if R is right weakly regular and if and only if every prime ideal of R is maximal. We shall prove this result under generalized conditions.

Proposition 2.9. Let N be a 2-primal near-ring. If N is strong IFP, then the following conditions are equivalent:

- i) N is left weakly regular
- ii) N is left weakly π -regular
- iii) N/P(N) is left weakly π -regular

iv) N/P(N) is left pseudo π -regular

v) Every prime ideal of N is maximal.

Proof. $i) \Rightarrow ii$, $ii) \Rightarrow iii$ and $iii) \Rightarrow iv$ Proofs are trival. $iv) \Rightarrow v$ It follows from Corollary 3.10 of [1]. $v) \Rightarrow i$ Suppose N is not a left weakly regular. Then there exists an element $a \in N$ such that $a \notin a > a$. Let T be a union of all prime ideals of N, such that each of them contain a. Let $S = N \setminus T$. Then S is a multiplicative closed subset of N by Theorem 5 of [4]. Let F be the multiplicative closed system generated by $\{a\} \cup S$. Suppose $0 \notin F$. Then there exists a proper prime ideal M of N with $M \cap F = \phi$ by Proposition 2.81 of [8]. Since $a \notin M$, we have $M + \langle a \rangle = N$ and so there exists $b \in M$ and $c \in \langle a \rangle$ such that b + c = 1. Clearly $b \notin T$, which implies $b \in F \cap M = \phi$, a contradiction. Thus $0 \in F$.

So $0 = a^{n_1} s_1 a^{n_2} \dots a^{n_t} s_t$ where $s_i \in S$ and n_1, n_2, \dots, n_t are positive integers. For any prime ideal P, we have $a^{n_1} s_1 a^{n_2} \dots a^{n_t} s_t \in P$. Since P is completely prime, we have $a \in P$ or $s_i \in P$ for some i. Let $s = s_1 s_2 \dots s_t$. Then for any prime ideal P; either $a \in P$ or $s \in P$. Then $sa \in P(N)$. Since N is a strong IFP nearring, we have sNa = 0. Then $\langle s \rangle Na = 0$. Observe that a prime ideal can not contains both a and s; otherwise a prime ideal would contain both of them, which contradicts the definitions of S and T which implies $\langle s \rangle + \langle a \rangle = N$ and so N is a left weakly regular near-ring.

Corollary 2.10 (2, Theorem 8). Let R be a reduced ring. Then the following conditions are equivalent:

i) R is weakly regular

ii) R is right weakly π -regular

iii) Every prime ideal of R is maximal

Proof. The proof is an immediate consequence of Proposition 2.9 and Theorem 12 of [3].

Corollary 2.11 (2, Corollary 9). Let R be a 2-primal ring. Then the following conditions are equivalent:

i) R/P(R) is weakly regular

ii) R/P(R) is right weakly regular

iii) Every prime ideal of R is maximal.

References

 G. F. Birkenmeier and N. J. Groenewald, Near-ring in which each prime factor is simple, Mathematics Pannonica, 10, 257 - 269 (1999).

- [2] G.F. Birkenmeier, J.K.Kim and J.K.Park, A connection between weak regularity and the simplicity of prime factor rings, Proc. Amer. Math. Soc. 122, 53 - 58 (1991).
- [3] P. Dheena and D. Sivakumar, Left prime weakly regular near-rings, Tamkang J. Math., 36(4), 309 - 313 (2005).
- [4] P. Dheena and G. Satheeskumar, *Completely 2-primal ideals in 2-primal near-rings*, Tamsui Oxf. J. Math. Sci., to be appear.
- [5] C.Y.Hong, N.K.Kim and T.K.Kwak, On rings whose prime ideals are maximal, Bull. Korean. Math. Soc. 37, 1 - 9 (2000).
- [6] C.Y.Hong, Y.C.Jeon, K.H.Kim, N.K.Kim and Y.Lee, Weakly regular rings with ACC on annihilators and maximality of strongly prime ideals of weakly regular rings, J. Pure Appl. Math, 207, 565 - 574 (2006).
- [7] S. U. Hwang, Y. C. Jeon and K. S. Park, A generalization of insertion-offactors-property, Bull. Korean Math. Soc., 44, 87 - 94 (2007).
- [8] G. Pilz, Near-Rings, North-Holland, Amsterdam, 1983.