
A New Hardware Efficient Inversion Based Random Number Generator for

Non-Uniform Distributions

Christian de Schryver, Daniel Schmidt, Norbert Wehn

Microelectronic Systems Design Research Group

University of Kaiserslautern

Erwin-Schroedinger-Str., 67663 Kaiserslautern, Germany

{schryver, schmidt, wehn}@eit.uni-kl.de

Elke Korn, Henning Marxen, Ralf Korn

Stochastic Control and Financial Mathematics Group

University of Kaiserslautern

Erwin-Schroedinger-Str., 67663 Kaiserslautern, Germany

{korn, marxen}@mathematik.uni-kl.de

Abstract—For numerous computationally complex applica-
tions, like financial modelling and Monte Carlo simulations, the
fast generation of high quality non-uniform random numbers
(RNs) is essential. The implementation of such generators in
FPGA-based accelerators has therefore become a very active
research field. In this paper we present a novel approach to
create RNs for different distributions based on an efficient
transformation of floating-point inputs. For the Gaussian
distribution we can reduce the number of slices needed by
up to 48% compared to the state-of-the-art while achieving a
higher output precision in the tail region. Our architecture
produces samples up to 8.37� and achieves 381MHz. We
also present a comprehensive testing methodology based on
stochastic analysis and verification in practical applications.

Keywords-Random Number Generator, Normal Distribution

I. INTRODUCTION

Random numbers (RNs) are essential for a wide range

of technical simulation applications including simulations

of wireless communication systems or Monte Carlo (MC)

simulations, used for example in financial modeling. Due

to the high computational complexity of the aforementined

applications, there is a very active research effort for FPGA

accelerators, containing harware random number generators

[1]–[6]. In nearly all fields the quality of the used RNs has

a large impact on the achieved results and the reliability

of the simulation output. While all standard random num-

ber generators (RNGs) provide uniformly distributed RNs,

other distributions are necessary in many applications. Most

commonly, Gaussian (normally) distributed RNs (GRNs) are

needed, but other distributions such as log-normal, exponen-

tial or Rayleigh are also very common. As MC simulations

are extremely computation intensive, there is an expressed

need for fast and area-efficient random number generators

for different distributions in FPGA-based hardware imple-

mentations, in order to achieve high processing speeds.

In this paper, we present a novel, FPGA-optimized ar-

chitecture for non-uniform distributions. We show that for

We gratefully acknowledge the partial financial support from Center of
Mathematical and Computational Modeling (CM)2 of the University of
Kaiserslautern.

Gaussian random numbers our solution provides an im-

proved output precision compared to state-of-the-art imple-

mentations while necessitating up to 48% fewer slices on a

Virtex-4 FPGA. By using floating-point (FP) numbers as the

input, the address generation for the LUTs is significantly

simplified while allowing to easily extend the range of the

Gaussian samples to 8.37� and beyond with very little

or no added overhead. Furthermore, other than previously

published Gaussian random number generators (GRNGs),

our proposed inversion based approach retains a very high

resolution of the inverse cumulative distribution function

(ICDF) even in the tail regions. We also show how to

efficiently generate uniformly distributed FP numbers of

arbitrary precision from the outputs of any standard RNG.

Our hardware implementation can reach up to 8.37� in the

normal distribution consuming only slightly more than one

32 bit uniform RN per output sample, instead of 54 bit as

required by previous approaches.

Since no standardized verification strategies for non-

uniform RNGs exist we developed a comprehensive testing

methodology for our new GRNG, based on stochastic anal-

ysis and practical application tests. We test the uniformity

of the output of our floating-point converter with TestU01

suite [7]. The quality of the generated Gaussian random

samples is assessed with several statistical tests and we

verify the correctness of the simulations in two practical

applications. The novel contributions of our work are:

∙ We show how the FP representation helps to improve

precision and save area.

∙ We present optimized architectures for the floating-

point converter and the non-uniform inversion unit.

∙ We subject our GRNG to an exhaustive testing method-

ology for non-uniform random number generators.

II. RELATED WORK

The main methodical approaches for generating non-

uniformly distributed RNs out of uniformly distributed RNs

(which all standard number generators provide) are trans-

formation, rejection, and inversion methods. A very good

overview for the common task of creating Gaussian RNs is

2010 International Conference on Reconfigurable Computing

978-0-7695-4314-7/10 $26.00 © 2010 IEEE

DOI 10.1109/ReConFig.2010.20

190

given in [8]. Here we will only highlight the most common

methods very shortly.

A very common method in use for GRNGs is based on

the Box-Muller method [9] that transforms a pair of uni-

formly distributed random numbers into a pair of Gaussian

distributed RNs by applying trigonometric functions. One

advantage of the Box-Muller method is that it deterministi-

cally provides two RNs in each step, but a lot of hardware

ressources are needed to accurately calculate the trigonomet-

ric functions while achieving a high throughput [1,2].

For software implementations of GRNGs, rejection meth-

ods (as the Ziggurat method [10]) provide high quality

random numbers [6]. Some hardware implementations of

the Ziggurat method highly optimized for FPGAs exist as

well [3,4]. They achieve up to 400 millions of samples per

second at moderate ressource costs. On the downside, not

every input RN is transformed into one GRN, but instead

some are rejected. This behaviour may cause problems for

quasi random sequences as input [5].

Inversion based methods combine many desireable prop-

erties: by applying the respective ICDF they transform every

input sample x ∈ (0, 1) from a uniform distribution to one

output sample y = icdf(x) of the desired output distribution.

Thus, inversion is applicable also to transform quasi random

sequences. As the ICDF of every distribution is continuous

and monotone, it also enhances the effectiveness of variance

reduction methods in MC simulations [5]. For many distri-

butions, however, there is no known closed form expression

for the ICDF and it can only be approximated. The most

common approximations for the Gaussian ICDF are given

by Acklam [11] and Moro [12]. Both of them are based

on rational polynomials and are thus not suitable for area

efficient hardware implementations.

Hardware implementations of the Gaussian ICDF based

on piecewise polynomial interpolation and look-up tables

(LUTs) have been presented in various publications, most

notably [5] and [6]. In both these works, the ICDF was

segmented in a hierarchical way, using smaller segments in

the steeper parts of the ICDF. In every segment the ICDF is

approximated using a minimax polynomial. This approach

results in a good trade-off between accuracy and storage

requirements for polynomial coefficients.

All of these inversion methods use fixed-point numbers

as their inputs. We show that using floating-point RNs as

input of an inversion based non-uniform RNG reduces the

consumed hardware area significantly for the same output

precision.

III. INVERSION BASED NON-UNIFORM RANDOM

NUMBER GENERATION

A. State-of-the-Art Implementations

Starting from uniformly distributed random numbers, the

inversion method can generate any favored output distribu-

tion by using the inverse cumulative distribution function

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
x

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

ic
d

f(
x
)

Figure 1. Segmentation of the First Half of the Gaussian ICDF

�

��������

����	
�����������

������

�

������������������
���������

������������������
���������

�
�
�

�
�
��
�
�

��
�
	
��

�
��

�
��

�
��
�
�
 �

���

�� !��!�����!!��!�����! ������!����������������∀�����������!������������!����������������∀�����������!������

!�����!!�����!

!��������!!��������! �����∀�!�����������∀�!������ !��!��!!��!��!

!��������!!��������!

#

�
!

�
�

��������
������

����
��

����
��

��������∃���!

Figure 2. State-of-the-Art Architecture

y = icdf(x). The ICDF of the normal distribution is centri-

cally symmetric at x = 0.5, thus in this case it is sufficient

to implement the inversion only for values x ∈ (0, 0.5) and

use one additional random bit to cover the full range. This

part of the Gaussian ICDF is shown in Fig. 1.

One hardware efficient method to implement the inversion

for various different distributions is based on piecewise

polynomial approximation. In [6] the authors proposed a hi-

erarchical segmentation scheme that allows for a good trade-

off of hardware requirements and accuracy. For the normal

ICDF, the range (0, 0.5) is divided into non-equidistant

segments with doubling segment sizes from the beginning of

the interval to the end of the interval. Each of these segments

is then subdivided into inner segments of equal size. Thus,

the steep regions of the ICDF close to 0 are covered by more

smaller segments than the regions close to 0.5, where the

ICDF is almost linear. This way, a polynomial approximation

of a fixed degree can be used in all segments to obtain an

almost constant maximal absolute error in every segment.

The inversion is performed by determining in which segment

the input x is contained, retrieving the coefficients ci of the

polynomial for this segment from a LUT and evaluate the

polynomial y =
∑

ci ⋅ x
i.

Fig. 2 shows how the number of the segment (i.e., the

address for the LUT) in which a given input x in fixed-

point representation is located can be determined. First, the

number LZ of leading zeros in the binary representation of

191

x is counted. Numbers starting with a 1 (half of all numbers)

lie in the segment [0.25, 0.5), numbers starting with the

sequence 01 (one fourth of all numbers) lie in the segment

[0.125, 0.25) and so forth. The input x is shifted left by

LZ+1 bits, such that xsig is the bit sequence following the

most significant 1-bit in x. The equally spaced subsegments

are determined by the k most significant bits (MSBs) of

xsig . Thus, the LUT address is the concatenation of LZ

and MSBk(xsig). The remaining bits of xsig are then used

to evaluate the approximating polynomial for the ICDF in

that segment. Fig. 2 shows the architecture for the case of

linear interpolation, as was presented in [6] for a maximum

absolute error of 0.3 ⋅ 2−11.

The works of Luk et al. [6,13,14] are based on this

scheme. One possible segmentation arrangement for the

Gaussian ICDF is shown in Fig. 1. They use it in an

analogous manner to create RNGs for the log-normal and

the exponential distributions, with only minor changes in the

segmentation scheme. For the exponential distribution, the

largest segment starts near 0, followed by segments of half

the size each towards 1, and for the log-normal distribution

neighbouring segments double in size between 0 and 0.5
and halve in size towards 1.

But this approach has a number of drawbacks:

∙ Need for two input RNGs to achieve a large output

range. The output range is limited by number of input

bits. As the smallest value larger than 0 that can be

represented by an m-bit fixed-point number is 2−m, the

largest output value of this ICDF with a 32-bit input is

icdf(2−32) = 6.33�. To achieve a larger range of up to

8.21�, the authors of [6] concatenate the input of two

32-bit RNGs and feed a 53-bit fixed-point input into

the inversion unit, at the cost of one additional RNG.

This large number of input bits also increases the size

of the leading-zero counter and the shifter unit, which

dominate the hardware usage of the design.

∙ A large number of input bits is wasted. A multiplier

with a 53-bit input for the evaluation of the polynomial

would require a large amount of hardware ressources.

Thus, the input is quantified to 20 significant bits before

function evaluation, sufficient for an accuracy of 0.3 ⋅
2−11. Effectively, a large number of the generated input

bits is wasted.

∙ Low resolution in the tail region. For the tail region,

however, there are much less than 20 significant bits

left after shifting over the leading zeros, which limits

the resolution in the tail region. As there are no

input values between 2−53 and 2−52 in this fixed-point

representation, this inversion method does not generate

output samples between 8.21� and 8.13�.

B. Floating-Point Based Inversion

The aforementioned drawbacks are all linked to properties

of the fixed-point representation of the input numbers.

����
����	

���
��� ��������

��� ���
�������

� �

!����� ������∀�#�!�����

#∃

%

∃

�
%

�
∃

��#���	��
���&������
�

�
�����
�&&�
�� ����
�����

�&&�
��

�∋������

����∀

Figure 3. ICDF Look-up Unit Structure (for linear approximation)

To overcome the identified problems, we propose to use

floating-point numbers as the input to the inversion unit.

We do not use any FP arithmetics, as the representation is

only used for the addressing of the segmentation table and

calculations are only done with the mantissa.

The value of a FP number represented by a mantissa m

and an exponent e is 2e ⋅ (1+m). The 1 being added to the

mantissa is called the hidden bit and assures that there is

only one floating-point representation for any given number.

It can easily be verified, that the absolute value of a negative

exponent e corresponds to the number of leading zeros of a

fixed-point representation of the same value, and the hidden

bit corresponds to the most significant 1-bit. Consequently,

the address for the LUT to retrieve the coefficients for the

segment containing a given floating-point number can be

directly generated from the exponent e and the k most

significant bits (MSBs) of the mantissa m.

This is shown in Fig. 3. Here, we use one additional bit

sign_ℎalf , to generate a symmetrical coverage of the range

(0, 1). This bit is interpreted in the following way:

x =

{

2e ⋅ (1 +m) : if sign_half=0,

1− 2e ⋅ (1 +m) : if sign_half=1.
(1)

For the Gaussian ICDF the bit can be exploited as icdf(1−
x) = −icdf(x), as is shown in Fig. 3.

Besides enabling a very efficient address decoding for

the hierarchical segmentation scheme, FP numbers offer the

advantage to represent values very close to 0 with the same

relative precision as the values close to 1. The smallest

representable number is not limited by the bitwidth of the

mantissa, but approaches 0 exponentially with a growing

bitwidth of the exponent. E.g., a FP number with 6-bit

exponent and 23 bit mantissa only uses 29 bits, but can

represent values as small as 2−65. Moreover, there are as

many FP numbers in [2−65, 2−64) as in [2−2, 2−1), in this

example 223. Thus, the tail region of the ICDF shows the

same resolution as the central region and all bits of the FP

input number are used for the transformation.

192

����
����	

����
����	

����
����	

����
����	

���
�������
���
������� ��������������������������

�����������
����

��� ���

�������������

�������

��������������������

�� !
∀
#�#��∃�%%&∋(

�� !
∀
#�#��∃�%%&∋(

)∃��)∃�� ������
�����
∗
���∀�+(

������
�����
∗
���∀�+(

���
��
���
�� ����������������

�+

�����,���� ���	���	����������������
�

−

Figure 4. Architecture of the Proposed Floating-Point RNG

IV. FLOATING-POINT RANDOM NUMBER GENERATION

In this section we present an efficient hardware opti-

mized architecture for generating floating-point values out of

bitvectors. As input for our floating-point generator (FPG)

any URNG may be used. Our converter unit maintains the

original properties with respect to randomness and distribu-

tion of the input RNs, as show the results in Section V-B1.

Fig. 4 shows how m input bits from URNG are splitted

into the floating-point components. The mantissa part is

mant_bw bits width and therefore (with a hidden bit) can

have the values 1, 1 + 1

2mant_bw , 1 + 2

2mant_bw , . . . , 2 −
1

2mant_bw . We extract one sign bit sign_ℎalf that we need

to determine which half of the Gaussian ICDF shall be

considered. From the exponent part, we count the number

of leading zeros (LZ) and use these as the exponent in our

representation of the FP number. In order to obtain IEEE754

compliant FP numbers, an offset has to be added to the

exponent. For our ICDF look-up unit we employ the LZ

directly as the segment address.

Initially, with this straightforward approach we would be

limited to a maximum exponent value of m−mant_bw−1
with all bits in the exponent part being 0. This would

not allow us to achieve the desired precision for values

close to 0. Therefore we have introduced another parameter

max_exp, defining the maximum value of the exponent of

the FP number. If all bits in the exponent part input are

detected to be 0, we store the values for sign and mantissa

and consume another random number. Now we count again

the LZ in the exponent part and add these number to the

stored value. This is continued until a 1 is detected in the

exponent part or if the number of accumulated LZ exceeds

max_exp.

Pseudo code for our new FPG unit is given in Algorithm 1.

The corresponding hardware architecture with the correla-

tion of input and output components is shown in Fig. 4.

The leading zero counter is efficiently implemented as a

comparator tree. The amount of additionally needed RNs

rn←− get_random_number();
s_ℎalf ←− rn.get_s_ℎalf();
mant←− rn.get_mantissa();
exp←− rn.get_exponent();
LZ ←− exp.count_leading_zeros();
while (exp == 0) and (LZ < max_exp) do

rn←− get_random_number();
exp←− rn.get_exponent();
LZ ←− LZ + exp.count_leading_zeros();

end

exp←− min(exp,max_exp− 1);
return s_ℎalf , mant, LZ;

Algorithm 1: floating-point Generation Algorithm

depends on the parameter max_exp and the available bits

for the exponent part: a second random number is needed

with the probability of P2 = 1

2m−mant_bw−1 , a third with

P3 = 1

22⋅(m−mant_bw−1) .

V. EXPERIMENTAL RESULTS AND TESTS

A. Synthesis Results

To create the LUT with the coefficients of the minimax

polynomials for every segment we developed a tool that

can be used with the freeware mathematical program Scilab.

This allowed us to optimize the bitwidths of the coefficients

and analyze the resulting approximation errors. This tool is

available from our homepage1 and allows others to adjust

the parameters (bitwidths, interpolation degree, segmenta-

tion scheme) of the LUT to their needs for precision and

hardware requirements.

We optimized the bitwidths to optimally use the multiply-

accumulate (MAC) unit in a Virtex-5 DSP48_E slice, which

supports a 18x25 bit+48 bit MAC operation. We used the

following parameters: input bitwidth m = 32, mant_bw =
20, max_bw = 54, and k = 3 for subsegment addressing.

The coefficients c0 and c1 of the linear interpolation are

quantized with 46 and 23 bits, respectively.

We synthesised our proposed architecture with Xilinx

ISE 11.3 for a Virtex-5FX70T-3 using default settings for

synthesis, mapping, place and route (PAR). The floating-

point random number occupied only 29 slices (62 slice flip-

flops (FFs) and 40 slice LUTs). The complete Gaussian

random number converter uses only 44 slices (109 FFs and

46 LUTs), 1 36Kb block RAM for the coefficients and

1 DSP48_E slice for the linear interpolation. The design

achieves a clock frequencies (after PAR) of 381 MHz. In

addition to this converter a 32-bit URNG is needed to

provide the input samples.

Every Virtex-5 slice contains 4 6-input LUTs and 4

flip-flops, while on the Virtex-4 every slice containt 2 4-

input LUTs and 2 flip-flops. Thus, for a fair comparison

1http://ems.eit.uni-kl.de/fileadmin/downloads/ICDF_LUT_generator.tgz

193

with the results from [6] we synthesized the floating-point

converter unit for a Virtex-4LX100-12 (the same FPGA used

as in [6]). It occupies 55 slices (62 FFs, 55 LUTs) and

can replace the complete address decoding logic from the

design in [6], which requires 221 slices. The floatin-point

converter achieves clock frequencies in excess of 400 MHz

with standard synthesis and PAR settings. The polynomial

evaluation including the LUT for the coefficients requires

on the Virtex-4 occupies 2 DSP48 slices, 2 18Kb BRAMs

and 124 slices. So, with our improved architecture 166 of

346 slices needed for the Gaussian conversion can be saved.

Also, the design from [6] requires two 32-bit URNGs while

with our architecture one 32-bit URNG is sufficient. We

achieve a better resolution of the tail and a slightly larger

range of up to 8.37� as opposed to 8.21�. At 70 slices for a

32-bit Tausworthe generator, our approach saves 48% slices

compared to the state of the art. With bigger (and better)

URNGs the benefits of our architecture grow. However, in

approximately one out of 1000 clock cycles, our design

requires a second clock cycle to generate the FP input.

B. Quality Tests

So far no standardized test suites exist for non-uniform

RNs. Therefore we split the verification of our GRNG into

two parts: first we checked the quality of our floating-point

generator with the TestU01 test battery, then we checked the

transformed RNs for normality. Finally, we tested our RNs

in two typical target applications.

1) Uniform Floating-Point Generator: The TestU01 suite

[7] is a comprehensive test portfolio for uniformly dis-

tributed RNs, written in C. It mandates an equivalent fixed-

point precision of at least 30 bits, for the Big Crush test

set even 32 bits. We created uniformly distributed floating-

point RNs in the described manner with a 31-bit mantissa

from the output of a Mersenne Twister MT19937 using our

proposed method and tested them with the Small Crush,

Crush, and Big Crush test suites. With the exception of the

two tests that the MT19937 is known to fail itself, all tests

were passed. We thus conclude floating-point RN converter

preserves the properties of the input generator and shows

the same excellent structural properties.

For reasons of hardware efficiency, the RNs with which

we feed into the ICDF look-up unit have a precision of

only 23 bit. It thus has a lower resolution than the fixed-

point input in some regions and a higher resolution in other

regions. The good distribution for two-dimensional vectors

can be seen in Fig. 5. Even zoomed in the area around

zero, no patterns, clusters, or big holes can be seen. The

equidistribution of our RNs was also empirically tested with

several variants of the frequency test [15]. While checking

the uniform distribution of the RNs up to 12 bits no extreme

p-value appeared.

2) Normally Distributed Numbers: The quality of the

normally distributed RNs was tested with various �2-tests,

Figure 5. Detail of Uniform 2D-Vectors around 0

Figure 6. Histogram of Gaussian Random Numbers

which compare the empirical number of observations in

several groups with the theoretical number of observations.

Test results with an extremely low probability would indicate

a poor quality of the RN, meaning that either the structure

does not fit to a collection of independent normally dis-

tributed RNs or shows more regularity than expected from

a random sequence. With respect to the precision of the

RNs, we did not get suspicious results. The batch of RNs

in Fig. 6 shows that the density of the normal distribution

is well approximated, the corresponding �2-test (goodness-

of-fit test) with 100 categories had a p-value of 0.37.

The distribution of the RNs was also tested in various

batches with the Kolmogorov-Smirnov test, which compares

the empirical with the theoretical cumulative distribution

function. Nearly all tests were perfectly passed, those not

passed did not reveal an extra-ordinary p-value. A refined

Kolmogorov-Smirnov test, as described in Knuth [15] on

page 51, sometimes had quite low p-values. We attribute

this to the lower precision in some regions of our RNs,

194

as the continuous CDF can not be perfectly approximated

with RNs with fixed gaps. Other normality tests, including

a Shapiro-Wilk test, showed no deviation from normality.

We also compared our RNs with the well-accomplished

normally distributed RNs of R, which are also based on the

Mersenne-Twister. The Kolmogorov-Smirnow tests revealed

no difference in distribution. Comparison of variance with

the F-test and of mean with the t-test gave no suspicious

results. Our RNs seem to have the same distribution as

standard RNs, with the exception of the reduced precision in

the central area and the improved precision in the extreme

values. As a result even the area of extreme values is evenly

filled without any large gaps. As the smallest value in our

FPG is 2−54, values of −8.37� and 8.37� can be produced

from only 32-bits of input. Our approximation of the ICDF

is injective, symmetric, monotone, and has an absolute error

of less than 0.4 ⋅ 2−11. This ensures that our inversion

preserves the good structure of the uniform RNs in the gen-

erated normally distributed GRNs. We expect our hardware-

optimized normally distributed RNs to be especially suitable

for extremely long and detailed simulations, where extreme

events are of importance.

3) Application Tests: For the presented hardware imple-

mentation of our GRNG we ran application tests to verify

the applicability of our GRNG in practical scenarios. In an

Octave-based MC simulation for option price modeling us-

ing the Heston model we replaced the Octave RNG randn()
by a bit true model of our presented GRNG-hardware and

observed the same convergence behavior obtaining the same

results, both for options with and without barriers. Also an

extensive set of simulations of the communications perfor-

mance of a duo binary Turbo Code from the WiMax standard

over an AWGN channel showed no significant deviations

neither in the bit error rate nor in the frame error rate

between the results simulated using our proposed GRNG

and a standard GRNG based on the Mersenne Twister and

inversion using the highly accurate Moro approximation.

VI. CONCLUSIONS

Implementing non-uniform hardware random number

generators on FPGAs is a very active research field. In our

work we have shown that floating-point representation for

inversion based methods can save up to 48% of slices while

increasing the output precision compared to state-of-the-art

implementations. We have presented hardware architectures

for our proposed floating-point generator and the ICDF look-

up unit. Synthesis results for Xilix Virtex-4 and Virtex-5

FPGAs have been given. The quality of our random numbers

has been verified with stochastic methods and two practical

simulation applications in a communication system and for

financial mathematics. Our architecture is suitable also for

other distributions and we also will extend it for runtime

adaption.

REFERENCES

[1] A. Ghazel, E. Boutillon, J. Danger, G. Gulak, and H. Laamari,
“Design and performance analysis of a high speed AWGN
communication channel emulator,” in IEEE PACRIM Confer-
ence, Victoria, BC. Citeseer, 2001, pp. 374–377.

[2] D.-U. Lee, J. Villasenor, W. Luk, and P. Leong, “A Hardware
Gaussian Noise Generator Using the Box-Muller Method
and Its Error Analysis,” Computers, IEEE Transactions on,
vol. 55, no. 6, pp. 659 –671, Jun. 2006.

[3] G. Zhang, P. Leong, D.-U. Lee, J. Villasenor, R. Cheung, and
W. Luk, “Ziggurat-based hardware Gaussian random number
generator,” in Field Programmable Logic and Applications,
2005. International Conference on, 24-26 2005, pp. 275 –
280.

[4] H. Edrees, B. Cheung, M. Sandora, D. B. Nummey, and
D. Stefan, “Hardware-Optimized Ziggurat Algorithm for
High-Speed Gaussian Random Number Generators,” in In-
ternational Conference on Engineering of Reconfigurable
Systems & Algorithms, ERSA, Jul. 2009, pp. 254–260.

[5] N. A. Woods and T. VanCourt, “FPGA acceleration of quasi-
Monte Carlo in finance,” in Proc. Int. Conf. Field Pro-
grammable Logic and Applications FPL 2008, 2008, pp. 335–
340.

[6] R. C. C. Cheung, D.-U. Lee, W. Luk, and J. D.
Villasenor, “Hardware Generation of Arbitrary Random
Number Distributions From Uniform Distributions Via
the Inversion Method,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 15,
no. 8, pp. 952–962, Aug. 2007. [Online]. Available:
http://dx.doi.org/10.1109/TVLSI.2007.900748

[7] P. L’Ecuyer and R. Simard, “TestU01: A C library for
empirical testing of random number generators,” ACM Trans.
Math. Softw., vol. 33, no. 4, p. 22, 2007.

[8] D. B. Thomas, W. Luk, P. H. Leong, and J. D. Villasenor,
“Gaussian Random Number Generators,” ACM Comput.
Surv., vol. 39, no. 4, p. 11, Oct. 2007.

[9] G. Box and M. Muller, “A note on the generation of random
normal deviates,” The Annals of Mathematical Statistics,
vol. 29, no. 2, pp. 610–611, 1958.

[10] G. Marsaglia and W. W. Tsang, “The Ziggurat Method for
Generating Random Variables,” Journal of Statistical Soft-
ware, vol. 5, no. 8, pp. 1–7, 2000.

[11] P. J. Acklam. (2010, January) An algorithm for computing
the inverse normal cumulative distribution function. [Online].
Available: http://home.online.no/ pjacklam/notes/invnorm/

[12] B. Moro, “The full Monte,” Risk Magazine, vol. 8(2), pp.
57–58, February 1995.

[13] D.-U. Lee, W. Luk, J. Villasenor, and P. Y. Cheung, “Hier-
archical Segmentation Schemes for Function Evaluation,” in
Field-Programmable Technology (FPT), 2003. Proceedings.
2003 IEEE International Conference on, 15-17 2003, pp. 92
– 99.

[14] D.-U. Lee, R. Cheung, W. Luk, and J. Villasenor, “Hierarchi-
cal Segmentation for Hardware Function Evaluation,” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions
on, vol. 17, no. 1, pp. 103 –116, Jan. 2009.

[15] D. E. Knuth, Seminumerical Algorithms, 3rd ed., ser. The
Art of Computer Programming. Reading, Massachusetts:
Addison-Wesley, 1998, vol. 2.

195

