
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 4, APRIL 2014 795

A Real-Time Adaptive Algorithm for Video
Streaming over Multiple Wireless Access Networks

Min Xing, Student Member, IEEE, Siyuan Xiang, Member, IEEE, and Lin Cai, Senior Member, IEEE

Abstract—Video streaming is gaining popularity among mobile
users. The latest mobile devices, such as smart phones and
tablets, are equipped with multiple wireless network interfaces.
How to efficiently and cost-effectively utilize multiple links to
improve video streaming quality needs investigation. In order to
maintain high video streaming quality while reducing the wireless
service cost, in this paper, the optimal video streaming process
with multiple links is formulated as a Markov Decision Process
(MDP). The reward function is designed to consider the quality of
service (QoS) requirements for video traffic, such as the startup
latency, playback fluency, average playback quality, playback
smoothness and wireless service cost. To solve the MDP in real
time, we propose an adaptive, best-action search algorithm to
obtain a sub-optimal solution. To evaluate the performance of
the proposed adaptation algorithm, we implemented a testbed
using the Android mobile phone and the Scalable Video Coding
(SVC) codec. Experiment results demonstrate the feasibility and
effectiveness of the proposed adaptation algorithm for mobile
video streaming applications, which outperforms the existing
state-of-the-art adaptation algorithms.

Index Terms—DASH, Markov decision process, video stream-
ing, multiple links.

I. INTRODUCTION

V IDEO streaming is gaining popularity among mobile
users recently. Considering that the mobile devices have

limited computational capacity and energy supply, and the
wireless channels are highly dynamic, it is very challenging
to provide high quality video streaming services for mobile
users consistently. It is a promising trend to use multiple wire-
less network interfaces with different wireless communication
techniques for mobile devices. For example, smart phones and
tablets are usually equipped with cellular, WiFi and Bluetooth
interfaces. Utilizing multiple links simultaneously can improve
video streaming in several aspects: the aggregated higher
bandwidth can support video of higher bit rate; when one
wireless link suffers poor link quality or congestion, the others
can compensate for it.

High resilience to bandwidth variation and easy deploy-
ment are both important requirements for video streaming
applications. Currently, progressive download, one of the most
popular and widely deployed streaming techniques, buffers
a large amount of video data to absorb the variations of
bandwidth. Meanwhile, as video data are transmitted over
HTTP protocols, the video streaming service can be deployed
on any web server. However, the video quality version can

Manuscript received April 18, 2013; revised September 22, 2013. Prelimi-
nary results of this work have been presented at IEEE Globecom’12 [26].

M. Xing, S. Xiang and L. Cai are with the Department of Electrical and
Computer Engineering, University of Victoria, Victoria, BC, Canada (e-mail:
{mxing,siyxiang,cai}@ece.uvic.ca).

Digital Object Identifier 10.1109/JSAC.2014.140411.

only be manually selected by users and such decision can be
error-prone. Since the smart phones only have limited storage
space, it is impractical to maintain a very large buffer size.
In addition, the buffered unwatched video may be wasted if
the user turns off the video player or switches to other videos.
Furthermore, progressive download typically does not support
transmitting video data over multiple links.

To overcome the above disadvantages of progressive down-
load, dynamic adaptive streaming over HTTP (DASH) [1]
has been proposed. In a DASH system, multiple copies of
pre-compressed videos with different resolution and quality
are stored in segments. The rate adaptation decision is made
at the client side. For each segment, the client can request
the appropriate quality version based on its screen resolution,
current available bandwidth, and buffer occupancy status.
This pull-based DASH scheme can be extended to support
multiple links, i.e., we can let the client request different
parts of one segment over different links. How to optimize
this rate adaptation process for video streaming over multiple
wireless links, considering the video quality of service (QoS)
requirements, the wireless channel profiles, and the wireless
service costs of multiple links is an open issue.

In this paper, we formulate the multi-link video streaming
process as a reinforcement learning task. For each streaming
step, we define a state to describe the current situation,
including the index of the requested segment, the current
available bandwidth and other system parameters. A finite-
state Markov Decision Process (MDP) can be modeled for this
reinforcement learning task. The reward function is carefully
designed to consider the video QoS requirements, such as
the interruption rate, average playback quality, and playback
smoothness, as well as the service costs. To make a trade-off
between different QoS metrics and the cost, we can adjust
the parameters of the reward function. To solve the MDP
in real time, we proposed an adaptive best-action search
algorithm to obtain a sub-optimal solution. A realistic testbed
is implemented to better evaluate the performance of our
solution.

The main contributions of this paper are threefold. First, we
formulate the video streaming process over multiple links as
an MDP problem. To achieve smooth and high quality video
streaming, we define several actions and reward functions for
each state. Second, we propose a depth-first real-time search
algorithm. The proposed adaptation algorithm will take several
future steps into consideration to avoid playback interruption
and achieve better smoothness and quality. Last, we implement
a realistic testbed using an Android phone and Scalable Video
Coding (SVC) encoded videos to evaluate the performance.

0733-8716/14/$31.00 c© 2014 IEEE



796 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 4, APRIL 2014

The experiment results show that the proposed adaptation al-
gorithm is feasible for video streaming over multiple wireless
access networks, and it outperforms the existing state-of-the-
art algorithms.

The rest of the paper is organized as follows. In Section II,
the related work is summarized. Section III describes the
system model and the problem formulation. We present the
real-time adaptive streaming algorithm in Section IV. The per-
formance evaluation by experiments is presented in Section V,
followed by the concluding remarks and further research issues
in Section VI.

II. BACKGROUND AND RELATED WORK

DASH has been a hot topic in recent years. There are
many commercial products which have implemented DASH
in different ways, such as Apple HTTP Live Streaming and
Microsoft Smooth Streaming. Since the clients may have
different available bandwidth and display size, each video
will be encoded several times with different quality, bit rate
and resolution. All the encoded videos will be chopped into
small segments and stored on the server, which can be a
typical web server. These small segments will be downloaded
to the browsers’ cache and played by the client (browser or
browser plug-in). The video rate adaptation is performed at
the client side, which is also called the pull-based approach.
The client will determine the quality version of the requested
video segment according to its current available bandwidth,
resolution and the number of buffered unwatched segments.
After the current segment is completely downloaded, the
rate adaptation algorithm will be invoked again for the next
segment.

There is extensive work covering this topic [2]–[6]. The
authors in [2] proposed to estimate the bandwidth by a
statistical method, and they took both the quality contribution
and decoding time of each segment into consideration. K.P.
Mok et al. presented a QoE aware DASH system [3]. Their
algorithm estimates the available bandwidth by probing with
the video data. In order to keep the quality level as smooth as
possible, their algorithm will switch the video quality version
gradually and will try to maintain the buffer level being
stable. S. Akhshabi designed an evaluation method in [7] to
test the performance of several existing commercial DASH
products, such as Smooth Streaming, Netflix, and OSMF.
In [6], T. Kupka proposed to evaluate the performance of live
DASH under on/off traffic and tested four different methods to
improve the performance. In [5], how to reduce unnecessary
video quality variations using a probing method to identify the
effective available bandwidth was given. In [4], [8], the authors
designed the optimal rate adaptation algorithm for streaming
scalable video coding (SVC) over HTTP using MDP. With
SVC, each video frame is encoded into a base layer and several
enhancement layers. Higher video quality can be achieved
when more layers are received. These works only considered
the single-link case, and in this work, we consider the more
challenging case with multiple access links.

How to efficiently deliver video in heterogeneous wireless
networks has been extensively studied, and approaches ranging
from the physical layer to the application layer have been

proposed [9]–[13]. Recently, a few approaches have appeared
to extend the DASH technique to support multiple links.
In [14], the authors summarized three typical schemes of
utilizing multiple links. They compared the performance of
these schemes through extensive simulations. Kaspar et al.
proposed an approach to implementing DASH over multiple
links [15]. In their algorithm, each segment will be transmitted
over one link. Thus multiple segments can be transmitted
at the same time. To reduce the overhead, they used HTTP
pipelining to improve the performance. This approach may
lead to the “last-segment problem” due to the link transmission
speed difference. To overcome this disadvantage, in [16]–[18],
Evensen et al. suggested to divide each segment into small
sub-segments, and these sub-segments can be downloaded
through different links. Their algorithm estimates the avail-
able bandwidth according to the throughput of the previous
segment, and selects the video quality version most close to
the estimated bandwidth. In the evaluation section, we will
compare the performance of our proposed solution with the
above state-of-the-art one [18].

III. SYSTEM MODEL AND STREAMING PROCESS
FORMULATION

A. System Model

We consider how to utilize multiple wireless access net-
works together for video streaming, e.g., using a combination
of cellular, WiFi, and/or Bluetooth simultaneously. Here, as an
example, Bluetooth and WiFi access networks are considered
as we do not have end-to-end control over cellular links,
and our work can be extended when other types of wireless
access networks or more than two wireless access networks are
used1. Since a wireless channel may suffer from time-varying
fading, shadowing, interference and congestion, the available
bandwidth of a wireless link may vary all the time. In addition,
different smart phones or tablets may have different screen size
and resolution. Taking these two aspects into consideration,
the server should store several copies of video with different
quality. The videos are encoded with SVC into a base layer
and several enhancement layers, and chopped into segments
and each segment can be played with a fixed duration.

We design a pull-based algorithm for video streaming, as
shown in Fig. 1. After initialization, the client will request
the video information which includes video resolutions, bit-
rates and qualities from the server through both the WiFi and
Bluetooth links. The rate adaptation agent will request a video
segment of appropriate quality version based on the current
queue length and estimated available bandwidth. Once the
request decision is made, HTTP requests over both WiFi and
Bluetooth will be issued to download the video segment. This
process will continue until the completion of downloading the
last segment or the termination of the video streaming by the
user.

1A promising multi-link scenario is to use both WiFi and 3G/LTE celluar
links for video streaming. In our testbed, as the Android OS restricted the
utilization of WiFi and 3G to access Internet simultaneously, we use WiFi
and Bluetooth to test our multi-link streaming solution.



XING et al.: A REAL-TIME ADAPTIVE ALGORITHM FOR VIDEO STREAMING OVER MULTIPLE WIRELESS ACCESS NETWORKS 797

Fig. 1. System Model.

B. Streaming Process Formulation

The video streaming process can also be considered as the
interaction between two modules. As shown in Fig. 1, the
downloading and estimation steps in the top grey rectangle
can be viewed as an integrated environment module, and the
rate adaptation agent can be viewed as an agent module. The
video streaming process can be formulated as a reinforcement
learning task [19]. The environment sends a state signal
for each video segment to the agent, and the agent will
determine the best action correspondingly. For each action,
the environment replies a reward to the agent. Considering
the Markov property of the system states, a Markov Decision
Process (MDP) can be formulated for the streaming process,
and the state transition model of the Markov process needs to
be devised.

We define step n as to download segment n, so
the total number of steps equals the number of seg-
ments. For each step n, we define the state as sn =
{qn,Δqn, vn,Δvn, tn,Δtn, bwn, btn, dn}, with the parame-
ters defined as follows. qn represents the number of unplayed
queued segments, which is also called the buffer level (or
queue length), with the range between 0 and qL (which is the
maximum queue length). vn is the SVC video layer index of
the n-th segment. In our work, there are L SVC video layers
in total, and a larger number represents a higher-quality layer.
Δqn and Δvn are the variations of qn and vn respectively, i.e.,
Δqn = qn − qn−1, and Δvn = vn − vn−1. The total traffic of
Bluetooth used to download the previous segment is recorded
by tn, and Δtn = tn − tn−1. The current bandwidth states of
the WiFi link and the Bluetooth link are described by bwn and
btn, respectively. dn indicates the current requested segment
index. As the total number of video segments is NT , dn is in
the range of [0, NT ].

When the rate adaptation agent receives input of state sn
from the environment, it will make the decision of which
action should the environment take. We define four types
of actions, Ab, Au, Aw, and As. The first two actions are
for downloading the next segment at the quality determined
by v, and Δv determines whether to upgrade, downgrade or
maintain the current quality. Once the quality v is determined,
the base layer and all enhancement layers belong to quality
v will be combined together to be downloaded. Considering
that drastic video quality variation will significantly decrease
the perceived video quality, we avoid those drastic layer
change actions by restricting the video layer change level
Δv to one. The difference of Ab and Au is that, with Ab,
both the WiFi and Bluetooth links are used to download
the segment simultaneously, while with Au, only the WiFi
link is used. As a short distance wireless communication
technology, Bluetooth can only help the client connect to the
web server indirectly via tethering cellular data services. Since
cellular services are charged at much higher rates than WiFi
services, it is better to limit the usage of the Bluetooth link to
reduce the cost. In addition, Bluetooth connection is not quite
reliable as it is easy to be interfered. Therefore, sometimes
we prefer to use WiFi only. For Ab actions, the download
load of WiFi and Bluetooth will be determined based on their
current available bandwidth. In other words, assuming that
the available bandwidth of WiFi and Bluetooth are bw and
bt, the segment size is SZ , then the downloading load of
WiFi is SZ · bw/(bw+ bt). Aw represents the waiting action,
and the client will wait for W seconds, equal to the duration
of one segment. Since SVC video is encoded into different
layers and chopped into segments to be stored on the web
server, as long as the segment has not been played yet, the
higher enhancement layers can be requested to improve the
perceived streaming quality and smoothness. Therefore, the
smooth action As is introduced in our work.

There are three principles to follow for the smooth action.
First, when the queue length is low, the smooth action will not
be taken as there is a high probability to experience playback
freeze soon. Thus the smooth action will be invoked only when
the queue length is sufficiently large, such as when the queue
length q is larger than a certain threshold Ts. Second, for
the segment which will be played soon, we will not take the
smooth action, because the requested enhancement layers may
miss the playback deadline. Therefore we only take the smooth
action for a few number of buffered segments which are stored
in the tail part of the buffer. A smooth window with size Ls is
defined in our work to determine how many buffered segments
will be the candidate segments for the smooth action. In our
approach, the last Ls buffered segments are in the smooth
window as they are least likely to miss the playback deadline.
The last principle of the smooth action is to ensure that it will
not bring in any additional layer variation. As shown in Fig. 2,
generally, we will take the smooth action in four different
scenarios. Assume the smooth window size Ls = 6, and thus
all segments in Fig. 2 are in the smooth window. If only
one segment in the smooth window has the lowest number
of the enhancement layer, then we will smooth that segment
by requesting the same number of enhancement layers as the
other segments, which is shown in Fig. 2-(a). When there are



798 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 4, APRIL 2014

0 1 2 3 4 5 6
0

1

2

3

4

segment

la
ye

r

 

 

Original
After smooth

(a)

0 1 2 3 4 5 6
0

1

2

3

4

segment

la
ye

r

 

 

Original
After smooth

(b)

0 1 2 3 4 5 6
0

1

2

3

4

segment

la
ye

r

 

 

Original
After smooth

(c)

0 1 2 3 4 5 6
0

1

2

3

4

segment

la
ye

r

 

 

Original
After smooth

(d)

Fig. 2. Different Smooth Scenarios.

multiple layer variations in the smooth window, such as those
in Fig. 2-(b), the smooth action will be applied to the segment
with the smallest number of layers. To avoid additional layer
variation caused by the smooth action, we will first smooth
the segment at the edge of layer variation. For example, in
Figs. 2-(c) and -(d), segments to be smoothed are marked with
circles.

For the optimal rate adaptation, one difficulty is to estimate
the statistics of the wireless link bandwidth accurately. It has
been widely acknowledged that the Markov channel models
are useful tools to describe the variations of wireless links [20],
[21]. Thus, two discrete-time finite-state Markov models are
employed for describing the available bandwidth of the WiFi
and Bluetooth links, respectively. The Markov models for the
channels can be obtained according to the recent measure-
ments or using the history data. With the wireless channel
model, we can derive the available bandwidth state transition
probabilities. According to the Markov property, the state at
any time instance only depends on its immediately previous
state. Given any state s and action a, the transition probability
of the MDP can be given as

Pa
ss′ = Pr{sn+1 = s′|sn = s, an = a}. (1)

Considering two wireless links in our model, and assuming
they are independent, the transition probability is calculated
as

Pa
ss′ = Pr{bw′|bw} · Pr{bt′|bt}. (2)

With the above transition probability, for any state s =
{q,Δq, v,Δv, t,Δt, bw, bt, d}, if action Ab is taken, then the
next state s′ = {q′,Δq′, v′,Δv′, t′,Δt′, bw′, bt′, d′} can be

TABLE I
REWARDS ASSOCIATED WITH STATES

State st = s Reward R(s)
(∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, NT ) 0

(q, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗), if q < Tqmin −(QL − q) + Δq
(q, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗), if q > Tqmax −q −Δq

(∗,Δq, ∗,Δv, t,Δt, ∗, ∗, ∗) min(−|Δv|,−|Δq|)−ΔtRt

other states 0
any state with smooth action Rs

derived as

q′ = q − �SZv′
d+1/(bw

′ + bt′)�+ 1,

Δq′ = q′ − q, v′ = v +m, Δv′ = m,

Δt′ = SZv′
d+1 · bw′/(bw′ + bt′),

t′ = t′ +Δt′, d′ = d+ 1, (3)

where SZv′
d+1 is the size of segment d+ 1 at quality version

v′, and m is the action value. The video segment information
can be obtained by the client during the initialization step.
Similarly, it is easy to derive the next state with Au, Aw and
As actions.

In order to measure how good the actions are, we define
a reward value r associated with each action a. The reward
value rn at step n is determined by the previous state sn−1,
i.e., rn = R(sn−1). As shown in Table I, we define the
reward values for different states. In the reward function table,
∗ means that the state can be of any value. The reward of
a state will be looked up from the top to the bottom in
Table I, until one entry is matched. When d = NT , all
the segments have been downloaded, and thus reward 0 is
given. The reward functions are highly related to the streaming



XING et al.: A REAL-TIME ADAPTIVE ALGORITHM FOR VIDEO STREAMING OVER MULTIPLE WIRELESS ACCESS NETWORKS 799

QoS. A higher reward is more desirable so the corresponding
action is preferable. Video playback freezes could be the most
undesirable experience, and thus a negative reward with a large
magnitude is given when q is less than the threshold Tqmin,
as there is a high probability of playback freeze when the
queue length is very small. Such a negative reward can also
reduce the startup latency, since we prefer the actions to fill
up the buffer with less time to avoid large negative rewards.
Therefore, low-layer segments will be requested when the
queue length is small. Similarly, we also give a negative
reward with a large magnitude when q is larger than the
threshold Tqmax, in order to avoid buffer overflow. When the
queue length is between the two thresholds, we prefer less
variation of q, so we set the reward to no larger than −Δq.
To obtain a smooth and high quality video streaming, we also
give negative rewards when there are high fluctuations of Δv.
According to [22], we can assume that the cost function of
WiFi Cw(x) is a constant (flat fee) independent of the traffic
load:

Cw(x) = Rw, (4)

and the cost function of Bluetooth Ct(x) is a constant plus a
linear function of the usage

Ct(x) = Kt +Rtx. (5)

Here, the cost function of Bluetooth is quite similar to the
cellular data plan. (Other cost models can be considered,
which are not included in this work due to space limit.) When
the usage exceeds a cap Kt, then additional data will be
charged at a higher rate. Therefore, when the cap is reached,
the usage of Bluetooth traffic must be restricted. We give a
negative reward equals the traffic cost ΔtRt when additional
Bluetooth data transfer is used. To achieve a more smoothed
perceived streaming quality, we will assign additional reward
Rs upon the invoking of the smooth action.

The streaming policy π is a mapping of the possible action
at each step. The long-term reward V π(s) under policy π can
be computed as:

V π(s) = Eπ

{
NT∑
n=0

rn|sn = s

}

=
∑
s′

Pa
ss′ [R

a(s) + γV π(s′)], (6)

where R is the next reward of taking action a at state s, γ is the
discount rate and 0 ≤ γ ≤ 1. The parameter γ makes a trade-
off between myopic video quality and future interruptions and
variations. A small γ lets future reward weigh less, and thus
makes the adaptation decision more myopically. Meanwhile,
when fewer future steps are considered, it also results in a
more myopic decision.

Obviously, finding the optimal strategy policy π∗(s) which
can maximize the long-term reward is the goal of the rein-
forcement learning task of video streaming. Thus, our multi-
link video streaming task can be finally formulated as an
optimization problem:

π∗(s) = argmax
π

∑
s′

Pa
ss′ [R

a(s) + γV ∗(s′)]. (7)

IV. PRACTICAL ALGORITHM DESIGN

Given the formulated video streaming process as an op-
timization problem, our goal is to find the best solution of
the problem, which is also the optimal streaming policy.
Theoretically, dynamic programming can be employed to
solve the above optimization problem by value iteration. The
computation time and the memory consumption of the dy-
namic programming algorithm are determined by the number
of states. With about 50 segments, the computation time and
the solution table may exceed one hour and 600 MBs on
a high-end desktop, respectively. Therefore, this approach is
not suitable for real-time adaptive streaming. To overcome
this problem, we aim to develop a real-time best streaming
action search algorithm to find a sub-optimal solution for the
optimization problem formulated in the previous section.

A. Bandwidth Estimation

Rapid network load changes and short-term outages are
difficult to predict, and the resultant available bandwidth for
a session becomes a time-varying random process. Thus,
instead of using a homogeneous Markov chain to estimate
the available bandwidth, in our work, a heterogeneous and
time-varying Markov model is used to estimate the future
bandwidth. The bandwidth of each link will be divided into
several regions. Each region will represent a state of the
Markov channel model, and the total number of the states is
equal to the number of regions. Assume that there are n states,
then an n×n transition matrix P will be used for the Markov
channel model. Each element pij is the transition probability
from state i to j. To obtain the transition probability, another
n×n matrix C is used to count the number of transitions for
each state. Once a segment has been successfully downloaded,
the transmission bandwidth can be calculated by dividing the
total size of the data transmitted over the total transmission
time. Then the bandwidth region can be determined and we
will increase the corresponding cij by one. pij is updated by
the following equation:

pij =
cij + 1∑n
j=1 cij + n

. (8)

Initially, if there is no history data available, cij = 0, and pij
is set to 1/n. The transition matrix will be updated after each
segment has been successfully downloaded, so the transition
matrix can better predict the future bandwidth variations with
the recent measurements.

B. Real-time Search Algorithm

According to the formulation of the video streaming pro-
cess, the calculation of the best long-term reward at state s
with action a in (6) can also be written as:

Q∗(s, a) = R(s) + γ
∑
s′

Pa
ss′V

∗(s′), (9)

where V ∗(s′) is the best long-term reward for state s′. It is
easy to note that the best long-term reward for the current
state is determined by all the possible future states. Since
dynamic programming considers all the possible future steps
to obtain the optimal solution, it results in an extremely



800 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 4, APRIL 2014

Algorithm 1 Real-Time Best-Action Search Algorithm
1: procedure GETBESTACTION(s)
2: Initialize action← −1, Qmax ← −∞
3: Generate all possible actions A(s) for state s
4: for all Action a ∈ A(s) do
5: q ← REWARDSEARCH(s,a, 0)
6: if q > Qmax then
7: Qmax ← q, action← a
8: end if
9: end for

10: return action
11: end procedure

12: procedure REWARDSEARCH(s,a, d)
13: q ← reward of (s,a)
14: if d ≥ D then
15: return q
16: end if
17: Generate all possible next states S′ of (s,a)
18: for all s′ from S′ do
19: Qmax ← −∞
20: Generate all possible actions A′(s) for state s′

21: for all Action a′ ∈ A′(s) do
22: Qt ← REWARDSEARCH(s′, a′, d+ 1)
23: if Qt > Qmax then
24: Qmax ← Qt

25: end if
26: end for
27: q ← q + γPss′Qmax

28: end for
29: return q
30: end procedure

long computation time. If only part of the future steps are
considered, a sub-optimal solution can be obtained. Based on
this idea, we develop a real-time recursive best-action search
algorithm, which is shown in Algorithm 1.

To meet the requirement of the real-time search, an impor-
tant issue is to reduce the search duration for each state to
an acceptable value. We achieve this goal by setting a small
search depth D to invoke the search algorithm. For the current
state s, all the possible actions A(s) will be enumerated. The
recursive reward search algorithm is invoked to obtain the
reward of state s with action a by enumerating all the possible
future states S′ and their associated actions A′(s).

C. Adaptive Search Depth

Search depth is an important issue in our work. The search
depth can determine how good the search result is, and a
larger value of depth will achieve a better result. Meanwhile,
with the increment of the search depth, the search time to
obtain the action for a segment will be increased exponentially.
Therefore, the search depth can be viewed as a trade-off
between the video quality and the search time.

Based on several preliminary experiment results, when the
search depth D is larger than three, it will take more than two
seconds to obtain a decision on the test Android smart phone.
Thus, the maximum search depth Dmax is set to three. As the
perceived video streaming fluency is generally considered as
one of the most important QoS for the user, the search depth
D is determined by the current queue length in our work.
We divide the buffer queue into three regions, [0, q1), [q1, q2)

and [q2, qL]. For each state, the search depth D is determined
according to its queue length q as follows:

D =

⎧⎨
⎩

1 if q ∈ [0, q1)
2 if q ∈ [q1, q2)
3 if q ∈ [q2, qL]

(10)

When the queue length is low, there is a high probability
that a playback interruption may occur soon, and thus a short
search time and depth is preferred. When the queue length is
high, there is sufficient time to search a deeper depth to obtain
a better result.

D. Discussion

According to [19], the MDP can be viewed as a decision
tree. The current state represents the root of the decision
tree, and the future possible actions and states form the node
and leaves. Since the recursive search will not try the next
action until it reaches the leaves. Thus, our real-time search
algorithm is a depth-first algorithm. It is easy to find that the
computational complexity of our real-time search algorithm
is O(bD), where b is the total number of branches of the
search tree and D is the search depth. If we only search one
step, it is a typical greedy algorithm. When the search depth
is equal to the total number of video segments Nt, then it
is exactly identical to the dynamic programming algorithm.
There is no need to store all the states and actions in the
stack while searching the tree, so the memory consumption
of our recursive search algorithm is not high. Generally, the
space complexity of our algorithm is bound by O(bD).

V. PERFORMANCE EVALUATION

A. Testbed Implementation

In order to better evaluate the performance of our proposed
video streaming algorithm, we established a realistic testbed
to measure the performance with a real video stream and an
Android mobile phone.

A smart phone with Android OS is used as the client.
The smart phone is integrated with WiFi, 3G and Bluetooth
wireless interfaces. Since WiFi and 3G cannot work together
to access the Internet on Android OS, WiFi and Bluetooth
are utilized together to transmit the video segments simulta-
neously according to our multi-link streaming solution.

We implemented a video streaming application which can
request the video contents from the web server through the
HTTP/1.1 protocol. The video streaming application contains
three main components: the streaming action search module,
WiFi connection management module and Bluetooth connec-
tion management module. When the video streaming process
begins, the streaming action search module will make the
decision on how many enhancement layers to be requested
and how to assign the transmission load to each link. Once
the decision is made, WiFi and Bluetooth modules send
HTTP/1.1 requests to the server to fetch the corresponding
video segments. This process will continue until the last
segment is successfully fetched. As there is no available SVC
decoder for Android OS yet, we only use the smart phone to
request the video segments and record the transmission trace.



XING et al.: A REAL-TIME ADAPTIVE ALGORITHM FOR VIDEO STREAMING OVER MULTIPLE WIRELESS ACCESS NETWORKS 801

Web server 

Android 
Client 

WiFi router 

Bluetooth Proxy 

Other 
Client 

Fig. 3. Testbed Network Topology.

With the trace, we can decode the SVC video on a PC to
evaluate the experiment results.

The video information is stored in a simplified manifest file
in our implementation. In the manifest file, first the general
video information is listed: the total number of segments, the
duration of a segment, the total number of enhancement layers
and the correspondent resolutions. Then the detailed bit-rate
of each segment and the size of each layer for each segment
are listed. The manifest file will be transmitted to the client
first before the stream begins.

As Bluetooth cannot connect the client to the web server
directly, we implemented a Bluetooth proxy to let the client
access the web server. The Bluecove Java Bluetooth library
is used to implement the proxy on a laptop. When the client
sends an HTTP/1.1 request, the proxy will forward the request
to the web server, fetch the video segments from the server
and also forward the fetched segments to the client.

B. Experiment Settings

The network topology of our testbed is shown in Fig. 3.
The video streaming server is deployed on a web server,
which is deployed on a desktop by Apache HTTP Server
2.2.24 with Ubuntu 10.04 OS. Both the wireless router and the
Bluetooth proxy are connected with the web server through
wired links. The wireless router is flashed with OpenWrt to
set up customized configurations. In our experiment, the WiFi
network is configured to be in the IEEE 802.11b mode and
the wireless transmission rate is set to 1 Mbps or 2 Mbps.
The minimum round-trip time (RTT) of WiFi without queuing
delay is about 13.19 ms. The Bluetooth proxy runs on a laptop
which is equipped with a dual-core 2.53 GHz Intel CPU and 2
GB memory. We used a Samsung i9100 Galaxy II smart phone
with Android 4.0.3 OS as the client. The Samsung i9100 is
equipped with a dual-core 1.2 GHz Cortex-A9 CPU and 1
GB RAM. The minimum RTT between the smart phone and
the proxy is about 25.83 ms, and between the proxy and the
server is about 1.79 ms, respectively. Thus the total minimum
RTT for the Bluetooth link is about 27.62 ms.

The open-source SVC codec JSVM [23] is used to encode
a test video “Big Buck Bunny” (available at http://www.
bigbuckbunny.org), and we did not pack the encoded video
with any container. According to [24], the multi-segment
strategy is adopted in our implementation. The test video is
first chopped into small segments and then encoded into a
base layer and two enhancement layers. In order to better test
the feasibility and robustness of our approach, two different

TABLE II
VIDEO CODING CONFIGURATIONS

Resolution Avg. bit-rate
(Kbps)

Std bit-rate
deviation

Y-PSNR
(dB) Layer

Cfg 1 320×180 112.84 39.01 30.99 1
320×180 238.94 88.84 32.63 2
640×360 363.82 140.33 35.9 3

Cfg 2 640×360 235.4 92.09 35.37 1
1280×720 531.1 215.97 38.53 2
1280×720 1,056.9 469.1 41.5 3

configurations of the encoded videos are employed, which
are shown in Table II. The frame rate and Group of Pictures
(GoP) of both configurations are set to 24 fps and 8 frames
which include one I frame and seven hierarchically predicted
B frame. To ensure that each segment contains complete GoPs,
the length of the two configuration 1 and 2 are set to 17 frames
(one independent I frame and two GoPs) and 49 frames (one
independent I frame and six GoPs) per segment respectively.
Therefore, the duration of each segment is about 700 ms
and 2,042 ms for the two configurations, respectively. In our
experiments, Nt = 200 segments are selected for configuration
1 and Nt = 100 segments for configuration 2.

At the client, the buffer size is set to qL = 20 segments,
which means that it can cache at most 20 video segments.
Tqmin and Tqmax are set to 2 and 18 segments, respectively.
For the Markov channel model, the available bandwidth for
each link is divided into four regions, and thus two 4 × 4
transition matrices were used for the WiFi and the Bluetooth
links, respectively.

To reduce the search time of our real-time best-action
search algorithm, we implemented it in a non-recursive way.
According to the experiments, we found that the running time
of the algorithm is about 2 ms when the depth D = 1, 42
ms when D = 2, and 513 ms when D = 3, respectively.
Therefore, we set the adaptive searching depth region as
q1 = 8 segments and q2 = 15 segments.

C. QoS Metrics

Several objective tests were conducted to evaluate the
performance of the proposed approach using several QoE
related QoS metrics. For instance, according to [25], the layer
variations will decrease the users’ watching experience, and
thus the number of layer variations was used to reflect the
smoothness in our experiments. The performance metrics used
in our experiments are listed as follows:

• Startup latency (SL): It is defined as the duration from
sending out the first segment request to the beginning
of playing back the first segment, which can be also
regarded as buffering time.

• Playback fluency: The number of segments that miss the
playback deadline, and the playback freeze ratio, which
calculates the percentage of the duration of playback
freezes over the total video streaming time are evaluated.

• Average playback quality (APQ): The average PSNR
of all received frames.

• Layer variation: To measure how smooth the perceived
video quality is, we count the number of layer variations.



802 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 4, APRIL 2014

Besides, the Bluetooth traffic usage was also utilized as one
evaluation metric.

D. Experiment results

The available bandwidth in the wireless network is an
uncontrollable, random process. In order to make the ex-
periments reproducible, the traces of the wireless bandwidth
were recorded (available at http://www.ece.uvic.ca/∼mxing/
mdp/bdtraces.mat), and a Linux traffic shaping command tool
tc is utilized to shape the bandwidth based on the traces. For
each scenario, the experiment is repeated 10 times to obtain
the average. Since the commercial DASH solutions are not
open-sourced, it is difficult to modify them to support multi-
link and SVC. Thus, we compared our algorithm (RTRA) with
the state-of-the-art one, the rate adaptation video streaming
algorithm by K. Evensen (KERA) published in [18]. The only
difference of the implemented KERA algorithm is that we
modified it to support SVC videos. We tested the single-link
case by enabling only one link during the experiments for both
algorithms (RTRA S and KERA S) as well, which can also
validate the benefit of multiple links.

1) Slow-changing Bandwidth Scenario: First, we inves-
tigate the performance with the slow-changing bandwidth
scenario. To generate the bandwidth variation, we added slow-
changing on/off background traffic by letting another laptop
request a large file and then letting it sleep for 10 seconds.
This procedure will repeat during the whole experiments. The
maximum WiFi rate is set to 1 Mbps for the first video
configuration and 2 Mbps for the second one, respectively.

The parameter α is set to one to make a good trade-off
between the smoothness and video quality. As the total sizes
of all the video segments of the first configuration are 1.9
MB for the base layer, 2.13 MB for the first enhancement
layer, and 2.1 MB for the second enhancement layer, we set
the maximum threshold of the Bluetooth traffic to BTt = 2
MB to limit the overuse of Bluetooth traffic. Similarly, the
BTt = 5 MB is set for the second configuration video.

The results of the first set of experiments are shown as Case
1 in the first and fourth rows of Table III. We can notice that
the proposed RTRA needs significantly less buffering time
than KERA under both configurations. As a low buffer level
brings a large-magnitude, negative reward which is undesired,
the proposed RTRA will only request the base layer for the
first several segments to quickly fill the buffer. KERA does
not have such a low-layer start mechanism, so it may request
high-layer video segments at the beginning, which results in
a longer SL. Even with a single link, RTRA S still only
experiences almost a half SL when compared with that of
KERA S. Without the Bluetooth link, slightly longer SLs for
both algorithms are observed.

As the aggregated bandwidth is sufficient to support the
base layer for both video configurations, there is no segment
missing the playback deadline for both algorithms with two
links, and therefore 0% playback freeze ratio is achieved as
well. Even with a single link, the proposed RTRA S can still
avoid playback freeze. By giving a large-magnitude negative
reward to the low buffer level, the proposed RTRA can
maintain a relatively high buffer level, which guarantees the

playback fluency as long as the average bandwidth can support
the base layer. For KERA S, the sudden bandwidth decrease
makes the bandwidth estimation inaccurate. Thus, when there
is no other link can compensate for the bandwidth, the low
bandwidth can no longer support the high quality video and
playback freeze happens.

The proposed RTRA can achieve similar perceived video
quality as KERA. With the low-layer startup, the buffer can
be filled very quickly. When the buffer level reaches a certain
level, drastic buffer level increment will bring a negative
reward, and thus the video quality will be upgraded to avoid
such a penalty. In this way, high quality video streaming can
be guaranteed. As KERA is quite greedy, it always tries to
request the highest possible layer, and KERA can achieve the
similar quality as RTRA.

Since layer change may bring a negative reward, the pro-
posed RTRA tends to maintain the current video quality. Thus,
the average number of layer variations for RTRA is quite
small. As mentioned before, KERA is a greedy algorithm.
One of the drawbacks of the greedy algorithm is that the
smoothness is ignored as it only considers the instantaneous
video quality. Thus, there is a significant number of layer
variations for KERA. With a single WiFi link, as WiFi cannot
sustain the first enhancement layer, sometimes it has to switch
from the first enhancement layer to base layer in order to
avoid playback freeze, which results in more layer variations
for RTRA S than RTRA.

Furthermore, with the cap of Bluetooth traffic, RTRA uses
much less Bluetooth traffic than KERA which can avoid the
additional cost and negative reward.

2) Rapid-changing Bandwidth Scenario: We then evaluate
the performance with the rapid-changing on/off background
traffic sharing the WiFi link with a much shorter on or off
duration. Two different cases are generated: 1) We let another
laptop request a file (600 KB) and then sleep for only 1 second
before repeating the requesting procedure. In this way, there
are some positive spikes of the available bandwidth in the
WiFi link. 2) To generate the negative spikes for the available
bandwidth in the WiFi link, we let the laptop request a small
file (100 KB) and then sleep for 10 seconds. We conducted the
two sets of experiments under the above two types of on/off
background traffic.

In these two sets of experiments, the purpose is to evaluate
the performance of the proposed RTRA with short-term band-
width variations. We show the experiment results in the case
2A and case 2B rows of Table III for the positive and negative
spikes cases, respectively. For the positive-spike case, the base
layer cannot be sustained only with WiFi, so there are many
segments missing the playback deadline under both video
configurations for both algorithms with single link. When the
second link is available, it is sufficient to support the base
layer, therefore no segment missed the playback deadline and
zero playback freeze ratio.

Under the positive-spike traffic, as the average bandwidth
can support the base layer only, the RTRA algorithm tried
to stay with the base layer. Even when the bandwidth was
increased dramatically, quickly increasing the buffer level will
bring a higher reward than improving the video quality by re-
questing more enhancement layers. Therefore, the smoothness



XING et al.: A REAL-TIME ADAPTIVE ALGORITHM FOR VIDEO STREAMING OVER MULTIPLE WIRELESS ACCESS NETWORKS 803

TABLE III
EXPERIMENT RESULTS

SL (ms) # of missed segments Playback freeze ratio PSNR (dB) # of layer variation BT traffic (KB)

Cfg 1

Case 1

RTRA 1,404 0 0% 34.07 19 1,624
RTRA S 2,184 0 0% 31.9 48.1 0
KERA 2,718 0 0% 33.78 109 1,613

KERA S 3,144 26.1 5.36% 33.05 141.4 0

Case 2A

RTRA 1,447 0 0% 32.19 40 1,687
RTRA S 2,393 56 14.4% 31.02 26.6 0
KERA 3,215 0 0% 31.64 90 1,855

KERA S 3,661 98.7 21.63% 31.44 41.8 0

Case 2B

RTRA 1,360 0 0% 35.72 5.8 1,136
RTRA S 1,597 0 0% 34.11 18.4 0
KERA 1,985 0 0% 35.46 35.5 1,390

KERA S 2,744 0 0% 34.92 49.7 0

Cfg 2

Case 1

RTRA 3,573 0 0% 38.17 18.8 2,047
RTRA S 3,635 0 0% 36.51 31.8 0
KERA 5,409 0 0% 38.24 59.9 2,466

KERA S 6,204 0.6 0.18% 37.73 57.6 0

Case 2A

RTRA 5,131 0 0% 36.56 36.3 2,273
RTRA S 6,046 18.3 10.71% 35.64 13.2 0
KERA 5,433 0 0% 36.57 42 2,597

KERA S 6,697 25.4 13.49% 36.0 24.5 0

Case 2B

RTRA 2,505 0 0% 40.16 14.8 2,182
RTRA S 2,644 0 0% 39.17 17.4 0
KERA 5,534 0 0% 40.34 31.6 2,256

KERA S 5,778 0 0% 39.95 38.7 0
Robustness
Case 2A/B

RTRA 4,023 0 0% 36.3 30 2,213
RTRA 2,306 0 0% 40.37 7.1 2,102

0 30 60 90 120 150
0

1

2

3

4

Time (s)

La
ye

r 
In

de
x

 

 
Buffered video layer index Playback video layer index

0 30 60 90 120 150
0

5

10

15

20

Time (s)

S
eg

m
en

ts

 

 
Buffer level

(a) RTRA

0 30 60 90 120 150
0

1

2

3

4

Time (s)

La
ye

r 
In

de
x

 

 
Buffered video layer index Playback video layer index

0 30 60 90 120 150
0

5

10

15

20

Time (s)

S
eg

m
en

ts

 

 

Buffer level

(b) KERA

Fig. 4. Playback Traces and Buffer Occupancy Traces.

can be guaranteed. While under the negative spike traffic, the
buffer will be quickly filled to reach a certain stable level.
More enhancement layers will be requested to improve the
video quality with a low playback freeze probability. The
sudden bandwidth decreases do not have much impact on
the video request decision, as the buffer has accumulated
enough segments to maintain the current quality. KERA is
very sensitive to the bandwidth variation, therefore it may
switch to the base layer only during the negative spikes. As a
result, compared to RTRA, a much lower smoothness can be
achieved by KERA, no matter with one or two links.

To further demonstrate the performance of the proposed
approach, we select one run of the experiment of case 2B
and show the playback traces and buffer occupancy status of

the two algorithms in Fig. 4. In the top sub-figures, the black
rectangles represent the requested segment layer index, and the
dashed curves represent the segment playback index. There are
only several layer variations at the beginning of the streaming
process. With the updated Markov state transition matrix, the
prediction of future bandwidth becomes more accurate. When
the buffer level reaches a certain level, RTRA can stay with
the second enhancement layer all the time to obtain a high
smoothness. In Fig. 4-(b), there are lots of layer variations
during the whole streaming process. We can also notice that
the buffer was almost full from the thirty-first second. With the
almost full buffer, those layer variations indicate substantial
bandwidth wastage.

Figure 5 compares the video layer and bandwidth traces



804 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 4, APRIL 2014

10 11 12 13 14 15 16
0

200

400

600

800

B
an

dw
id

th
 (

K
bp

s)

KERA

 

 

0

1

2

3

4

5

6

Time (s)

V
id

eo
 L

ay
er

 I
nd

ex

WiFi BW
Bluetooth BW
Video layer index

10 11 12 13 14 15 16
0

200

400

600

800

B
an

dw
id

th
 (

K
bp

s)

RTRA

 

 

0

1

2

3

4

5

6

Time (s)

V
id

eo
 L

ay
er

 I
nd

ex

WiFi BW
Bluetooth BW
Video layer index

(a) Case 1

10 11 12 13 14 15 16
0

200

400

600

800

B
an

dw
id

th
 (

K
bp

s)

KERA

 

 

0

1

2

3

4

5

6

Time (s)

V
id

eo
 L

ay
er

 I
nd

ex
WiFi BW
Bluetooth BW
Video layer index

10 11 12 13 14 15 16
0

200

400

600

800

B
an

dw
id

th
 (

K
bp

s)

RTRA

 

 

0

1

2

3

4

5

6

Time (s)

V
id

eo
 L

ay
er

 I
nd

ex

WiFi BW
Bluetooth BW
Video layer index

(b) Case 2A

4 5 6 7 8 9 10
0

200

400

600

800

B
an

dw
id

th
 (

K
bp

s)

KERA

 

 

0

1

2

3

4

5

6

Time (s)

V
id

eo
 L

ay
er

 I
nd

ex

WiFi BW
Bluetooth BW
Video layer index

4 5 6 7 8 9 10
0

200

400

600

800

B
an

dw
id

th
 (

K
bp

s)

RTRA

 

 

0

1

2

3

4

5

6

Time (s)

V
id

eo
 L

ay
er

 I
nd

ex

WiFi BW
Bluetooth BW
Video layer index

(c) Case 2B

Fig. 5. Comparison of Experiment Traces.

using KERA and the proposed RTRA under the first video
configuration. All three sub-figures clearly show the sensitivity
of KERA with regard to the variation of bandwidth. Layer
variations occur frequently with KERA, which is along with

71 72 73 74 75 76 77 78
0

0.5

1

1.5

2

2.5

3

Time (s)

La
ye

r 
In

de
x

 

 
Orginal buffered video layer index
Smoothed video layer index

Smoothed segment

Fig. 6. Effect of The Smooth Action.

the bandwidth variation. Different from KERA, the proposed
RTRA only requests the second layer unless the buffer oc-
cupancy is accumulated to a certain level before it requests
the higher layer, which is shown in Fig. 5-(a). As there may
be negative reward for the layer variation, it enables RTRA
being immune to the bandwidth spikes, which can be found
from Figs. 5-(b) and -(c).

For RTRA, when the buffer level reaches a certain level, the
smooth action will become available. By taking the advantage
of SVC coding, we split the video segments into layers.
Thus the enhancement layer can be requested individually to
improve both the smoothness and quality. In Fig. 6, the effect
of the smooth action is shown. The segment in the blue circle
is smoothed by requesting the next enhancement layer.

3) Robustness Evaluation: Finally, we evaluate the robust-
ness and the effectiveness of the proposed RTRA algorithm
based on the Markov channel model. In the previous experi-
ments, the initial state transition probability between any two
states is set to be equal. With the recorded bandwidth traces,
we can process the traces and obtain the state transition rate
of the traces. Then, in the following experiment, we used the
state transition rate to initialize the state transition probability
matrix. The matrices are used as the initial matrix in our
experiment. The experiment results are shown in the last row
of Table III.

Since the initial state transition probability matrix in this
experiment can accurately reflect the bandwidth variations, the
results outperforms the previous results with a very limited
margin in every aspect. In the previous practical approach,
although the initial state transition matrix is not accurate, by
updating it with the measured throughput, we still can achieve
a satisfactory performance. Meanwhile, this also confirms the
robustness of the proposed algorithm, as the accurate initial
state transition matrix is not essential.

VI. CONCLUSIONS

In this paper, we proposed a real-time adaptive best-action
search algorithm for video streaming over multiple wireless
access networks. First, we formulated the video streaming



XING et al.: A REAL-TIME ADAPTIVE ALGORITHM FOR VIDEO STREAMING OVER MULTIPLE WIRELESS ACCESS NETWORKS 805

process as an MDP. To achieve smooth video streaming with
high quality, we carefully designed the reward functions.
Second, with the proposed rate adaptation algorithm, we can
solve the MDP to obtain a sub-optimal solution in real time.
Last, we implemented the proposed algorithm and conducted
realistic experiments to evaluate its performance and compare
it with the state-of-the-art algorithms. The experiment results
showed that the proposed solution can achieve a lower startup
latency, higher video quality and better smoothness.

There are still many open issues to investigate in the future.
First, how to better allocate the loads between several links
with finer granularity should be investigated. Second, to better
predict the future bandwidth, the most recent estimation of
bandwidth should be assigned with a higher weight. Last but
not least, the size of the video segment should be further
considered for variable bit rate (VBR) videos to improve the
bandwidth estimation accuracy.

REFERENCES

[1] T. Stockhammer, “Dynamic adaptive streaming over HTTP –: standards
and design principles,” in ACM MMSys’11, 2011, pp. 133–144.

[2] K. Tappayuthpijarn, T. Stockhammer, and E. Steinbach, “HTTP-based
scalable video streaming over mobile networks,” in IEEE ICIP’11, 2011,
pp. 2193–2196.

[3] R. Mok, X. Luo, E. Chan, and R. Chang, “QDASH: a QoE-aware DASH
system,” in ACM MMSys’12, 2012, pp. 11–22.

[4] S. Xiang, L. Cai, and J. Pan, “Adaptive scalable video streaming in
wireless networks,” in ACM MMSys’12, 2012, pp. 167–172.

[5] C. Mueller, S. Lederer, and C. Timmerer, “A proxy effect analyis and fair
adatpation algorithm for multiple competing dynamic adaptive streaming
over HTTP clients,” in IEEE VCIP’12, 2012, pp. 1–6.

[6] T. Kupka, P. Halvorsen, and C. Griwodz, “Performance of on-off traffic
stemming from live adaptive segmented HTTP video streaming,” in
IEEE LCN’12, 2012, pp. 401–409.

[7] S. Akhshabi, S. Narayanaswamy, A. C. Begen, and C. Dovrolis, “An
experimental evaluation of rate-adaptive video players over HTTP,”
Signal Processing: Image Communication, vol. 27, no. 4, pp. 271–287,
2012.

[8] S. Xiang, “Scalable Video Transmission over Wireless Networks,” Ph.D.
dissertation, University of Victoria, 2013.

[9] L. Cai, S. Xiang, Y. Luo, and J. Pan, “Scalable modulation for video
transmission in wireless networks,” IEEE Trans. Veh. Technol., vol. 60,
no. 9, pp. 4314–23, 2011.

[10] S. Xiang and L. Cai, “Transmission control for compressive sensing
video over wireless channel,” IEEE Trans. Wireless Commun., vol. 12,
no. 3, pp. 1429–37, 2013.

[11] M. Kobayashi, H. Nakayama, N. Ansari, and N. Kato, “Robust and effi-
cient stream delivery for application layer multicasting in heterogeneous
networks,” IEEE Trans. Multimedia, vol. 11, no. 1, pp. 166–176, 2009.

[12] R. Zhang, R. Ruby, J. Pan, L. Cai, and X. Shen, “A hybrid
reservation/contention-based mac for video streaming over wireless
networks,” IEEE J. Sel. Areas Commun., vol. 28, no. 3, pp. 389–398,
2010.

[13] T. Luan, L. Cai, J. Chen, X. Shen, and F. Bai, “Engineering a distributed
infrastructure for large-scale cost-effective content dissemination over
urban vehicular networks,” IEEE Trans. Veh. Technol., 2013.

[14] A. Yaver and G. Koudouridis, “Utilization of multi-radio access net-
works for video streaming services,” in IEEE WCNC’09, 2009, pp. 1–6.

[15] D. Kaspar, K. Evensen, P. Engelstad, and A. Hansen, “Using HTTP
pipelining to improve progressive download over multiple heterogeneous
interfaces,” in IEEE ICC’10, 2010, pp. 1–5.

[16] K. Evensen, T. Kupka, D. Kaspar, P. Halvorsen, and C. Griwodz,
“Quality-adaptive scheduling for live streaming over multiple access
networks,” in ACM NOSSDAV’10, 2010, pp. 21–26.

[17] K. Evensen, D. Kaspar, C. Griwodz, P. Halvorsen, A. Hansen, and
P. Engelstad, “Improving the performance of quality-adaptive video
streaming over multiple heterogeneous access networks,” in ACM MM-
Sys’11, 2011, pp. 57–69.

[18] K. Evensen, D. Kaspar, C. Griwodz, P. Halvorsen, A. F. Hansen, and
P. Engelstad, “Using bandwidth aggregation to improve the performance
of quality-adaptive streaming,” Signal Processing: Image Communica-
tion, vol. 27, no. 4, pp. 312–328, 2012.

[19] R. Sutton and A. Barto, Reinforcement learning: An introduction.
Cambridge Univ Press, 1998, vol. 28.

[20] H. Wang and N. Moayeri, “Finite-state Markov channel-a useful model
for radio communication channels,” IEEE Trans. Veh. Technol., vol. 44,
no. 1, pp. 163–171, 1995.

[21] Q. Zhang and S. A. Kassam, “Finite-state Markov model for rayleigh
fading channels,” IEEE Trans. Commun., vol. 47, no. 11, pp. 1688–1692,
1999.

[22] X. Hou, P. Deshpande, and S. Das, “Moving bits from 3G to metro-
scale WiFi for vehicular network access: An integrated transport layer
solution,” in IEEE ICNP’11, 2011, pp. 353 –362.

[23] J. Reichel, H. Schwarz, and M. Wien, “Joint scalable video model 11
(JSVM 11),” Joint Video Team, Doc. JVT- X, 2007.

[24] I. Kofler, R. Kuschnig, and H. Hellwagner, “Implications of the ISO
base media file format on adaptive http streaming of h. 264/svc,” in
IEEE CCNC’12, 2012, pp. 549–553.

[25] P. Ni, R. Eg, A. Eichhorn, C. Griwodz, and P. Halvorsen, “Flicker effects
in adaptive video streaming to handheld devices,” in ACM MM’11, 2011,
pp. 463–472.

[26] M. Xing, S. Xiang, and L. Cai, “Rate adaptation for video streaming
over multiple wireless access networks,” in IEEE Globecom ’12, 2012,
pp. 5745-5750.

Min Xing is currently a Ph.D candidate in the
Department of Electrical and Computer Engineering,
University of Victoria, British Columbia, Canada.
He eceived B.S. degree in Computer Science from
Soochow University, Suzhou, Jiangsu in 2007, and
M.S. degree in Software Engineering from Tongji
University, Shanghai, China in 2010. His current re-
search interest is multimedia over wireless networks.

Siyuan Xiang (S’10-M’13) received the M.Eng.
degree from Tongji University, Shanghai, China, in
2008, and the Ph.D. degree in Electrical and Com-
puter Engineering from the University of Victoria,
Victoria, BC, Canada, in 2013. His research interests
include multimedia communications over wired and
wireless networks.

Lin Cai (S’00-M’06-SM’10) received her M.A.Sc.
and PhD degrees (awarded Outstanding Achieve-
ment in Graduate Studies) in electrical and com-
puter engineering from the University of Waterloo,
Waterloo, Canada, in 2002 and 2005, respectively.
Since 2005, she has been an Assistant Professor and
then an Associate Professor with the Department of
Electrical & Computer Engineering at the University
of Victoria. Her research interests span several areas
in wireless communications and networking, with a
focus on network protocol and architecture design

supporting emerging multimedia traffic over wireless, mobile, ad hoc, and
sensor networks.

She has been a recipient of the NSERC Discovery Accelerator Supplement
Grant in 2010, and the best paper awards of IEEE ICC 2008 and IEEE WCNC
2011. She has served as a TPC symposium co-chair for IEEE Globecom’10
and Globecom’13, and the Associate Editor for IEEE Transactions on Wireless
Communications, IEEE Transactions on Vehicular Technology, EURASIP
Journal on Wireless Communications and Networking, International Journal
of Sensor Networks, and Journal of Communications and Networks (JCN).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


