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Geometry of Signed
Point-to-Surface Distance
Function and Its Application to
Surface Approximation
This paper presents a unified framework for computing a surface to approximate a target
shape defined by discrete data points. A signed point-to-surface distance function is
defined, and its properties are investigated, especially, its second-order Taylor approxi-
mant is derived. The intercorrelations between the signed and the squared distance func-
tions are clarified, and it is demonstrated that the squared distance function studied in the
previous works is just the Type I squared distance function deduced from the signed
distance function. It is also shown that surface approximations under different criteria
and constraints can all be formulated as optimization problems with specified require-
ments on the residual errors represented by the signed distance functions, and that clas-
sical numerical optimization algorithms can be directly applied to solve them since the
derivatives of the involved objective functions and constraint functions are all available.
Examples of global cutter position optimization for flank milling of ruled surface with a
cylindrical tool, which requires approximating the tool envelope surface to the point
cloud on the design surface following the minimum zone criterion, are given to confirm
the validity of the proposed approach. �DOI: 10.1115/1.3510588�

Keywords: CAGD, distance function, surface approximation, Taylor approximant, flank
milling, cutter position optimization
Introduction
Computing a surface to approximate data points is a problem

ncountered frequently in many applications in computer-aided
esign/computer-aided manufacturing �CAD/CAM�, computer
raphics, computer vision, and image processing. During the ap-
roximating process, the surface may adjust its location �position/
rientation�, shape, or both. If the least-squares �LS� criterion is
mployed, such three problems are referred to as registration, sur-
ace fitting, and combination of surface fitting and registration �1�.
ormally, they are formulated as a large-scale nonlinear LS prob-

em; the objective function is the sum of the squared distances of
he data points from the model surface, and the variables are the
isplacement �from a nominal location� and/or shape parameters
f the candidate surface and n pairs of surface coordinates, where

is the point number. The optimal solution gives the surface
ocation and/or surface model. In Ref. �2�, the Gauss–Newton

ethod was directly used to solve the registration problem. How-
ver, a large computer memory is required, and much computa-
ional effort is wasted because the matrices involved are sparse,
wing to the independence of the surface coordinates. By repre-
enting the optimal shape parameters as the functions of the sur-
ace coordinates, Sarkar and Menq �3� simplified the surface fit-
ing problem as a nonlinear LS problem defined on R2n. However,
he two drawbacks still remained. Currently, the popular way to
olve such a large-scale problem is the alternating variable ap-
roach �4–12�. With this method, first, the surface displacement
nd/or shape parameters are fixed, and the objective function is
inimized by changing the surface coordinates, which leads to n

imes computation of the nearest surface point. Then, with all the
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surface coordinates fixed, the objective function is minimized
with respect to the surface displacement and/or shape parameters,
providing an improved solution. Such a process continues itera-
tively until convergence occurs. The different considerations in
updating the surface location and/or shape parameters at each it-
eration lead to the different surface approximation algorithms. Ex-
cept for the two special cases, i.e., registration and surface fitting
using B-spline surface, there is no closed-form solution to the
subproblem of improving the surface location and/or shape pa-
rameters. In fact, this is a multivariable nonlinear optimization
problem. Although there exist various algorithms for nonlinear
programming, they are typically computationally expensive.
Moreover, it is found that the algorithms solving the subproblem
exactly do not result in a fewer number of iterations performed
before convergence �1,4�. Therefore, most of the algorithms just
find a properly approximate solution at the intermediate stage.

In the above studies, these three problems are investigated sepa-
rately, and the interconnections among them are completely over-
looked. For instance, performance of the five typical registration
algorithms are studied and compared in Ref. �4�. Arising from this
study, the Hong–Tan algorithm distinguishes itself in terms of
performance measures including efficiency, robustness with re-
spect to variations in initial conditions, and accuracy, but the
counterparts for the other two problems are undiscovered. Re-
cently, Pottmann and his co-workers introduced the squared dis-
tance function of a surface and derived its second-order Taylor
approximant �13�. On this basis, they developed two Newton-like
algorithms for LS surface approximation in a unified manner
�1,14–16�. At almost the same time, we introduced the signed
distance function of a surface and investigated its differential
properties. Using signed distance function, we presented a unified
framework for best-fitting of surface to 3D coordinate data
�17–20�. Within this framework, we also discussed the problems
of surface approximating by minimizing the l�- or l1-norm of the

residual errors, geometric symmetry identification, probe radius
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ompensation, and motion analysis under point contact con-
traints. It is worth mentioning that although the concept of the
igned distance function was presented before our works �21�, its
roperties and applications were not systematically addressed
here. In this paper, we will investigate thoroughly the differential
roperties of the signed distance function and show its intercorre-
ations with the squared distance function. Also, we will discuss in
etail a special surface approximation problem arising from five-
xis CNC machining, i.e., global cutter position optimization for
ank milling of ruled surface, which could not be well handled
ith the squared distance function.
The remainder of this paper is organized as follows: In Sec. 2,

he signed point-to-surface distance function is defined, and its
roperties are investigated, especially, its second-order Taylor ap-
roximant is derived. Also, the intercorrelations between the
igned and the squared distance functions are explored, and their
pplications to surface approximation are briefly discussed. In
ec. 3, optimum cutter positioning for five-axis flank milling of
uled surfaces with a cylindrical cutter is addressed from the per-
pective of surface approximation. By using the signed distance
unction, the mathematical models and algorithms for tool path
ptimization for rough and finish millings are developed in a uni-
ed framework. Examples are given in Sec. 4, and conclusions are

n Sec. 5.
Remark. When revising this paper, we were aware of Flöry and

ofer’s work �22�. In that work, the authors derived approxima-
ions of the unsigned distance function to B-spline surfaces and
oint clouds, and then employed these approximations to solve the
eometric matching problems of registration of point clouds and
urface fitting to point sets based on the l1-norm. The distance
unction discussed there is just the Type I simplified distance
unction deduced from the signed distance function defined in this
ork. Also, we focus on a special surface approximation problem

rising from five-axis CNC machining, which requires to approxi-
ate the envelope surface of the tool to the point cloud on the

esign surface based on the l�-norm, which is recommended by
NSI and ISO standards for tolerance evaluation.

Distance Function

2.1 Definition and Differential Properties. DEFINITION 1.
iven a regular surface S�w��R3 , where w= �w1 , . . . ,wm�T

Rm denotes the collection of the shape parameters, and a point
�R3 , there exists at least one closest point q�S�w� , termed as

oot point, such that �p−q�=minx�S�w��p−x� , where � · � stands
or the Euclidean norm on R3 . The distance function is defined as
�p ,w�= �p−q� .
For most engineering surfaces such as planes, cylinders, cones,

nd spheres, the unsigned distance function can be explicitly com-
uted, while for complex algebraic surfaces and parametric sculp-
ured surfaces such as Bézier, B-spline, and non-uniform rational
-spline �NURBS� surfaces, it must be computed by an iterative
pproach. The procedure of finding the foot point on a parametric
urface given a point in space is addressed in many texts on curve
nd surface mathematics �23,24�.

PROPOSITION 1 �24�. If q lies in the interior of S�w� , then the
rror vector p−q is normal to S�w� , i.e., p−q= �d�p ,w�nq ,
here nq is the unit outward normal vector of surface S�w� at
oint q . The choice of plus or minus sign depends on the direc-
ion of nq .

Based on this proposition, we can define the following signed
istance function.

DEFINITION 2. If q is unique and lies in the interior of S�w� , the
igned distance function is defined as ds�p ,w�= �p−q� ·nq , where
he bold dot denotes scalar product.

Obviously, the absolute value of the signed distance function
ields the distance function. As shown in Fig. 1, the signed dis-
ance between the point and surface is positive if the point lies in

he outer side of the surface and negative if the point lies in the
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inner side of the surface. It is worth noting that ambiguity exists
where there are two or more foot points such as when S�w� rep-
resents a spherical patch and p is located at the center of the
sphere. Special cases like this are ignored because they hardly
occur, especially when p is close to S�w�.

The signed distance function has the following differential
property:

PROPOSITION 2 �17,18�. Assume that surface S�w� has a locally
parametric representation ��w ,u ,v� and q=��w ,u� ,v�� , the
first-order Taylor approximant of ds�p ,w� is given by

d̄s�p + �p,w + �w� = ds�p,w� + nq · �p

− �nq · �w1
, . . . ,nq · �wm

�T · �w �1�

where the partial derivatives �wi
, i=1, . . . ,m are evaluated at

�w ,u� ,v�� .
COROLLARY 1. If surface S�w� is an algebraic surface implicitly

represented as f�x ,y ,z ,w�=0 and q= �x� ,y� ,z��T , then one has

d̄s�p + �p,w + �w� = ds�p,w� + ��fx, fy, fz��−1��fx, fy, fz��p

+ �fw1
, . . . , fwm

��w� �2�

where the partial derivatives are all evaluated at �x� ,y� ,z� ,w� .
The proof of Corollary 1 is given in Appendix A. When the

shape parameters of surface S�w� are fixed, i.e., w is a constant
vector, we get a simplified distance function ds�p��ds�p ,w0� and
its gradient vector �ds�p�=nq. Under certain condition, the sim-
plified distance function ds�p� is also second-order differentiable,
which is shown in the following proposition:

PROPOSITION 3. Assume that surface S has a locally parametric
representation ��u ,v� and q=��u� ,v�� . If matrix A�ds�p��
−g is invertible, where g and � are the first and second funda-
mental matrices of surface S at point q , respectively, then ds�p� is
second-order differentiable and its Hessian matrix is �2ds�p�
= ��u ,�v�g−1�A−1��u ,�v�T , where the partial derivatives �u

and �v are evaluated at �u� ,v�� .
The proof of Proposition 3 can be seen in Appendix B. After

some complicated but straightforward calculations, the determi-
nant of matrix A is obtained as follows:

det�A� = det�g���1ds�p� − 1���2ds�p� − 1� �3�

where �1 and �2 are the principal curvatures at point q. It shows
that matrix A can become singular when point p is at the center of
one of the principal curvatures at point q of surface S�w�, as can
be seen in Fig. 2. In practical computation, such singular cases
seldom occur, especially when p is close to S�w�.

It is well-known that in a neighborhood of a point on a regular
surface, there always exist orthogonally parametric nets; espe-
cially for a nonumbilical point, an orthogonally parametric net

Fig. 1 Point-to-surface distance function
formed by the lines of curvature can be found. So, we can always
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et two families of coordinate curves on surface S of which the
angents at point q give the two mutually orthogonal principal
irections �Note that at an umbilical point, each tangent direction
s a principal direction�. In this case, both g and � become diag-
nal matrices; we obtain a simple expression of the Hessian ma-
rix of ds�p�, as shown in the following corollary:

COROLLARY 2. Denote by n1 and n2 the two mutually orthogo-
al unit vectors that determine the two principal directions asso-
iated with the two principal curvatures �1 and �2 at q , respec-
ively, the Hessian matrix of ds�p� has the form

�2d�p� =
1

ds�p� − 1/�1
n1n1

T +
1

ds�p� − 1/�2
n2n2

T �4�

he proof of Corollary 2 appears in Appendix C. In many appli-
ations, the squared distance function d2�p�� �ds�p��2 is adopted
s a measure of the approximation error �1�. Based on the above
iscussions, we can easily get the gradient vector and Hessian
atrix of d2�p� because �d2=2ds�ds and �2d2=2�ds��ds�T

2ds�2ds. When expressed in terms of nq and n1 and n2 at q, the
econd-order Taylor approximant of d2�p� is written in the form

d̃2�p + �p� = �ds�p� + nq · �p�2 +
ds�p�

ds�p� − 1/�1
�n1 · �p�2

+
ds�p�

ds�p� − 1/�2
�n2 · �p�2 �5�

hich is, in essence, the same as that reported in Refs. �1,13� due
o the fact that p−q=ds�p�nq. In the special case of ds�p�=0 �i.e.,

=q�, the approximant d̃2�p+�p� equals the squared distance
unction to the tangent plane of surface S at point q. Thus, if p is
lose to S,

d̆2�p + �p� = �ds�p� + nq · �p�2 �6�

s a good approximation of d̃2�p+�p�.
Remark. When the foot point q is a parabolic point or a flat

oint, i.e., one or both of the two principal curvatures vanish, the
bove second-order Taylor approximant still holds. We just need

o take the limit of the function d̃2 as �1 or/and �2 approaches
ero.

Similarly, when point p is fixed, we get another simplified dis-
ance function ds�w��ds�p0 ,w� and its gradient vector �ds�w�=
�nq ·�w1

, . . . ,nq ·�wm
�T. The Hessian matrix of ds�w� can then be

erived in a way similar to the proof of Proposition 3 and is given
n the following proposition:

PROPOSITION 4. If matrix A is invertible, ds�w� is second-order
ifferentiable and the ith row, jth column element of its Hessian
atrix �2ds�w� is

��2ds�w��ij = ��u · �wi
,�v · �wi

�g−1�A−1��u · �wj
,�v · �wj

�T

− ds�w���u · �wi
,�v · �wi

�g−1�A−1

��nq · �uw ,nq · �vw �T

Fig. 2 Singular cases
j j

ournal of Computing and Information Science in Enginee
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− nwj

q · �wi

− �nq · �wiu
,nq · �wiv

�A−1��u · �wj
,�v · �wj

�T

+ ds�w��nq · �wiu
,nq · �wiv

�A−1

��nq · �uwj
,nq · �vwj

�T − nq · �wiwj
�7�

Differentiating both sides of the system of identities

�u · nq = 0

�v · nq = 0

with respect to shape parameter wj, we obtain

�uwj
· nq + �u · nwj

q = 0

�vwj
· nq + �u · nwj

q = 0 �8�

With �nq��1 we see nwj

q �TqS, so we assume nwj

q =a�u+b�v,
which is substituted into Eq. �8�, then we obtain

nwj

q = − ��u,�v�g−1�nq · �uwj
,nq · �vwj

�T �9�

By using Eq. �9�, it is easy to verify that ��2ds�w��ij

− ��2ds�w�� ji=0. This means that matrix �2ds�w� is indeed sym-
metric. The Hessian matrix �2ds�w� is complex in form and com-
putationally expensive. We will make a simplification by neglect-
ing all the terms involving the second-order partial derivatives of
the function ��w ,u ,v�. This results in an approximate Hessian
matrix

�̃2ds�w� = ��w1
, . . . ,�wm

�T��u,�v�g−1�A−1

���u,�v�T��w1
, . . . ,�wm

� �10�

In a way similar to the proof of Corollary 2, we get a simple

expression for �̃2ds�w� as follows.
PROPOSITION 5. Denote by n1 and n2 the two mutually orthogo-

nal unit vectors that determine the two principal directions asso-
ciated with the two principal curvatures �1 and �2 at q , respec-
tively, the approximate Hessian matrix of ds�w� has the form

�̃2ds�w� = �
i=1

2
1

ds�w� − 1/�i
��w1

, . . . ,�wm
�Tnini

T��w1
, . . . ,�wm

�

�11�
Then, we can define another squared distance function
d2�w�� �ds�w��2 and obtain its two quadratic approximants,

d̃2�w + �w� = �ds�w� − nT��w1
, . . . ,�wm

��w�2

+
ds�w�

ds�w� − 1/�1
�n1

T��w1
, . . . ,�wm

��w�2

+
ds�w�

ds�w� − 1/�2
�n2

T��w1
, . . . ,�wm

��w�2 �12�

d̆2�w + �w� = �ds�w� − nT��w1
, . . . ,�wm

��w�2 �13�

2.2 Intercorrelations Among Different Distance Functions.
So far, we have defined three types of signed distance functions
and two types of squared distance functions and derived their
first-order and second-order approximants. The relationships
among them are summarized in Fig. 3. The Type I squared dis-
tance function is actually the one extensively studied by Pottmann
and his co-workers �1,13–16� and the Type I simplified distance
function the one recently reported by Flöry and Hofer �22�.

The three types of LS surface approximation problems are in-
dependently investigated in Refs. �1,14,15,17–19� by using the

2 s
squared and the signed distance functions, i.e., d �p� and d �p ,w�,

ring DECEMBER 2010, Vol. 10 / 041003-3
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espectively. In Pottmann and his co-workers’ works, surface ap-
roximating is treated as a general optimization problem, and
ased on the second-order approximants of the Type I squared

istance function, i.e., d̃2 and d̆2, two Newton-like algorithms,
alled SDM and TDM, are developed. In our works, surface ap-
roximation is stated as a nonlinear LS problem, and an improved
evenberg–Marquardt algorithm, which only requires the first-

rder approximant of the signed distance function, i.e., d̄s, is
dopted. Interestingly, it is found that our algorithm is identical to
DM except for the strategy for step-size control employed to
nsure the stability of the iterations in the case of a bad initial
olution, and that for the registration problem, they lead to the
ong–Tan algorithm �4� although they are derived from different
iewpoints. Proposition 2 offers a solid mathematical basis of this
lgorithm. Also, Corollary 1 shows that this algorithm is appli-
able to simultaneous registration and fitting of an implicit sur-
ace, which is a topic for further research stated in Ref. �1�. In
act, for surface fitting problem, the introduction of SDM and
DM based on the Type I squared distance function d2�p� is not

ustifiable because the shape parameters of the surface are not
onsidered in its definition. The investigation of the Type II
quared distance function d2�w� in Sec. 2 would overcome this
ifficulty. Besides the three problems mentioned above, there are
any other problems involving surface approximating under dif-

erent criteria and constraints �17,19�. They can all be formulated
s optimization problems with specified requirements on the re-
idual errors represented by the signed distance functions. These
ptimization problems can then be efficiently solved by the se-
uential approximation algorithms because the derivatives of the
nvolved objective functions and constraint functions are all avail-
ble. Examples of surface approximation by minimizing the
�-norm or l1-norm of the residual errors can be found in Refs.
17,19,20,22�. In Sec. 3, we will discuss in detail a special surface
pproximation problem arising from five-axis CNC machining,
.e., global cutter position optimization for flank milling of ruled
urfaces, which involves one-sided constraint and thus could not
e well handled with the squared distance function.

Surface Approximation for Flank Milling Tool Path
ptimization

3.1 Mathematical Models. Ruled surfaces are widely used in
ndustry. For slender parts, such as turbine blades and impellers,
reeform surfaces are usually approximated by piecewise ruled
urfaces. Elber and Fish �25� presented a scheme for automatic
iecewise ruled surface approximation of freeform surfaces.
ubag and Elber �26� developed a semi-automatic algorithm for
iecewise developable surface approximation of general NURBS
urfaces. Flank milling can be effectively employed to machine
uled surface for the advantage of larger material removal rate as
ompared with point milling. Also, no scallops are left behind in
ingle pass flank milling. Recently, increasing attention was drawn
nto the problem of optimum positioning of the cutter for flank
illing �27–32�. However, most of the works focused on the in-

ig. 3 Relationships among the distance functions discussed
ividual cutter location planning; the tool path optimization from

41003-4 / Vol. 10, DECEMBER 2010
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a global perspective was little addressed. Lartigue et al. �31� pro-
posed a global tool path planning method. The basic idea was to
deform the two curves that defined the tool axis trajectory so that
the tool envelope surface fitted the design surface as much as
possible. The geometric deviation between the two surfaces was
evaluated by the sum of the squared distances of the points on the
design surface to the envelope surface. To simplify the computa-
tion, an approximate distance was employed. For a cylindrical
cutter, Gong et al. �32� presented the error propagation principle
and formulated the problem as that of LS fitting of tool axis tra-
jectory surface to point cloud on the offset surface of the design
surface. Although the LS method is easy for implementation and
efficient in computation, it cannot incorporate readily the nonover-
cut constraint required by rough milling, and more importantly, it
does not conform to the minimum zone criterion recommended by
ANSI and ISO standards for tolerance evaluation �33,34�, which
requires the maximum norm of the error vector to be minimized.
Furthermore, the geometric deviation of the machined surface
from the nominal one was not clearly defined and the influence of
the deformation of the tool axis trajectory surface on the change
of this deviation was not quantitatively analyzed. Here, we revisit
this problem from the perspective of surface approximation based
on the l�-norm.

Numerical control �NC� machining is a process that subtracts
the swept volume generated by the cutter moving along the pro-
grammed tool paths from the current raw stock. Since the swept
volume is enclosed by the swept envelope, which represents the
set of points on the moving cutter that also lie on the machined
surface, from the viewpoint of geometric simulation, the envelope
surface of the cutter can be treated as the machined surface. Ob-
viously, we hope that the machined surface Senvelope approximates
to the designed surface Sdesign as much as possible. It is difficult to
compare two continuous surfaces directly to obtain the deviation
between them. Alternatively, we can use the distances from the
sample points on the design surface Sdesign to the envelop surface
Senvelope to evaluate the geometrical deviation. According to the
tolerance definition in ANSI and ISO standards, the maximum
distance can serve as the measure of the geometrical deviation
between the two surfaces.

As stated in Ref. �35�, the state-of-the-art methods for modeling
swept envelope surface generated by the motion of NC tools along
complex 3D paths are either based on approximation techniques
or on analytical solutions with high computational complexity,
which are not suitable for practical applications. In our studies
followed, we provide a method to compute the distance from a
point to surface Senvelope without constructing the envelope sur-
face. Given a surface S, its offset surface Soffset is the surface with
a constant offset to it. Obviously, for a cylindrical tool, the tool
axis trajectory surface Saxis is the offset surface of the tool enve-
lope surface Senvelope, and the offset distance is the tool radius r.
As a result, we have

dp,Senvelope

s = dp,Saxis

s − r �14�

for a point p on the design surface. Here, it is assumed that the
normal vector of the tool axis trajectory surface Saxis points to the
design surface Sdesign. Evidently, if dp,Senvelope

s and dp,Saxis

s are well-
defined, they share the common gradient vector and Hessian
matrix.

As illustrated in Fig. 4, the tool motion is usually represented
by two guiding curves P�u� and Q�u�. They determine the follow-
ing tool axis trajectory surface

Saxis�w�:��w,u,v� = �1 − v�P�u� + vQ�u� �15�

where w= �w1 , . . . ,wm�T�Rm denotes the collection of the shape
parameters of the two curves. If the guiding curve is a B-spline
curve, the coordinates of its control points can be viewed as the
shape parameters. As stated above, global optimization of the tool

path for five-axis flank milling requires to approximate the tool
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nvelope surface Senvelope to the point cloud on the design surface
design, following the minimum zone criterion recommended by
NSI and ISO standards for tolerance evaluation, which states

hat the deviation measure discussed above should be minimized.
or a dense set of data points �pi�R3 ,1� i�n	 sampled from

design, this leads to the following min-max problem or Chebyshev
pproximation problem:

min
w�Rm

max
1�i�n


dpi,Senvelope

s �w�
 �16�

y introducing one auxiliary variable �, problem �16� can be re-
ormulated as the following differentiable constrained optimiza-
ion problem:

min
�w,���Rm+1

�

such that − � � dpi,Senvelope

s �w� � � , 1 � i � n
�17�

n problem �17�, the constraints explicitly require to reduce the
vercut and undercut errors simultaneously. Here, dpi,Senvelope

s �w�
0 indicates an overcut and dpi,Senvelope

s �w��0 indicates an under-
ut. For rough milling, nonovercut is the basic requirement, which
eans that dpi,Senvelope

s �w��0 holds for all 1� i�n. In a similar
ay, tool path optimization for rough milling is modeled as the

onstrained optimization problem,

min
w�Rm

max
1�i�n

dpi,Senvelope

s �w�

such that dpi,Senvelope

s �w� � 0, i = 1, . . . ,n
�18�

ig. 4 Tool axis trajectory surface represented as a ruled
urface
r, equivalently,

i axis
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min
�w,���Rm+1

�

such that 0 � dpi,Senvelope

s �w� � � , i = 1, . . . ,n
�19�

As with any nonlinear optimization problem, a good initial solu-
tion is needed. Note that the real machined part has a profile error
to the order of micron, i.e., the discrete data points can be well
approximated by the tool envelope surface, so the solution to
problem �16� is very close to that of the LS approximation prob-
lem defined as

min
w�Rm

�
i=1

n

�dpi,Saxis

s �w� − r�2 �20�

Since problem �20� can be solved more easily, its solution can
serve as an initial estimate to problem �16�. As for problem �20�
itself, the required initial tool axis trajectory surface can be gen-
erated by interpolating the discrete cutter axes provided by other
methods, such as the double points offset �DPO� method �27�,
three points offset �TPO� method �32�, and Chiou’s method �30�.

3.2 Optimization Algorithms. A number of classical numeri-
cal optimization algorithms can be applied to problems �17� and
�19� because the derivatives of the involved objective functions
and constraint functions are all available. The method of sequen-
tial approximation programming has been used successfully on
many practical nonlinear constrained optimization problems due
to its ease of understanding and implementation �36�. The basic
idea of this method is to proceed iteratively by linearizing the
objective function and the constraint functions about the current
candidate solution, thereby reducing the given nonlinear problem
to a sequence of linear programming problems. Here, we apply
this method to solve problems �17� and �19�.

Let �wk ,�k� be a candidate solution to �19� and consider a per-
turbation of the form

�wk + �w,�k + ��� �21�

Using Proposition 2, we have the linearized constraint functions

dpi,Saxis

s �wk� − �nqi · �w1
, . . . ,nqi · �wm

�T · �w − r � �k + ��

dpi,Saxis

s �wk� − �nqi · �w1
, . . . ,nqi · �wm

�T · �w − r � − �k − ��,

i = 1, . . . ,n �22�

Obviously, the linearized objective function is equivalent to ��.
Thus, we obtain the corresponding linear program for problem

�17� as follows:
min
��w,����Rm+1

��

such that� dpi,Saxis

s �wk� − �nqi · �w1
, . . . ,nqi · �wm

�T · �w − r � �k + ��

dpi,Saxis

s �wk� − �nqi · �w1
, . . . ,nqi · �wm

�T · �w − r � − �k − ��
� , i = 1, . . . ,n

�23�

n a similar way, we get the following linear program for problem �19�

min
��w,����Rm+1

��

such that�dpi,Saxis

s �wk� − �nqi · �w1
, . . . ,nqi · �wm

�T · �w − r � �k + ��

dp ,S
s �wk� − �nqi · �w1

, . . . ,nqi · �wm
�T · �w − r � 0 � , i = 1, . . . ,n

�24�
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ormally, it is useful to impose upper bounds on the magnitudes
f the variables �wi ,1� i�m to ensure validity of the linear ap-
roximation, which results in the following additional constraints
n problems �23� and �24�:

− w0 � �wi � w0, i = 1, . . . ,m �25�

here w0	0 is an appropriate upper bound value.
Now, we present the following global tool path optimization

lgorithm for five-axis flank milling of slender surfaces with a
ylindrical cutter:

Algorithm 1 (Global tool path optimization)

nput: Point cloud �pi�R3 ,1� i�n	 on design surface Sdesign; initial
ool axis trajectory surface Saxis�w0�; threshold 
 specifying the desired
ccuracy of the algorithm.

utput: Optimum tool axis trajectory surface Saxis�w��; maximum
vercut value �over and maximum undercut value �under.

tep 0:

1� Set k=0;

2� Compute dpi,Saxis

s �w0�, i=1, . . . ,n;

3� Set �0=max1�i�n
dpi,Saxis

s �w0�−r
.

tep 1:

1� Solve linear program �23� or �24� to determine the differential
ncrement of the surface shape parameters �w;

2� Update wk+1=wk+�w;

3� Compute dpi,Saxis

s �wk+1�, i=1, . . . ,n;

4� Update �k+1=max1�i�n
dpi,Saxis

s �wk+1�−r
;

5� If 
1−�k /�k+1
	
, then set k=k+1 and go to 1�1�; else, exit and

eport w�=wk+1 , �over=min1�i�n dpi,Saxis

s �wk+1�−r , and �under

max1�i�n dpi,Saxis

s �wk+1�−r.

Remark. Based on Proposition 5, we can get the quadratic ap-
roximants of the constraint functions around the current interme-
iate solution, which results in a second-order cone program. The
se of cone programming instead of linear programming in above
lgorithm is worth considering in the future studies.

Problem �20� is a nonlinear LS problem. The Gauss–Newton
ethod can be applied to solve it. Its idea is to solve a sequence of

inear LS problems obtained by linearizing the terms dpi,Saxis

s �w�,
=1 ,2 , . . . ,n, about the intermediate candidate solutions. Let wk

e a candidate solution to problem �20� and consider a perturba-
ion of the form wk+�w. Using Proposition 2, we obtain readily
he corresponding linear LS problem,

min
�w�Rm

�
i=1

n

�dpi,Saxis

s �wk� − �nqi · �w1
, . . . ,nqi · �wm

�T · �w − r	2

�26�

gain, it is useful to control the step-size to ensure validity of the
inear approximation. The Levenberg–Marquardt method is such
n improved approach. It introduces an adjustable damp term to
void the singularity of the problem �26� and to make sure that the
oving step is small enough so that the value of the objective

unction of problem �20� monotonously decreases during the it-
rations. The interested reader can refer to Ref. �36� for a more
etailed description.

Another way to solve problem �20� is to use Newton method.
ith this method, one iteratively approximates the objective func-

ion by a quadratic function around the intermediate solution, and
hen takes a step toward the minimum of that quadratic function.
ccording to Proposition 5, we obtain readily the corresponding

uadratic minimization problem,
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min
�w�Rm

�
i=1

n

�dpi,Saxis

s �w� − r − �nqi�T��w1
, . . . ,�wm

��w�2

+
dpi,Saxis

s �w� − r

dpi,Saxis

s �w� − 1/�1

��n1
qi�T��w1

, . . . ,�wm
��w�2

+
dpi,Saxis

s �w� − r

dpi,Saxis

s �w� − 1/�2

��n2
qi�T��w1

, . . . ,�wm
��w�2 �27�

Based on the above discussions on problem �20�, we present the
following algorithm for near-optimal solution estimation:

Algorithm 2 (Near-optimal solution estimation)

Input: Point cloud �pi�R3 ,1� i�n	 on design surface Sdesign; initial
tool axis trajectory surface Saxis�w0�; threshold 
 specifying the desired
accuracy of the algorithm.

Output: Near-optimum tool axis trajectory surface Saxis�w��.

Step 0:

�1� Set k=0;

�2� Compute dpi,Saxis

s �w0�, i=1, . . . ,n;

�3� Set �0=�i=1
n �dpi,Saxis

s �w0�−r�2.

Step 1:

�1� Solve problem �26� or �27� to determine the differential increment of
the surface shape parameters �w;

�2� Update wk+1=wk+�w;

�3� Compute �k+1=�i=1
n �dpi,Saxis

s �wk+1�−r�2;

�4� If 
1−�k /�k+1
	
, then set k=k+1 and go to 1�1�; else, exit and
report w�=wk+1.

4 Examples
Example 1. In order to demonstrate the validity of the proposed

method, an example of NC tool path optimization for flank mill-
ing of a ruled surface with a cylindrical tool is presented. The
ruled surface is expressed in Eq. �28�, which has been already
tested by several approaches �27–29,32�.

S�u,v� = �1 − v��u 20.429 0 �T + v�u 0.0382u2 33.995 �T

�28�

where 0�u�23.014 and 0�v�1.
In order to make a comparison with the work presented in Ref.

�32�, which reported the minimum geometric error, the same cut-
ter, a cylindrical tool with radius of 10 mm, is chosen, and 30 tool
locations are calculated with the TOP method �32�. By using the
lofting method, an initial tool axis trajectory surface, which inter-
polates all these 30 tool axes, is generated. Totally, 100�100
points are evenly sampled from the design surface. The optimum
tool path is obtained with the optimization algorithm described in
Sec. 3. Figures 5 and 6 show the distributions of the geometric
errors before and after the optimization, respectively. The maxi-
mum undercut �maximum positive point-to-surface distance� re-
duces from 0.228 mm to 0.068 mm, and the maximum overcut
�minimum negative point-to-surface distance� reduces from 0.172
mm to 0.067 mm.

In Table 1, we show the maximum undercuts and overcuts of
the surfaces machined with the tool paths provided by different
approaches. It is seen that our approach is much better than the
others. Especially, the maximum undercut and overcut reduce by
26% and 43% in comparison with the results of Gong et al. �32�.
Moreover, our method is applicable to rough milling. The in-

volved nonovercut constraint cannot be modeled with the squared
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Fig. 5 Distribution of the geometric errors before optimization

Fig. 6 Distribution of the geometric errors after optimization
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distance function. To the best of our knowledge, the rough milling
cannot easily be dealt with by the other methods except for
Chiou’s method �30�.

Example 2. Consider a more practical ruled surface, which is a
blade of an impeller shown in Fig. 7. The surface is defined by
two directrices, which are both B-spline curves of order 3. A
cylindrical cutter with the cutter radius of r=5 mm is used for the
flank milling. With Chiou’s method �30�, eight cutter locations are
calculated. An initial axis trajectory surface is generated by inter-
polating eight pairs of points on these cutter axes with two
B-spline curves of order 3. Totally, 50�100 evenly distributed
points are sampled from the design surface, and the tool path is
optimized using the approach presented in Sec. 3. The interfer-
ences between the tool envelope surface and the design surface
before and after the optimization are illustrated in Figs. 8 and 9,
respectively. The maximum undercut reduces from 0.0192 mm to
0.0013 mm, and the maximum overcut reduces from 0.0446 mm
to 0.0013 mm. It is seen that the global tool path optimization
approach improves the machining accuracy greatly.

Example 3. Here, an example of ruled surface reconstruction
from unorganized data point cloud is presented. It finds applica-
tions in feature-based CAD model reconstruction and piecewise
ruled surface approximation of slender surfaces. By evenly sam-
pling the freeform surface expressed in Eq. �29�, 36�41 points
are generated. The synthetic point cloud is depicted in Fig. 10.
Nine discrete rulings are identified using the method presented in
Ref. �37�. An initial ruled surface is generated by interpolating
nine pairs of points on these rulings with two B-spline curves of
order 3. Then, it is deformed to fit the 3D point data by fine-tuning
the control points of the two guiding curves using Algorithm 2
described in Sec. 3. The convergence speed of the algorithm is
depicted in Fig. 11. It is observed that an optimum solution is
obtained within four iterations. The reconstructed ruled surface is
shown in Fig. 12,
S�u,v� = 
 4u

8v − 4

v�4u2 + 2�sin u + �1 − v��− 3u2 + 8�cos u + 2 sin�u�v − 0.5��cos�u2�
� �29�
here −0.875�u�0.875 and 0�v�1.

Conclusions
In this work, the differential properties of the signed distance

unction are fully explored, and the intercorrelations between the
igned and the squared distance functions are clarified. It is dem-
nstrated that the squared distance function studied in the previ-
us works is just the Type I squared distance function deduced
rom the signed distance function. Also, it is shown that surface
pproximations under different criteria and constraints can all be
ormulated as optimization problems with specified requirements
n the residual errors represented by the signed distance functions,
nd the classical numerical optimization algorithms can be di-
ectly applied to solve these problems as the derivatives of the

Table 1 Geometric errors of the surf

Liu �27�
Redonnet
et al. �28� et

Maximum undercut �mm� 0.582 0.220
Maximum overcut �mm� 0.585 0.220
involved objective functions and constraint functions are all avail-
able. From the point of view of surface approximation, the prob-
lem of tool path planning for five-axis flank milling is formulated
as that of approximating the machined surface to the designed
surface following the minimum zone criterion. By using the
signed distance function, the mathematical models and algorithms
for tool path optimization for rough and finish millings with cy-
lindrical tools are developed in a unified framework. In compari-
son with the existing approaches, the one we presented improves
the machining accuracy greatly.

It is worth mentioning that flank milling tool path optimization
is a special surface fitting problem. It differs from the conven-
tional ones in three ways. First, the surface of interest �tool enve-
lope surface� is the offset surface of another simple surface �tool

s machined with different tool paths

zel
�29�

Gong
et al. �32�

Global
optimization

�rough milling�

Global
optimization

�finish milling�

64 0.093 1.104 0.068
11 0.119 0 0.067
ace

Men
al.

0.2
0.2
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xis trajectory surface�. We need to model and solve the problem
y just using the simple surface. Second, the optimization crite-
ion for surface approximation is to minimize the l�-norm of the
esidual errors, which is recommended by ANSI and ISO stan-
ards for tolerance evaluation. Third, the one-sided constraint is
mposed in tool path planning for rough milling. This typical ex-
mple shows well how a practical surface approximation problem
an be handled with the signed distance function. It is seen that
he signed distance function is more flexible for surface approxi-

ation modeling as compared with the squared distance function.
lthough not all the theories of signed distance function devel-
ped in Sec. 2 are used in this special problem, they can find wide
pplications in the general surface approximation problems.
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Appendix A: Proof of Corollary 1
Assume that fz�0, surface S�w� can be locally represented as

z=z�w ,x ,y�, or equivalently, it has a locally parametric descrip-
tion of the form ��w ,x ,y�= �x ,y ,z�w ,x ,y��T.

From f�x ,y ,z�w ,x ,y� ,w�=0, we have fzzwi
+ fwi

=0 and zwi
=

−fwi
/ fz. The remainder of the proof is straightforward, and is left

to the readers.

Appendix B: Proof of Proposition 3
According to Weingarten’s equations, we have

a blade of an impeller

velope surface and the design sur-

velope surface and the design sur-
l en
l en
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�nq = �nu,nv���u

�v
� = − ��u,�v�g−1���u

�v
� �B1�

ecause p−��u� ,v��=ds�p�n�u� ,v��, it is obvious that

�p − ��u�,v��� · �u = 0

�p − ��u�,v��� · �v = 0 �B2�
ifferentiating both sides of Eq. �B2�, we get

��p − �u�u − �v�v� · �u + ds�p�n�u�,v�� · ��uu�u + �uv�v� = 0

��p − �u�u − �v�v� · �v + ds�p�n�u�,v�� · ��vu�u + �vv�v� = 0

�B3�
r, equivalently,

Fig. 10 Synthetic point cloud

ig. 11 Root mean squared error versus the number of
terations
Fig. 12 Reconstructed ruled surface
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��u,�v�T�p − g��u

�v
� + ds�p����u

�v
� = 0 �B4�

Then we can solve for �u and �v from Eq. �B4�, i.e.,

��u

�v
� = − �ds�p�� − g�−1��u,�v�T�p �B5�

Substituting Eq. �B5� into Eq. �B1� provides

�nq = ��u,�v�g−1�A−1��u,�v�T�p �B6�
i.e.,

�2ds�p� = ��u,�v�g−1�A−1��u,�v�T �B7�

Appendix C: Proof of Corollary 2
Letting

g1/2 = ���u� 0

0 ��v� �
we have

��u,�v� = �n1,n2�g1/2, g = g1/2g1/2, g−1� = ��1 0

0 �2
�

�C1�

As a result, matrix A becomes

A = �ds�p�I − �g−1��−1�� = �ds�p� − 1/�1 0

0 ds�p� − 1/�2
��

�C2�
Then, it is straightforward to get the final result by substituting all
these expressions into the expression of the Hessian matrix
�2ds�p� given in Proposition 3.
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