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Rho-kinase (ROCKs) is an important downstream effec-
tor of the small GTP-binding protein Ras homolog gene 

family member A (RhoA). During the past 20 years, signifi-
cant progress has been made in our knowledge on the molec-
ular mechanisms and therapeutic importance of ROCK in 
cardiovascular medicine. The Rho family of small G proteins 
comprises 20 members of ubiquitously expressed proteins, 
including RhoA, Rac1, and Cdc42.1–6 Among them, RhoA 
acts as a molecular switch that cycles between an inactive 
GDP-bound and an active GTP-bound conformation interact-
ing with downstream targets (Figure 1).7 RhoA is activated by 
the guanine nucleotide exchange factors (GEFs) that catalyze 
exchange of GDP for GTP8 and is inactivated by the GTPase-
activating proteins (GAPs).9 Under physiological conditions, 
there is a balance of the positive and negative outcomes of 
Rho activation and there are signaling pathways that keep the 
negative pathways in check. There are 2 isoforms of ROCK, 
ROCK α/ROCK2 and ROCK β/ROCK1, which were identi-
fied as the effector of Rho and have been shown to play impor-
tant roles in the pathogenesis of cardiovascular diseases.10,11 
Phosphorylation of myosin light chain (MLC) is crucial for 
vascular smooth muscle cell (VSMC) contraction. MLC is 
phosphorylated by Ca2+/calmodulin-activated MLC kinase 
(MLCK) and is dephosphorylated by MLC phosphatase 

(MLCP).12 Agonists bind to G-protein–coupled receptors and 
induce contraction by increasing both cytosolic Ca2+ concen-
tration and ROCK activity13,14 through mediating GEF.12,15 
The substrates of ROCK include MLC, myosin phospha-
tase target subunit (MYPT)-1, ezrin/radixin/moesin family, 
adducin, phosphatase and tensin homolog, and LIM-kinases 
(Figure 1).16 In this review article, we will briefly review the 
recent progress in the translational research on the therapeu-
tic importance of ROCK in cardiovascular medicine, ranging 
from molecular and cellular levels to animal and human levels 
(Figure 2).

Molecular and Cellular Levels
Interactions Between Endothelial Cells 
and VSMC for Vascular Homeostasis
The interactions between endothelial cells (EC) and VSMC 
play important roles in regulation of vascular integrity and 
homeostasis. EC release vasoactive factors, such as prostacy-
clin, nitric oxide (NO), and endothelium-derived hyperpolar-
izing factor (Figure 1).17–19 We have previously demonstrated 
that endothelium-derived hydrogen peroxide (H

2
O

2
) is an 

endothelium-derived hyperpolarizing factor in animals and in 
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humans (Figure 1).20–23 Both endothelial NO production and 
NO-mediated signaling in VSMC are targets and effectors of 
the RhoA/ROCK pathway.1,24,25 In EC, the RhoA/ROCK path-
way negatively regulates NO production, although in VSMC, 
the pathway enhances MLC phosphorylation through inhibi-
tion of MYPT-1 of MLCP and promotes VSMC contraction 
(Figure 1).26

ROCK is a serine/threonine kinase, which is encoded by 
2 different genes. In humans, ROCK1 (ROCKβ) and ROCK2 
(ROCKα) genes are located separately on chromosome 18 and 
2, respectively.27,28 ROCK consists of 3 major domains, includ-
ing a kinase domain, a coiled-coil domain that include Rho-
binding domain and a putative pleckstrin homology domain 
(Figure 3).4 ROCK activity is enhanced by binding of GTP-
bound active form of RhoA.28 Several ROCK substrates have 
been identified27 and phosphorylation of ROCK-mediated 
substrate causes actin filament formation, organization, and 
cytoskeleton rearrangement (Figure 1).29 Nowadays, many 
ROCK inhibitors, such as fasudil30 and Y-27632,31 have been 
developed and they inhibit ROCK activity in a competitive 
manner with ATP at the Rho-binding site.32 Among them, 
hydroxyfasudil, a major active metabolite of fasudil, exerts a 
more specific inhibitory effect on ROCK.33,34

Roles of ROCK in EC
The RhoA/ROCK pathway is critically involved in actin 
dynamics.35 Cyclic strain stimulates RhoA activation and 
enhances cell contractility. Mechanical activation of the 
RhoA/ROCK system makes cells more sensitive to external 
stimuli.36 Thus, RhoA/Rho-kinase–mediated actin contractil-
ity may contribute as a mechanosensor (Figure 1). However, 
disruption of endothelial barrier can lead to increased endo-
thelial permeability,37 promoting organ damage in various dis-
eases. The quantity of pinocytotic vesicles and permeability 

in EC is regulated by the expression and phosphorylation of 
caveolin-1 and caveolin-2 in EC as well as the levels of p-Src 
and the activity of RhoA/ROCK signaling.37 Thus, the RhoA/
ROCK signaling pathway is involved in the mechanotransduc-
tion mechanism based on the adherens junction strengthening 
at EC-cell contacts.37 These endothelial mechanosensing is 
required for EC alignment along flow direction, which con-
tributes to vascular homeostasis (Figure 1).

Several reports have demonstrated that NO and ROCK have 
opposing effects on each other.38,39 Partial deletion of either 
ROCK isoform, but to a greater extent ROCK1, attenuated 
diabetes mellitus–induced vascular endothelial dysfunction 
by reduction of NO production.39 However, ROCK-deficient 
mice revealed preserved EC function in diabetic model.39 
Moreover, we demonstrated that a ROCK inhibitor, fasudil, 
significantly enhanced phosphorylation of AMP-activated 
protein kinase in the liver and skeletal muscle, suggesting that 
NO and ROCK play opposing roles for lipid metabolism.40 
It has been previously shown that statins enhance endothelial 
NO synthase mRNA by cholesterol-independent mechanisms 
involving inhibition of Rho geranyl-geranylation.41 Moreover, 
statins and ROCK inhibitors completely block the secretion 
of cyclophilin A (CyPA), a novel mediator of ROCK, from 
VSMC.42,43 We also have recently demonstrated that small 
GTP-binding protein dissociation stimulator plays a central 
role of the pleiotropic effects of statins independent of the 
ROCK pathway.44

Roles of ROCK in VSMC
When agonists bind to their receptors, phospholipase C is 
activated, leading to the formation of inositol 1,4,5-triphos-
phate and diacylglycerol by the hydrolysis of phosphatidyl-
inositol 4,5-bis-phosphate (Figure 1).45 1,4,5-triphosphate 
then binds to an 1,4,5-triphosphate receptor on the membrane 
of the sarcoplasmic reticulum to mobilize the stored calcium 
ions (Ca2+) from the sarcoplasmic reticulum into the cyto-
sol. Diacylglycerol activates protein kinase C, which causes 
vasoconstriction and augments the Ca2+ sensitivity of contrac-
tile proteins.46 It has been demonstrated that several mecha-
nisms are involved in the Ca2+ sensitivity of myosin filaments, 
including myosin phosphatase12 and the small GTPase Rho 
and its target, ROCK (Figure 1).10,13

MLC phosphorylation is one of the most important steps 
for VSMC contraction.12 VSMC contraction is initiated by 
Ca2+/calmodulin-activated MLCK with subsequent phosphor-
ylation of the 20-kDa regulatory MLC.12 Phosphorylation of 
the regulatory MLC then activates myosin Mg2+-ATPase and 
permits cross-bridge cycling, which leads to force genera-
tion and contraction.12 The level of MLC phosphorylation is 
determined by a balance between MLC phosphorylation by 
MLCK and dephosphorylation by MLCP.12 Phosphorylation 
of the second site of MLC is known to further increase the 
actin-activated Mg2+-ATPase activity of myosin in vitro.47,48 
These results indicate that enhanced MLC phosphorylations 
play a central role in the augmentation of vascular tone. The 
phosphorylated site of MLC is MLCK-dependent Ser19 for 
MLC monophosphorylation and MLCK-dependent Ser19/
Thr18 for MLC diphosphorylation.33 Phenotype modulation 
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of VSMC (from contractile type to synthetic type) was noted 
in the neointimal regions of the atherosclerotic artery.49,50 In 
cultured VSMC, MLC diphosphorylation is augmented in 
actively growing cells compared with growth-arrested cells.48 
Phenotype change of arterial VSMC may thus be one of the 
important mechanisms of cardiovascular diseases.

The generation of diphosphorylated MLC is caused, in 
part, by inhibition of MLCP in VSMC.51 Studies in vitro dem-
onstrated that a GTP-binding protein regulates the receptor-
mediated sensitization of MLC phosphorylation52 and that 
small GTPase Rho is involved in GTP-enhanced Ca2+ sensi-
tivity of VSMC contraction.13,14,47 Recent studies further dem-
onstrated that Rho regulates MLC phosphorylation through its 
target, ROCK, and the MYPT-1 of MLCP.10,11 Smooth muscle 
MLCP consists of 38-kDa catalytic subunit, 130-kDa MYPT-
1, and 20-kDa subunit.53,54 Activated ROCK subsequently 
phosphorylates MYPT-1, thereby inactivating MLCP.10 
ROCK itself might also phosphorylate MLC at the same site 
that is phosphorylated by MLCK and activate myosin ATPase 

in vitro.11 Activated form of ROCK enhances transcriptional 
regulation of serum response factor (SRF)55 and induces 
VSMC contraction56 and stress fiber formation (Figure 1).57 
Some studies suggest that both pathways, inhibition of MLCP 
and direct phosphorylation of MLC, contribute to the increase 
in MLC phosphorylations.56 In contrast, H

2
O

2
 causes VSMC 

dilatation through several mechanisms, including cGMP, 
cAMP, cyclooxygenase, and several K channels. Importantly, 
H

2
O

2
 rapidly reaches VSMC, stimulates the 1-α isoform of 

cGMP-dependent protein kinase to form disulfide form, and 
opens Ca-activated K channels (K

Ca
) with subsequent VSMC 

hyperpolarization and relaxation (Figure 1).17–19

A Novel Mediator of ROCK: CyPA
Growth factors secreted from VSMC play an important role 
in mediating various cellular responses in the development 
of cardiovascular diseases.58–60 Recent evidence suggests that 
many other stimuli that modulate VSMC functions, including 
reactive oxygen species (ROS), promote VSMC proliferation 

Figure 1. Interactions between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) through multiple intercellular signaling 
pathways. Rho GTPases, including Ras homolog gene family member A (RhoA), are small GTP-binding proteins acting as a molecular 
switch that cycle between an inactive GDP-bound and an active GTP-bound conformation, interacting with downstream targets to elicit 
a variety of cellular responses. RhoA is activated by the guanine nucleotide exchange factors (GEFs) that catalyze exchange of GDP for 
GTP and inactivated by the GTPase-activating proteins (GAPs). Rho-kinase was identified as the effector of Rho. Phosphorylation of 
myosin light chain (MLC) is a key event in the regulation of VSMC contraction. MLC is phosphorylated by Ca2+-calmodulin–activated MLC 
kinase (MLCK) and dephosphorylated by MLC phosphatase (MLCP). Several substrates of Rho-kinase have been identified, including 
MLC, myosin phosphatase target subunit (MYPT)-1, ezrin/radixin/moesin family, adducin, phosphatase and tensin homolog (PTEN), and 
LIM-kinases. Rho-kinase mediates agonists-induced VSMC contraction. Intracellular signaling pathways for Rho-kinase activation, reac-
tive oxygen species (ROS) production, cyclophilin A secretion are closely linked through vesicle-associated membrane protein (VAMP)-2 
vesicle formation. H2O2 has been reported to cause vasodilatation through several mechanisms, including cGMP, cAMP, cyclooxygenase, 
and several K channels. Importantly, H2O2 rapidly reaches VSMC, stimulates the 1-α isoform of cGMP-dependent protein kinase (PKG1α) 
to form disulfide form, and opens Ca-activated K channels (KCa) with subsequent VSMC hyperpolarization and relaxation. ERK1/2 indi-
cates extracellular signal-regulated kinase 1/2; GDIs, guanine nucleotide dissociation inhibitors; LRP1, low-density lipoprotein receptor–
related protein 1; and PKA, cAMP-dependent protein kinase.
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by inducing auto/paracrine growth mechanisms.61 One of the 
recent topics is that the secretion of CyPA, an important novel 
mediator of oxidative stress, is regulated by the RhoA/ROCK 
system (Figure 1).42,62 It has been recently demonstrated that 
ROS activates a pathway containing vesicles with resultant 
secretion of CyPA.42,63 We have demonstrated that secreted 
extracellular CyPA stimulates ERK1/2, Akt and JAK in VSMC 
that contribute to ROS production and constitute a vicious cycle 
for ROS augmentation.64,65 CyPA is secreted from VSMC via 
a highly regulated pathway that involves vesicle transport and 
plasma membrane binding (Figure 1).42 In the vesicular traffick-
ing pathways, Rho GTPases including RhoA play a central role 
by organization of actin cytoskeleton and are thus required for 
secretion.66 Indeed, dominant-negative mutants of RhoA inhib-
ited oxidative stress-induced CyPA secretion, suggesting that 
RhoA-dependent signaling events regulate CyPA secretion.42 
ROCK inactivates MLCP through altering cytoskeletal dynam-
ics.10 Myosin II is involved in secretory mechanisms as a motor 
for vesicle transport.67 Consistently, ROCK inhibitor reduced 
ROS-induced CyPA secretion.42,68 These results suggest that 
ROCK-mediated myosin II activation promotes vesicle trans-
port, which is required for CyPA secretion from VSMC. CyPA 
is transported into the plasma membrane and colocalized with 

vesicle-associated membrane protein (VAMP)-2 in response 
to ROCK activation (Figure 1). Moreover, extracellular CyPA 
stimulates proinflammatory signals in EC, including expres-
sion of E-selectin and vascular cell adhesion molecule-1.69 In 
addition, extracellular CyPA decreases endothelial endothelial 
NO synthase expression, suggesting the indirect role of RhoA/
ROCK for negative regulation of endothelial NO produc-
tion. CyPA is also a direct chemoattractant for inflammatory 
cells,70,71 promoting matrix metalloproteinases (MMPs) activa-
tion.72,73 CyPA plays an important role as a Ca2+ regulator in 
platelets.74 Moreover, extracellular CyPA activates platelets 
via Basigin (CD147)-mediated phosphoinositid-3-kinase/Akt-
signaling, leading to enhanced adhesion and thrombus forma-
tion.75,76 It is also known that thrombin suppresses endothelial 
NO synthase in EC via ROCK pathway.77 Thus, CyPA and 
ROCK work in concert to develop vascular diseases. Indeed, 
CyPA may be a key mediator of ROCK that generates a vicious 
cycle for ROS augmentation, affecting EC, VSMC, and inflam-
matory cells (Figure 1).64

Clinical Implications
Physiological level of ROCK activity is important for vas-
cular homeostasis. In contrast, excessive ROCK activity 

Figure 3. Molecular structures of Rho-kinase (ROCK) isoforms. There are 2 isoforms of ROCK, ROCK1 and ROCK2, which consist of 3 
major domains, including a kinase domain in the N-terminal domain, a coiled-coil domain with Rho-binding domain in the middle portion 
and a putative pleckstrin homology (PH) domain in the C-terminal domain. ROCK1 and ROCK2 are highly homologous with an overall 
amino acid sequence identity of 65%.

Figure 2. Translational research on Rho-kinase. Translation research in the authors’ and other laboratories has elucidated the roles of 
Rho-kinase in cardiovascular medicine, ranging from molecular/cellular levels to animal and human levels. DES indicates drug-eluting 
stents; GEF, guanine nucleotide exchange factors; PH, pulmonary hypertension; RhoA, Ras homolog gene family member A; VSA, vaso-
spastic angina; and VSMC, vascular smooth muscle cell.
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promotes vascular diseases, in part, by promoting EC dysfunc-
tion, VSMC contraction/proliferation, and inflammatory cell 
migration.1,2,78–80 Vascular ROCK is augmented by mechanical 
stretch, pressure, shear stress, hypoxia, and growth factors81 
and is extensively involved in the intracellular signaling initi-
ated by many vasoactive agonists, including angiotensin II 
(Ang II),34,82–84 thrombin,85,86 platelet-derived growth factor,87 
thromboxanes,88 extracellular nucleotides,89 and urotensin 
(Figure 1).83 ROCK downregulates endothelial NO synthase 
in EC and promotes proinflammatory pathways including 
enhanced expression of adhesion molecules.90 Enhanced 
ROCK activity augments inflammation by inducing proinflam-
matory molecules, including interleukin (IL)-6 in osteoblasts,91 
monocyte chemoattractant protein-1,82 macrophage migration 
inhibitory factor,92,93 and sphingosine-1-phosphate.94 In con-
trast, ROCK expression is accelerated by inflammatory stimuli, 
such as Ang II and IL-1β,95 and by remnant lipoproteins in 
human coronary VSMC.96 ROCK upregulates NAD(P)H oxi-
dases and augments Ang II–induced ROS production, which 
also contribute to the secretion of growth factors from VSMC.34 
Thus, enhanced ROCK activity substantially contributes to vas-
cular inflammation. As a result, ROCK activation causes vas-
cular diseases through EC damage, VSMC hypercontraction/
proliferation, and inflammation and can be a common pathway 
involved in the pathogenesis of vascular diseases.1,2

Experimental Studies
Accumulating evidence has indicated that ROCK plays 
important roles in the pathogenesis of a wide range of car-
diovascular diseases.1,2,97,98 Indeed, the RhoA/ROCK pathway 
not only mediates VSMC hypercontraction through inhibition 
of MLCP but also promotes cardiovascular diseases through 
enhancing ROS production.2,97,98 The beneficial effects of 
long-term inhibition of ROCK for the treatment of cardio-
vascular disease have been demonstrated in various animal 
models, such as coronary artery spasm, arteriosclerosis, reste-
nosis, ischemia/reperfusion injury, hypertension, pulmonary 
hypertension, stroke, and cardiac hypertrophy/heart failure 
(Figure 3).2,97,99 Gene transfer of dominant-negative ROCK 
reduced neointimal formation of the coronary artery in pigs.100 
Long-term treatment with a ROCK inhibitor suppressed neo-
intima formation after vascular injury in vivo,101,102 Monocyte 
chemoattractant protein-1–induced vascular lesion forma-
tion,103 constrictive remodeling,104,105 in-stent restenosis,106 and 
the development of cardiac allograft vasculopathy.92

Coronary Artery Spasm
Accumulating evidence indicates that ROCK plays a crucial 
role in the pathogenesis of coronary artery spasm. Coronary 
spasm plays an important role in variant angina, myocardial 
infarction, and sudden death.1,107 It was demonstrated that 
long-term treatment with cortisol, one of the important stress 
hormones, causes coronary hyperreactivity through activation 
of ROCK in pigs in vivo.108 The activity and the expression 
of ROCK are enhanced at the inflammatory/arteriosclerotic 
coronary lesions.109 Intracoronary administration of fasudil110 
and of hydroxyfasudil33 inhibit coronary spasm in pigs.104 To 
further elucidate the molecular mechanism of coronary spasm 

in our porcine model, experiments were performed to examine 
whether ROCK is upregulated at the spastic site and if so, how it 
induces VSMC hypercontraction.109 Reverse transcription poly-
merase chain reaction analysis demonstrated that the expression 
of ROCK mRNA and, to a lesser extent, that of RhoA mRNA 
were significantly upregulated in the spastic than in the control 
coronary segment.109 Western blot analysis showed that dur-
ing the serotonin-induced contractions, the extent of MYPT-1 
phosphorylation was significantly greater in the spastic than in 
the control segment.109,110 Furthermore, another ROCK inhibi-
tor, Y-27632,31 also inhibited not only serotonin-induced con-
tractions in vivo and in vitro but also the increase in MYPT-1 
phosphorylations.109 Importantly, there was a highly signifi-
cant positive correlation between the extent of MYPT-1 phos-
phorylations and that of contractions in the spastic but not in 
the control segments.109 These results indicate that ROCK is 
upregulated at the spastic site and plays a key role in inducing 
VSMC hypercontraction by inhibiting MLCP through MYPT-1 
phosphorylation (Figure 1).109,111 Hydroxyfasudil causes dose-
dependent inhibition of serotonin-induced coronary spasm both 
in vitro and in vivo in the porcine model with chronic adventitial 
treatment with IL-1β through suppression of serotonin-induced 
increases in MLC mono- and diphosphorylations.33,104,109,110,112 
Thus, the hydroxyfasudil-sensitive ROCK-mediated pathway 
plays an important role in the enhanced MLC phosphoryla-
tions in the spastic coronary artery (Figure 1).

Atherosclerosis
Arteriosclerosis is a slowly progressive inflammatory pro-
cess of the arterial wall that involves all the 3 layers, such 
as the intima, media, and adventitia.2,25 In the context of ath-
erosclerosis, ROCK should be regarded as a proinflammatory 
and proatherogenic molecule. ROCK-mediated pathway is 
substantially involved in EC dysfunction,85,90 VSMC contrac-
tion,113 VSMC proliferation and migration in the media114 
and accumulation of inflammatory cells in the adventitia.103 
Those ROCK-mediated cellular responses lead to the devel-
opment of vascular diseases. In fact, mRNA expression of 
ROCK is enhanced in the inflammatory and arteriosclerotic 
arterial lesions in animals113 and in humans.115 Taken together, 
ROCK may be an important novel therapeutic target for 
atherosclerosis.

Aortic Aneurysm
Aortic aneurysm is formed by chronic inflammation of the 
aortic wall, associated with medial VSMC loss and progres-
sive destruction of structural components, particularly the 
elastic lamina.116 Key mechanisms include VSMC senes-
cence,117 oxidative stress,61,118 increased local production of 
proinflammatory cytokines,119 and increased activities of 
MMPs that degrade extracellular matrix.120,121 Chronic Ang 
II infusion into apolipoprotein E-KO mice promotes aortic 
aneurysm formation.122,123 In animal models of aortic aneu-
rysm, genetic and pharmacological inhibition of ROS pro-
duction124,125 and MMPs126,127 suppressed development of 
aneurysms. Chronic inhibition of ROCK by fasudil has been 
demonstrated to reduce Ang II–induced aortic aneurysm for-
mation in apolipoprotein E-KO mice.128 Activation of ROCK 
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promotes CyPA secretion from VSMC and extracellular 
CyPA stimulates VSMC migration, proliferation and MMPs 
activation (Figure 1).63,129 Extracellular CyPA is also a che-
moattractant for inflammatory cells42,63,130 and further acti-
vates vascular ROCK. Recently, we have demonstrated that 
ROCK-mediated CyPA augments Ang II–induced ROS pro-
duction, MMP activation, and inflammatory cell recruitment 
into the aortic VSMC, contributing to the aortic aneurysm for-
mation, in these animal models.68 Our findings suggest that 
ROCK/CyPA signaling pathway is a novel therapeutic target 
for aortic aneurysm. Ang II induces ROCK activation and 
promotes CyPA secretion. Secreted extracellular CyPA aug-
ments ROCK activity in a synergistic manner.65 Thus, secreted 
CyPA, acting as a proinflammatory cytokine, synergistically 
augments Ang II–mediated ROS production, contributing to 
the onset of vascular inflammatory cell migration and aortic 
aneurysm formation.124,131

Myocardial Ischemia/Reperfusion Injury
ROS production and ROCK activation play a crucial role in 
myocardial damage after ischemia/reperfusion. We have dem-
onstrated that pretreatment with fasudil before reperfusion 
prevents endothelial dysfunction and reduces the extent of 
myocardial infarction in dogs in vivo.132 The beneficial effect 
of fasudil has also been demonstrated in a rabbit model of 
myocardial ischemia induced by intravenous administration 
of endothelin-1,133 a canine model of pacing-induced myo-
cardial ischemia,134 and a rat model of vasopressin-induced 
chronic myocardial ischemia.135

Cardiac Hypertrophy and Heart Failure
Although the structural difference between the 2 ventricles 
is obvious, the fundamental functional difference between 
right ventricular (RV) failure and left ventricular (LV) fail-
ure remains unclear. Thus, our knowledge and strategy 
for the treatment of RV failure are still limited. We have 
recently addressed this fundamental issue by comparing the 
responses of both ventricles to chronic pressure–overload.136 
Interestingly, there were significant differences in the induc-
tion pattern and localization of oxidative stress at 24 hours 
after pressure–overload; pulmonary artery constriction rapidly 
induced oxidative stress in the RV without significant change 
in the LV, whereas transverse aortic constriction slowly 
induced oxidative stress in the LV without significant change 
in the RV.136 Furthermore, ROCK2 was promptly upregulated 
in the RV after pulmonary artery constriction and was colo-
calized with ROS induction.136 Thus, it is conceivable that the 
increased ROCK2 expression in the RV after pulmonary artery 
constriction contributes, at least in part, to the vulnerability 
of the RV to pressure–overload and the characteristic differ-
ence between the 2 ventricles. At present, we still have limited 
knowledge on the roles of ROCK1 and ROCK2 in the patho-
genesis of RV and LV failure. Mechanical stretch stimulates 
integrins, which activates the RhoA/ ROCK pathway through 
RhoGEFs.137 Mechanotransduction through integrins leads to 
the activation of RhoA/ROCK pathway, which induces hyper-
trophic gene activation.138,139 In contrast, mechanosensing by 
actin filaments causes actin cytoskeleton remodeling through 

small GTPases of the Rho/Rac/Cdc42 family.138,139 However, 
the detailed mechanisms are not fully elucidated as to the 
mechanoresponses and the link among the integrin, RhoGEFs 
and the downstream targets of the RhoA/ROCK pathway. In 
the downstream mechanotransduction through integrin-β by 
pressure–overload, adhesion of α-actinin, talin, and vinculin 
to actin filaments, may potentially contribute to the activation 
of FGD2 (FYVE, RhoGEF and PH domain-containing protein 
2; RhoGEF) preferentially in the RV after pulmonary artery 
constriction.136 Our microarray analysis suggested that there is 
a special signaling cascade in the RV that connects the FGD2 
and RhoA/ROCK2 signaling to the downstream of integrin-β, 
which may be the difference between the RV and the LV in 
response to mechanical stretch.136

Next, Ang II plays a key role in many physiological and 
pathological processes in cardiac cells, including cardiac 
hypertrophy.140 Understanding of the molecular mechanisms 
for Ang II–induced myocardial disorders is important to 
develop new therapies for cardiac dysfunction.141 ROS pro-
duction is recognized to be involved in Ang II–induced cardiac 
hypertrophy,142,143 however, the precise mechanism by which 
ROS cause myocardial hypertrophy and dysfunction still 
remains to be fully elucidated.144 It has been demonstrated that 
cardiac troponin is a substrate of ROCK.145 ROCK phosphory-
lates troponin and inhibits tension generation in cardiac myo-
cytes. We have previously demonstrated that ROCK inhibition 
with fasudil suppresses the development of cardiac hypertro-
phy and diastolic heart failure in Dahl salt-sensitive rats.146 In 
addition, our recent study demonstrated a synergy between 
CyPA and ROCK to increase ROS generation.68 Because ROS 
stimulate myocardial hypertrophy, matrix remodeling, and 
cellular dysfunction,147 ROCK and CyPA may work together 
to promote ROS production and Ang II–induced cardiac 
hypertrophy. In fact, CyPA was required for Ang II–mediated 
cardiac hypertrophy by directly potentiating ROS production, 
stimulating proliferation and migration of cardiac fibroblasts, 
and promoting cardiac myocyte hypertrophy in mice.148

Hypertension
Uehata et al31 demonstrated that ROCK-mediated Ca2+ sensi-
tization is involved in the pathophysiology of hypertension. 
Short-term administration of Y-27632, another ROCK inhibi-
tor, preferentially reduces systemic blood pressure in a dose-
dependent manner in rat models of systemic hypertension, 
suggesting an involvement of ROCK in the pathogenesis of 
increased systemic vascular resistance in hypertension.31 The 
expression of ROCK is significantly increased in resistance 
vessels of spontaneously hypertensive rats.149 ROCK is also 
involved in the central mechanisms of sympathetic nerve 
activity.150–153

Pulmonary Hypertension
Pulmonary hypertension (PH) is associated with hypoxic 
exposure, endothelial dysfunction, VSMC hypercontraction 
and proliferation, enhanced ROS production, and inflamma-
tory cell migration, for which ROCK seems to be substantially 
involved. Indeed, long-term treatment with fasudil suppresses 
the development of monocrotaline-induced PH in rats154 and 
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hypoxia-induced PH in mice.155 We also have recently devel-
oped VSMC-specific ROCK2-KO mice and demonstrated 
the specific role of ROCK2 in the development of hypoxia-
induced PH.156 These mutant mice revealed normal growth and 
body weight gain under physiological conditions. However, 
chronic hypoxia significantly increased ROCK2 expres-
sion and ROCK activity in the lung tissues from wild-type 
littermates and the development of pulmonary hypertension 
and RV hypertrophy caused by chronic hypoxia in vivo was 
evident in littermates but was suppressed in VSMC-specific 
ROCK2-KO mice.156 In vitro, the growth and migration of 
VSMC were significantly reduced in ROCK2-KO VSMC, 
compared with control VSMC.156

Because the secretion of CyPA is regulated by ROCK,42,65 
we further tested the hypothesis that CyPA contributes to the 
development of PH in mice and in humans.157 Importantly, we 
demonstrated that extracellular CyPA and its receptor, Basigin 
(CD147), are crucial for hypoxia-induced PH by inducing 
growth factor secretion, inflammatory cell recruitment, and 
VSMC proliferation.157 These results suggest that extracel-
lular CyPA and vascular Basigin are crucial for PH develop-
ment and could be potential therapeutic targets for the disorder. 
Statins and ROCK inhibitor reduce the secretion of CyPA from 
VSMC42,65 and pravastatin ameliorates hypoxia-induced PH in 
mice.158,159 Thus, it is possible that inhibition of CyPA secretion 
by statins159 or ROCK inhibitors154,160 could contribute to the 
therapeutic effects of these drugs on PH. It has been reported 
that intravenous injection of several chemically different ROCK 
inhibitors reduces systemic and pulmonary arterial pressures 
even under resting conditions.161–164 These results suggest that 
ROCK plays a physiological role in the maintenance of base-
line vasoconstrictor tone in the pulmonary and systemic vascu-
lar beds and is involved in the development of PH.

Clinical Studies
Vasospastic angina (VSA) is known to exhibit circadian 
variation with an early morning peak. We have recently dem-
onstrated that ROCK activity in circulating neutrophils is a 
useful biomarker for diagnosis and disease activity assess-
ment in patients with VSA.165 Furthermore, we also have 
recently demonstrated that ROCK activity shows a significant 
circadian variation with a peak at 6:00 am in patients with VSA, 
whereas no such variation was noted in non-VSA patients.166 
Importantly, ROCK activity at spasm provocation test was 
significantly correlated with basal coronary tone evaluated 
by vasodilating responses to intracoronary nitrate and coro-
nary vasoconstricting responses to acetylcholine in patients 
with VSA.166 Furthermore, their ROCK activity at 6:00 am was 
positively correlated with nocturnal parasympathetic activity 
as evaluated by heart rate variability in Holter monitoring.166 
Interestingly, some recent studies revealed that ROCK plays 
a critical role in determining the intrinsic circadian rhythm of 
vascular contractility and blood pressure.167,168 Thus, ROCK 
activity exhibits distinct circadian variation associated with 
alterations in coronary vasomotor responses and autonomic 
activity in patients with VSA.166 Others also suggested that 
cardiovascular risk may enhance ROCK activity and endo-
thelial dysfunction, leading to progression of cardiovascular 

diseases.169 Next, we have demonstrated that intracoronary 
administration of fasudil is effective in preventing coronary 
spasm and resultant myocardial ischemia in patients with 
VSA.170 Thus, fasudil is useful for diagnosis and treatment of 
ischemic coronary syndromes caused by the spasm.165,166,170 
Fasudil is also effective in treating patients with microvascular 
angina.171 Hydroxyfasudil, an active metabolite of fasudil after 
oral absorption, selectively inhibits ROCK.33 The clinical trials 
of the effects of fasudil in Japanese patients with stable effort 
angina demonstrated that the long-term oral treatment with 
the ROCK inhibitor is effective in ameliorating exercise intol-
erance in those patients.99 Indeed, subsequent clinical studies 
also showed that intracoronary fasudil is effective in almost 
all patients with epicardial coronary spasm170 and approxi-
mately two thirds of patients with microvascular angina.171 
These results indicate the usefulness of ROCK inhibitors for 
the treatment of coronary vasospastic disorders.1,2,97,98

Recently, we further demonstrated that the ROCK pathway 
plays a crucial role in the pathogenesis of coronary hypercon-
stricting responses induced by drug-eluting stents in pigs172 
and in humans173 and that long-term treatment with a long-
acting nifedipine suppresses drug-eluting stents–induced cor-
onary vasomotor dysfunctions through indirect inhibition of 
ROCK pathway.174 Indeed, the role of the ROCK pathway has 
been emerging and the indications of ROCK inhibitors have 
been expanding in cardiovascular medicine (Figure 4).1,2,97,98 
In addition, we recently demonstrated that the ROCK media-
tor, plasma CyPA, is a novel biomarker for coronary artery 
disease.175 Multivariable analysis demonstrated that in addi-
tion to the established risk factors (eg, age, sex, smoking, 
hypertension, and diabetes mellitus), CyPA >15 ng/mL was 
significantly correlated with coronary artery disease.175

Next, we were able to obtain direct evidence for ROCK 
activation in circulating leukocytes in patients with pulmonary 
arterial hypertension (PAH).176 Indeed, intravenous infusion 
of fasudil significantly reduced pulmonary vascular resistance 
in patients with PAH, indicating an involvement of ROCK 
in the pathogenesis of PAH in humans.177 Fasudil decreases 

Figure 4. Possible indications of Rho-kinase inhibitors. Selective 
Rho-kinase inhibitors could have a wide range of indications, 
including not only cardiovascular diseases caused by vascular 
smooth muscle (VSMC) hypercontraction but also those by ath-
erosclerosis in general, those by smooth muscle hypercontrac-
tion, and others. DES indicates drug-eluting stents.
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pulmonary arterial pressure in various situations, in which vas-
cular tone is increased in the coronary and pulmonary vascular 
beds. Most important point in the clinical settings is the chronic 
effects of the drugs. Long-acting fasudil has recently been 
demonstrated to exert beneficial effects in patients with PAH.178 
We further confirmed the role of extracellular CyPA, which 
is a novel mediator of ROCK, in the pathogenesis of PAH in 
humans.157 We examined human recombinant CyPA-induced 
secretion of growth factors from VSMCs harvested from the 
pulmonary arteries of patients with PAH. Extracellular CyPA 
induced secretion of growth factors and chemokines (eg, plate-
let-derived growth factor-BB, SDF-1 [stromal cell derived fac-
tor], and FGF-2 [fibroblast growth factor]) and inflammatory 
cytokines (eg, IL-1β, IL-2, and tumor necrosis factor-α) and 
this effect was enhanced by hypoxia.157 These results support 
the notion that ROCK-mediated extracellular CyPA promotes 
the secretion of growth factors from VSMCs in patients with 
PAH. Thus, we measured plasma levels of CyPA in patients 
with PAH. As expected, plasma CyPA levels were elevated in 
patients with PAH as compared with those without PAH or 
healthy controls.157 Moreover, the event-free curve revealed 
that high plasma CyPA levels (>22 ng/mL) were associated 
with poor outcome (death or lung transplantation), suggest-
ing plasma CyPA is a novel biomarker of disease severity, 
therapeutic efficacy, and prognosis in patients with PAH. We 
have previously reported that statins and ROCK inhibitors 
reduce CyPA secretion from VSMCs.42,68 ROCK is an impor-
tant therapeutic target in cardiovascular diseases2 and ROCK 
inhibition ameliorates PH in animals and in humans.154,175,176,178 
Indeed, the secretion of a variety of cytokines/chemokines and 
growth factors was significantly reduced by treatment with 
fasudil (K. Satoh and H. Shimokawa, unpublished data, 2014). 
On the basis of our study, inhibition of CyPA secretion by 
ROCK inhibitors may contribute to the therapeutic efficacy of 
these drugs in PAH.154,176 The identification of CyPA as a novel 
mediator of ROCK associated with inflammation provides 
insight into the mechanisms of several therapies.

Currently, many pharmaceutical companies and manufac-
turers have strong interests on the RhoA/ROCK signaling and 
the development of its inhibitors (Figure 4).179 Among them, 
Akama et al180 performed a kinome-wide screen to investi-
gate the members of the benzoxaborole family and identified 
ROCK as a target. They showed competitive behavior, with 
respect to ATP, and determined the ROCK2-drug cocrystal 
structure.180 They exhibited oral availability and 1 member 
reduced rat blood pressure, consistent with ROCK’s role in 
smooth muscle contraction. Thus, the benzoxaborole moiety 
may possess a novel hinge-binding kinase scaffold that may 
have potential for therapeutic use.179,180 On the basis of the role 
of ROCK in disease processes that include smooth muscle 
contraction, fibrosis, and inflammation, the target and thera-
peutic applications for ROCK inhibitors are mainly in the field 
of cardiovascular diseases, such as VSA, cardiac hypertrophy, 
and PH. Indeed, the role of the ROCK pathway has been 
emerging and the indications of ROCK inhibitors have been 
expanding especially in cardiovascular medicine (Figure 4).

Conclusions
The identification of ROCK as a mediator of cardiovascular 
diseases associated with inflammation and oxidative stress 
provides insight into the development of new therapies. 
Indeed, accumulating evidence suggests that ROCK is sub-
stantially involved in the pathogenesis of a wide variety of 
cardiovascular diseases.
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The RhoA/Rho-kinase (ROCK) pathway plays an important role in various fundamental cellular functions, including contraction, motility, pro-
liferation, and apoptosis, whereas its excessive activity is involved in the pathogenesis of cardiovascular diseases. A series of translational 
research studies have demonstrated the important roles of ROCK in the pathogenesis of cardiovascular diseases. At the molecular and cel-
lular levels, ROCK upregulates several molecules related to inflammation, thrombosis, and fibrosis. In animal experiments, ROCK plays an 
important role in the pathogenesis of vasospasm, arteriosclerosis, hypertension, pulmonary hypertension, and heart failure. Finally, at the 
human level, ROCK is substantially involved in the pathogenesis of coronary vasospasm, angina pectoris, hypertension, pulmonary hyperten-
sion, and heart failure. Furthermore, ROCK activity in circulating leukocytes is a useful biomarker for the assessment of disease severity 
and therapeutic responses in vasospastic angina, heart failure, and pulmonary hypertension. Thus, the ROCK pathway is an important novel 
therapeutic target in cardiovascular medicine.
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Tohoku University Graduate School of Medicine, Sendai, Japan

Why did you choose the profession of scientific investigation?
I chose the profession of scientific investigation because I thought (and think) that  

science is one of the most creative and stimulating fields and that medical research is one of 
the most important activities among scientific investigations.

Who have been your role model(s) in your scientific and professional life?

(1)  Professor Akira Takeshita, an emeritus professor of Kyushu University, who served as an Asian Associate Editor of 
ATVB and unfortunately passed away in 2009. I worked with him at the Kyushu University as an assistant professor 
(1991–1994) and then as an associate professor (1995–2005), when I studied molecular mechanisms of coronary artery 
spasm and arteriosclerosis with a special reference to Rho-kinase.

(2)  Professor Paul Vanhoutte, a professor and chairman of the University of Hong Kong. I worked in his laboratory at Mayo Clinic 
from 1985–1988, where I studied endothelial functions with a special reference to endothelium-derived relaxing factors.

What have been important influences on your professional life?
Interactions with young medical students, doctors (graduate students and postgraduate fellows), and staff in my department.

What are your scientific inspirations?
It is very stimulating and inspiring to elucidate unknown facts and to develop new diagnostic and therapeutic strategies, 

all of which are useful to advance medicine.

How have mentors contributed to your professional development?
Professor Vanhoutte taught me the pleasure of research where we can discover unknown facts and contribute to society. 

I have learned from Professor Takeshita about the importance of continuation of research despite any difficult situations.

If you knew then what you know now, would you do anything different?
No. I only could have been able to save some time, if any, even if I knew then what I know now.

What wisdom do you impart on new investigators?
Three points: (1) the theme of research should be original; (2) should have good mentors; and (3) should continue re-

search despite any difficult situations (there always are good solutions to overcome them).

If you were not a scientist, which profession would you pick?
I would like to work for the country as a government official, like finance or diplomacy field.

Which direction do you envisage your science taking?
My research is directed to develop noninvasive diagnostic and therapeutic strategies to achieve a healthy society.

What are your nonscientific activities?
Reading books, music (classic), and sports.

What sports do you follow?
Football and baseball. I used to play football at high school and university.

What are your favorite books, movies, music (pick one or all)?
Ryotaro Shiba (Japanese novelist), human dramas (movies), and Beethoven (music).

What are you favorite foods and are they heart healthy?
Sushi and sashimi, definitely good for your heart!


