
To appear in IEEE NETWORK Magazine Special Issue on Active and Programmable Networks� July ����

Introducing New Internet Services� Why and How

David Wetherall� Ulana Legedza� and John Guttag�

Software Devices and Systems Group

Laboratory for Computer Science

Massachusetts Institute of Technology

Abstract

Active networks permit applications to inject programs
into the nodes of local and� more importantly� wide area
networks� This supports faster service innovation by
making it easier to deploy new network services� In this
paper� we discuss both the potential impact of active net�
work services on applications and how such services can
be built and deployed� We explore the impact by suggest�
ing sample uses and arguing how such uses would im�
prove application performance� We explore the design of
active networks by presenting a novel architecture� ants�
that adds extensibility at the network layer and allows
for incremental deployment of active nodes within the
Internet� In doing so� ants tackles the challenges of en�
suring that the �exibility o�ered by active networks does
not adversely impact performance or security� Finally�
we demonstrate how a new network service may be ex�
pressed in ants�

Keywords� active networks� networking protocols� dis�
tributed applications� performance�

� Why Active Networks�

The pace of innovation in networked applications is un�
relenting� New applications continue to emerge rapidly
and often bene�t from new network services that bet�
ter accommodate their modes of use� In this paper� we
address the questions of why and how to deploy such
new services� We begin by observing that while it is
possible to deploy new network services at end�systems
�e�g�� as overlays	� implementing them at nodes interior
to the network or at the network layer often o
ers bet�
ter functionality and performance� This observation is
supported by a number of ad hoc e
orts to exploit such
functionality�

� Multimedia applications �such as videoconferencing
and Internet telephony	 bene�t from real�time and
multicast services� For example� RSVP �
� reserves

�fdjw� ulana� guttagg�lcs�mit�edu�
http���www�sds�lcs�mit�edu��

bandwidth to ensure that time�sensitive data is de�
livered in a timely fashion� and IP Multicast ��� re�
duces the bandwidth needed to communicate from
one sender to multiple receivers� In the case of
RSVP� bandwidth reservation functionality cannot
be provided e
ectively above the network layer� In
the case of multicast� excess bandwidth and latency
costs are incurred when an overlay is used and its
topology does not match the underlying topology�
as was problematic in the early MBONE�

� Laptops bene�t from host mobility and transport
services optimized for wireless transmission� For ex�
ample� Mobile IP ���� allows a laptop to be reached
at di
erent sites without the need to recon�gure ad�
dress information� and Snoop�TCP ��� compensates
for the fact that the congestion control mechanisms
of TCP were not designed for lossy media� Mobile
IP is by de�nition a network�level routing service�
Snoop�TCP intercepts TCP packets within the net�
work at wireless base stations�

� Web servers bene�t from caching and load distri�
bution services� e�g�� Cisco�s CacheDirector product
reduces the amount of wide�area tra�c by inter�
cepting repeated requests� and Cisco�s LocalDirec�
tor product reduces the concentration of Web tra�c
by distributing requests across multiple servers� By
intercepting packets at routers� these products are
transparent to end systems and minimize latency
and bandwidth usage compared to a proxy agent�

Unfortunately� the current process of changing network
protocols and processing is lengthy and di�cult because
it requires standardization and manual� backwardly�
compatible deployment� The �rst two groups of ex�
amples �which are still not fully deployed despite many
years and evident need	 show the e
ects of this process�
The Cisco products� on the other hand� appeared rela�
tively quickly because they are implemented as vendor�
speci�c products that are transparent to end�systems�
This strategy may be e
ective for deploying a new net�
work service at a single router� but is too restrictive to
be suitable as means of widely deploying new network
services�

�



Active networks seek to address the problem of slow net�
work service evolution by building programmability into
the network infrastructure itself� thus allowing many new
network services to be introduced much more rapidly�
Comparedwith other architectures that incorporate �ex�
ibility� such as Cicso�s Tag Switching ����� this approach
o
ers a larger degree of �exibility� but at the potential
expense of performance and security�

We believe that the ability to tailor network service to
the application will ultimately justify the overhead nec�
essary to protect the network as a whole� Accordingly�
our research in active networks is focused on two ques�
tions�

� In what ways can new network services be used to
improve application performance�

� How is it possible to make the network infrastruc�
ture programmable without compromising local for�
warding performance and network security proper�
ties�

In this paper we outline our thinking to date to pro�
vide a broad introduction for the casual reader� Other
papers ���� ��� ��� contain further technical detail and
quantitative results about individual topics�

We begin by presenting� in section �� some sample ap�
plications that illustrate the type of new services that
we wish to be able to introduce� In section 
� we then
make the case that additional work in the network may
sometimes be more e
ective than additional work by the
application� In section �� we argue that programmability
need not come at an unreasonably large performance and
security cost by describing our ants architecture and
emphasizing the tradeo
s that it embodies� In section ��
we show� by example� how new services may be deployed
in our prototype implementation of the architecture� We
conclude by placing our research in the context of related
work�

� Sample Applications

Here� we outline two new and di
erent network services
aimed at improving existing applications� Our intent is
to suggest the diversity of services facilitated by active
networking� We present these services in just enough
detail to show how they can be implemented on an active
network� Both are to some degree application�speci�c
rather than general�purpose� Neither is implemented in
the network layer today�

��� Stock quotes

Many people use the Internet to obtain stock quotes�
Fast access to up�to�date quotes is crucial� especially
during periods of heavy server load �because it usually
signi�es an important market �uctuation	� Web caches
�e�g� Squid����	� which are used to reduce latency and
increase the throughput of accesses to servers� are not
helpful in this context� First� most Web caches do not
cache quotes because they are dynamic data� Second�
even if the di�culty of caching rapidly changing data
were overcome� the granularity of objects stored in Web
caches �i�e�� entire Web pages	 is inappropriate for this
application� Each client generally requests a page with a
short customized list of quotes� With hundreds of stocks�
the number of possible unique Web pages is enormous�
so the likelihood of a cache hit is small�

In an active network� the caching strategy may be cus�
tomized to suit the application needs� First� an active
protocol specialized for stock quotes can cache quotes at
network nodes using a per�stock name granularity� This
allows all requests for popular �i�e�� cached	 stock quotes
to hit in the cache� no matter what subset or order is re�
quested� Second� requests can specify a client�controlled
degree of currency �i�e�� up�to�date�ness	 of the desired
quotes� This allows each client to trade response�time
against the currency of the quotes� For example� some
clients may prefer near�instantaneous access to quotes
that are up to �� minutes out of date� while other clients
may require the latest quotes� even if it means waiting
longer to get them�

The basic idea is that quotes are cached �along with
timestamps	 at network nodes as they travel from the
server to a client� Subsequent client requests are inter�
cepted at the nodes where the local cache is checked to
determine whether the desired quotes �with desired de�
gree of currency	 are available� If so� the quotes are sent
to the client� where they are assembled into a viewable
web page� If not� the request is forwarded to the server�

��� Online Auctions

Web servers hosting online auctions are currently among
the most popular sites in the Internet ���� A server run�
ning a live online auction collects and processes client
bids for the available item�s	� This server also responds
to requests for the current price of an item� Because of
the network delay experienced by a packet responding
to such a query� its information may be out of date by
the time it reaches a client� possibly causing the client
to submit a bid that is too low to beat the current going
price� Thus� unlike auctioneers in traditional auctions�

�



the auction server may receive bids that are too low and
must be rejected� especially during periods of high load
when there are many concurrent bids�

Current implementations of such servers ��� ���� perform
all bid processing at the server� In an active network�
low bids can be �ltered out in the network� before they
reach the server� This capability can help the server
achieve high throughput during periods of heavy load�
When the server senses that it is heavily loaded� it can
activate �lters in nearby network nodes and periodically
update them with the current price of the popular item�
The �ltering active nodes drop bids lower than this price
and send bid rejection notices to the appropriate clients�
This frees up server resources for processing competitive
bids and reduces network utilization near the server� The
�ltering active nodes could also keep track of the num�
ber of rejected bids at each price� and ship those to the
auction server at the end of the auction�

The auction server is similar to the stock quote ap�
plication in that it also performs caching �of current
price information	 in network nodes� However� its pro�
tocol is necessarily di
erent because it also delegates
application�speci�c tasks� e�g�� bid rejection� to the ac�
tive network nodes� More details about how to imple�
ment this service are provided in section ��

� Rethinking Performance

Paradoxically� despite increasing the amount of process�
ing performed within the network� the sample applica�
tions above can lead to improved overall system perfor�
mance�

Traditional network performance measures� such as
throughput �bits or packets per second	 and packet la�
tency� are aimed at evaluating the performance of the
network rather than the performance of the applications
using it� However� it is not necessarily the case that
network performance is positively correlated with ap�
plication performance� An active network can perform
operations that can cause fewer packets to be sent or
delivered and packets to experience longer per�hop la�
tencies� While these e
ects would appear to degrade
performance� they may actually result in improved over�
all application performance because of reduced demand
for bandwidth at endpoints� reduced network conges�
tion� etc� Therefore� performance should be evaluated
in terms of application�speci�c metrics�

We �rst consider application�speci�c notions of through�
put� In the stock quote example� the active approach
clearly reduces the server�s throughput in terms of client
requests processed per second at the server� but increases

the number of client requests serviced per second� In
the active online auction� the relevant measure could be
either the number of bids processed per second or� per�
haps� the total number of winning bids processed per sec�
ond� Preliminary experiments with this application in�
dicate that the active implementation will increase both
these measures� Both of these improvements in through�
put are brought about by parallelism resulting from dele�
gating some of the application�s functionality to internal
network nodes�

While active processing slows down packets slightly�
this time can be recovered by improved latency of
application�level operations� Caching in the network� as
in the stock quote example� can reduce the latency of
data accesses when the server is busy� When network
nodes in the auction application reject low bids� they in�
form the �losing� end nodes more quickly than could the
overloaded �and farther away	 server�

The cost of these performance improvements is the in�
creased consumption of computational and storage re�
sources in the network� which may slow down other net�
work tra�c traveling through the busy active nodes�
However� this competing tra�c could also bene�t from
active processing� Because the active processing can re�
duce the bandwidth utilization in some regions of the
network� other tra�c will bene�t from the resulting re�
duction in congestion�related loss and delays� This claim
is supported in ����� which reports on simulations of a
stock quote server� and in ����� which reports on simula�
tions of an active reliable multicast protocol�

Sometimes� doing work within the network also reduces
the total amount of work that needs to be done by an
application� Consider the following example� Some num�
ber of sensors �e�g� microphones� antennas� devices mea�
suring emissions of pollutants	 are continuously collect�
ing large amounts of information that must be combined
�mixed	 for one or more receivers� An active network im�
plementation o
ers the opportunity to reduce the work
done at end nodes by more than it increases the work
within the network� i�e�� when there are multiple re�
ceivers there is a reduction in total work as well as in
endpoint work� Consider a situation in which N sources
send signals to M destinations� If each end node does all
of its own mixing� the work� summed over all end nodes�
is proportional to N�M� In the best case� by mixing pairs
of signals within the network the end nodes can be com�
pletely freed of the need to mix signals� Furthermore�
the total amount of mixing done can be reduced � in the
best case to N�

The degree to which intra�network processing improves
performance depends on where in the network it is de�
ployed� In the stock quote example� it is important to






place the caches where they will serve a large number of
client requests� otherwise� they are not very e
ective� In
the sensor fusion example� the greatest decrease in band�
width utilization occurs when the splitting of multicast
streams is performed as late as possible and mixing is
performed as early as possible� In the online auction�
�lters should be far enough away from the server to turn
back low bids as early as possible� but close enough to the
server to get reasonably up�to�date price information� In
all our examples� placing processing and storage near a
bottleneck link is likely to decrease delay and loss due
to congestion� Note that placement strategy not only
di
ers from application to application� but is also likely
to change with change in network load� Fortunately� the
�exibility o
ered by an active network enables the imple�
mentation of dynamic and application�speci�c placement
policies�

� How to Introduce New Services

We now turn to the question of how a network may sup�
port the deployment of the kind of new services discussed
in section �� This is a di�cult design problem that must
balance �exibility against service expectations� the ar�
chitecture must be expressive enough to accommodate
new services� but restrictive enough to allow performance
goals and security properties to be met�

Our work on the ants architecture is focussed on ex�
ploring this tension� It presents a point in the design
space that we believe is a workable starting point for a
real active network� Further� it allows for incremental
deployment in the Internet� In this section� we outline
our architecture� greater detail is provided in ����� We
begin with an overview of its goals and service program�
ming model� and then describe the main components of
the system� In doing so� we emphasize the tradeo
s that
we have made�

��� ANTS Overview

Like most networks� an ants�based network consists of
an interconnected group of nodes that execute a common
runtime� the nodes may be connected across the local or
wide area and by point�to�point or shared medium chan�
nels� The system builds on the link layer services of the
channels to provide network layer services to distributed
applications�

Unlike IP� the network service provided by ants is not
�xed � it is �exible� In addition to providing IP�style
routing and forwarding as the default network�level ser�
vice� ants allows applications to introduce new proto�

cols into the network� Applications accomplish this by
specifying the routines to be executed instead of IP for�
warding at the active network nodes that forward their
messages� In e
ect� applications may push a portion
of their processing into the network � either processing
such as caching that is traditionally performed at end�
systems or novel kinds of processing such as bid rejection
that only make sense in the context of active networks�

In designing ants� we set three goals for network proto�
col innovation� All describe more �exible forms of inno�
vation than are currently achieved in the Internet� The
network should support�

� Simultaneous use of a variety of di
erent network
layer protocols�

� The construction and use of new protocols by mu�
tual agreement among interested parties� rather
than requiring new protocols to be registered in a
centralized manner�

� The dynamic deployment of new protocols� since it
is unreasonable to take portions of the network �o
�
line� in order to recon�gure them� especially as the
scale of the network increases�

Our architecture meets these goals through the use of
three key components�

� The packets found in traditional networks are re�
placed by capsules that refer to the processing to be
performed on their behalf at active nodes� Capsule
types that share information within the network are
grouped into protocols� a protocol provides a service
and is the unit of network customization and pro�
tection�

� Selected routers within the Internet and at partici�
pating end nodes are replaced by active nodes that
execute the capsules of a protocol and maintain pro�
tocol state� Unlike ordinary routers� active nodes
provide an API for capsule processing routines� and
execute those routines safely by using operating sys�
tem and language techniques�

� A code distribution mechanism ensures that capsule
processing routines are automatically and dynami�
cally transfered to the active nodes where they are
needed� This component does not exist in tradi�
tional networks� and is handled by the system� not
the service programmer� in our network�

Each of these components is described more fully in the
following section� The model that they collectively sup�
port for programming new network services is a gener�
alized form of packet forwarding� It has the following
characteristics�

�



� The forwarding routine of a capsule is set at the
sender and may not change as it traverses the net�
work� nor may capsules belonging to one protocol
create capsules or access state belonging to a dif�
ferent protocol within the network� Given this� one
user may not control the processing of another user�s
capsules in unintended ways�

� Some active nodes may elect not to execute particu�
lar forwarding routines� depending upon the node�s
available resources and security policies� When this
happens� the node performs �default� IP�like for�
warding on these capsules� Additionally� forwarding
routines may self�select nodes at which it is useful
to perform their specialized processing depending
on the location of the node and its capabilities�

� Since forwarding routines may be de�ned by un�
trusted users� they are limited in their capabilities�
In particular� like traditional forwarding routines�
they are expected to run to completion locally and
within a short time� Further� their global memory
and bandwidth consumption is bounded by a TTL
�Time�To�Live	 scheme�

To develop a new service with this model� the service
developer de�nes the di
erent capsule types and their
processing routines as a protocol structure� To use a
new service� an application need only supply the proto�
col de�nition to the local node and start sending and
receiving capsules of the appropriate types�

Service programming requires consideration of how pro�
cessing will interact with packet loss� changing routes�
protocol state loss� and concurrency� Based on our ex�
perience with this model� we are developing guidelines
for constructing new services� While active networks
clearly do not make the task of protocol design any eas�
ier� this di�culty should not be seen as a barrier to the
widespread use of active protocols� we do not expect all
users to construct new protocols directly� but rather to
choose between protocols o
ered by third party software
vendors� On the other hand� it is not necessary for pro�
tocol designers to consider how to transfer the process�
ing routines themselves around the network� nor worry
about interactions with other protocols �except indirect
resource consumption	�

This approach embodies several tradeo
s in order to be
�exible enough to support novel protocols� while being
restrictive enough to guarantee some level of protection�
allocation and performance of shared resources in an un�
trusted environment� Protection is based on the inability
to specify processing for another user�s packets and the
encapsulation of protocol state by the associated capsule
processing routines� Allocation is based on the limited

resources that will be granted to each packet by nodes�
Performance is based on the simple event�driven pro�
cessing model and the ability to tailor processing to the
diversity of heterogeneous networks� including those in
which only some nodes may be active�

protocol/
 capsule

common
header

rest of
header ... payload

Figure �� Capsule Format

��� Components of the Architecture

The three architectural components that we have men�
tioned support the ants programming model� We now
describe each of them in turn�

����� Protocols and Capsules

The basis for customizing network processing is the pro�
tocol� which is composed of a set of related capsule
types� The format of capsules as they are carried across a
generic link�layer channel is sketched in Figure �� When
deployed in an IP network with a mix of active and IP�
only routers� the format must be compatible with the IP
packet format� IP�only routers then appear to be active
routers that have elected not to run additional services�
Murphy ���� describes how this can be accomplished by
carrying ants�only �elds as IP options�

The most important architectural function of the cap�
sule format is to contain an identi�er for a protocol and
forwarding routine within that protocol� This identi�
�er is based on a �ngerprint of the protocol code� For
example� the MD� message digest algorithm converts an
arbitrarily long sequence of bytes to a short and �with ex�
tremely high probability	 distinct identi�er� This iden�
ti�er is used for demultiplexing to a forwarding routine
in the same sense as the Ethernet type and IP version
and protocol �elds�

That the capsule identi�er is derived from the code de�
scription of the protocol of which it is a part is crucial
for two reasons�

� It greatly reduces the danger of protocol spoo�ng�
This is because a �ngerprint based on a secure hash
is e
ectively a one�way function from code to iden�
ti�er� Each active node can verify for itself �and
without trusting external parties	 that a particular
set of programs maps to a given identi�er�

�



� It allows protocols and capsule types to be allocated
quickly and in a decentralized fashion� since their
identi�er depends only on a �ngerprint of the pro�
tocol code�

Because of these properties� our architecture uses pro�
tocols as the unit of protection� preventing one protocol
from interfering with the state of another within active
nodes� Per protocol protection provides a much more
e�cient model than per user protection �since user au�
thentication for each data manipulation is not required	�
yet still provides semantics that we have found to be use�
ful� Within a protocol� however� it is up to the protocol
programmer to separate information about concurrent
sessions� to do otherwise would require that the archi�
tecture understand the de�nition of a session� which is
application dependent�

Some forwarding routines are �well�known� in that they
are guaranteed to be available at every active node�
These primarily include routines for common case pro�
cessing� i�e�� unreliable data transfer with standard rout�
ing� and for bootstrapping network services� such as the
code distribution scheme to be described shortly� Other
routines are �application�speci�c�� Typically� they will
not reside at every node� but must be transfered to a
node by the code distribution scheme before the �rst
capsules of that type can be processed�

The remainder of the capsule format is comprised of a
common header that contains �elds present in all cap�
sules� a type�dependent header that may be updated
as the capsule traverses the network� and a payload�
The important components of the common header are
source and destination addresses and information about
resource limits to be enforced by nodes� We use IPv�
style addresses for convenience�

����� Active Nodes

A key di�culty in designing a programmable network is
to allow nodes to execute user�de�ned programs while
preventing unwanted interactions� Not only must the
network protect itself from runaway protocols� but it
must o
er co�existing protocols a consistent view of the
network and allocate resources between them�

Our approach has been to execute protocols within a
restricted environment that limits their access to shared
resources� Active nodes play this role in our architecture�
They export an API for use by application�de�ned pro�
cessing routines� which combine these primitives using
the constructs of a general�purpose programming lan�
guage rather than a more restricted model� such as lay�
ering� They also supply the resources shared between

protocols and enforce constraints on how these resources
may be used as protocols are executed� We describe our
node design along these two lines�

Capsule Forwarding API

We chose an initial API based on our experience with
a predecessor system ����� This work suggests that a
relatively small set of operations is su�cient to express
a number of di
erent and useful forwarding routines� We
currently support the categories of node primitives listed
below� There are also some obvious additions �namely
authentication� �ngerprinting� compression� etc�	 that
we plan to experiment with in the future�

� environment access� to query the node location�
state of links� routing tables� local time and so forth�

� capsule manipulation� with access to both header
�elds and payload�

� control operations� to allow capsules to create other
capsule and forward� suspend or discard themselves�

� storage� to manipulate a soft�store of application�
de�ned objects that are held for a short interval�

The node API is important because it determines the
kinds of processing routines that can be composed by ap�
plications� For example� without the ability to store and
access node state� individual capsule programs would
be unable to communicate with each other� Further�
the compactness and execution e�ciency of capsule pro�
grams is a
ected by these primitives� Both are enhanced
if the primitives are a good match for the processing�
and degraded otherwise� For example� the neighbors at
a given node may be found either by walking the entire
routing table looking for adjacent nodes� or by asking
the question directly of the node� depending on which
topological queries are supported� The direct query can
be represented compactly and executed e�ciently as a
built�in node primitive� while the other program cannot�

Capsule Execution

The node must provide an environment that executes
the processing routines that use this API while meeting
network security and resource management goals� Since
capsule processing resembles a distributed programming
system in which there are many legitimate users with
small tasks� authentication and other traditional secu�
rity schemes are likely to be too heavyweight to be used
for common�case forwarding programs� Instead� we rely
on the safety mechanisms of mobile code technologies

�



capsule

request

response

capsule

1

2

3

4

previous loading
nodenode

protocol
code

protocol
code

Figure �� Demand Loading of Protocol Code

�e�g�� sandboxing and Java bytecode veri�cation	 to ex�
ecute untrusted routines e�ciently in a contained man�
ner� Conversely� the occasional use of primitives that
manipulate shared logical resources� e�g�� updates to the
system�wide routing tables� must be authenticated�

In addition� the node limits the resources that capsule
programs may consume �both at individual nodes and
across nodes	 and handles any errors that arise� Recall
that the capsule format includes a resource limit that
functions as a generalized TTL �Time�To�Live	 �eld�
This limit is carried with the capsule and decremented
by nodes as resources are consumed� only nodes may
alter this �eld� and nodes discard capsules when their
limit reaches zero� In order to reason about total re�
source bounds� care must be taken to transfer resources
when one capsule creates another inside the network�
It is straightforward to charge for resources as they are
consumed� Processing time and link bandwidth are allo�
cated by time and capsule quanta� respectively� node
memory is allocated by cached objects� since caching
converts memory into a renewable resource� We hope�
however� that it will prove feasible to enforce static lim�
its at nodes with a scheme similar to ��� or by using
proof�carrying code techniques �����

����� Code Distribution

The third component of our architecture is a code dis�
tribution system� Given a programmable infrastructure�
a mechanism is needed for propagating program de�ni�
tions to where they are needed� A good scheme must be
scalable and e�cient� adapt to changes in node connec�
tivity� and limit its activity so that the network remains
robust�

Many di
erent mechanisms are possible� At one ex�
treme� programs may be carried within every capsule�

This scheme is only suited to transferring extremely
short programs when bandwidth is not at a premium�
At the other extreme� programs may be pre�loaded into
all nodes that may require them by using an out�of�band
or management channel prior to using a new protocol�
This scheme is not suited to our goals of rapid and de�
centralized deployment�

Instead� our approach has been to couple the transfer
of code with the transfer of data as an in�band func�
tion� We believe this has several advantages� It lim�
its the distribution of code to where it is needed� while
adapting to node and connectivity failures� It improves
startup performance and facilitates short�lived protocols
by overlapping code distribution with its execution�

We have designed a scheme that is suited to �ows� i�e��
sequences of capsules that follow the same path and re�
quire the same processing� At end�systems� applications
may begin to use a new protocol at any time by regis�
tering the code de�nition at their local node� Capsules
of the new type may then be injected into the network
and received from it� At intermediate nodes� caching
of protocol code is used to achieve high performance by
amortizing the cost of code loading across all of the cap�
sules of a �ow� To �ll the caches initially� a lightweight
protocol is used to transfer protocol code incrementally
from one node to the next in response to capsules of that
protocol traveling through nodes of the network� This
code distribution protocol is described below and shown
in Figure ��

�� When a capsule arrives at a node� a cache of pro�
tocol code is checked� If the required code is not
all present� a load request for the missing portion
based on the capsule type and protocol is sent to
the �previous� node� i�e�� the last active node in the
capsule�s path� The capsule execution is suspended�
awaiting the code� for a �nite time�

�� When a node receives a load request that it can
answer� it does so immediately� It sends load re�
sponses that contain the portion of protocol code
that is implicated�


� When a node receives a load response� it incorpo�
rates the code into its cache� If the required code
is now all present� it wakes sleeping capsules� If the
required responses are not forthcoming within some
time bound� sleeping capsules are discarded without
further action�

This scheme embodies an important tradeo
 compared
with simply using TCP to transfer code when it is
needed� Under normal load� either our protocol or a
reliable transport should work well� Our scheme su
ers

�



from the apparent disadvantage that load requests or re�
sponses that are lost or too slow will result in capsule
loss and require the intervention of end�to�end reliabil�
ity mechanisms �as does congestion loss today	� How�
ever� our scheme has the property that �given a bounded
protocol size	 the amount of processing and bandwidth
that the network will expend loading code is bounded to
within a constant factor of that used for forwarding� Fur�
ther� this work is localized because the loading is done
incrementally� The intent is to ensure that the network
will remain robust under high load�

We believe that our code distribution scheme has qual�
ities that will prove it e�cient� adaptive� and robust�
though this must be borne out by experimentation� In
order for it to best accommodate the largest number
of scenarios� we also include a number of special cases�
First� for very small protocols� the code may be carried
along with every capsule if desired� Second� capsules
may be constructed to �prime� a path with protocol code
to reduce the startup period� Finally� popular protocols
may simply be preloaded to avoid dynamic code distri�
bution�

� Developing New Services

The architecture just described has evolved in parallel
with an implementation of a toolkit� In this section� we
brie�y describe our ants toolkit and how it may be used
to develop a new service�

��� The ANTS Toolkit

The ants toolkit provides both an active node runtime
and support for combining nodes into a network com�
plete with distributed applications� It is written entirely
in Java and runs as a user�level process on commodity
hardware �� While we do not expect to run user�level
Java on real routers �a faster and equivalent binary ver�
sion would be needed	� we have found our prototype to
be useful for the purposes of research and experimenta�
tion�

We chose Java bytecodes and class�les as a transfer for�
mat for processing routines because of Java�s support for
safety and mobility and the likely emergence of higher
performance runtimes for evaluating it� Java�s �exibility
as a high�level language and support of dynamic link�
ing�loading� multi�threading� and standard libraries has
allowed us to evolve our design rapidly while maintaining
a small code base ������� lines	�

�
ants is publicly available � see

http���www�sds�lcs�mit�edu�activeware�

The toolkit provides a class�based model for construct�
ing new services� The abstract classes Capsule and
Protocol provide required and useful functionality� and
are subclassed once for each type of capsule and proto�
col� The programmer manipulates each capsule as an
instance of the appropriate subclass to express the pro�
cessing that should occur at nodes� The processing rou�
tine takes a parameter of class Node �representing the lo�
cal node	 to access the node API� Capsule instance vari�
ables may be carried along with the capsule and accessed
within the network by providing methods to encode them
for transmission and decode them on reception�

Performance measurements indicate that the base per�
formance of our system is reasonable for a high�level
prototype and fast enough for experimenting with dis�
tributed applications� The throughput of a single node
was measured to be ���� capsules�second for capsules
with minimal IP�style forwarding� This measurement
was taken on a Sun Ultrasparc � ���� MHz	 running
Sun�s JDK ��� with a just�in�time compiler� Nygren ����
provides evidence that the ants model is lightweight
enough such that the overhead of implementing it is low�
He reports on a Linux�based �PC	 implementation of the
ants architecture in which capsule code is transported
as Intel binary code instead of as Java bytecodes� Com�
parison of the performance of Nygren�s implementation
with the performance of Linux IP routing shows little ad�
ditional overhead for forwarding capsules over IP pack�
ets� less than an �� decrease in throughput� and a small
increase in latency that corresponds to ��� for ��� byte
packets�

��� The Auction Service

As an example of how our architecture is intended to be
used� we explain how the auction service described in
section � is implemented in the ants toolkit� We focus
on this one application to provide reasonable detail� and
in doing so restrict ourselves to the implementation of
in�network processing since bid processing at the clients
and server is straightforward�

The essential feature of the auction service is that low
bids may be rejected at nodes within the network when
server load is high� The basic form of this functionality
can be realized in ants with a protocol comprised of
four capsules�

� a filter capsule for the server to set a �ltering price

� a bid capsule for clients to submit bids

� a succeed capsule for the server to notify a client
that a bid succeeded

�



client server

FILTER (1)

BID (2)

FAIL (3)

active
router

Figure 
� Rejection Processing in the Auction Service

�� FILTER capsule� carries price � filter price� thing � auctioned object� hops � travel limit

Object info � n�getCache���get�thing�� �� cached price info�
if �info 	� null� 


int old � ��Integer�info��intValue��� �� update not needed�
if �price �� old� return true�

�
n�getCache���put�thing� new Integer�price�� �� otherwise� update
if �

hops � �� return n�sendToNeighbors�this�� �� and spread the word
else return true�

�� BID capsule� carries bid � an offered price� and thing � auctioned object

Object info � n�getCache���get�thing�� �� cached price info�
if �info 	� null� 


int price � ��Integer�info��intValue��� �� will the bid fail�
if �price � bid� 


AuctionFailCapsule ack � new AuctionFailCapsule�this� price���� if so� reject it now
return n�forward�ack� ack�dpt��

�
�
return n�forward�this� dpt�� �� otherwise� continue

Figure �� Auction Service Capsule Processing

� a fail capsule to notify a client that a bid failed or
would have failed

During normal operation� bid capsules are sent from
clients to the server� and succeed and fail capsules
returned from the server to clients� Recall that� unlike
traditional auctions� bids may fail to be accepted because
they are out�of�date by the time they are processed at
the server� During periods of high load� many bids may
fail� and the server may delegate some rejection process�
ing to active network nodes� It does this by sending
filter capsules to nearby active nodes� These capsules
store the current price in the node� and subsequent bid
capsules passing through the node compare the price of
their bid with a known bid� If it is lower� then a fail cap�
sule may be returned from within the network indicating
failure� and the bid capsule need not be forwarded to the
server� This sequence is shown in Figure 
� Note that
the succeed capsule is generated only by the server�
never by interior network nodes� it need not form part
of the network service� but was included for the purpose
of exposition�

The processing routines of two of these capsules are
shown in Figure �� The filter capsule uses a �ood�

ing algorithm to update the current price of the item at
all network nodes within a certain radius of the server
� the size of the radius in hops is selected by the server
depending on load� At each node it reaches� it updates
the item�s price in the cache� decrements its own hop
limit� and then forwards copies of itself on all outgoing
links� Forwarding stops when the hop limit is exhausted�
or if it reaches a node that has �lter that supersedes the
one being forwarded� The bid capsule forwards itself
towards the server� comparing its bid with any known
prices it discovers along the way� Strictly lower bids are
rejected by creating a fail capsule and returning it to
the sender in place of forwarding the failed bid� The
processing routines for the fail and succeed capsules
are not shown� since these capsules are simply forwarded
at nodes until they reach their destinations�

Early simulation experiments con�rm this service works
as intended and suggest that it can improve performance�
at least for simple topologies� At times of high load�
the server sees a higher ratio of in�the�money bids� The
roundtrip latency for failed bids is also reduced� though
this improvement is limited by the placement of �lters
near the server�

�



There are also several noteworthy aspects of the func�
tional organization of the protocol� First� to be compat�
ible with end�to�end reliability� successful bids must al�
ways be accepted by the server� only rejection processing
is handled within the network� With this organization�
the protocol is correct despite packet loss� duplication or
reordering� Second� the only step requiring authentica�
tion is the updating of the known price by the filter
capsule �this is not shown in the code in Figure �	� It
is not necessary for bid and fail processing to authenti�
cate prices or senders since our protection model ensures
that no other mechanism can update �or even observe	
the price� Thus� most auction related capsules are for�
warded with a minimum of overhead�

In closing� we note that there are many possible enhance�
ments� reporting of failed bid statistics to the server�
aging of known price information to provide a better in�
dication of the current price� integration of known price
updates with current price queries and replies to success�
ful bids� timestamping of bids� and so forth� Since our
description is intended to convey how an overall service
may be implemented in terms of forwarding routines� we
have omitted these enhancements� though none is incom�
patible with the basic scheme�

� Where We Are Now

The long�term goals of our work are� to understand how
new network services can improve performance and func�
tionality� and to construct a framework within which
these services can be expressed � easily� safely� under�
standably� and with minimum impact on other network
users� In this paper� we have�

� described the kind of new services that we expect
an active network to be able to introduce�

� argued qualitatively that these services are useful
for improving overall application performance�

� presented an architecture for deploying new services
that balances security and performance concerns�

� demonstrated how a particular new service can be
developed for this architecture with our toolkit�

Our work is complementary to several other active net�
work e
orts� The use of general�purpose Java bytecodes
and virtual machine has allowed us to evolve our archi�
tecture quickly� but at the cost of less control over re�
source usage and lower absolute performance� Research
at the University of Arizona on Liquid Software ��� and
Scout ��
� enable a �ner granularity of local resource
management as well as competitive performance through

the construction of a specialized node operating system�
Research at the University of Pennsylvania on PLAN ���
and BBN on Sprocket ��� enables stronger resource man�
agement and security guarantees across the nodes of a
network through the use of language design techniques�
Research at Georgia Tech ��
� is examining the com�
posability of services within the network� Finally� re�
search on active signaling at USC ISI ��� and NetScript
at Columbia University ���� explore alternative models
of active networks in which new services are introduced
for control rather than data transfer purposes� or by net�
work management agents rather than all users�

We believe that networks today are poised to become
increasingly malleable� as virtual overlays proliferate
and rapid adaptation to changing requirements becomes
more and more important� Today� we are at the begin�
ning of our exploration of active networking techniques
as a means of providing such �exibility� Much work
remains to reach the conclusion of our current line of
research� a demonstration of improved performance of
several useful distributed applications running over an
active network�

Acknowledgments

We thank our fellow members of the Software Devices
and Systems Group� The research presented here is on�
going within our group� and has bene�ted from the con�
tributions of many people� In particular� we wish to ac�
knowledge Steve Garland� Frans Kaashoek� Li Lehman�
Erik Nygren� Jon Santos� Liuba Shrira and David Ten�
nenhouse� We also wish to thank members of the wider
active network community at the University of Arizona�
Georgia Tech� USC ISI� Columbia University and Uni�
versity of Pennsylvania for their support and assistance
with deploying ants nodes�

This work was supported by DARPA under contract No�
N���������C������ and by seed funding from Sun Mi�
crosystems Inc�

References

��� H� Balakrishnan et al� A Comparison of Mecha�
nisms for Improving TCP Performance over Wire�
less Links� In SIGCOMM ��	� �����

��� B� Braden� Active Signalling Protocols�
http���www�isi�edu�active�signal�� June �����

�
� R� Braden et al� Resource ReSerVation Protocol
�RSVP	 � Version � Functional Speci�cation� In�
ternet Draft� Nov �����

��



��� S� E� Deering� Host Extensions for IP multicasting�
Request For Comments ����� Aug �����

��� P� Deutsch and C� A� Grant� A Flexible Measure�
ment Tool for Software Systems� In Information
Processing� �����

��� eBay Inc� AuctionWeb server�
http���www�ebay�com��

��� J� Hartman et al� Liquid Software� A New
Paradigm for Networked Systems� Technical Re�
port TR������ Dept� of Computer Science� Univ� of
Arizona� �����

��� M� Hicks et al� PLAN� A Programming Language
for Active Networks� http���www�cis�upenn�edu�
�switchware�papers�plan�ps� July �����

��� A� Jackson and C� Partridge� Smart Packets�
http���www�net�tech�bbn�com�smtpkts��

���� D� Katz et al� Tag Switching Architecture �
Overview� Internet Draft� Aug �����

���� U� Legedza� D� Wetherall� and J� Guttag� Improving
the Performance of Distributed Applications Using
Active Networks� In INFOCOM ��
� �����

���� L��W� Lehman et al� Active Reliable Multicast� In
INFOCOM��
� �����

��
� D� Mosberger and L� L� Peterson� Making Paths Ex�
plicit in the Scout Operating System� In �nd Symp�
on Operating System Design and Implementation�
�����

���� D� Murphy� Building an Active Node on the In�
ternet� M�Eng Thesis� Massachusetts Institute of
Technology� June �����

���� G� Necula and P� Lee� Safe Kernel ExtensionsWith�
out Run�Time Checking� In �nd Symp� on Operat�
ing System Design and Implementation� �����

���� E� Nygren� The Design and Implementation of a
High�Performance Active Network Node� M�Eng
Thesis� Massachusetts Institute of Technology�
February �����

���� ONSALE Inc� ONSALE web server�
http���www�onsale�com��

���� C� Perkins� Ed� IP Mobility Support� Request For
Comments ����� Oct �����

���� D� Wessels� The Squid Internet Object Cache�
http���squid�nlanr�net�Squid�� �����

���� D� Wetherall� J� Guttag� and D� Tennenhouse�
ANTS� A Toolkit for Building and Dynamically

Deploying Network Protocols� In OPENARCH��
�
�����

���� D� J� Wetherall and D� L� Tennenhouse� The AC�
TIVE IP Option� In �th SIGOPS European Work�
shop� �����

���� Y� Yemini and S� da Silva� Towards Pro�
grammable Networks� In FIP
IEEE Intl� Work�
shop on Distributed Systems Operations and Man�
agement� �����

��
� E� Zegura and K� Calvert� CANES� composable
active network elements�
http���www�cc�gatech�edu�projects�canes�

Biographies

David Wetherall is a Ph�D� candidate at the MIT Labo�
ratory for Computer Science� His research interests span
the area of computer systems with a focus on networking�
His thesis research is helping to pioneer active networks�
an approach in which customized network services may
be deployed rapidly within a programmable network in�
frastructure� David came to MIT after working at QPSX
Communications� a high speed networking company that
led the development of the IEEE����� �DQDB	 switch�
ing technology� He received his B�E� in electrical engi�
neering from the University of WesternAustralia in �����
and his M�S� and E�E in computer science from MIT in
���� and ����� respectively�

Ulana Legedza is a Ph�D� candidate at MIT Laboratory
for Computer Science� Her research interests are in com�
puter systems� networking� and parallel computing� Her
current focus is on the design of network�level support
for application�speci�c routing functions� She received
the B�S�E� degree in Computer Science from Princeton
University in ����� and the M�S� degree in Computer
Science from MIT in �����

John Guttag is Associate Department Head� Computer
Science� of MIT�s Electrical Engineering and Com�
puter Science Department� and head of the Laboratory
for Computer Science�s Software Devices and Systems
Group� The group does research in networking� dis�
tributed computing� computer and communications se�
curity� and wireless communications� Professor Guttag
has also done research� published� and lectured in the ar�
eas of software engineering� mechanical theorem proving�
hardware veri�cation� and compilation�

��


