To appear in IEEE NETWORK Magazine Special Issue on Active and Programmable Networks, July 1998

Introducing New Internet Services: Why and How

David Wetherall, Ulana Legedza, and John Guttag™

Software Devices and Systems Group
Laboratory for Computer Science
Massachusetts Institute of Technology

Abstract

Active networks permit applications to inject programs
wnto the nodes of local and, more importantly, wide area
networks. This supports faster service innovation by
making it easier to deploy new network services. In this
paper, we discuss both the potential impact of active net-
work services on applications and how such services can
be built and deployed. We explore the impact by suggest-
g sample uses and arquing how such uses would im-
prove application performance. We explore the design of
active networks by presenting a novel architecture, ANTS,
that adds extensibility at the network layer and allows
for incremental deployment of active nodes within the
Internet. In doing so, ANTS tackles the challenges of en-
suring that the flexibility offered by active networks does
not adversely impact performance or security. Finally,
we demonstrate how a new network service may be ex-
pressed in ANTS,

Keywords: active networks, networking protocols, dis-
tributed applications, performance.

1 Why Active Networks?

The pace of innovation in networked applications is un-
relenting. New applications continue to emerge rapidly
and often benefit from new network services that bet-
ter accommodate their modes of use. In this paper, we
address the questions of why and how to deploy such
We begin by observing that while it is
possible to deploy new network services at end-systems
(e.g., as overlays), implementing them at nodes interior
to the network or at the network layer often offers bet-
ter functionality and performance. This observation is
supported by a number of ad hoc efforts to exploit such
functionality:

new services.

¢ Multimedia applications (such as videoconferencing
and Internet telephony) benefit from real-time and
multicast services. For example, RSVD [3] reserves

*{djw, ulana,
http://www.sds.les.mit.edu/.

guttag}@lcs.mit.edu.

bandwidth to ensure that time-sensitive data is de-
livered in a timely fashion, and TP Multicast [4] re-
duces the bandwidth needed to communicate from
one sender to multiple receivers. In the case of
RSVP, bandwidth reservation functionality cannot
be provided effectively above the network layer. In
the case of multicast, excess bandwidth and latency
costs are incurred when an overlay is used and its
topology does not match the underlying topology,
as was problematic in the early MBONE.

¢ Laptops benefit from host mobility and transport
services optimized for wireless transmission. For ex-
ample, Mobile IP [18] allows a laptop to be reached
at different sites without the need to reconfigure ad-
dress information, and Snoop-TCP [1] compensates
for the fact that the congestion control mechanisms
of TCP were not designed for lossy media. Mobile
IP is by definition a network-level routing service;
Snoop-TCP intercepts TCP packets within the net-
work at wireless base stations.

¢ Web servers benefit from caching and load distri-
bution services, e.g., Cisco’s CacheDirector product
reduces the amount of wide-area traffic by inter-
cepting repeated requests, and Cisco’s LocalDirec-
tor product reduces the concentration of Web traffic
by distributing requests across multiple servers. By
intercepting packets at routers, these products are
transparent to end systems and minimize latency
and bandwidth usage compared to a proxy agent.

Unfortunately, the current process of changing network
protocols and processing is lengthy and difficult because
it requires standardization and manual, backwardly-
compatible deployment. The first two groups of ex-
amples (which are still not fully deployed despite many
years and evident need) show the effects of this process.
The Cisco products, on the other hand, appeared rela-
tively quickly because they are implemented as vendor-
specific products that are transparent to end-systems.
This strategy may be effective for deploying a new net-
work service at a single router, but is too restrictive to
be suitable as means of widely deploying new network
services.

Active networks seek to address the problem of slow net-
work service evolution by building programmability into
the network infrastructureitself, thus allowing many new
network services to be introduced much more rapidly.
Compared with other architectures that incorporate flex-
ibility, such as Cicso’s Tag Switching [10], this approach
offers a larger degree of flexibility, but at the potential
expense of performance and security.

We believe that the ability to tailor network service to
the application will ultimately justify the overhead nec-
essary to protect the network as a whole. Accordingly,
our research in active networks is focused on two ques-
tions:

e In what ways can new network services be used to
improve application performance?

e How is it possible to make the network infrastruc-
ture programmable without compromising local for-
warding performance and network security proper-
ties?

In this paper we outline our thinking to date to pro-
vide a broad introduction for the casual reader. Other
papers [20, 11, 12] contain further technical detail and
quantitative results about individual topics.

We begin by presenting, in section 2, some sample ap-
plications that illustrate the type of new services that
we wish to be able to introduce. In section 3, we then
make the case that additional work in the network may
sometimes be more effective than additional work by the
application. In section 4, we argue that programmability
need not come at an unreasonably large performance and
security cost by describing our ANTS architecture and
emphasizing the tradeoffs that it embodies. In section 53,
we show, by example, how new services may be deployed
in our prototype implementation of the architecture. We
conclude by placing our research in the context of related
work.

2 Sample Applications

Here, we outline two new and different network services
aimed at improving existing applications. Our intent is
to suggest the diversity of services facilitated by active
networking. We present these services in just enough
detail to show how they can be implemented on an active
network. Both are to some degree application-specific
rather than general-purpose. Neither is implemented in
the network layer today.

2.1 Stock quotes

Many people use the Internet to obtain stock quotes.
Fast access to up-to-date quotes is crucial, especially
during periods of heavy server load (because it usually
signifies an important market fluctuation). Web caches
(e.g. Squid[19]), which are used to reduce latency and
increase the throughput of accesses to servers, are not
helpful in this context. First, most Web caches do not
cache quotes because they are dynamic data. Second,
even if the difficulty of caching rapidly changing data
were overcome, the granularity of objects stored in Web
caches (i.e., entire Web pages) is inappropriate for this
application. Each client generally requests a page with a
short customized list of quotes. With hundreds of stocks,
the number of possible unique Web pages is enormous,
so the likelihood of a cache hit is small.

In an active network, the caching strategy may be cus-
tomized to suit the application needs. First, an active
protocol specialized for stock quotes can cache quotes at
network nodes using a per-stock name granularity. This
allows all requests for popular (i.e., cached) stock quotes
to hit in the cache, no matter what subset or order is re-
quested. Second, requests can specify a client-controlled
degree of currency (i.e., up-to-date-ness) of the desired
quotes. This allows each client to trade response-time
against the currency of the quotes. For example, some
clients may prefer near-instantaneous access to quotes
that are up to 15 minutes out of date, while other clients
may require the latest quotes, even if it means waiting
longer to get them.

The basic idea is that quotes are cached (along with
timestamps) at network nodes as they travel from the
server to a client. Subsequent client requests are inter-
cepted at the nodes where the local cache is checked to
determine whether the desired quotes (with desired de-
gree of currency) are available. If so, the quotes are sent
to the client, where they are assembled into a viewable

web page. If not, the request is forwarded to the server.

2.2 Online Auctions

Web servers hosting online auctions are currently among
the most popular sites in the Internet [6]. A server run-
ning a live online auction collects and processes client
bids for the available item(s). This server also responds
to requests for the current price of an item. Because of
the network delay experienced by a packet responding
to such a query, its information may be out of date by
the time it reaches a client, possibly causing the client
to submit a bid that is too low to beat the current going
price. Thus, unlike auctioneers in traditional auctions,

the auction server may receive bids that are too low and
must be rejected, especially during periods of high load
when there are many concurrent bids.

Current implementations of such servers [6] [17] perform
all bid processing at the server. In an active network,
low bids can be filtered out in the network, before they
reach the server. This capability can help the server
achieve high throughput during periods of heavy load.
When the server senses that it is heavily loaded, it can
activate filters in nearby network nodes and periodically
update them with the current price of the popular item.
The filtering active nodes drop bids lower than this price
and send bid rejection notices to the appropriate clients.
This frees up server resources for processing competitive
bids and reduces network utilization near the server. The
filtering active nodes could also keep track of the num-
ber of rejected bids at each price, and ship those to the
auction server at the end of the auction.

The auction server is similar to the stock quote ap-
plication in that it also performs caching (of current
price information) in network nodes. However, its pro-
tocol is necessarily different because it also delegates
application-specific tasks, e.g., bid rejection, to the ac-
tive network nodes. More details about how to imple-
ment this service are provided in section 5.

3 Rethinking Performance

Paradoxically, despite increasing the amount of process-
ing performed within the network, the sample applica-
tions above can lead to improved overall system perfor-
marnce.

Traditional network performance measures, such as
throughput (bits or packets per second) and packet la-
tency, are aimed at evaluating the performance of the
network rather than the performance of the applications
using it. However, it is not necessarily the case that
network performance is positively correlated with ap-
plication performance. An active network can perform
operations that can cause fewer packets to be sent or
delivered and packets to experience longer per-hop la-
tencies. While these effects would appear to degrade
performance, they may actually result in improved over-
all application performance because of reduced demand
for bandwidth at endpoints, reduced network conges-
tion, etc. Therefore, performance should be evaluated
in terms of application-specific metrics.

We first consider application-specific notions of through-
put. In the stock quote example, the active approach
clearly reduces the server’s throughput in terms of client
requests processed per second at the server, but increases

the number of client requests serviced per second. In
the active online auction, the relevant measure could be
either the number of bids processed per second or, per-
haps, the total number of winning bids processed per sec-
ond. Preliminary experiments with this application in-
dicate that the active implementation will increase both
these measures. Both of these improvements in through-
put are brought about by parallelism resulting from dele-
gating some of the application’s functionality to internal
network nodes.

While active processing slows down packets slightly,
this time can be recovered by improved latency of
application-level operations. Caching in the network, as
in the stock quote example, can reduce the latency of
data accesses when the server is busy. When network
nodes in the auction application reject low bids, they in-
form the “losing” end nodes more quickly than could the
overloaded (and farther away) server.

The cost of these performance improvements is the in-
creased consumption of computational and storage re-
sources in the network, which may slow down other net-
work traffic traveling through the busy active nodes.
However, this competing traffic could also benefit from
active processing. Because the active processing can re-
duce the bandwidth utilization in some regions of the
network, other traffic will benefit from the resulting re-
duction in congestion-related loss and delays. This claim
is supported in [11], which reports on simulations of a
stock quote server, and in [12], which reports on simula-
tions of an active reliable multicast protocol.

Sometimes, doing work within the network also reduces
the total amount of work that needs to be done by an
application. Consider the following example. Some num-
ber of sensors (e.g. microphones, antennas, devices mea-
suring emissions of pollutants) are continuously collect-
ing large amounts of information that must be combined
(mixed) for one or more receivers. An active network im-
plementation offers the opportunity to reduce the work
done at end nodes by more than it increases the work
within the network, i.e., when there are multiple re-
ceivers there is a reduction in total work as well as in
endpoint work. Consider a situation in which N sources
send signals to M destinations. If each end node does all
of its own mixing, the work, summed over all end nodes,
is proportional to N*M. In the best case, by mixing pairs
of signals within the network the end nodes can be com-
pletely freed of the need to mix signals. Furthermore,
the total amount of mixing done can be reduced — in the
best case to N.

The degree to which intra-network processing improves
performance depends on where in the network it is de-
ployed. In the stock quote example, it is important to

place the caches where they will serve a large number of
client requests; otherwise, they are not very effective. In
the sensor fusion example, the greatest decrease in band-
width utilization occurs when the splitting of multicast
streams is performed as late as possible and mixing is
performed as early as possible. In the online auction,
filters should be far enough away from the server to turn
back low bids as early as possible, but close enough to the
server to get reasonably up-to-date price information. In
all our examples, placing processing and storage near a
bottleneck link is likely to decrease delay and loss due
to congestion. Note that placement strategy not ounly
differs from application to application, but is also likely
to change with change in network load. Fortunately, the
flexibility offered by an active network enables the imple-
mentation of dynamic and application-specific placement
policies.

4 How to Introduce New Services

We now turn to the question of how a network may sup-
port the deployment of the kind of new services discussed
in section 2. This is a difficult design problem that must
balance flexibility against service expectations: the ar-
chitecture must be expressive enough to accommodate
new services, but restrictive enough to allow performance
goals and security properties to be met.

Our work on the ANTS architecture is focussed on ex-
ploring this tension. It presents a point in the design
space that we believe is a workable starting point for a
real active network. Further, it allows for incremental
deployment in the Internet. In this section, we outline
our architecture; greater detail is provided in [20]. We
begin with an overview of its goals and service program-
ming model, and then describe the main components of
the system. In doing so, we emphasize the tradeoffs that
we have made.

4.1 ANTS Overview

Like most networks, an ANTS-based network consists of
an interconnected group of nodes that execute a common
runtime; the nodes may be connected across the local or
wide area and by point-to-point or shared medium chan-
nels. The system builds on the link layer services of the
channels to provide network layer services to distributed
applications.

Unlike IP, the network service provided by ANTS is not
fixed — it is flexible. In addition to providing IP-style
routing and forwarding as the default network-level ser-
vice, ANTS allows applications to introduce new proto-

cols into the network. Applications accomplish this by
specifying the routines to be executed instead of IP for-
warding at the active network nodes that forward their
messages. In effect, applications may push a portion
of their processing into the network either processing
such as caching that is traditionally performed at end-
systems or novel kinds of processing such as bid rejection
that only make sense in the context of active networks.

In designing ANTS, we set three goals for network proto-
col innovation. All describe more flexible forms of inno-
vation than are currently achieved in the Internet. The
network should support:

e Simultaneous use of a variety of different network
layer protocols.

e The construction and use of new protocols by mu-
tual agreement among interested parties, rather
than requiring new protocols to be registered in a
centralized manner.

e The dynamic deployment of new protocols, since it
is unreasonable to take portions of the network “off-
line” in order to reconfigure them, especially as the
scale of the network increases.

Our architecture meets these goals through the use of
three key components.

e The packets found in traditional networks are re-
placed by capsules that refer to the processing to be
performed on their behalf at active nodes. Capsule
types that share information within the network are
grouped into protocols; a protocol provides a service
and is the unit of network customization and pro-
tection.

e Selected routers within the Internet and at partici-
pating end nodes are replaced by active nodes that
execute the capsules of a protocol and maintain pro-
tocol state. Unlike ordinary routers, active nodes
provide an API for capsule processing routines, and
execute those routines safely by using operating sys-
tem and language techniques.

e A code distribution mechanism ensures that capsule
processing routines are automatically and dynami-
cally transfered to the active nodes where they are
needed. This component does not exist in tradi-
tional networks, and is handled by the system, not
the service programmer, in our network.

Each of these components is described more fully in the
following section. The model that they collectively sup-
port for programming new network services is a gener-
alized form of packet forwarding. It has the following
characteristics:

e The forwarding routine of a capsule is set at the
sender and may not change as it traverses the net-
work; nor may capsules belonging to one protocol
create capsules or access state belonging to a dif-
ferent protocol within the network. Given this, one
user may not control the processing of another user’s
capsules in unintended ways.

e Some active nodes may elect not to execute particu-
lar forwarding routines, depending upon the node’s
available resources and security policies. When this
happens, the node performs “default” IP-like for-
warding on these capsules. Additionally, forwarding
routines may self-select nodes at which it is useful
to perform their specialized processing depending
on the location of the node and its capabilities.

e Since forwarding routines may be defined by un-
trusted users, they are limited in their capabilities.
In particular, like traditional forwarding routines,
they are expected to run to completion locally and
within a short time. Further, their global memory
and bandwidth consumption is bounded by a TTL
(Time-To-Live) scheme.

To develop a new service with this model, the service
developer defines the different capsule types and their
processing routines as a protocol structure.
new service, an application need only supply the proto-

To use a

col definition to the local node and start sending and
receiving capsules of the appropriate types.

Service programming requires consideration of how pro-
cessing will interact with packet loss, changing routes,
protocol state loss, and concurrency. Based on our ex-
perience with this model, we are developing guidelines
for constructing new services. While active networks
clearly do not make the task of protocol design any eas-
ier, this difficulty should not be seen as a barrier to the
widespread use of active protocols: we do not expect all
users to construct new protocols directly, but rather to
choose between protocols offered by third party software
vendors. On the other hand, it is not necessary for pro-
tocol designers to consider how to transfer the process-
ing routines themselves around the network, nor worry
about interactions with other protocols (except indirect
resource consumption).

This approach embodies several tradeoffs in order to be
flexible enough to support novel protocols, while being
restrictive enough to guarantee some level of protection,
allocation and performance of shared resources in an un-
trusted environment. Protection is based on the inability
to specify processing for another user’s packets and the
encapsulation of protocol state by the associated capsule
processing routines. Allocation is based on the limited

(3

resources that will be granted to each packet by nodes.
Performance is based on the simple event-driven pro-
cessing model and the ability to tailor processing to the
diversity of heterogeneous networks, including those in
which only some nodes may be active.

rest of
header ...

protocol/
capsule

common

header payload

Figure 1: Capsule Format

4.2 Components of the Architecture

The three architectural components that we have men-
tioned support the ANTS programming model. We now
describe each of them in turn.

4.2.1 Protocols and Capsules

The basis for customizing network processing is the pro-
tocol, which is composed of a set of related capsule
types. The format of capsules as they are carried across a
generic link-layer channel is sketched in Figure 1. When
deployed in an IP network with a mix of active and IP-
only routers, the format must be compatible with the IP
packet format. IP-only routers then appear to be active
routers that have elected not to run additional services.
Murphy [14] describes how this can be accomplished by
carrying ANTS-only fields as IP options.

The most important architectural function of the cap-
sule format is to contain an identifier for a protocol and
forwarding routine within that protocol. This identi-
fier is based on a fingerprint of the protocol code. For
example, the MDb5 message digest algorithm converts an
arbitrarily long sequence of bytes to a short and (with ex-
tremely high probability) distinct identifier. This iden-
tifier is used for demultiplexing to a forwarding routine
in the same sense as the Ethernet type and IP version
and protocol fields.

That the capsule identifier is derived from the code de-
scription of the protocol of which it is a part is crucial
for two reasons:

¢ It greatly reduces the danger of protocol spoofing.
This is because a fingerprint based on a secure hash
is effectively a one-way function from code to iden-
tifier. Each active node can verify for itself (and
without trusting external parties) that a particular
set of programs maps to a given identifier.

e It allows protocols and capsule types to be allocated
quickly and in a decentralized fashion, since their
identifier depends only on a fingerprint of the pro-
tocol code.

Because of these properties, our architecture uses pro-
tocols as the unit of protection, preventing one protocol
from interfering with the state of another within active
nodes. Per protocol protection provides a much more
efficient model than per user protection (since user au-
thentication for each data manipulation is not required),
yet still provides semantics that we have found to be use-
ful. Within a protocol, however, it is up to the protocol
programmer to separate information about concurrent
sessions; to do otherwise would require that the archi-
tecture understand the definition of a session, which 1is
application dependent.

Some forwarding routines are “well-known” in that they
are guaranteed to be available at every active node.
These primarily include routines for common case pro-
cessing, i.e., unreliable data transfer with standard rout-
ing, and for bootstrapping network services, such as the
code distribution scheme to be described shortly. Other
routines are “application-specific.” Typically, they will
not reside at every node, but must be transfered to a
node by the code distribution scheme before the first
capsules of that type can be processed.

The remainder of the capsule format is comprised of a
common header that contains fields present in all cap-
sules, a type-dependent header that may be updated
as the capsule traverses the network, and a payload.
The important components of the common header are
source and destination addresses and information about
resource limits to be enforced by nodes. We use IPv4
style addresses for convenience.

4.2.2 Active Nodes

A key difficulty in designing a programmable network is
to allow nodes to execute user-defined programs while
preventing unwanted interactions. Not only must the
network protect itself from runaway protocols, but it
must offer co-existing protocols a consistent view of the
network and allocate resources between them.

Our approach has been to execute protocols within a
restricted environment that limits their access to shared
resources. Active nodes play this role in our architecture.
They export an API for use by application-defined pro-
cessing routines, which combine these primitives using
the constructs of a general-purpose programming lan-
guage rather than a more restricted model, such as lay-
ering. They also supply the resources shared between

protocols and enforce constraints on how these resources
may be used as protocols are executed. We describe our
node design along these two lines.

Capsule Forwarding API

We chose an initial API based on our experience with
a predecessor system [21]. This work suggests that a
relatively small set of operations is sufficient to express
a number of different and useful forwarding routines. We
currently support the categories of node primitives listed
below. There are also some obvious additions (namely
authentication, fingerprinting, compression, etc.) that
we plan to experiment with in the future.

e environment access, to query the node location,
state of links, routing tables, local time and so forth;

e capsule manipulation, with access to both header
fields and payload;

e control operations, to allow capsules to create other
capsule and forward, suspend or discard themselves;

e storage, to manipulate a soft-store of application-
defined objects that are held for a short interval.

The node API is important because it determines the
kinds of processing routines that can be composed by ap-
plications. For example, without the ability to store and
access node state, individual capsule programs would
be unable to communicate with each other. Further,
the compactness and execution efficiency of capsule pro-
grams is affected by these primitives. Both are enhanced
if the primitives are a good match for the processing,
and degraded otherwise. For example, the neighbors at
a given node may be found either by walking the entire
routing table looking for adjacent nodes, or by asking
the question directly of the node, depending on which
topological queries are supported. The direct query can
be represented compactly and executed efficiently as a
built-in node primitive, while the other program cannot.

Capsule Execution

The node must provide an environment that executes
the processing routines that use this API while meeting
network security and resource management goals. Since
capsule processing resembles a distributed programming
system in which there are many legitimate users with
small tasks, authentication and other traditional secu-
rity schemes are likely to be too heavyweight to be used
for common-case forwarding programs. Instead, we rely
on the safety mechanisms of mobile code technologies

1
capsule \ 2

[request]
/

response

’ 3 \ - protocol
\ code
protocol 4] — »
code capsule
previous loading
node node

Figure 2: Demand Loading of Protocol Code

(e.g., sandboxing and Java bytecode verification) to ex-
ecute untrusted routines efficiently in a contained man-
Conversely, the occasional use of primitives that
manipulate shared logical resources, e.g., updates to the
system-wide routing tables, must be authenticated.

ner.

In addition, the node limits the resources that capsule
programs may consume (both at individual nodes and
across nodes) and handles any errors that arise. Recall
that the capsule format includes a resource limit that
functions as a generalized TTL (Time-To-Live) field.
This limit is carried with the capsule and decremented
by nodes as resources are consumed; only nodes may
alter this field, and nodes discard capsules when their
limit reaches zero. In order to reason about total re-
source bounds, care must be taken to transfer resources
when one capsule creates another inside the network.
It is straightforward to charge for resources as they are
consumed. Processing time and link bandwidth are allo-
cated by time and capsule quanta, respectively; node
memory is allocated by cached objects, since caching
converts memory into a renewable resource. We hope,
however, that it will prove feasible to enforce static lim-
its at nodes with a scheme similar to [5] or by using
proof-carrying code techniques [15].

4.2.3 Code Distribution

The third component of our architecture is a code dis-
tribution system. Given a programmable infrastructure,
a mechanism is needed for propagating program defini-
tions to where they are needed. A good scheme must be
scalable and efficient, adapt to changes in node connec-
tivity, and limit its activity so that the network remains
robust.

Many different mechanisms are possible. At one ex-
treme, programs may be carried within every capsule.

=I

This scheme is only suited to transferring extremely
short programs when bandwidth is not at a premium.
At the other extreme, programs may be pre-loaded into
all nodes that may require them by using an out-of-band
or management channel prior to using a new protocol.
This scheme is not suited to our goals of rapid and de-
centralized deployment.

Instead, our approach has been to couple the transfer
of code with the transfer of data as an in-band func-
tion. We believe this has several advantages. It lim-
its the distribution of code to where it is needed, while
adapting to node and connectivity failures. It improves
startup performance and facilitates short-lived protocols
by overlapping code distribution with its execution.

We have designed a scheme that is suited to flows, i.e.,
sequences of capsules that follow the same path and re-
quire the same processing. At end-systems, applications
may begin to use a new protocol at any time by regis-
tering the code definition at their local node. Capsules
of the new type may then be injected into the network
and received from it. At intermediate nodes, caching
of protocol code is used to achieve high performance by
amortizing the cost of code loading across all of the cap-
sules of a flow. To fill the caches initially, a lightweight
protocol is used to transfer protocol code incrementally
from one node to the next in response to capsules of that
protocol traveling through nodes of the network. This
code distribution protocol is described below and shown
in Figure 2.

1. When a capsule arrives at a node, a cache of pro-
tocol code is checked. If the required code is not
all present, a load request for the missing portion
based on the capsule type and protocol is sent to
the “previous” node, i.e., the last active node in the
capsule’s path. The capsule execution is suspended,
awaiting the code, for a finite time.

2. When a node receives a load request that it can
answer, 1t does so immediately. It sends load re-
sponses that contain the portion of protocol code
that is implicated.

3. When a node receives a load response, it incorpo-
rates the code into its cache. If the required code
is now all present, it wakes sleeping capsules. If the
required respouses are not forthcoming within some
time bound, sleeping capsules are discarded without
further action.

This scheme embodies an important tradeoff compared
with simply using TCP to transfer code when it is
needed. Under normal load, either our protocol or a
reliable transport should work well. Our scheme suffers

from the apparent disadvantage that load requests or re-
sponses that are lost or too slow will result in capsule
loss and require the intervention of end-to-end reliabil-
ity mechanisms (as does congestion loss today). How-
ever, our scheme has the property that (given a bounded
protocol size) the amount of processing and bandwidth
that the network will expend loading code is bounded to
within a constant factor of that used for forwarding. Fur-
ther, this work is localized because the loading is done
incrementally. The intent is to ensure that the network
will remain robust under high load.

We believe that our code distribution scheme has qual-
ities that will prove it efficient, adaptive, and robust,
though this must be borne out by experimentation. In
order for it to best accommodate the largest number
of scenarios, we also include a number of special cases.
First, for very small protocols, the code may be carried
along with every capsule if desired. Second, capsules
may be constructed to “prime” a path with protocol code
to reduce the startup period. Finally, popular protocols
may simply be preloaded to avoid dynamic code distri-
bution.

5 Developing New Services

The architecture just described has evolved in parallel
with an implementation of a toolkit. In this section, we
briefly describe our ANTS toolkit and how it may be used
to develop a new service.

5.1 The ANTS Toolkit

The ANTS toolkit provides both an active node runtime
and support for combining nodes into a network com-
plete with distributed applications. It is written entirely
in Java and runs as a user-level process on commodity
hardware !. While we do not expect to run user-level
Java on real routers (a faster and equivalent binary ver-
sion would be needed), we have found our prototype to
be useful for the purposes of research and experimenta-
tion.

We chose Java bytecodes and classfiles as a transfer for-
mat for processing routines because of Java’s support for
safety and mobility and the likely emergence of higher
performance runtimes for evaluating it. Java’s flexibility
as a high-level language and support of dynamic link-
ing/loading, multi-threading, and standard libraries has
allowed us to evolve our design rapidly while maintaining
a small code base (10000 lines).

TANTS is publicly available - see

http://www.sds.lcs.mit.edu/activeware.

The toolkit provides a class-based model for construct-
ing new services. The abstract classes Capsule and
Protocol provide required and useful functionality, and
are subclassed once for each type of capsule and proto-
col. The programmer manipulates each capsule as an
instance of the appropriate subclass to express the pro-
cessing that should occur at nodes. The processing rou-
tine takes a parameter of class Node (representing the lo-
cal node) to access the node API. Capsule instance vari-
ables may be carried along with the capsule and accessed
within the network by providing methodsto encode them
for transmission and decode them on reception.

Performance measurements indicate that the base per-
formance of our system is reasonable for a high-level
prototype and fast enough for experimenting with dis-
tributed applications. The throughput of a single node
was measured to be 1680 capsules/second for capsules
with minimal IP-style forwarding. This measurement
was taken on a Sun Ultrasparc 1 (167 MHz) running
Sun’s JDK 1.1 with a just-in-time compiler. Nygren [16]
provides evidence that the ANTS model is lightweight
enough such that the overhead of implementing it is low.
He reports on a Linux-based (PC) implementation of the
ANTS architecture in which capsule code is transported
as Intel binary code instead of as Java bytecodes. Com-
parison of the performance of Nygren’s implementation
with the performance of Linux IP routing shows little ad-
ditional overhead for forwarding capsules over IP pack-
ets: less than an 8% decrease in throughput, and a small
increase in latency that corresponds to 20% for 512 byte
packets.

5.2 The Auction Service

As an example of how our architecture is intended to be
used, we explain how the auction service described in
section 2 is implemented in the ANTS toolkit. We focus
on this one application to provide reasonable detail, and
in doing so restrict ourselves to the implementation of
in-network processing since bid processing at the clients
and server is straightforward.

The essential feature of the auction service is that low
bids may be rejected at nodes within the network when
server load is high. The basic form of this functionality
can be realized in ANTS with a protocol comprised of
four capsules:

e a FILTER capsule for the server to set a filtering price
e a BID capsule for clients to submit bids

® a SUCCEED capsule for the server to notify a client
that a bid succeeded

FAIL (3)

BID (2)

client

FILTER (1)

A

active

server

router

Figure 3: Rejection Processing in the Auction Service

// FILTER capsule, carries price = filter price, thing = auctioned object, hops = travel limit

Dbject info = n.getCache().get(thing);

if (info '= null) {
int old = ((Integer)info).intValue();
if (price <= 0ld) return true;

n.getCache() .put(thing, new Integer(price))
if (--hops > 0) return n.sendTolNeighbors(this);
else return true;

// cached price info?

// update not needed?

// otherwise, update
// and spread the word

// BID capsule, carries bid = an offered price, and thing = auctioned object

Object info = n.getCache().get(thing);

if (info '= null) {
int price = ((Integer)info).intValue();
if (price > bid) {

// cached price info?

// will the bid fail?

AuctionFailCapsule ack = new AuctionFailCapsule(this, price);// if so, reject it now

return n.forward(ack, ack.dpt);
¥
}

return n.forward(this, dpt);

// otherwise, continue

Figure 4: Auction Service Capsule Processing

e a FAIL capsule to notify a client that a bid failed or
would have failed

During normal operation, BID capsules are sent from
clients to the server, and SUCCEED and FAIL capsules
returned from the server to clients. Recall that, unlike
traditional auctions, bids may fail to be accepted because
they are out-of-date by the time they are processed at
the server. During periods of high load, many bids may
fail, and the server may delegate some rejection process-
ing to active network nodes. It does this by sending
FILTER capsules to nearby active nodes. These capsules
store the current price in the node, and subsequent BID
capsules passing through the node compare the price of
their bid with a known bid. Ifit is lower, then a FAIL cap-
sule may be returned from within the network indicating
failure, and the BID capsule need not be forwarded to the
server. This sequence is shown in Figure 3. Note that
the SUCCEED capsule is generated only by the server,
never by interior network nodes; it need not form part
of the network service, but was included for the purpose
of exposition.

The processing routines of two of these capsules are
shown in Figure 4. The FILTER capsule uses a flood-

ing algorithm to update the current price of the item at
all network nodes within a certain radius of the server
; the size of the radius in hops is selected by the server
depending on load. At each node it reaches, it updates
the item’s price in the cache, decrements its own hop
limit, and then forwards copies of itself on all outgoing
links. Forwarding stops when the hop limit is exhausted,
or if it reaches a node that has filter that supersedes the
one heing forwarded. The BID capsule forwards itself
towards the server, comparing its bid with any known
prices it discovers along the way. Strictly lower bids are
rejected by creating a FAIL capsule and returning it to
the sender in place of forwarding the failed BID. The
processing routines for the FAIL and SUCCEED capsules
are not shown, since these capsules are simply forwarded
at nodes until they reach their destinations.

Early simulation experiments confirm this service works
as intended and suggest that it can improve performance,
at least for simple topologies. At times of high load,
the server sees a higher ratio of in-the-money bids. The
roundtrip latency for failed bids is also reduced, though
this improvement is limited by the placement of filters
near the server.

There are also several noteworthy aspects of the func-
tional organization of the protocol. First, to be compat-
ible with end-to-end reliability, successful bids must al-
ways be accepted by the server; only rejection processing
is handled within the network. With this organization,
the protocol is correct despite packet loss, duplication or
reordering. Second, the only step requiring authentica-
tion is the updating of the known price by the FILTER
capsule (this is not shown in the code in Figure 4). It
is not necessary for BID and FAIL processing to authenti-
cate prices or senders since our protection model ensures
that no other mechanism can update (or even observe)
the price. Thus, most auction related capsules are for-
warded with a minimum of overhead.

In closing, we note that there are many possible enhance-
ments: reporting of failed bid statistics to the server,
aging of known price information to provide a better in-
dication of the current price, integration of known price
updates with current price queries and replies to success-
ful bids, timestamping of bids, and so forth. Since our
description is intended to convey how an overall service
may be implemented in terms of forwarding routines, we
have omitted these enhancements, though none is incom-
patible with the basic scheme.

6 Where We Are Now

The long-term goals of our work are: to understand how
new network services can improve performance and func-
tionality; and to construct a framework within which
these services can be expressed easily, safely, under-
standably, and with minimum impact on other network
users. In this paper, we have,

e described the kind of new services that we expect
an active network to be able to introduce;

e argued qualitatively that these services are useful
for improving overall application performance;

e presented an architecture for deploying new services
that balances security and performance concerns;

e demonstrated how a particular new service can be
developed for this architecture with our toolkit.

Our work is complementary to several other active net-
work efforts. The use of general-purpose Java bytecodes
and virtual machine has allowed us to evolve our archi-
tecture quickly, but at the cost of less control over re-
source usage and lower absolute performance. Research
at the University of Arizona on Liquid Software [7] and
Scout [13] enable a finer granularity of local resource
management as well as competitive performance through

the construction of a specialized node operating system.
Research at the University of Pennsylvania on PLAN [§]
and BBN on Sprocket [9] enables stronger resource man-
agement and security guarantees across the nodes of a
network through the use of language design techniques.
Research at Georgia Tech [23] is examining the com-
posability of services within the network. Finally, re-
search on active signaling at USC ISI [2] and NetScript
at Columbia University [22] explore alternative models
of active networks in which new services are introduced
for control rather than data transfer purposes, or by net-
work management agents rather than all users.

We believe that networks today are poised to become
increasingly malleable, as virtual overlays proliferate
and rapid adaptation to changing requirements becomes
more and more important. Today, we are at the begin-
ning of our exploration of active networking techniques
as a means of providing such flexibility. Much work
remains to reach the conclusion of our current line of
research: a demonstration of improved performance of
several useful distributed applications running over an
active network.

Acknowledgments

We thank our fellow members of the Software Devices
and Systems Group. The research presented here is on-
going within our group, and has benefited from the con-
tributions of many people. In particular, we wish to ac-
knowledge Steve Garland, Frans Kaashoek, L1 Lehman,
Erik Nygren, Jon Santos, Liuba Shrira and David Ten-
nenhouse. We also wish to thank members of the wider
active network community at the University of Arizona,
Georgia Tech, USC ISI, Columbia University and Uni-
versity of Pennsylvania for their support and assistance
with deploying ANTS nodes.

This work was supported by DARPA under contract No.
N66001-96-C-8522, and by seed funding from Sun Mi-
crosystems Inc.

References

[1] H. Balakrishnan et al. A Comparison of Mecha-
nisms for Improving TCP Performance over Wire-

less Links. In SIGCOMM 96, 1996.

[2] B. Braden. Signalling
http://www.isi.edu/active-signal/, June 1997.

Active Protocols.

[3] R. Braden et al. Resource ReSerVation Protocol
(RSVP) — Version 1 Functional Specification. In-
ternet Draft, Nov 1996.

[4] S. E. Deering. Host Extensions for IP multicasting.
Request For Comments 1112, Aug 1989.

P. Deutsch and C. A. Grant. A Flexible Measure-
ment Tool for Software Systems. In Information
Processing, 1971.

[5]

[6] eBay Inc. AuctionWeb server.
http://www.ebay.com/.
[7] J. Hartman et al. Liquid Software: A New

Paradigm for Networked Systems. Technical Re-
port TR96-11, Dept. of Computer Science, Univ. of
Arizona, 1996.

M. Hicks et al. PLAN: A Programming Language
for Active Networks. http://www.cis.upenn.edu/
“switchware/papers/plan.ps, July 1997.

A. Jackson and C. Partridge. Smart Packets.
http://www.net-tech.bbn.com/smtpkts/.

[9]

[10] D. Katz et al. Tag Switching Architecture —

Overview. Internet Draft, Aug 1997.

[11] U. Legedza, D. Wetherall, and J. Guttag. Improving
the Performance of Distributed Applications Using

Active Networks. In INFOCOM 98, 1998.

[12] L.-W. Lehman et al. Active Reliable Multicast. In

INFOCOM 98, 1998.

D. Mosberger and L. L. Peterson. Making Paths Ex-
plicit in the Scout Operating System. In 2nd Symp.
on Operating System Design and Implementation,

1996.

[13]

D. Murphy. Building an Active Node on the In-
ternet. M.Eng Thesis, Massachusetts Institute of
Technology, June 1997.

G. Necula and P. Lee. Safe Kernel Extensions With-
out Run-Time Checking. In 2nd Symp. on Operat-
wng System Design and Implementation, 1996.

E. Nygren. The Design and Implementation of a
High-Performance Active Network Node. M.Eng

Thesis, Massachusetts Institute of Technology,
February 1998.
[17] ONSALE Inc. ONSALE web server.

http://www.onsale.com/.

C. Perkins, Ed. IP Mobility Support. Request For
Comments 2002, Oct 1996.

D. Wessels. The Squid Internet Object Cache.
http://squid.nlanr.net/Squid/, 1997.

D. Wetherall, J. Guttag, and D. Tennenhouse.
ANTS: A Toolkit for Building and Dynamically

11

Deploying Network Protocols. In OPENARCH 98,
1998.

D. J. Wetherall and D. L. Tennenhouse. The AC-
TIVE IP Option. In 7th SIGOPS European Work-
shop, 1996.

[22] Y. Yemini and S. da Silva. Towards Pro-
grammable Networks. In FIP/IEEE Intl. Work-

shop on Distributed Systems Operations and Man-
agement, 1996.

[21]

[23] E. Zegura and K. Calvert. CANES: composable
active network elements.
http://www.cc.gatech.edu/projects/canes.

Biographies

David Wetherall is a Ph.D. candidate at the MIT Labo-
ratory for Computer Science. His research interests span
the area of computer systems with a focus on networking.
His thesis research is helping to pioneer active networks,
an approach in which customized network services may
be deployed rapidly within a programmable network in-
frastructure. David came to MIT after working at QPSX
Communications, a high speed networking company that
led the development of the IEEE802.6 (DQDB) switch-
ing technology. He received his B.E. in electrical engi-
neering from the University of Western Australia in 1989,
and his M.S. and E.E in computer science from MIT in
1994 and 1995, respectively.

Ulana Legedza is a Ph.D. candidate at MIT Laboratory
for Computer Science. Her research interests are in com-
puter systems, networking, and parallel computing. Her
current focus is on the design of network-level support
for application-specific routing functions. She received
the B.S.E. degree in Computer Science from Princeton
University in 1992, and the M.S. degree in Computer
Science from MIT in 1995.

John Guttag is Associate Department Head, Computer
Science, of MIT’s Electrical Engineering and Com-
puter Science Department, and head of the Laboratory
for Computer Science’s Software Devices and Systems
Group. The group does research in networking, dis-
tributed computing, computer and communications se-
curity, and wireless communications. Professor Guttag
has also done research, published, and lectured in the ar-
eas of software engineering, mechanical theorem proving,
hardware verification, and compilation.

