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Model for second-harmonic generation in glass optical fibers
based on asymmetric photoelectron emission from defect sites
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We present a self-consistent calculation of anomalous second-harmonic generation in glass optical fibers. Quantum
interference between multiphoton absorption processes leads to asymmetric photoelectric emission from defects,
creating a spatially periodic space-charge electric field. The second harmonic is found to grow exponentially along
the fiber, then saturate to a maximum value proportional to the square of the fundamental intensity. The predicted
conversion efficiency is in reasonable agreement with experiments.

The observation of laser-induced growth of second-
harmonic generation (SHG) in glass optical telecom-
munications fibers!? has inspired many efforts3-5 to
elucidate the origin and growth of the responsible x®
nonlinearity. In this Letter we present a calculation
of SHG that has been motivated by several recent
experimental and theoretical advances. In our model
quantum interference between multiphoton absorp-
tion processes leads to asymmetric photoelectron
emission from defects, creating a spatially periodic dc
electric field in the fiber. This field, which we calcu-
late using a simple charge-transport model, has both
the correct periodicity and phase to produce self-con-
sistent growth of the second-harmonic light in reason-
able accord with observations.

Experimental evidence®’ has supported the view
that the photoinduced SHG is in fact the result of a
strong transverse dc electric field that acts on the
allowed x® nonlinearity of the glass, yielding an effec-
tive x®. Also, it has been known for some time that
an atom subject to harmonically related electric fields
can exhibit a transition rate that, owing to quantum
interference effects, is dependent on the relative
phases between these fields.2 However, it has only
recently been pointed out that in the case of an ioniz-
ing transition this interference can give rise to a phase-
dependent preferred electron ejection direction.®-12
Zel’dovich and collaborators have proposed that these
effects may be responsible for the laser-induced SHG
in glass fibers.%!2 In this context, Dianov and collabo-
rators have advanced a phenomenological model314 of
asymmetric electron ejection based on a coherent pho-
tovoltaic effect!® that results from an interference be-
tween one- and two-photon transitions.

While there is no experimental evidence that a sec-
ond-harmonic photon (typically green light at 532 nm)
has sufficient energy to ionize a defect, it is well known
that there are germania-related defects that have a
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broad absorption band centered at approximately 5
eV, which can be accessed with the equivalent energy
of four 1.064-um photons. Recent research!® points to
the role of these defects as trap sites for charge carri-
ers. We suppose, therefore, that the charge redistri-
bution takes place among trap sites following photo-
ionization by the two-, three-, and four-photon pro-
cesses shown in Fig. 1.

We treat the fields as plane waves, copolarized along
the x axis, propagating along the fiber z axis, and
modulated by a slowly varying amplitude E,,.,,

6 mo(2, t) = E,, (2, t)expli(,,, — mowt)] + c.c.,
m=12 (1)

where the phases have an unperturbed variation ¢, =
Rm2.
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Fig. 1. Multiphoton paths to ionization, assuming a broad

defect band at approximately 5 eV and a fundamental laser
wavelength of 1.064 pm.
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We use the standard formalism of perturbation the-
ory,l7 carried out to fourth order in the perturbation
energy, to calculate the ionization rate for electrons
ejected upward, p4+, or downward, p—. After a
straightforward but lengthy calculation, we find

ps = R(UE,I* + n|Ey PIE |* + 9, 2E %)
+ {ny|E,, [°|E,|*exp[2i(sy, — 26,)] + c.c}
+ {—ing Eo IE P E J* — |E,,I»)
X expli(¢s, — 2¢,)] + c.cl). (2)

The form of this expression is fairly general, but in our
simplified treatment, where the defect is taken to be a
one-dimensional potential with a single bound state
and free particle excited states, we find that

_ 89/(3 _ 832K4
hwk’ ™ hw3m'

Heree = le| is the elementary charge, m is the mass of
the electron, k is its wave number, ¢ is the speed of
light, and A is the reduced Planck’s constant. «3and x4
are factors that are less than but of the order of unity,
and they are weak functions of the ionized electron’s
momentum.

The first set of terms within the parentheses in Eq.
(2) is recognized as the individual contributions from
two-, three-, and four-photon ionization rates. The
second set of terms, within the first set of braces,
represents the interference between the two- and four-
photon processes. We drop these since they are mod-
ulated at twice the phase mismatch spatial frequency.
The last set of terms, within the second set of braces,
which stems from the interference of the three-photon

(3

3

process with both the two- and four-photon intera-

tions, is the set of interest.

We model the process of charge redistribution with
a simple band charge-transport model wherein a pho-
toejected carrier propagates for a time 7,, after which
it no longer “remembers” its original direction of
propagation. It remains in the conduction band for a
total time 75, before it becomes retrapped at an empty
site. -In this picture the anisotropic excitation gives
rise to an anisotropic photogenerated current,

Jo = —engvorn(py — p-), 4)

where ng is the number density of filled sites and v, is
the initial velocity of the ejected electron. At the
same time the glass develops a local conductivity pro-
portional to the total number of charges in the conduc-
tion band,

o = engu,rr(ps + b_), (5)

- where y. is the electron mobility. The redistribution
of charge develops a space-charge field that increases
until the photocurrent is balanced by the conduction
current. In the steady state, then,

ja_UOI_n_lp+_b—= Py — P

(6)

We see that the field is determined by the ratio of
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the anisotropic to the isotropic photoelectron ioniza-
tion rates and that the ionization rate constant R [Eq.
(2)] does not appear. Now, from Eq. (2), and given the
indices of refraction n,, and the permittivity ¢; and
permeability uo of free space, the dc electric field is

- written in a convenient form using the intensities I,

= 2N me \/26/70|Emw|2’
1-1,/I
Edc = - Eo E Zw/ sat -
My 14 Bl /I + Uy /1)
lEZwI . .

where 8 = 132/, and the saturation intensity I =
naymo/eo (n2w/2n,2)12

The space-charge field gives rise to growth of the
second harmonic through the allowed x® nonlinearity
of the glass. In the usual slowly varying envelope
approximation,18

oF ;
—2 = 0 3,00, w, w,)EylE 2 exp(2ig,).  (8)
0z ny.C

We use Eq. (7) for Ey, after dropping the asynchro-
nous complex conjugate term. Writing the evolution
of the second harmonic in terms of its intensity, we get
the expression for second-harmonic growth and the
key result of the model,

aI2w = Go 1 I2w/ Isat - Izw- (9)
0z 1+ 6120:/ Isat + (I 2w/ Isat)

Since I, is a constant (in the nondepleted pump ap-
proximation), the second harmonic is seen to grow as a
saturated exponential with a small-signal gain,

3
Go = (___th ) (ﬁel l x(3)) (T_’") (10)
en2wC Ky He TR

We have grouped this result into three distinct factors.
The first factor contains quantities that are complete-
ly known to us. We will take a fundamental wave-
length of 1.064 um and an index of refraction of 1.5.
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Fig.2. Steady-state growth (in space) of the SHG calculat-
ed from Eq. (9), using the experimental parameters of Ref. 2:
I, (z = 0)/I5 = 1.2 X 1076, The experimental data are
qualitatively fit with 8 = 2, and Go = 70 m™1L,
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The second factor contains quantities for which we
have reasonable estimates. We use the measured!®
electron mobility in silica, y. = 2.0 X 1073 m2/V-s.
Ignoring dispersion, we use x® = 1.8 X 10722 m2/V2,
which has been measured by nearly degenerate four-
wave mixing.2’ Since k3 and k4 are both less than but
of the order of unity, we choose unity for the ratio.
The last factor is unknown, except that 7,/rp < 1.
Therefore we can reasonably estimate a maximum
small-signal gain Gy of 4500 per meter, or 17 dB/cm for
a self-seeding fiber.

Equation (9) can be integrated, and I, (2) is plotted
in Fig. 2, where we have used the experimental param-
eters of Ref. 2, which reports the highest self-seeded
conversion efficiency to date. For a qualitative fit we
use 8 = 2 and find that Gy need only be =70 m™1 to
obtain reasonable qualitative agreement with experi-
ment, which is much less than our upper-bound esti-
mate.

In our model, saturation of the second harmonic
follows directly from the competition between the in-
terference of the three- and four-photon process,
which has the correct phase for growth, and the inter-
ference between the three- and two-photon process,
which does not [see Eq. (2)]. We estimate that I,y =
(4.8X 107 ecm?/W)I 2. For,e.g., I, =3 X 1010W/cm?,
the maximum conversion is 1.5%, which is in surpris-
ingly good accord with the 5% of the experiment,?
considering the elementary way in which we have
modeled the defects. We note that I, is insensitive
to our choice of transport model, if there are no other
saturation effects taking place there such as defect
depletion.

In this model we have found reasonable values of
gain and predict an intensity-dependent maximum in
conversion efficiency. Future research needs to con-
gider a more realistic (e.g., three-dimensional) defect
potential and ionized electron states along with a per-
haps more refined transport model.
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