
I

B. Omelayenko, M. Klein (eds.)

Proceedings of the Workshop on Knowledge
Transformation for the Semantic Web

KTSW 2002

Workshop W7 at the 15-th European Conference on Artificial
Intelligence

23 July 2002, Lyon, France

www.cs.vu.nl/˜borys/events/KTSW02

Preface

The vision of the Semantic Web envisages the Web enriched with numerous domain ontologies, which specify formal se-
mantics of data, allowing various intelligent services to perform knowledge-level information transformation, search and
retrieval. Recent successful projects in the ontology area have resulted at creation of thousands ontologies, development of
several ontology-based annotation tools and inference engines.

However, the absence of an efficient transformation technology for distributed and evolving knowledge hampers further
developments of the Semantic Web area. Preliminary non-automated knowledge transformation approaches, experimental
research prototypes and early proposals of transformation languages need to evolve into a working technology with solid
theoretical grounds and powerful tool support.

The workshop attracted a number of high-quality submissions concerning different transformation issues and models pre-
sented in the present book. The book is opened with an extended abstract of the invited talk of F. Casati presenting a discussion
about the role of services at the Semantic Web.

The first section of the proceedings is devoted to model transformation approaches. The paper on ‘Effective schema conver-
sions between XML and relational models’ by D. Lee, M. Mani, and W. Chu is followed by the paper on ‘Transforming UML
domain descriptions into configuration knowledge bases for the Semantic Web’ by A. Felfernig, G. Friedrich, D. Jannach, M.
Stumptner, and M. Zanker. Generic model transformation issues are discussed in the paper ‘On modeling conformance for
flexible transformation over data models’ by S. Bowers and L. Declambre.

Specific modeling issues are again discussed in the second section. Namely, the problem of ‘Tracking changes in RDF(S)
repositories’ by A. Kiryakov and D. Ognyanov, ‘Tracing data lineage using schema transformation pathways’ by H. Fan and
A. Poulovassilis, and ‘An algebra for the composition of ontologies’ by P. Mitra and G. Wiederhold.

The next section of the book is devoted to the papers on mapping conceptual models. First, ‘Knowledge representation
and transformation in ontology-based data integration’ by S. Castano and A. Ferrara, then ‘MAFRA -An Ontology MAp-
ping FRAmework in the context of the Semantic Web’ by A. Maedche, B. Motik, N. Silva and R. Volz. These are followed
by application-driven approaches ‘Conceptual normalization of XML data for interoperability in tourism’ by O. Fodor, M.
Dell’Erba, F. Ricci, A. Spada and H. Werthner; and ‘RDFT: a mapping meta-ontology for business integration’ by B. Ome-
layenko.

The fourth section contains the papers discussing configuration issues: ‘Enabling services for distributed environments:
ontology extraction and knowledge-base characterization’ by D. Sleeman, D. Robertson, S. Potter and M. Schorlemmer;
‘The ‘Family of Languages’ approach to semantic interoperability’ by J. Euzenat and H. Stuckenschmidt; and ‘A logic
programming approach on RDF document and query transformation’ by J. Peer.

The last section is devoted to poster presentations and system demonstrations: ‘Information retrieval system based on graph
matching’ by T. Miyata and K. Hasida; ‘Formal knowledge management in distributed environments’ by M. Schorlemmer, S.
Potter, D. Robertson, and D. Sleeman; ‘Distributed semantic perspectives’ by O. Hoffmann and M. Stumptner; ‘The ontology
translation problem’ by O. Corcho.

We would like to thank the authors for their contributions and wish you to enjoy reading the book.

June 2002 Borys Omelayenko,
Michel Klein,

co-chairs of workshop

Organization

The workshop on Knowledge Transformation for the Semantic Web was held on July 23-th during the 15-th European
Conference on Artificial Intelligence, Lyon, France, 21-26 July 2002.

Program Commitee

Michael Blaha OMT Associates, USA
Harold Boley German Research Center for Artificial Intelligence, Germany
Christoph Bussler Oracle Corporation, USA
Hans Chalupsky University of Southern California (ISI), USA
Detlef Plump The University of York, UK
Dieter Fensel Vrije Universiteit Amsterdam, NL
Natasha F. Noy Stanford University (SMI), USA
Michel Klein Vrije Universiteit Amsterdam, NL
Borys Omelayenko Vrije Universiteit Amsterdam, NL
Alex Poulovassilis University of London (Birkbeck Colledge), UK
Chantal Reynaud University Paris-Sud, France
Michael Sintek German Research Center for Artificial Intelligence, Germany
Heiner Stuckenschmidt Vrije Universiteit Amsterdam, NL
Gerd Stumme University of Karsruhe (AIFB), Germany

Additional referees

Danny Ayers
Shawn Bowers
Jeen Broekstra
Mario Cannataro
Wesley Chu
Oscar Corcho
Jérôme Euzenat
Hao Fan

Alfio Ferrara
Oliver Fodor
Oliver Hoffmann
Alexander M̈adche
Prasenjit Mitra
Takashi Miyata
Damyan Ognyanoff
Borys Omelayenko

Joachim Peer
Stephen Potter
Rafael Pulido
Marco Schorlemmer
Ronny Siebes
Carlo Wouters
Markus Zanker

Sponsoring Institutions

OntoWeb thematic Network
http://www.ontoweb.org/

Bibliographic Reference

Proceedings of the Workshop on Knowledge Transformation for the Semantic for the Semantic Web at the 15th
European Conference on Artificial Intelligence (KTSW-2002), Lyon, France, 23 July 2002. Available online at
http://www.cs.vu.nl/˜borys/events/ktsw2002.pdf

Workshop Homepage

http://www.cs.vu.nl/˜borys/events/KTSW02

Table of Contents

Invited Talk

A Conversation on Web Services: what’s new, what’s true, what’s hot. And what’s not. 1
Fabio Casati

Modeling I

Effective Schema Conversions between XML and Relational Models. 3
Dongwon Lee, Murali Mani, Wesley W. Chu

Transforming UML domain descriptions into Configuration Knowledge Bases for the Semantic Web. 11
Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, Markus Stumptner, Markus Zanker

On Modeling Conformance for Flexible Transformation over Data Models. 19
Shawn Bowers and Lois Delcambre

Modeling II

Tracking Changes in RDF(S) Repositories. 27
Atanas Kiryakov, Damyan Ognyanov

Tracing Data Lineage Using Schema Transformation Pathways. 36
Hao Fan, Alexandra Poulovassilis

An Algebra for the Composition of Ontologies. 43
Prasenjit Mitra and Gio Wiederhold

Mapping

Knowledge Representation and Transformation in Ontology-based Data Integration. 51
Silvana Castano, Alfio Ferrara

MAFRA — A MApping FRAmework for Distributed Ontologies in the Semantic Web. 60
Alexander Maedche, Boris Motik, Nuno Silva, Raphael Volz

Conceptual Normalisation of XML Data for Interoperability in Tourism. 69
Oliver Fodor, Mirella Dell’Erba, Francesco Ricci, Antonella Spada, Hannes Werthner

RDFT: A Mapping Meta-Ontology for Business Integration. 77
Borys Omelayenko

Configuring

Enabling Services for Distributed Environments: Ontology Extraction and Knowledge Base Characterisation. 85
Derek Sleeman, Stephen Potter, Dave Robertson, W. Marco Schorlemmer

The ‘Family of Languages’ Approach to Semantic Interoperability. 93
Jérôme Euzenat, Heiner Stuckenschmidt

A Logic Programming Approach To RDF Document And Query Transformation. 101
Joachim Peer

Posters

Information Retrieval System Based on Graph Matching. 110
Takashi Miyata, K̂oiti Hasida

Formal Knowledge Management in Distributed Environments. 111
W. Marco Schorlemmer, Stephen Potter, David Robertson, Derek Sleeman

Distributed Semantic Perspectives. 112
Oliver Hoffmann and Markus Stumptner

V

A framework to solve the ontology translation problem. 114
Oscar Corcho

Author Index . 115

VI

A Conversation on Web Services: what’s new, what’s true, what’s hot.
And what’s not

Fabio Casati

Hewlett-Packard
1501 Page Mill Road, MS 1142

Palo Alto, CA, USA, 94304
Fabio Casati@hp.com

Hi Tim, what are you doing?
I am writing a paper on Web Services. They are the next

wave of Internet-based applications.
Oh! I heard about them, but I was never really able to

understand what they are. What’s a web service?
Ah. I get this question a lot. It reminds me of when peo-

ple were asking me ”what is an agent?”. Well, a Web service
is an application that exposes functionalities accessible via
the Internet, using standard Web protocols (that’s why they
are calledWebservices). In particular, the names that are al-
ways made are those of XML, SOAP, and WSDL. If your ap-
plication has an interface described in WSDL, and interacts
with clients by exchanging XML messages encapsulated into
SOAP envelopes, then it is a web service.

I see. Doesn’t seem too exciting, anyway. What’s new
about it? Sounds just like good old RPC over the Web, only
under a different form.

Well, that’s true. Conceptually, and technologically, there
is nothing particularly new. Perhaps, the biggest difference is
that these languages and protocols are supported by pretty
much every big software player. This level of support is
unprecedented. You don’t have to deal with things such as
CORBA vs DCOM, java vs C++ vs C#, Solaris vs Windows
vs HP-UX vs Linux. With web services standards you go
across platforms, from the top to the bottom of the software
stack. Application integration becomes easier, because ev-
erybody speaks the same language, or at least they use the
same grammar. Think about it: One of the problems you have
in application integration is that enterprise processes need to
access many different systems, each supporting its own lan-
guage and protocols. Therefore, either you write ad-hoc code
for each of them, or you buy an integration platform along
with system-specific adapters that hide the heterogeneity and
show to the integrating application a uniform view of an oth-
erwise diverse world. But, with XML, SOAP, and WSDL,
these adapters will become much simpler, considerably less
expensive, and easier to deploy. After all, if Web services be-
come reality, what adapters will end up doing are translations
between different XML formats.

Another aspect to keep in mind is that all these languages
and protocols are simple. Simplicity is paramount. If you try
to make standards too complex, they won’t fly. They will be
difficult to understand and difficult to implement. SOAP and
WSDL are just at the right level to gain acceptance and stim-
ulate the development of design and runtime tools.

mmmm. Yes, makes sense. So, they simplify enterprise ap-
plication integration and reduce the need for integration
platforms. That’s a great benefit. Indeed, it’s one of the
biggest headaches in many of my projects. But tell me one
more thing: I never really hear about web services in the con-

text of enterprise application integration. Everybody seems
to talk about “dynamic discovery”, “loosely-coupled”, “Se-
mantic”, and that’s where the hype seems to be.

Yes, Web services were not born with enterprise applica-
tion integration in mind. The original goal was (and still is, to
some extent) to get to a do-it-for-me Internet. Basically, you
should be able to tell your “agent” what you need. Then, this
agent will search the Web for the available service that best
suits your need, finds out if and how it can talk to the ser-
vice, invokes the desired functionality, pays for the service,
and then brings the results back to you.

Wow! Sounds like magic. How is it done?
Well, with Web services, not only you describe the ap-

plication interface in a standard language (WSDL) and ac-
cess its functionalities through a standard protocol (SOAP),
but you can also describe it in Internet registries, structured
according to another standards, called UDDI. In this way,
clients requiring a service can just go to an UDDI directory,
enter their search criteria, retrieve the list of services that sat-
isfy their needs, and access these service.

OK, but didn’t you have that with other naming and direc-
tory services? JNDI and CORBA for example have similar
capabilities

Yes. One of the differences, however, lies in the way UDDI
is designed. In fact, its purpose is to enable the dynamic dis-
covery of services over the Web, across platforms and across
organizations. It’s been created from the start with this pur-
pose in mind. Entries in the directory can be posted by any
company, and services can be deployed on all sorts of plat-
forms. Therefore, the description needs to be independent of
specific languages or platform. Other issues are the need for
flexibility and extensibility. You don’t want to fix a service
description language, data structure, or ontology because you
just don’t know what will be needed to describe a particular
web service or set of web services. For example, sometimes
in the future a shoe store standardization consortium may de-
fine a standard set of properties of shoes and shoe stores, as
well as a description of the behavior that Web shoe stores
should have. Right now, not only we do not have a clue about
what are the characteristics that users will need to describe
shoes and Web shoe stores, but we do not even know what
language will be suited to specify their behaviors. Maybe
these standardization consortia will want or need to define
the semantics in a very detailed manner, using some language
that we cannot imagine right now. UDDI let’s you do it with
the notion oftModel: any UDDI client (the standardization
body in this example) can define a document (the tModel)
that describes the properties that a web shoe store may or
must have, in terms of attributes, interfaces, supported pro-
tocols, transactionality, and other attributes that maybe we

2 Fabio Casati

cannot even imagine right now, but that will be important
in the future. The structure of this document is open for the
most part, and is not interpreted by UDDI. Therefore, you
can write specifications in any language. Let’s assume that
this tModel has been defined, and assigned some identifier
(say, 643).

When you describe a web service, you can specify that
your service has the propertytModel 643, meaning that you
are compliant with that tModel, and therefore with the speci-
fication by the shoe standardization consortium. In this way,
clients that have been designed to interact with web shoe
stores can look for service provider that supports tModel 643.
You can even go into more details, for example specifying
that you sell shoes that, according to the definition of “color”
given in tModel 643, are “yellow”.

Another important characteristic of UDDI is that it also
defines how to operate and maintain global directories. You
need this if you want client applications to be able to find
and access services wherever they are, based only on their
properties and not on whether you can locate them or not. It’s
yet another manifestation of the democracy of the Internet!
Big vendors and small shops will look alike, you only select
them based on what they offer.

Well, I am a little skeptical about this, Tim. I am sure that
big guys will find a way to make you buy from them. But let
me understand this tModel. From what you are saying, client
applications are not really going to read tModel 643. They
just want to know whether a service is compliant with it or
not. Basically, it is a human that, when developing the client
application, reads the tModel to understand how to interact
with web shoe stores, and then writes the application code in
a way that it can communicate with such web services. So,
the tModel description is meant for humans, isn’t it?

That’s one use of the tModel. It has benefits in its own
right. However, you can use tModels in a more powerful
way. For example, if your tModel specifies a WSDL inter-
face, then you can think of tools that simplify the develop-
ment efforts by reading a tModel and automatically generat-
ing the stubs to be plugged into your client application. The
next (and most interesting) step consists in formalizing more
aspects of a web service within a tModel. In this way, ap-
plications could be able to read the tModel associated to a
service, find out the interfaces and interaction protocols sup-
ported by this service, and understand how to invoke the de-
sired functionality.

See, Tim this is what looks like magic to me. I hear this
a lot, but I don’t see how it can happen. Let me tell you
about my last project. We had to automate our supply chain
operations, invoking our business partners automatically for
such things as sending and receiving quotes, executing pur-
chase orders, and the like. We decided to use the RosettaNet
standard to perform these B2B interactions. As you proba-
bly know, RosettaNet defines a large number of very detailed
interfaces and protocols for supply chain operations in the
IT domain. It has full industry support, it has been carefully
designed by all industry leaders, and it has gone through
several revisions so that it is now at a good level of matu-
rity. There are also many commercial platforms that support
RosettaNet out-of-the-box, and integrate B2B conversations
with the execution of your internal processes. Our partners
and us had two different platforms supporting this standard.

When we tried to perform the B2B interactions, well, nothing
worked!! Even if both platforms supported RosettaNet, un-
less both of us had the same system from the same vendors,
we could not communicate.

But that was only one of the problems! Even with identical
platforms, we still had to do a lot of work to get things go-
ing. The fact is that, even in mature vertical standards, spec-
ifications are often ambiguous. In addition, many practical
cases have needs that are not supported by the standard. For
example, in this project we had to meet face-to-face several
times with our partners to actually agree on what is the ex-
act meaning of what we write in the RosettaNet-compliant
XML documents that are exchanged. Furthermore, in some
cases there were some attributes that we needed to transfer,
and there was no place for them in the XML document as de-
signed by RosettaNet. For example, we agreed that we would
use a “date” field to enter a line item number.

That’s why I am skeptical about all this “dynamic interac-
tion” and “semantic specifications”. In many practical situa-
tions, not only you are not able to dynamically discover how
to talk to your partner, but you are not even able to invoke
a service that follows the exact same interface and protocol
that your application has been designed to support.

I see. That’s an interesting perspective. So, you think that
it is not possible to perform any kind of dynamic B2B dis-
covery and interaction over the Web?

Well, no, I would not go that far. I think that you can indeed
use UDDI to dynamically search for a service that supports
the standard your client application has been designed to in-
teract with. And the support you have in UDDI seems just fine
to me. What I am saying is that this can happen for relatively
simple cases and for services that are not mission-critical. I
would not use it to dynamically find my supply chain partners
and interact with them, but I can use it for a PS to PDF con-
verter, or for finding out the movie schedule. Even there, if
you put payments into the picture, things become more com-
plex. And not many companies will provide web services for
free, given that since the interaction is automated, they can-
not even show advertisements to you. The other point you
made, about dynamically discovering how to interact with
a newly discovered service implementing a protocol that my
client was not designed to support, well, that I think will not
happen for quite some time. You may find some simple cases
for which it works, but I doubt you can have any real deploy-
ment around it.

From what you say, this is a generic problem, independent
of Web services, SOAP, or UDDI.

Yes the problem is always the same. It’s hard to do business
automatically with people you don’t know and with whom
you do not have a contract in place. Not to mention the
problem of resolving disputes. But I can see that there are
many contexts in which Web service technology is applicable.
Enterprise application integration is one of them. You have
convinced me that Web services provide significant benefits
there. I can see how I can integrate quickly and with lower
costs. The same concept, I think, can be extended to closed
communities of business partners, where agreements are in
place before the interaction starts, and where the details can
be worked out by humans.

After all, do you think that Web services are here to stay?
Yes, definitely. They are here to stay.

Effective Schema Conversions between XML and Relational Models

Dongwon Lee?, Murali Mani??, and Wesley W. Chu

UCLA, Computer Science Department,
{dongwon, mani, wwc }@cs.ucla.edu

Abstract. As Extensible Markup Language
(XML) is emerging as the data format of the Inter-
net era, there is an increasing need to efficiently
store and query XML data. At the same time,
as requirements change, we expect a substantial
amount of conventionalrelational data to be
converted or published as XML data. One path to
accommodate these changes is to transform XML
data into relational format (and vice versa) to use
the mature relational database technology.
In this paper, we present three semantics-based
schema transformation algorithms towards this
goal: 1) CPI converts an XML schema to a re-
lational schema while preserving semantic con-
straints of the original XML schema, 2)NeT de-
rives a nested structured XML schema from a flat
relational schema by repeatedly applying thenest
operator so that the resulting XML schema becomes
hierarchical, and 3)CoT takes a relational schema
as input, where multiple tables are interconnected
through inclusion dependencies and generates an
equivalent XML schema as output.

1 Introduction

Recently, XML [1] has emerged as thede factostandard for
data format on the web. The use of XML as the common for-
mat for representing, exchanging, storing, and accessing data
poses many new challenges to database systems. Since the
majority of everyday data is still stored and maintained in re-
lational database systems, we expect that the needs to convert
data format between XML and relational models will grow
substantially. To this end, several schema transformation al-
gorithms have been proposed (e.g., [2,3,4,5]). Although they
work well for the given applications, the XML-to-Relational
or Relational-to-XML transformation algorithms only cap-
ture thestructureof the original schema and largely ignore
the hiddensemantic constraints. Consider the following ex-
ample for XML-to-Relational conversion case.

Example 1.Consider a DTD that models conference publi-
cations:

<!ELEMENT conf(title,soc,year,mon?,paper+)>
<!ELEMENT paper(pid,title,abstract?)>

Suppose the combination oftitle andyear uniquely
identifies theconf . Using the hybrid inlining algorithm [4],
the DTD would be transformed to the following relational
schema:

conf (title,soc,year,mon)
paper (pid,title,conf_title,conf_year,

abstract)
? This author is partially supported by DARPA contract No.

N66001-97-C-8601.
?? This author is partially supported by NSF grants 0086116,

0085773, 9817773.

While the relational schema correctly captures the
structural aspect of the DTD, it does not enforce cor-
rect semantics. For instance, it cannot prevent a tu-
ple t1: paper(100,’DTD...’,’ER’,3000,’...’)
from being inserted. However, tuplet1 is inconsistent
with the semantics of the given DTD since the DTD
implies that the paper cannot exist without being as-
sociated with a conference and there is apparently no
conference “ER-3000” yet. In database terms, this kind
of violation can be easily prevented by aninclusion
dependencysaying “paper[conf title,conf year]
⊆ conf[title,year] ”.

The reason for this inconsistency between the DTD and
the transformed relational schema is that most of the pro-
posed transformation algorithms, so far, have largely ignored
the hiddensemantic constraintsof the original schema.

1.1 Related Work

Between XML and Non-relational Models: Conversion be-
tween different models has been extensively investigated. For
instance, [6] deals with transformation problems in OODB
area; since OODB is a richer environment than RDB, their
work is not readily applicable to our application. The logical
database design methods and their associated transformation
techniques to other data models have been extensively stud-
ied in ER research. For instance, [7] presents an overview of
such techniques. However, due to the differences between ER
and XML models, those transformation techniques need to
be modified substantially. More recently, [8] studies a generic
mapping between arbitrary models with the focus of devel-
oping a framework for model management, but is not directly
relevant to our problems.

From XML to Relational : From XML to relational schema,
several conversion algorithms have been proposed recently.
STORED [2] is one of the first significant attempts to store
XML data in relational databases. STORED uses a data min-
ing technique to find a representative DTD whose support
exceeds the pre-defined threshold and using the DTD, con-
verts XML documents to relational format. Because [9] dis-
cusses template language-based transformation from DTD
to relational schema, it requires human experts to write an
XML-based transformation rule. [4] presents three inlining
algorithms that focus on the table level of the schema con-
versions. On the contrary, [3] studies different performance
issues among eight algorithms that focus on the attribute and
value level of the schema. Unlike these, we propose a method
where the hidden semantic constraints in DTDs are systemat-
ically found and translated into relational formats [10]. Since
the method is orthogonal to the structure-oriented conversion
method, it can be used along with algorithms in [2,9,4,3].

From Relational to XML : There have been different ap-
proaches for the conversion from relational model to XML

4 Dongwon Lee et al.

RDB

CPI

NeT & CoT

Schema
Designer XML

Schemas

Fig. 1.Overview of our schema translation algorithms.

model, such as XML Extender from IBM, XML-DBMS,
SilkRoute [11], and XPERANTO [5]. All the above tools
require the user to specify the mapping from the given re-
lational schema to XML schema. In XML Extender, the
user specifies the mapping through a language such as DAD
or XML Extender Transform Language. In XML-DBMS, a
template-driven mapping language is provided to specify the
mappings. SilkRoute provides a declarative query language
(RXL) for viewing relational data in XML. XPERANTO
uses XML query language for viewing relational data in
XML. Note that in SilkRoute and XPERANTO, the user has
to specify the query in the appropriate query language.

2 Overview of Our Schema Translation
Algorithms

In this paper, we present three schema transformation algo-
rithms that not only capture the structure, but also the seman-
tics of the original schema. The overview of our proposals is
illustrated in Figure 1.

1. CPI (Constraints-preserving Inlining Algorithm): iden-
tifies various semantics constraints in the original XML
schema and preserves them by rewriting them in the final
relational schema.

2. NeT (Nesting-based Translation Algorithm): derives a
nested structure from a flat relational schema by repeat-
edly applying thenest operator so that the resulting
XML schema becomes hierarchical. The main idea is
to find a more intuitive element content model of the
XML schema that utilizes the regular expression oper-
ators provided by the XML schema specification (e.g.,
“*” or “+”).

3. CoT (Constraints-based Translation Algorithm): Al-
thoughNeT infers hidden characteristics of data by nest-
ing, it is only applicable to a single table at a time. There-
fore, it is unable to capture the overall picture of rela-
tional schema where multiple tables are interconnected.
To remedy this problem,CoT considers inclusion depen-
dencies during the translation, and merges multiple inter-
connected tables into a coherent and hierarchical parent-
child structure in the final XML schema.

3 TheCPI Algorithm

Transforming a hierarchical XML model to a flat relational
model is not a trivial task due to several inherent dif-
ficulties such as non-trivial 1-to-1 mapping, existence of

<!ELEMENT conf (title,date,editor?,paper*)>
<!ATTLIST conf id ID #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT date EMPTY>
<!ATTLIST date year CDATA #REQUIRED

mon CDATA #REQUIRED
day CDATA #IMPLIED>

<!ELEMENT editor (person*)>
<!ATTLIST editor eids IDREFS #IMPLIED>
<!ELEMENT paper (title,contact?,author,cite?)>
<!ATTLIST paper id ID #REQUIRED>
<!ELEMENT contact EMPTY>
<!ATTLIST contact aid IDREF #REQUIRED>
<!ELEMENT author (person+)>
<!ATTLIST author id ID #REQUIRED>
<!ELEMENT person (name,(email|phone)?)>
<!ATTLIST person id ID #REQUIRED>
<!ELEMENT name EMPTY>
<!ATTLIST name fn CDATA #IMPLIED

ln CDATA #REQUIRED>
<!ELEMENT email (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT cite (paper*)>
<!ATTLIST cite id ID #REQUIRED

format (ACM|IEEE) #IMPLIED>

Table 1.A DTD for Conference .

set values, complicated recursion, and/or fragmentation is-
sues [4]. Most XML-to-Relational transformation algorithms
(e.g., [9,2,3,4]) have so far mainly focused on the issue of
structural conversion, largely ignoring the semantics already
existed in the original XML schema. Let us first describe var-
ious semantic constraints that one can mine from the DTD.
Throughout the discussion, we will use the example DTD
and XML document in Tables 1 and 2.

3.1 Semantic Constraints in DTDs

Cardinality Constraints : In a DTD declaration, there are
only 4 possible cardinality relationships between an element
and its sub-elements as illustrated below:

<!ELEMENT article (title, author+,
ref*, price?)>

1. (0,1): An element can have either zero or one sub-
element. (e.g., sub-elementprice)

2. (1,1): An element must have one and only one sub-
element. (e.g., sub-elementtitle)

3. (0,N): An element can have zero or more sub-elements.
(e.g., sub-elementref)

4. (1,N): An element can have one or more sub-elements.
(e.g., sub-elementauthor)

Following the notations in [7], let us call each cardinal-
ity relationship as type (0,1), (1,1), (0,N), (1,N), respectively.
From these cardinality relationships, mainly three constraints
can be inferred. First is whether or not the sub-element can be
null. We use the notation “X 9 ∅” to denote that an element
X cannot be null. This constraint is easily enforced by the
NULL or NOT NULLclause in SQL. Second is whether or
not more than one sub-element can occur. This is also known
assingleton constraintin [12] and is one kind of equality-
generating dependencies. Third, given an element, whether
or not its sub-element should occur. This is one kind of tuple-
generating dependencies. The second and third types will be
further discussed below.

Inclusion Dependencies (INDs): An Inclusion Dependency
assures that values in the columns of one fragment must also

Schema Conversions 5

<conf id="er05">
<title>Int’l Conf. on Conceptual Modeling</title>
<date>

<year>2005</year> <mon>May</mon> <day>20</day>
</date>
<editor eids="sheth bossy">

<person id="klavans">
<name fn="Judith" ln="Klavans"/>
<email>klavans@cs.columbia.edu</email>

</person> </editor>
<paper id="p1">

<title>Indexing Model for Structured...</title>
<contact aid="dao"/>
<author>

<person id="dao"><name fn="Tuong" ln="Dao"/>
</author>

</paper>
<paper id="p2">

<title>Logical Information Modeling...</title>
<contact aid="shah"/>
<author>

<person id="shah">
<name fn="Kshitij" ln="Shah"/>

</person>
<person id="sheth">

<name fn="Amit" ln="Sheth"/>
<email>amit@cs.uga.edu</email>

</person>
</author>
<cite id="c100" format="ACM">

<paper id="p3">
<title>Making Sense of Scientific...</title>
<author>

<person id="bossy">
<name fn="Marcia" ln="Bossy"/>
<phone>391.4337</phone>

</person>
</author> </paper> </cite> </paper>

</conf>
<paper id="p7">

<title>Constraints-preserving Trans...</title>
<contact aid="lee"/>
<author>

<person id="lee">
<name fn="Dongwon" ln="Lee"/>
<email>dongwon@cs.ucla.edu</email>

</person> </author>
<cite id="c200" format="IEEE"/>

</paper>...

Table 2. An example XML document conforming to the DTD in
Table 1.

appear as values in the columns of other fragments and is a
generalization of the notion ofreferential integrity.

Trivial form of INDs found in the DTD is that “given
an elementX and its sub-elementY , Y must be included
in X (i.e., Y ⊆ X)”. For instance, from theconf element
and its four sub-elements in theConference DTD, the
following INDs can be found as long asconf is not null:
{conf.title ⊆ conf, conf.date ⊆ conf,
conf.editor ⊆ conf, conf.paper ⊆ conf }.
Another form of INDs can be found in the attribute definition
part of the DTD with the use of theIDREF(S) keyword.
For instance, consider thecontact andeditor elements
in theConference DTD shown below:

<!ELEMENT person (name,(email|phone)?>
<!ATTLIST person id ID #REQUIRED>
<!ELEMENT contact EMPTY>
<!ATTLIST contact aid IDREF #REQUIRED>
<!ELEMENT editor (person*)>
<!ATTLIST editor eids IDREFS #IMPLIED>

The DTD restricts theaid attribute of the con-
tact element such that it can only point to the
id attribute of the person element1. Further, the
eids attribute can only point to multipleid attributes
of the person element. As a result, the following
INDs can be derived:{editor.eids ⊆ person.id,
contact.aid ⊆ person.id }. Such INDs can be best
enforced by the “foreign key” if the attribute being refer-
enced is a primary key. Otherwise, it needs to use theCHECK,
ASSERTION, or TRIGGERSfacility of SQL.

1 Precisely, an attribute withIDREF type does not specify which
element it should point to. This information is available only by
human experts. However, new XML schema languages such as
XML-Schema and DSD can express where the reference actually
points to [13].

Equality-Generating Dependencies (EGDs): The Single-
ton Constraint[12] restricts an element to have “at most”
one sub-element. When an element typeX satisfies the sin-
gleton constraint towards its sub-element typeY , if an ele-
ment instancex of typeX hastwo sub-elements instances
y1 and y2 of type Y , then y1 and y2 must be the same.
This property is known asEquality-Generating Dependen-
cies (EGDs)and denoted by “X → Y ” in database the-
ory. For instance, two EGDs:{conf → conf.title,
conf → conf.date } can be derived from theconf el-
ement in Table 1. This kind of EGDs can be enforced by SQL
UNIQUEconstruct. In general, EGDs occur in the case of the
(0,1) and (1,1) mappings in the cardinality constraints.

Tuple-Generating Dependencies (TGDs): TGDs in a rela-
tional model require that some tuples of a certain form be
present in the table and use the “�” symbol. Two useful
forms of TGDs from DTD are thechild and parent con-
straints[12].

1. Child constraint: "Parent � Child" states that
every element of typeParent must have at least one
child element of typeChild. This is the case of the (1,1)
and (1,N) mappings in the cardinality constraints. For in-
stance, from the DTD in Table 1, because theconf ele-
ment must contain thetitle anddate sub-elements,
the child constraintconf � {title, date } holds.

2. Parent constraint: "Child � Parent" states that
every element of typeChild must have a parent el-
ement of typeParent. According to XML specifica-
tion, XML documents can start from any level of ele-
ment without necessarily specifying its parent element,
when a root element is not specified by<!DOCTYPE
root> . In the DTD in Table 1, for instance, theed-
itor anddate elements can have theconf element
as their parent. Further, if we know that all XML docu-
ments were started at theconf element level, rather than
the editor or date level, then the parent constraint
{editor, date }� conf holds. Note that theti-
tle � conf does not hold since thetitle element
can be a sub-element of either theconf or paper ele-
ment.

3.2 Discovering and Preserving Semantic Constraints
from DTDs

The CPI algorithm utilizes a structure-based conversion al-
gorithm as a basis and identifies various semantic constraints
described in Section 3.1. We will use thehybridalgorithm [4]
as the basis algorithm.CPI first constructs aDTD graphthat
represents the structure of a given DTD. A DTD graph can
be constructed when parsing the given DTD. Its nodes are
elements, attributes, or operators in the DTD. Each element
appears exactly once in the graph, while attributes and oper-
ators appear as many times as they appear in the DTD.CPI
then annotates various cardinality relationships (summarized
in Table 3) among nodes to each edge of the DTD graph.
Note that the cardinality relationship types in the graph con-
sider not only element vs. sub-element relationships but also
element vs. attribute relationships. Figure 2 illustrates an ex-
ample of such annotated DTD graph for theConference
DTD in Table 1.

6 Dongwon Lee et al.

Relationship Symbol not null EGDs TGDs
(0,1) ? no yes no
(1,1) yes yes yes
(0,N) * no no no
(1,N) + yes no yes

Table 3.Cardinality relationships and their corresponding semantic
constraints.

date

year

mon

day

title

id name

fn ln email

contactaid

eids

person

conf

paper

id

id
top node

(0,1)

(1,1)
(1,1)

(0,N)

(1,N)

(0,N)

(0,1)
(1,1) editor

(0,N)

(0,1) (0,1)(1,1)

(1,1)
(1,1)

author(1,1)

(1,1)

cite

(0,1)(1,1)

(0,1)

(0,1)

(0,N)

(1,1)

(1,1)

(1,1)

(0,1)
(1,1)
(0,N)
(1,N)

?

*
+

id

(1,1)

format

phone

(0,1)

Fig. 2.An annotatedDTD graphfor theConference DTD in Ta-
ble 1.

Once the annotated DTD graph is constructed,CPI fol-
lows the basic navigation method provided by thehybrid al-
gorithm; it identifiestop nodes[4,10] that are the nodes: 1)
not reachable from any nodes (e.g., source node), 2) direct
child of “* ” or “ +” operator node, 3) recursive node with in-
degree> 1, or 4) one node between two mutually recursive
nodes with indegree= 1. Then, starting from each top node
T , inline all the elements and attributes atleaf nodesreach-
able fromT unless they are other top nodes. In doing so, each
annotated cardinality relationship can be properly converted
to its counterpart in SQL syntax as described in Section 3.1.
The details of the algorithm is beyond the scope of this pa-
per and interested readers are referred to [10]. For instance,
Figure 3 and Table 4 are such output relational schema and
data in SQL notation, automatically generated by theCPI al-
gorithm.

4 TheNeT Algorithm

The simplest Relational-to-XML translation method, termed
as FT (Flat Translation) in [14], is to translate 1) tables
in a relational schema to elements in an XML schema and
2) columns in a relational schema to attributes in an XML
schema.FT is a simple and effective translation algorithm.
However, sinceFT translates the “flat” relational model to a
“flat” XML model in a one-to-one manner, it does not uti-
lize several basic “non-flat” features provided by the XML
model for data modeling such as representingrepeating sub-
elementsthrough regular expression operators (e.g., “*”,
“+”). To remedy the shortcomings ofFT, we propose the
NeT algorithm that utilizes variouselement content models
of the XML model.NeT uses thenestoperator [15] to derive
a “good” element content model.

Informally, for a tablet with a set of columnsC, nesting
on a non-empty columnX ∈ C collects all tuples that agree
on the remaining columnsC −X into a set2. Formally,

2 Here, we only consider single attribute nesting.

CREATE TABLE paper (
id NUMBER NOT NULL,
title VARCHAR(50) NOT NULL,
contact_aid VARCHAR(20),
cite_id VARCHAR(20),
cite_format VARCHAR(50)

CHECK (VALUE IN ("ACM", "IEEE")),
root_elm VARCHAR(20) NOT NULL,
parent_elm VARCHAR(20),
fk_cite VARCHAR(20)

CHECK (fk_cite IN
(SELECT cite_id FROM paper)),

fk_conf VARCHAR(20),
PRIMARY KEY (id),
UNIQUE (cite_id),
FOREIGN KEY (fk_conf)

REFERENCES conf(id),
FOREIGN KEY (contact_aid)

REFERENCES person(id)
);

Fig. 3. Final relational “schema” for thepaper element in the
Conference DTD in Table 1, generated byCPI algorithm.

Definition 1 (Nest). [15]. Let t be an-ary table with col-
umn setC, and X ∈ C and X = C − X. For each
(n − 1)-tuple γ ∈ ΠX(t), we define ann-tuple γ∗ as fol-
lows: γ∗[X] = γ, andγ∗[X] = {κ[X] | κ ∈ t ∧ κ[X] = γ.
Then,nestX(t) = {γ∗ | γ ∈ ΠX(t)}.

After nestX(t), if columnX has only a set with “single”
value{v} for all the tuples, then we say thatnesting failed
and we treat{v} andv interchangeably (i.e.,{v} = v). Thus
when nesting failed, the following is true:nestX(t) = t.
Otherwise, if columnX has a set with “multiple” values
{v1, ..., vk} with k ≥ 2 for at least one tuple, then we say
thatnesting succeeded.

Example 2.Consider a tableR in Table 5. Here we assume
that the columnsA, B, C are non-nullable. In computing
nestA(R) at (b), the first, third, and fourth tuples ofR agree
on their values in columns (B, C) as (a, 10), while their val-
ues of the columnA are all different. Therefore, these differ-
ent values are grouped (i.e., nested) into a set{1,2,3}. The
result is the first tuple of the tablenestA(R) – ({1,2,3},
a, 10). Similarly, since the sixth and seventh tuples ofR
agree on their values as (b, 20), they are grouped to a set
{4,5}. In computingnestB(R) at (c), there are no tuples in
R that agree on the values of the columns (A,C). Therefore,
nestB(R) = R. In computingnestC(R) at (d), since the
first two tuples ofR – (1, a, 10) and (1, a, 20) – agree on
the values of the columns (A, B), they are grouped to (1, a,
{10,20}). Nested tables (e) through (j) are constructed simi-
larly.

Since thenest operator requires scanning of the entire set
of tuples in a given table, it can be quite expensive. In addi-
tion, as shown in Example 2, there are various ways to nest
the given table. Therefore, it is important to find an efficient
way (that uses thenest operator minimum number of times)
of obtaining an acceptable element content model. For a de-
tailed description on the various properties of thenest oper-
ator, the interested are referred to [14,16].

Schema Conversions 7

paper
id root elm parentelm fk conf fk cite title contactaid cite id cite format
p1 conf conf er05 – Indexing ... dao – –
p2 conf conf er05 – Logical ... shah c100 ACM
p3 conf cite – c100 Making ... – – –
p7 paper – – – Constraints ... lee c200 IEEE

Table 4.Final relational “data” for thepaper element in theConference DTD in Table 1, generated byCPI algorithm.

A B C

#1 1 a 10
#2 1 a 20
#3 2 a 10
#4 3 a 10
#5 4 b 10
#6 4 b 20
#7 5 b 20

A+ B C

{1,2,3} a 10
1 a 20
4 b 10
{4,5} b 20

A B C

1 a 10
1 a 20
2 a 10
3 a 10
4 b 10
4 b 20
5 b 20

A B C+

1 a {10,20}
2 a 10
3 a 10
4 b {10,20}
5 b 20

A+ B C

{1,2,3} a 10
1 a 20
4 b 10
{4,5} b 20

(a)R (b) nestA(R) (c) nestB(R) = R (d) nestC(R) (e)
nestB(nestA(R))

= nestC(nestA(R))

A+ B C+

1 a {10,20}
{2,3} a 10

4 b {10,20}
5 b 20

A B C+

1 a {10,20}
2 a 10
3 a 10
4 b {10,20}
5 b 20

A+ B C

{1,2,3} a 10
1 a 20
4 b 10
{4,5} b 20

A+ B C+

1 a {10,20}
{2,3} a 10

4 b {10,20}
5 b 20

(f) nestA(nestC(R)) (g) nestB(nestC(R)) (h)
nestC(nestB(nestA(R)))

= nestB(nestC(nestA(R)))
(i)

nestB(nestA(nestC(R)))
= nestA(nestB(nestC(R)))

Table 5. A relational tableR and its various nested forms. Column names containing a set after nesting (i.e., nesting succeeded) are
appended by “+” symbol.

Lemma 1. Consider a tablet with column setC, candidate
keys,K1,K2, . . . ,Kn ⊆ C, and column setK such that
K = K1 ∩K2 ∩ . . . ∩Kn. Further, let|C| = n and |K| =
m (n ≥ m). Then, the number of necessary nestings,N , is
bounded byN ≤

∑m
k=1m

k

Lemma 1 implies that when candidate key information
is available, one can avoid unnecessary nestings substan-
tially. For instance, suppose attributesA andC in Table 5
constitute a key forR. Then, one needs to compute only:
nestA(R) at (b),nestC(R) at (d),nestC(nestA(R)) at (e),
nestA(nestC(R)) at (f) in Table 5.

After applying thenest operator to the given table repeat-
edly, there can be still several nested tables where nesting
succeeded. In general, the choice of the final schema should
take into consideration the semantics and usages of the un-
derlying data or application and this is where user inter-
vention is beneficial. By default, without further input from
users,NeT chooses the nested table where the most num-
ber of nestings succeeded as the final schema, since this is a
schema which provides low “data redundancy”. The outline
of theNeT algorithm is as follows:

1. For each tableti in the input relational schemaR, apply the
nest operator repeatedly until no nesting succeeds.

2. Choose the best nested table based on the selected criteria. De-
note this table ast′i(c1, . . . , ck−1, ck, . . . , cn), where nesting
succeeded on the columns{c1, . . . , ck−1}.
(a) If k = 1, follow theFT translation.
(b) If k > 1,

i. For each columnci (1 ≤ i ≤ k − 1), if ci was nul-
lable inR, usec∗i for the element content model, and
c+i otherwise.

ii. For each columncj (k ≤ j ≤ n), if ci was nullable
in R, usec?j for the element content model, andcj
otherwise.

5 The CoT Algorithm

TheNeT algorithm is useful for decreasing data redundancy
and obtaining a more intuitive schema by 1) removing re-
dundancies caused by multivalued dependencies, and 2) per-
forming grouping on attributes. However,NeT considers ta-
bles one at a time, and cannot obtain aoverall pictureof the
relational schema where many tables are interconnected with
each other through various other dependencies. To remedy
this problem, we propose theCoT algorithm that uses In-
clusion Dependencies (INDs) of relational schema. General
forms of INDs are difficult to acquire from the database au-
tomatically. However, we shall consider the most pervasive
form of INDs, foreign key constraints, which can be queried
through ODBC/JDBC interface.

The basic idea of theCoT is the following: For two distinct
tabless andt with lists of columnsX andY , respectively,
suppose we have a foreign key constraints[α] ⊆ t[β], where
α ⊆ X andβ ⊆ Y . Also suppose thatKs ⊆ X is the key for
s. Then, different cardinality binary relationships betweens
andt can be expressed in the relational model by a combina-
tion of the following: 1)α is unique/not-unique, and 2)α is
nullable/non-nullable. Then, the translation of two tabless, t
with a foreign key constraint works as follows:

1. If α is non-nullable (i.e., none of the columns ofα can take
null values), then:

8 Dongwon Lee et al.

student(Sid , Name, Advisor)
emp(Eid , Name, ProjName)
prof(Eid , Name, Teach)
course(Cid , Title, Room)
dept(Dno , Mgr)
proj(Pname , Pmgr)
student(Advisor) ⊆ prof(Eid)
emp(ProjName) ⊆ proj(Pname)
prof(Teach) ⊆ course(Cid)
prof(Eid, Name) ⊆ emp(Eid, Name)
dept(Mgr) ⊆ emp(Eid)
proj(Pmgr) ⊆ emp(Eid)

Table 6.An example schema with associated INDs.

prof

student

dept

proj

emp

course

Fig. 4.The IND-Graph representation of the schema in Table 6 (top
nodesdenoted by rectangular nodes).

(a) If α is unique, then there is a1 : 1 relationship between
s and t, and can be captured as<!ELEMENT t (Y,
s?)> .

(b) If α is not-unique, then there is a1 : n relationship be-
tweens and t, and can be captured as<!ELEMENT t
(Y, s*)> .

2. If s is represented as a sub-element oft, then the key fors will
change fromKs to (Ks − α). The key fort will remain the
same.

Extending this to the general case where multiple tables
are interconnected via INDs, consider the schema with a
set of tables{t1, ..., tn} and INDs ti[αi] ⊆ tj [βj], where
i, j ≤ n. We consider only those INDs that are foreign key
constraints (i.e.,βj constitutes the primary key of the table
tj), and whereαi is non-nullable. The relationships among
tables can be captured by a graph representation, termed as
IND-Graph.

Definition 2 (IND-Graph). An IND-Graph G = (V,E)
consists of a node setV and a directed edge setE, such that
for each tableti, there exists a nodeVi ∈ V , and for each
distinct INDti[α]⊆ tj [β], there exists an edgeEji ∈ E from
the nodeVj to Vi.

Note the edge direction is reversed from the IND direction
for convenience. Given a set of INDs, the IND-Graph can
be easily constructed. Once an IND-Graph G is constructed,
CoT needs to decide the starting point to apply translation
rules. For that purpose, we use the notion oftop nodes. In-
tuitively, an element is a top node if itcannotbe represented
as a sub-element of any other element. LetT denote the set
of top nodes. Then,CoT traversesG, using say Breadth-First
Search (BFS), until it traverses all the nodes and edges, while
capturing the INDs on edges as either sub-elements (when
the node is visited for the first time) or IDREF attributes
(when the node was visited already).

Example 3.Consider a schema and its associated INDs in
Table 6. The IND-Graph with two top nodes is shown in Fig-
ure 4: 1)course : There is no nodet, where there is an IND
of the formcourse[α] ⊆ t[β], and 2)emp: There is a cyclic
set of INDs betweenempandproj , and there exists no node
t such that there is an IND of the formemp[α] ⊆ t[β] or
proj[α] ⊆ t[β]. Then,

– First, starting from a top nodecourse , do BFS
scan. Pull up a reachable nodeprof into course
and make it as sub-element by<!ELEMENT course
(Cid, Title, Room, prof ∗)> . Similarly, the
node student is also pulled up into its parent
node prof by <!ELEMENT prof (Eid, Name,
student ∗)> . Since the nodestudent is a leaf,
no nodes can be pulled in:<!ELEMENT student
(Sid, Name)> . Since there is no more unvisited
reachable node fromcourse , the scan stops.

– Next, starting from another top nodeemp, pull
up neighboring nodedept into emp similarly
by <!ELEMENT emp (Eid, Name, ProjName,
dept ∗)> and <!ELEMENT dept (Dno, Mgr)> .
Then, visit a neighboring nodeprof , but prof was
visited already. To avoid data redundancy, an attribute
Ref prof is added toemp accordingly. Since at-
tributes in the left-hand side of the corresponding IND,
prof(Eid,Name) ⊆ emp(Eid,Name), form a super
key, the attributeRef prof is assigned typeIDREF,
and notIDREFS: <!ATTLIST prof Eid ID> and
<!ATTLIST emp Ref prof IDREF> .

– Next, visit a nodeproj and pull it up to emp
by <!ELEMENT emp (Eid, Name, Proj-
Name, dept ∗, proj ∗)> and <!ELEMENT proj
(Pname)> . In next step, visit a nodeemp from prof ,
but since it was already visited, an attributeRef empof
typeIDREFS is added toproj , and scan stops.

It is worthwhile to point out that there are several places in
CoT where human experts can help to find a better mapping
based on the semantics and usages of the underlying data or
application.

6 Experimental Results

6.1 CPI Results

CPI was tested against DTDs gathered from OASIS3. For
all cases,CPI successfully identified hidden semantic con-
straints from DTDs and correctly preserved them by rewrit-
ing them in SQL. Table 7 shows a summary of our ex-
perimentation. Note that people seldom used theID and
IDREF(S) constructs in their DTDs except theXMI and
BSMLcases. The number of tables generated in the relational
schema was usually smaller than that of elements/attributes
in DTDs due to the inlining effect. The only exception to this
phenomenon was theXMI case, where extensive use of types
(0,N) and (1,N) cardinality relationships resulted in many top
nodes in the ADG.

The number of semantic constraints had a close relation-
ship with the design of the DTD hierarchy and the type of

3 http://www.oasis-open.org/cover/xml.html

Schema Conversions 9

DTD Semantics DTD Schema Relational Schema

Name Domain Elm/Attr ID/IDREF(S) Table/Attr→ � 9 ∅
novel literature 10/1 1/0 5/13 6 9 9

play Shakespeare 21/0 0/0 14/46 17 30 30
tstmt religious text 28/0 0/0 17/52 17 22 22
vCard business card 23/1 0/0 8/19 18 13 13

ICE content synd. 47/157 0/0 27/283 43 60 60
MusicML music desc. 12/17 0/0 8/34 9 12 12

OSD s/w desc. 16/15 0/0 15/37 2 2 2
PML web portal 46/293 0/0 41/355 29 36 36

Xbel bookmark 9/13 3/1 9/36 9 1 1
XMI metadata 94/633 31/102 129/3013 10 7 7

BSML DNA seq. 112/2495 84/97 104/2685 99 33 33

Table 7.Summary ofCPI algorithm.

cardinality relationship used in the DTD. For instance, the
XMI DTD had many type (0,N) cardinality relationships,
which do not contribute to the semantic constraints. As a re-
sult, the number of semantic constraints at the end was small,
compared to that of elements/attributes in the DTD. This was
also true for theOSDcase. On the other hand, in theICE
case, since it used many type (1,1) cardinality relationships,
it resulted in many semantic constraints.

6.2 NeT Results

Our preliminary results comparing the goodness of the
XSchema obtained fromNeT and FT with that obtained
from DB2XML v 1.3 [17] appeared in [14]. We further ap-
plied our NeT algorithm on several test sets drawn from
UCI KDD4 / ML5 repositories, which contain a multitude of
single-table relational schemas and data. Sample results are
shown in Table 8. Two metrics are used as follows:

NestRatio= # of successful nesting
of total nesting

ValueRatio= # of original data values
of data values D in the nested table

whereD is the number of individual data values present in
the table. For example, theD in the row({1, 2, 3}, a, 10) of
a nested table is 5. High value forNestRatioshows that we
did not perform unnecessary nesting and high value forVal-
ueRatioshows that the nesting removed a lot of redundancy.

In our experimentation6, we observed that most of the at-
tempted nestings are successful, and hence our optimization
rules are quite efficient. In Table 8, we see that nesting was
useful for all the data sets except for theBupa data set. Also
nesting wasespeciallyuseful for theCar data set, where
the size of the nested table is only6% of the original data
set. Time required for nesting is an important parameter, and
it jointly depends on the number of attempted nestings and
the number of tuples. The number of attempted nestings de-
pends on the number of attributes, and increases drastically
as the number of attributes increases. This is observed for
the Flare data set, where we have to do nesting on 13 at-
tributes.

supplier

lineitem

nation

orders

partsupp

customer

part

region

Fig. 5.The IND-Graph representation of TPC-H schema.

0

50000

100000

150000

200000

250000

0 0.5 1 1.5 2 2.5

of

 d
at

a
va

lu
es

 in
 X

M
L

do
cu

m
en

t

size of TPC-H raw data (MB)

FT
CoT

Fig. 6.Size comparison of two algorithms.

6.3 CoT Results

For testingCoT, we need some well-designed relational
schema where tables are interconnected via inclusion depen-
dencies. For this purpose, we use the TPC-H schema v 1.3.07,
which is an ad-hoc, decision support benchmark and has 8 ta-
bles and 8 inclusion dependencies. The IND-Graph for the
TPC-H schema is shown in Figure 5.CoT identified two
top-nodes –part and region , and eventually generated
the XML document having interwoven hierarchical struc-
tures; six of the eight inclusion dependencies are mapped us-
ing sub-element, and the remaining two are mapped using
IDREF attributes.

Figure 6 shows a comparison of the number of data values
originally present in the database, and the number of data

4 http://kdd.ics.uci.edu/
5 http://www.ics.uci.edu/∼mlearn/MLRepository.html
6 Available athttp://www.cs.ucla.edu/∼mani/xml
7 http://www.tpc.org/tpch/spec/h130.pdf

10 Dongwon Lee et al.

Test Set# of attr. / tuple NestRatio ValueRatio Size before / after# of nested attr.Time (sec.)

Balloons1 5 / 16 42 / 64 80 / 22 0.455 / 0.152 3 1.08
Balloons2 5 / 16 42 / 64 80 / 22 0.455 / 0.150 3 1.07
Balloons3 5 / 16 40 / 64 80 / 42 0.455 / 0.260 3 1.14
Balloons4 5 / 16 42 / 64 80 / 22 0.455 / 0.149 3 1.07

Hayes 6 / 132 1 / 6 792 / 522 1.758 / 1.219 1 1.01
Bupa 7 / 345 0 / 7 2387 / 2387 7.234 / 7.234 0 4.40

Balance 5 / 625 56 / 65 3125 / 1120 6.265 / 2.259 4 21.48
TA Eval 6 / 110 253 / 326 660 / 534 1.559 / 1.281 5 24.83

Car 7 / 1728 1870 / 1957 12096 / 779 51.867 / 3.157 6 469.47
Flare 13 / 365 11651 / 133454745 / 2834 9.533 / 5.715 4 6693.41

Table 8.Summary ofNeT experimentations.

values in the XML document generated byFT andCoT. Be-
causeFT is a flat translation, the number of data values in
the XML document generated byFT is the same as the num-
ber of data values in the original data. However,CoT is able
to decrease the number of data values in the generated XML
document by more than12%.

7 Conclusion

We have presented a method to transform a relational schema
to an XML schema, and two methods to transform an XML
schema to a relational schema, both instructuralandseman-
tic aspects. All three algorithms are “correct” in the sense
that they all have preserved the original information of rela-
tional schema. For instance, using the notion of information
capacity [18], a theoretical analysis for the correctness of our
translation procedures is possible; we can actually show that
CPI, NeT and CoT algorithms areequivalence preserving
transformations.

Despite the difficulties in conversions between
XML and relational models, there are many practi-
cal benefits. We strongly believe that devising more
accurate and efficient conversion methodologies be-
tween XML and relational models is important.
The prototypes of our algorithms are available at:
http://www.cobase.cs.ucla.edu/projects/xpress/

References

1. Bray, T., Paoli, J., Sperberg-McQueen (Eds), C.M.: “Exten-
sible Markup Language (XML) 1.0 (2nd Edition)”. W3C
Recommendation (2000)http://www.w3.org/TR/2000/REC-
xml-20001006.

2. Deutsch, A., Fernandez, M.F., Suciu, D.: “Storing Semistruc-
tured Data with STORED”. In: ACM SIGMOD, Philadephia,
PA (1998)

3. Florescu, D., Kossmann, D.: “Storing and Querying XML Data
Using an RDBMS”. IEEE Data Eng. Bulletin22 (1999) 27–34

4. Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt,
D., Naughton, J.: “Relational Databases for Querying XML
Documents: Limitations and Opportunities”. In: VLDB, Edin-
burgh, Scotland (1999)

5. Carey, M., Florescu, D., Ives, Z., Lu, Y., Shanmugasundaram,
J., Shekita, E., Subramanian, S.: “XPERANTO: Publishing
Object-Relational Data as XML”. In: Int’l Workshop on the
Web and Databases (WebDB), Dallas, TX (2000)

6. Christophides, V., Abiteboul, S., Cluet, S., Scholl, M.: “From
Structured Document to Novel Query Facilities”. In: ACM
SIGMOD, Minneapolis, MN (1994)

7. Batini, C., Ceri, S., Navathe, S.B.: “Conceptual Database
Design: An Entity-Relationship Approach”. The Ben-
jamin/Cummings Pub. (1992)

8. Bernstein, P., Halevy, A., Pottinger, R.: “A Vision of Manage-
ment of Complex Models ”. ACM SIGMOD Record29 (2000)
55–63

9. Bourret, R.: “XML and Databases”. Web page (1999)
http://www.rpbourret.com/xml/XMLAndDatabases.htm.

10. Lee, D., Chu, W.W.: “CPI: Constraints-Preserving Inlining Al-
gorithm for Mapping XML DTD to Relational Schema”. J.
Data & Knowledge Engineering (DKE)39 (2001) 3–25

11. Fernandez, M.F., Tan, W.C., Suciu, D.: “SilkRoute: Trading
between Relations and XML”. In: Int’l World Wide Web Conf.
(WWW), Amsterdam, Netherlands (2000)

12. Wood, P.T.: “Optimizing Web Queries Using Document Type
Definitions”. In: Int’l Workshop on Web Information and Data
Management (WIDM), Kansas City, MO (1999) 28–32

13. Lee, D., Chu, W.W.: “Comparative Analysis of Six XML
Schema Languages”. ACM SIGMOD Record29 (2000) 76–
87

14. Lee, D., Mani, M., Chiu, F., Chu, W.W.: “Nesting-based
Relational-to-XML Schema Translation”. In: Int’l Workshop
on the Web and Databases (WebDB), Santa Barbara, CA (2001)

15. Jaeschke, G., Schek, H.J.: “Remarks on the Algebra of Non
First Normal Form Relations”. In: ACM PODS, Los Angeles,
CA (1982)

16. Lee, D., Mani, M., Chiu, F., Chu, W.W.: “NeT & CoT: Trans-
lating Relational Schemas to XML Schemas using Semantic
Constraints”. Technical report, UCLA Computer Science Dept.
(2002)

17. Turau, V.: “Making Legacy Data Accessible for XML
Applications”. Web page (1999)http://www.informatik.fh-
wiesbaden.de/∼turau/veroeff.html.

18. Miller, R.J., Ioannidis, Y.E., Ramakrishnan, R.: “Schema
Equivalence in Heterogeneous Systems: Bridging Theory and
Practice (Extended Abstract)”. In: EDBT, Cambridge, UK
(1994)

Transforming UML domain descriptions into Configuration Knowledge Bases
for the Semantic Web

Alexander Felfernig1, Gerhard Friedrich1, Dietmar Jannach1, Markus Stumptner2, and
Markus Zanker1

1 Institut für Wirtschaftsinformatik und Anwendungssysteme, Produktionsinformatik,
Universiẗatsstrasse 65-67, A-9020 Klagenfurt, Austria,

{felfernig,friedrich,jannach,zanker }@ifit.uni-klu.ac.at
2 University of South Australia, Advanced Computing Research Centre,

5095 Mawson Lakes (Adelaide), SA, Australia
mst@cs.unisa.edu.au

Abstract. The Semantic Web will provide the con-
ceptual infrastructure to allow new forms of busi-
ness application integration. This paper presents the
theoretical basis for integrating Web-based sales
systems for highly complex customizable prod-
ucts and services (configuration systems) making
use of upcoming descriptive representation for-
malisms for the Semantic Web. In today’s economy
a trend evolves towards highly specialized solution
providers cooperatively offering configurable prod-
ucts and services to their customers. This paradigm
shift requires the extension of currentstandalone
configuration technology with capabilities for coop-
erative problem solving. Communication between
product configurators, however, necessitates the ex-
istence of an agreed upon definition of the configu-
ration problem itself and the sharing of knowledge.
A standardized representation language is therefore
needed in order to tackle the challenges imposed
by heterogeneous representation formalisms of cur-
rently available state-of-the-art configuration envi-
ronments (e.g. description logic or predicate logic
based configurators). Furthermore, it is important to
integrate the development and maintenance of con-
figuration systems into industrial software develop-
ment processes. Therefore, we present a set of rules
for transforming UML models (built conforming to
a configuration domain specific profile) into con-
figuration knowledge bases specified by languages
such as OIL or DAML+OIL which become the fu-
ture standards for the representation of semantics in
the Web.

1 Introduction

Configuration is one of the most successful AI application ar-
eas, but easy knowledge acquisition and use of an appropriate
set of modeling primitives remain major research areas. In-
creasing demand for applications in various domains such as
telecommunications industry, automotive industry, or finan-
cial services can be noticed that results in a set of correspond-
ing configurator implementations (e.g. [1,2,3,4]). Informally,
configuration can be seen as a special kind of design activity
[5], where the configured product is built from a predefined
set of component types and attributes, which are composed
conforming to a set of corresponding constraints.

Triggered by the trend towards highly specialized solution
providers cooperatively offering configurable products and
services, joint configuration by a set of business partners is

becoming a key application of knowledge-based configura-
tion systems. However, when it comes to integration issues
of the configuration systems of different business entities, the
heterogeneity of configuration knowledge representation is a
major obstacle. One of the guiding application scenarios of
the EC-funded research project CAWICOMS3 is for example
the provision of highly complex IP-VPN (IP-protocol based
virtual private network) services by a dynamically formed
consortium of telecommunication companies [6]. To perform
such a configuration task, where the required knowledge is
distributed over a flexibly determined set of separate enti-
ties, the paradigm of Web services is adopted to accomplish
this form of business application integration [7]. In order to
realize a dynamic matchmaking between service requestors
and service providers, a brokering main configurator deter-
mines which configuration services of the participating or-
ganisations are capable of contributing to the problem solv-
ing and cooperates with them. Currently developed declara-
tive languages (e.g., DAML-S4) for semantically describing
the capabilities of a Web-service are based on DAML+OIL,
that is why we show how the concepts needed for describing
configuration knowledge can be represented using semantic
markup languages such as OIL [8] or DAML+OIL [9].

From the viewpoint of industrial software develop-
ment, the integration of construction and maintenance of
knowledge-based systems is an important prerequisite for
a broader application of AI technologies. When consider-
ing configuration systems, formal knowledge representation
languages are difficult to communicate to domain experts.
The so-called knowledge acquisition bottleneck is obvious,
since configuration knowledge acquisition and maintenance
are only feasible with the support of a knowledge engineer
who can handle the formal representation language of the
underlying configuration system.

The Unified Modeling Language (UML) [10] is a widely
adopted modeling language in industrial software develop-
ment. Based on our experience in building configuration
knowledge bases using UML [11], we show how to effec-
tively support the construction of Semantic Web configu-
ration knowledge bases using UML as a knowledge acqui-
sition frontend. The provided UML concepts constitute an
ontology consisting of concepts contained in de facto stan-
dard configuration ontologies [11,12]. Based on a descrip-

3 CAWICOMS is the acronym for Customer-Adaptive Web Inter-
face for the Configuration of products and services with Multiple
Suppliers (EC-funded project IST-1999-10688).

4 See http://www.daml.org/services for reference.

12 Alexander Felfernig et al.

tion logic based definition of a configuration task we provide
a set of rules for automatically transforming UML configu-
ration models into a corresponding OIL representation5.

The approach presented in this paper permits the use of
standard design notations by Software Engineers, vice versa,
reasoning support for Semantic Web ontology languages can
be exploited for checking the consistency of the UML config-
uration models. The resulting configuration knowledge bases
enable knowledge interchange between heterogenous con-
figuration environments as well as distributed configuration
problem solving in different supply chain settings. The pre-
sented concepts are implemented in a knowledge acquisition
workbench which is a major part of the CAWICOMS config-
uration environment.

The paper is organized as follows. In Section 2 we give
an example of a UML configuration knowledge base which
is used for demonstration purposes throughout the paper.
In Section 3 we give a description logic based definition
of a configuration task - this definition serves as basis for
the translation of UML configuration models into a corre-
sponding OIL-based representation (Section 4). Section 5
discusses related work.

2 Configuration knowledge base in UML

The Unified Modeling Language (UML) [10] is the result
of an integration of object-oriented approaches of [13,14,15]
which is well established in industrial software development.
UML is applicable throughout the whole software develop-
ment process from the requirements analysis phase to the im-
plementation phase. In order to allow the refinement of the
basic meta-model with domain-specific modeling concepts,
UML provides the concept ofprofiles- the configuration do-
main specific modeling concepts presented in the following
are the constituting elements of a UMLconfiguration profile
which can be used for building configuration models. UML
profiles can be compared with ontologies discussed in the
AI literature, e.g. [16] defines an ontology as a theory about
the sorts of objects, properties of objects, and relationships
between objects that are possible in a specific domain. UML
stereotypesare used to further classify UML meta-model ele-
ments (e.g. classes, associations, dependencies). Stereotypes
are the basic means to define domain-specific modeling con-
cepts for profiles (e.g. for the configuration profile). In the
following we present a set of rules allowing the automatic
translation of UML configuration models into a correspond-
ing OIL representation.

For the following discussions the simple UML configu-
ration model shown in Figure 1 will serve as a working
example. This model represents the generic product struc-
ture, i.e. all possible variants of a configurableComputer.
The basic structure of the product is modeled using classes,
generalization, and aggregation. The set of possible prod-
ucts is restricted through a set of constraints which are re-
lated to technical restrictions, economic factors, and restric-
tions according to the production process. The used concepts
stem from connection-based [17], resource-based [3], and

5 Note that OIL text is used for presentation purposes - the used
concepts can simply be transformed into a DAML+OIL repre-
sentation.

structure-based [18] configuration approaches. These config-
uration domain-specific concepts represent a basic set useful
for building configuration knowledge bases and mainly cor-
respond to those defined in the de facto standard configura-
tion ontologies [11,12]:

Component types.Component types represent the basic
building blocks a final product can be built of. Component
types are characterized by attributes. A stereotypeCompo-
nent is introduced, since some limitations on this special
form of class must hold (e.g. there are no methods).

Generalization hierarchies. Component types with a
similar structure are arranged in a generalization hierarchy
(e.g. in Figure 1 aCPU1 is a special kind ofCPU).

Part-whole relationships. Part-whole relationships be-
tween component types state a range of how many subparts
an aggregate can consist of (e.g. aComputercontains at least
one and at most two motherboards -MBs).

Compatibilities and requirements. Some types of com-
ponents must not be used together within the same configu-
ration - they are incompatible (e.g. anSCSIUnitis incompat-
ible with anMB1). In other cases, the existence of one com-
ponent of a specific type requires the existence of another
specific component within the configuration (e.g anIDEUnit
requires anMB1). The compatibility between different com-
ponent types is expressed using the stereotyped association
incompatible. Requirement constraints between component
types are expressed using the stereotyperequires.

Resource constraints.Parts of a configuration task can be
seen as a resource balancing task, where some of the compo-
nent types produce some resources and others are consumers
(e.g., the consumed hard-disk capacity must not exceed the
provided hard-disk capacity). Resources are described by
a stereotypeResource, furthermore stereotyped dependen-
cies are introduced for representing the producer/consumer
relationships between different component types. Produc-
ing component types are related to resources using thepro-
ducesdependency, furthermore consuming component types
are related to resources using theconsumesdependency.
These dependencies are annotated with values representing
the amount of production and consumption.

Port connections.In some cases the product topology -
i.e., exactly how the components are interconnected - is of in-
terest in the final configuration. The concept of a port (stereo-
type Port) is used for this purpose (e.g. see the connection
betweenVideocardandScreenrepresented by the stereotype
connand the portsvideoport andscreenport).

3 Description logic based definition of a
configuration task

The following description logic based definition of a config-
uration task [19] serves as a foundation for the formulation
of rules for translating UML configuration models into a
corresponding OIL representation6. The definition is based
on a schema S=(CN , RN , IN) of disjoint sets of names
for concepts, roles, and individuals [20], whereRN is a
disjunctive union of roles and features.

6 In the following we assume that the reader is familiar with the
concepts of OIL. See [8] for an introductory text.

Configuration Knowledge Bases for the Semantic Web 13

videoport

<<Port>>

CPU

clockrate : 300..500

<<Component>>

Videocard

<<Component>>

2
2

screenport

<<Port>>

1
 0..1
1
 0..1

<<conn>>

HDUnit

<<Component>>

MB

<<Component>>

1..2
1..2

1
1

Screen

<<Component>>

2
2

Computer

<<Component>>

1..6
1..6
 1..2
1..2
 0..1
0..1

Software

<<Component>>
 0..100
0..100

CPU1

clockrate : 300

<<Component>>

value=100

value=50

value=10000

value=20000

Textedit

<<Component>>

DTPSoftware

<<Component>>

IDEUnit

<<Component>>

Capacity

<<Resource>>

<<consumes>>

<<consumes>>

<<produces>>
 MB1

<<Component>>

<<requires>>

SCSIUnit

<<Component>>

<<produces>>

<<incompatible>>

MB2

<<Component>>

CPU2

clockrate : 500

<<Component>>

<<requires>>

Fig. 1.Example configuration model

Definition 1 (Configuration task): In general we as-
sume a configuration task is described by a triple (DD,
SRS, CLANG). DD represents the domain description of
the configurable product andSRS specifies the particular
system requirements defining an individual configuration
task instance.CLANG comprises a set of conceptsCConfig
⊆ CN and a set of rolesRConfig ⊆ RN which serve as a
configuration language for the description of actual configu-
rations. A configuration knowledge baseKB =DD ∪ SRS
is constituted of sentences in a description language.2

In addition we require that roles inCLANG are de-
fined over the domains given inCConfig, i.e. range(Ri)
= CDom anddom(Ri) = CDom must hold for each role
Ri ∈ RConfig, where CDom

.=
⊔
Ci∈Cconfig Ci. We

impose this restriction in order to assure that a configu-
ration result only contains individuals and relations with
corresponding definitions inCConfig and RConfig. The
derivation ofDD will be discussed in Section 4, an example
for SRS could be ”twoCPUs of type CPU1 and one
CPU of typeCPU2”, i.e. SRS={(instance-ofc1, CPU1),
(instance-ofc2, CPU1), (instance-ofc3, CPU2)}, where
CLANG={CPU1, CPU2, ...}.
Based on this definition, a corresponding configuration result
(solution) is defined as follows [19], where the semantics of
description terms are given using an interpretationI = 〈∆I ,
(·)I〉, where∆I is a domain of values and(·)I is a mapping
from concept descriptions to subsets of∆I and from role
descriptions to sets of 2-tuples over∆I .

Definition 2 (Valid configuration): Let I = 〈∆I ,
(·)I〉 be a model of a configuration knowledge baseKB,
CLANG = Cconfig ∪ Rconfig a configuration language,
andCONF = COMPS ∪ ROLES a description of a con-
figuration.COMPS is a set of tuples〈Ci, INDIVS Ci 〉 for
everyCi ∈ Cconfig, whereINDIVS Ci = {ci1, . . . , cini} =
CIi is the set of individuals of conceptCi. These indi-
viduals identify components in an actual configuration.
ROLES is a set of tuples〈Rj ,TUPLES Rj

〉 for every
Rj ∈ Rconfig where TUPLES Rj

= {〈rj1, sj1〉, . . . ,

〈rjmj , sjmj 〉} = RIj is the set of tuples of roleRj defining
the relation of components in an actual configuration.2

A valid configuration for our example domain
is CONF={〈CPU1, {c1, c2}〉, 〈CPU2, {c3}〉,
〈MB1, {m1}〉, 〈MB2, {m2}〉, 〈mb-of-cpu, {〈m1, c1〉,
〈m1, c2〉, 〈m2, c2〉}〉, ...}.
The automatic derivation of an OIL-based configuration
knowledge base requires a clear definition of the semantics
of the used UML modeling concepts. In the following
we define the semantics of UML configuration models by
giving a set of corresponding translation rules into OIL.
The resulting knowledge base restricts the set of possible
configurations, i.e. enumerates the possible instance models
which strictly correspond to the UML class diagram defining
the product structure.

4 Translation of UML configuration models
into OIL

In the following we present an approach which allows the
application of the Unified Modeling Language (UML) [10]
to configuration knowledge acquisition and interchange.
UML configuration models can automatically be translated
into a corresponding OIL [8] or DAML+OIL [9] based
representation. This enables a standardized representation
of configuration models and configuration knowledge
interchange between different configuration environments
using standard Web technologies. The usage of UML allows
the integration of configuration technology into industrial
software development processes, furthermore a standard
graphical knowledge acquisition frontend is provided which
is crucial for effective development and maintenance of
configuration knowledge bases especially in the context
of distributed configuration problem solving [21]. For the
modeling concepts discussed in Section 2 (component types,
generalization hierarchies, part-whole relationships, compat-
ibility and requirement constraints, resource constraints, and
port connections) we present a set of rules for translating
those concepts into an OIL-based representation. UML is

14 Alexander Felfernig et al.

based on a graphical notation - therefore our translation
starts from such a graphical description of a configuration
domain. In the following,GREP denotes the graphical
representation of the UML configuration model.

Rule 1 (Component types): Let c be a component
type,a an attribute ofc, andd be the domain ofa in GREP ,
thenDD is extended with

class-defc.
slot-defa.
c: slot-constrainta cardinality 1d.

For those component typesci, cj ∈ {c1, ..., cm} (ci 6= cj),
which do not have any supertypes inGREP , DD is ex-
tended with

disjoint ci, cj . 2

Example 1 (Component typeCPU):
class-defCPU .
slot-defclockrate.
CPU : slot-constraintclockrate cardinality 1 ((min 300)
and (max 500)).
disjointCPU MB.
disjointMB Screen.
... 2

Subtyping in the configuration domain means that at-
tributes and roles of a given component type are inherited
by its subtypes. In most configuration environments a
disjunctive and complete semantics is assumed for general-
ization hierarchies, where the disjunctive semantics can be
expressed using thedisjoint axiom and the completeness
can be expressed by forcing the superclass to conform to one
of the given subclasses as follows.
Rule 2 (Generalization hierarchies):Let u andd1, ..., dn
be classes (component types) inGREP , whereu is the
superclass ofd1, ..., dn, thenDD is extended with
d1, ..., dn: subclass-ofu.
u: subclass-of (d1 or ... ordn).
∀ di, dj ∈ {d1, ..., dn} (di 6= dj) : disjointdi dj . 2

Example 2 (CPU1, CPU2 subclasses ofCPU):
CPU1: subclass-ofCPU .
CPU2: subclass-ofCPU .
CPU : subclass-of (CPU1 orCPU2).
disjointCPU1 CPU2. 2

Part-whole relationships are important model proper-
ties in the configuration domain. In [22,23,12] it is pointed
out that part-whole relationships have quite variable se-
mantics depending on the regarded application domain. In
most configuration environments, a part-whole relationship
is described by the two basic rolespartof and haspart.
Depending on the intended semantics, different additional
restrictions can be placed on the usage of those roles. In
the following these two basic roles (which can be refined
with domain specific semantics if needed) are introduced.
We discuss two facets of part-whole relationships which
are widely used for configuration knowledge representa-
tion and are also provided by UML, namelycomposite
and shared part-whole relationships. In UML composite
part-whole relationships are denoted by a black diamond,

shared part-whole relationships are denoted by a white
diamond7. If a component is a compositional part of another
component then strong ownership is required, i.e., it must
be part of exactly one component. If a component is a
non-compositional (shared) part of another component, it
can be shared between different components. Multiplicities
used to describe a part-whole relationship denote how many
parts the aggregate can consist of and between how many
aggregates a part can be shared if the aggregation is non-
composite. The basic structure of a part-whole relationship
is shown in Figure 2.

Rule 3 (Part-whole relationships): Let w and p be

MB

<<Component>>

CPU

clockrate : 300..500

<<Component>>

1..1

1..2

+cpu-of-mb

+mb-of-cpu

lb
w

ub
w

lb
p

ub
p

w

p

p-of-w

w-of-p

Fig. 2.Part-whole relationships

component types inGREP , wherep is a part ofw andubp
is the upper bound,lbp the lower bound of the multiplicity
of the part, andubw is the upper bound,lbw the lower
bound of the multiplicity of the whole. Furthermore let
w-of-p and p-of-w denote the names of the roles of the
part-whole relationship betweenw and p, where w-of-p
denotes the role connecting the part with the whole and
p-of-w denotes the role connecting the whole with the
part, i.e.,p-of-wv haspart, w-of-pv Partofmode, where
Partofmode ∈ {partofcomposite, partofshared}. The
rolespartofcomposite andpartofshared are assumed to be
disjoint, wherepartofcomposite v partof andpartofshared
v partof .DD is extended with

slot-defw-of-psubslot-ofPartofmode inversep-of-w
domainp rangew.
slot-defp-of-wsubslot-ofhaspartinversew-of-p
domainw rangep.
p: slot-constraintw-of-pmin-cardinalitylbw w.
p: slot-constraintw-of-pmax-cardinalityubw w.
w: slot-constraintp-of-wmin-cardinalitylbp p.
w: slot-constraintp-of-wmax-cardinalityubp p. 2

Remark: The semantics ofshared part-whole relation-
ships (partofshared v partof) are defined by simply
restricting the upper bound and the lower bound of the
corresponding roles. In addition the following restriction
must hold for each concept using partof relationships:

7 Note that in ourComputer configuration example we only use
composite part-whole relationships - as mentioned in [12], com-
posite part-whole relationships are often used when modeling
physical products, whereas shared part-whole relationships are
used to describe abstract entities such as services. The lower and
upper bounds of the whole are not explicitly modeled (see Figure
1) - if not explicitly mentioned we assume multiplicity 1.

Configuration Knowledge Bases for the Semantic Web 15

(((slot-constraint partofcomposite cardinality 1 top)
and (slot-constraint partofshared cardinality 0 top)) or
(slot-constraintpartofcomposite cardinality 0 top)).

This restriction denotes the fact that a component which
is connected to a whole via composite relationship must not
be connected to any other component.2

Example 3 (MB partof Computer):
slot-defcomputer-of-mbsubslot-ofpartofcomposite

inversemb-of-computer
domainMB rangeComputer.

slot-defmb-of-computersubslot-ofhaspart
inversecomputer-of-mb
domainComputer rangeMB.

MB: slot-constraintcomputer-of-mbmin-cardinality
1 Computer.

MB: slot-constraintcomputer-of-mbmax-cardinality
1 Computer.

Computer: slot-constraintmb-of-computer
min-cardinality 1MB.

Computer: slot-constraintmb-of-computer
max-cardinality 2MB. 2

Necessary part-of structure properties. In the fol-
lowing we show how the constraints contained in a product
configuration model (e.g., anIDEUnit requires anMB1)
can be translated into a corresponding OIL representation.
For a consistent application of the translation rules it must
be ensured that the components involved are parts of the
same sub-configuration, i.e., the involved components must
be connected to the same instance of the component type
that represents the common root8 for these components (the
components are within the same mereological context [12]).
This can simply be expressed by the notion that component
types in such a hierarchy must each have a unique superior
component type inGREP . If this uniqueness property
is not satisfied, the meaning of the imposed (graphically
represented) constraints becomes ambiguous, since one
component can be part of more than one substructure and
consequently the scope of the constraint becomes ambigu-
ous.
For the derivation of constraints on the product model
we introduce the macronavpath as an abbreviation for
a navigation expression over roles. For the definition of
navpath the UML configuration model can be interpreted
as a directed graph, where component types are represented
by vertices and part-whole relationships are represented by
edges.

Definition 3 (Navigation expression):Let path(c1, cn) be
a path from a component typec1 to a component typecn
in GREP represented through a sequence of expressions
of the form haspart(Ci, Cj , NameCi) denoting a direct
partof relationship between the component typesCi and
Cj . Furthermore,NameCi represents the name of the
correspondinghaspart role. Such a path inGREP is
represented as

8 In Figure 3 the component typeComputeris the unique common
root of the component typesIDEUnit andCPU1.

path(c1, cn) =< haspart(c1, c2, namec1),
haspart(c2, c3, namec2), ...,
haspart(cn−1, cn, namecn−1) >
Based on the definition ofpath(c1, cn) we can define the
macronavpath(c1, cn) as

slot-constraintnamec1
has-value(slot-constraintnamec2 ...

has-value(slot-constraintnamecn−1 has-valuecn)...).
2

Example 4 (navpath(Computer, CPU1)):
Computer: slot-constraintmb-of-computer

has-value (slot-constraintcpu-of-mbhas-valueCPU1).
2

The concept of anearest common rootis based on the
definition ofnavpath as follows.

Definition 4 (Nearest common root): A component
typer is denoted as nearest common root of the component
typesc1 andc2 in GREP , iff there exist pathspath(r, c1),
path(r, c2) and there does not exist a component typer′,
wherer′ is a part9 of r with pathspath(r′, c1), path(r′, c2).
2

When regarding the example configuration model of
Figure 1,MB is the nearest common root ofCPU and
V ideocard. Conform to Definition 4 the component type
Computer is not a nearest common root ofCPU and
V ideocard. As shown in Figure 3, the component type
Computer is the nearest common root of the component
typesIDEUnit andCPU1.

CPU

clockrate : 300..500

<<Component>>

HDUnit

<<Component>>

MB

<<Component>>

Computer

<<Component>>

CPU1

clockrate : 300

<<Component>>

SCSIUnit

<<Component>>

CPU2

clockrate : 500

<<Component>>

IDEUnit

<<Component>>

1..2

1..6

1..2

1..2
1..6
 1..2

navpath(Computer, CPU1)

navpath(Computer, IDEUnit)

Fig. 3.Navigation paths fromComputer toCPU1 andIDEUnit

Requirement constraints.A requiresconstraint between
two component typesc1 and c2 in GREP denotes the
fact that the existence of an instance of component typec1
requires that an instance of component typec2 exists and is
part of the same (sub)configuration.

Rule 4 (Requirement constraints): Given the rela-
tionshipc1 requiresc2 between the component typesc1 and
c2 in GREP with r as common root ofc1 andc2, thenDD
is extended with

r: ((not(navpath(r, c1))) or navpath(r, c2)). 2

9 In this contextpartof is assumed to be transitive.

16 Alexander Felfernig et al.

The condition part of the implication describes a path from
the common root to the componentc1; the consequent con-
tains a corresponding path to the required componentc2.

Example 5 (IDEUnit requiresMB1):

Computer: ((not (slot-constraint hdunit-of-computer
has-valueIDEUnit)) or (slot-constraintmb-of-computer
has-valueMB1)) 2

Compatibility constraints. A compatibility constraint
between a set of component typesc={c1, c2, ..., cn} in
GREP denotes the fact that the existence of a tuple of
instances corresponding to the types inc is not allowed in a
final configuration (result).

Rule 5 (Compatibility constraints): Given a com-
patibility constraint between a set of component types
c={c1, c2, ..., cn} in GREP with r as common root of
{c1, c2, ..., cn}, thenDD is extended with

r: (not((navpath(r, c1)) and (navpath(r, c2)) and ... and
(navpath(r, cn))). 2

Example 6 (SCSIUnit incompatible with MB1):

Computer: (not ((slot-constraint hdunit-of-computer
has-valueSCSIUnit) and (slot-constraintmb-of-computer
has-valueMB1))). 2

Resource constraints. Resource constraints can be
modeled in UML using stereotyped classes representing
types of resources and stereotyped dependencies with a
corresponding tagged value indicating resource production
and consumption. Resource balancing tasks [3] are defined
within a (sub)tree (context) of the configuration model.
To map a resource balancing task intoDD, additional
attributes (resp and resc in the following) have to be
defined for the component types acting as producers and
consumers. In addition we have to introduce aggregate
functions as representation concepts, which are currently
supported neither in OIL nor DAML+OIL. However, there
exist proposals [24] to extend description logics by concepts
which allow the modeling of such resource constructs. The
following representation of aggregate functions is based on
the formalism presented in [24], where a set of predicates
P associated with binary relations (e.g.,≤, ≥, <, >) over
a value domaindom(D) and a set of aggregation functions
agg(D) (e.g., count,min,max, sum) are defined. Let
φ be the path leading to the concept whose features are
aggregated. Then the definitions of [24] require that all but
the last one of the roles inφ must be features, i.e. functional
relations.

Rule 6 (Resource constraints): Let p = {p1, p2, ..., pn}
be producing component types andc = {c1, c2, ..., cm} be
consuming component types of resourceres in GREP .
Furthermore, letresp be a feature common to all component
types inp, and resc be a feature common to the types in
c, where the values ofresp and resc are defined by the
tagged values of the consumes and produces dependencies
in GREP .

A resource constraint forDDDL can be expressed as

r: P (r1
1 r

1
2 ... r1

n−1 Σ(r1
n ◦ resp), r2

1 r
2
2 ... r2

m−1

Σ(r2
m ◦ resc))

wherer represents the nearest common root of the ele-
ments inc andp, P is a binary relation, and ¡r1

1, r
1
2, ..., r

1
n¿,

¡r2
1, r

2
2, ..., r

2
m¿ represent navigation paths fromr to the ele-

ments ofp andc. 2

Example 7 (Capacity needed bySoftware ≤ Capacity
provided by HDUnit):
DTPSoftware: slot-constraintCapacity cardinality
1 (equal 50).
Textedit: slot-constraintCapacity cardinality
1 (equal 100).
SCSIUnit: slot-constraintCapacity cardinality
1 (equal 20000).
IDEUnit: slot-constraintCapacity cardinality
1 (equal 10000).
Computer : lesseq (sum(sw-of-computer◦Capacity),
sum(hdunit-of-computer◦Capacity)). 2

Port connections.Ports in the UML configuration model
(see Figure 4) represent physical connection points be-
tween components (e.g., aV ideocard can be connected
to a Screen using the port combinationvideoport1 and
screenport2). In UML we introduce ports using classes with
stereotypePort - these ports are connected to component
types using part-whole relationships.
In order to represent port connections in OIL, we introduce
them via a separate conceptPort10. The role compnt
indicates the component concept that the port belongs to,
the roleportname determines its name, and the roleconn
describes the relation to the counterpart port concept of the
connected component.

Rule 7 (Port connections): Let {a, b} be component
types inGREP , {pa, pb} be the corresponding connected
port types,{ma, mb} the multiplicities of the port types
with respect to{a, b}11, and{{lbpa, ubpa }, {lbpb, lbpb}}
the lower bound and upper bound of the multiplicities of the
port types with respect to{pa, pb}, thenDD is extended
with

class-defpa subclass-ofPort.
class-defpb subclass-ofPort.
pa: slot-constraintportname cardinality 1
(one-ofpa1 ... pama).
pa: slot-constraintconn min-cardinalitylbpa pb.
pa: slot-constraintconn max-cardinalityubpa pb.
pa: slot-constraintconn value-typepb.
pa: slot-constraintcompnt cardinality 1a.
pb: slot-constraintportname cardinality 1
(one-ofpb1 ... pbmb).
pb: slot-constraintconn min-cardinalitylbpb pa.
pb: slot-constraintconn max-cardinalityubpb pa.
pb: slot-constraintconn value-typepa.
pb: slot-constraintcompnt cardinality 1b. 2

Example 8 (V ideocard connected toScreen):

10 Note, that in OIL there are only predicates with arity 1 or 2 avail-
able, therefore the representation of port connections must be re-
alized by the definition of additional concepts.

11 In this context no differentiation between lower and upper bound
is needed since the number of ports of a component is exactly
known beforehand.

Configuration Knowledge Bases for the Semantic Web 17

Videocard

<<Component>>

Screen

<<Component>>

2
2

videoport

<<Port>>

screenport

<<Port>>

1..1
 0..1

<<conn>>

a
 b

pa
 pb

ma

mb

lb
pa
 ub
pa
lb
pb
 ub
pb

Fig. 4.Ports in the configuration model

class-defvideoport subclass-ofPort.
class-defscreenport subclass-ofPort.
videoport: slot-constraintportname cardinality 1
one-of (videoport1 videoport2).
videoport: slot-constraintconn min-cardinality0
screenport.
videoport: slot-constraintconn max-cardinality1
screenport.
videoport: slot-constraintconn value-typescreenport.
videoport: slot-constraintcompnt cardinality
1 V ideocard.
screenport: slot-constraintportname cardinality 1
(one-ofscreenport1 screenport2).
screenport: slot-constraintconn min-cardinality1
videoport.
screenport: slot-constraintconn max-cardinality1
videoport.
screenport: slot-constraintconn value-typevideoport.
screenport: slot-constraintcompnt cardinality 1Screen.

2

Using the defined structure for port connections, the con-
straint ”a V ideocard must be connected viavideoport1
with a Screen via screenport1” can be formulated as
follows.

Example 9:V ideocard:
(slot-constraintvideoport-of-videocardhas-value
((slot-constraintportname has-value

(one-ofvideoport1)) and
(slot-constraintconn has-value
((slot-constraintcompnt has-valueScreen) and
(slot-constraintportname has-value

(one-ofscreenport1)))))). 2

The application of the modeling concepts presented in
this paper has its limits when building configuration knowl-
edge bases in some domains there exist complex constraints
that do not have an intuitive graphical representation, i.e.
cannot be modeled using the graphical constraints presented
in this paper. Happily (with some minor restrictions), we
are able to represent such constraints using languages such
as OIL or DAML+OIL12. UML itself has an integrated
constraint language (Object Constraint Language - OCL
12 In [19] those restrictions are discussed in detail - basically ag-

gregate functions, roles with arity greater than two and an asser-
tional language allowing the usage of variables were identified as
concepts additionally needed for building configuration models.

[25]) which allows the formulation of constraints on ob-
ject structures. The translation of OCL constraints into
representations of Semantic Web ontology languages is
the subject of future work, a translation into a predicate
logic based representation of a configuration problem has
already been discussed in [26]. The current version of our
prototype workbench supports the generation of OIL-based
configuration knowledge bases from UML models which are
built using the modeling concepts presented in this paper, i.e.
concepts for designing the product structure and concepts
for defining basic constraints (e.g.requires) on the product
structure.

5 Related Work

The definition of a common representation language to
support knowledge interchange between and integration of
different knowledge-based systems are important issues in
the configuration domain. In [12] one approach to collect rel-
evant concepts for modeling configuration knowledge bases
is presented. The defined ontology is based on Ontolingua
[27] and represents a synthesis of resource-based, function-
based, connection-based, and structure-based configuration
approaches. This ontology is a kind of meta-ontology which
is similar to the UML profile for configuration models
presented in this paper. Conforming to the definition of [16]
a UML configuration model is an ontology, i.e. it restricts the
sorts of objects relevant for the domain, defines the possible
properties of objects and the relationships between objects.
Compared to the approach presented in this paper, [12] do
not provide a formal semantics for the proposed modeling
concepts.

The work of [28] shows some similarities to the work pre-
sented in this paper. Starting with a UML ontology (which
is basically represented as a class diagram) corresponding
JAVA classes and RDF documents are generated. The work
presented in this paper goes one step further by providing
a UML profile for the configuration domain and a set of
rules allowing the automatic derivation of executable con-
figuration knowledge bases. The correspondence between
Semantic Web ontology languages and UML is shown on the
object level as well as on the constraint level, where a set of
domain specific constraints (e.g.requires) are introduced as
stereotypes in the configuration profile - for these constraints
a representation in OIL has been shown.

Most of the required means for expressing configuration
knowledge are already provided by current versions of Se-
mantic Web knowledge representation languages. However,
in order to provide full fledged configuration knowledge rep-
resentation, certain additional expressivity properties must be
fulfilled - this issue is discussed in [19], where aggregation
functions, n-ary relationships, and the provision of variables
have been identified as the major required add-ons for on-
tology languages such as DAML+OIL. Within the Semantic
Web community there are ongoing efforts to increase the ex-
pressiveness of Web ontology languages. DAML-L [29] is a
language which builds upon the basic concepts of DAML.
RuleML [30], CIF (Constraint Interchange Format) [31], or
TRIPLE [32] are similar approaches with the goal to provide

18 Alexander Felfernig et al.

rule languages for the Semantic Web - an investigation of
those languages w.r.t. to configuration knowledge represen-
tation is the subject of future work.

6 Conclusions

In this paper we presented an approach to integrate the de-
velopment of configuration knowledge bases for the Seman-
tic Web into standard industrial software development pro-
cesses. Founded on a description logic based definition of a
configuration task, we presented a set of rules for translating
UML configuration models into a corresponding OIL-based
representation enabling model checking for UML configura-
tion models and knowledge sharing between different con-
figurators in Web-based environments. Our approach sup-
ports the design of customizable product and service models
in an intuitive graphical manner, which eases the integration
task in the context of distributed configuration problem solv-
ing. The concepts presented in this paper are implemented in
a corresponding configuration knowledge acquisition work-
bench.

References

1. Barker, V., O’Connor, D., Bachant, J., Soloway, E.: Expert sys-
tems for configuration at Digital: XCON and beyond. Commu-
nications of the ACM32 (1989) 298–318

2. Fleischanderl, G., Friedrich, G., Haselböck, A., Schreiner, H.,
Stumptner, M.: Configuring Large Systems Using Generative
Constraint Satisfaction. IEEE Intelligent Systems13 (1998)
59–68

3. M. Heinrich, E.J.: A resource-based paradigm for the con-
figuring of technical systems from modular components. In:
Proceedings of the7th IEEE Conference on AI applciations
(CAIA), Miami, FL, USA (1991) 257–264

4. Wright, J., Weixelbaum, E., Vesonder, G., Brown, K., Palmer,
S., Berman, J., Moore, H.: A Knowledge-Based Configurator
that supports Sales, Engineering, and Manufacturing at AT&T
Network Systems. AI Magazine14 (1993) 69–80

5. Sabin, D., Weigel, R.: Product Configuration Frameworks -
A Survey. In Faltings, B., Freuder, E., eds.: IEEE Intelligent
Systems, Special Issue on Configuration. Volume 13. IEEE
(1998) 50–58

6. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: Web-
based Configuration of Virtual Private Networks with Multiple
Suppliers, Cambridge, UK, Kluwer Academic Publisher (2002)

7. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: Semantic
Configuration Web Services in the CAWICOMS Project, Sar-
dinia, Italy (2002)

8. Fensel, D., vanHarmelen, F., Horrocks, I., McGuinness, D.,
Patel-Schneider, P.: OIL: An Ontology Infrastructure for the
Semantic Web. IEEE Intelligent Systems16 (2001) 38–45

9. vanHarmelen, F., Patel-Schneider, P., Horrocks, I.: A Model-
Theoretic Semantics for DAML+OIL. www.daml.org (March
2001)

10. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling
Language Reference Manual. Addison-Wesley (1998)

11. Felfernig, A., Friedrich, G., Jannach, D.: UML as domain spe-
cific language for the construction of knowledge-based config-
uration systems. International Journal of Software Engineering
and Knowledge Engineering (IJSEKE)10 (2000) 449–469

12. Soininen, T., Tiihonen, J., Mnnist, T., Sulonen, R.: Towards
a General Ontology of Configuration. AI Engineering Design
Analysis and Manufacturing Journal, Special Issue: Configura-
tion Design12 (1998) 357–372

13. Booch, G.: Object-Oriented Analysis and Design with Appli-
cations. Addison-Wesley Object Technology Series (1994)

14. Jacobson, I., Christerson, M., vergaard, G.: Object-oriented
Software Engineering - A Use-Case Driven Approach.
Addison- Wesley (1992)

15. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen,
W.: Object-Oriented Modeling and Design, New Jersey, USA
(1991)

16. Chandrasekaran, B., Josephson, J., Benjamins, R.: What Are
Ontologies, and Why do we Need Them? IEEE Intelligent Sys-
tems14,1(1999) 20–26

17. Mittal, S., Frayman, F.: Towards a Generic Model of Configu-
ration Tasks. In: Proceedings11th International Joint Conf. on
Artificial Intelligence, Detroit, MI (1989) 1395–1401

18. Stumptner, M.: An overview of knowledge-based configura-
tion. AI Communications10 (June, 1997)

19. Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M.,
Zanker, M.: A Joint Foundation for Configuration in the Se-
mantic Web. Technical Report KLU-IFI-02-05 (2001)

20. Borgida, A.: On the relative expressive power of description
logics and predicate calculus. Artificial Intelligence82 (1996)
353–367

21. Ardissono, L., Felfernig, A., Friedrich, G., Jannach, D., Zanker,
M., Schfer, R.: Customer-Adaptive and Distributed Online
Product Configuration in the CAWICOMS Project. In Pro-
ceedings of the Workshop on Configuration, in conjunction
with the 17th International Conference on Artificial Intelli-
gence (IJCAI-2001) (to appear) (2001)

22. Artale, A., Franconi, E., Guarino, N., Pazzi, L.: Part-Whole
Relations in Object-Centered Systems: An Overview. Data &
Knowledge Engineering20 (1996) 347–383

23. Sattler, U.: Description Logics for the Representation of Ag-
gregated Objects. In: Proceedings of the14th European Con-
ference on Artificial Intelligence (ECAI 2000), Berlin, Ger-
many (2000) 239–243

24. Baader, F., Sattler, U.: Description Logics with Concrete Do-
mains and Aggregation. In: Proceedings of the13th European
Conference on Artificial Intelligence (ECAI ’98), Brighton,
UK (1998) 336–340

25. Warmer, J., Kleppe, A.: The Object Constraint Language - Pre-
cise Modeling with UML. Addison Wesley Object Technology
Series (1999)

26. Felfernig, A., Friedrich, G., Jannach, D.: Generating product
configuration knowledge bases from precise domain extended
UML models. In: Proceedings of the12th International Con-
ference on Software Engineering and Knowledge Engineering
(SEKE’2000), Chicago, USA (2000) 284–293

27. Gruber, T.: Ontolingua: A mechanism to support portable on-
tologies. Technical Report KSL 91-66 (1992)

28. Cranefield, S.: UML and the Semantic Web. In: Semantic Web
Working Symposium, Stanford, CA, USA (2001)

29. McIlraith, S., Son, T., Zeng, H.: Mobilizing the Semantic Web
with DAML-Enabled Web Services. In: Proceedings of the IJ-
CAI 2001 Workshop on E-Business and the Intelligent Web,
Seattle, WA (2001) 29–39

30. Grosof, B.: Standardizing XML Rules. In: Proceedings of the
IJCAI 2001 Workshop on E-Business and the Intelligent Web,
Seattle, WA (2001) 2–3

31. Gray, P., Hui, K., Preece, A.: An Expressive Constraint Lan-
guage for Semantic Web Applications. In: Proceedings of the
IJCAI 2001 Workshop on E-Business and the Intelligent Web,
Seattle, WA (2001) 46–53

32. Sintek, M., Decker, S.: TRIPLE - A Query, Inference, and
Transformation Language for the Semantic Web. In: to ap-
pear: Proceedings of International Semantic Web Conference
(ISWC), Sardinia, Italy (2002)

On Modeling Conformance for Flexible Transformation over Data Models?

Shawn Bowers and Lois Delcambre

OGI School of Science & Engineering, OHSU
Beaverton, Oregon 97006, USA
{shawn, lmd }@cse.ogi.edu

Abstract. Many useful and commonly used data
models exist for structured information. Such mod-
els often use only a limited number ofbasic struc-
tures to represent information such as sets, bags,
lists, attribute-value pairs, and scalars. They differ,
however, in whether or not theypermit the speci-
fication of schema (or DTD or template), whether
they permitmore than oneschema, and whether
they require schema. Some even allow multiple
levels of schema-instance conformance (e.g., RDF
and Topic Maps) where the type of an instance is
an instance, and so on. Support for transforming
between such varying representation schemes re-
mains a significant challenge. We extend our earlier
work on generic representation and transformation
of model-based information by introducing a richer
metamodel and abstract framework for representa-
tion. We also introduce several steps toward our vi-
sion of high-level transformations where complex
mapping rules are defined using transformation pat-
terns and by exploiting inherent constraints.

1 Introduction

Taking information in one representation scheme (such as
XML) and extracting some or all of it for use in another
scheme (such as a Topic Map, a Relational database, or
as RDF triples) is a suprisingly difficult task. In fact, few
tools exist to help perform such transformations, which
means that (potentially) complex, special purpose programs
must be written for even very simple mappings. One rea-
son such conversions are difficult is that representation
schemes differ in the basic structural constructs and schema
constraints they provide for organizing information. As a
consequence, straightforward, one-to-one mappings between
schemes rarely exist. In addition, the absence of high-level
languages for expressing transformations between schemes
places the burden of conversion on these special-purpose pro-
grams, making it difficult to define, maintain, and reason
about transformations.

We observe, however, that structured information is typi-
cally based on a small set of structural constructs, composed
in various ways. When described explicitly, these structural
constructs can be exploited directly for transformation. For
example, the constructs offered by the Relational model can
be viewed as a set of tables, each consisting of a bag of rows,
where each row has a set of named atomic or scalar attribute
values. Similarly, an XML document can be viewed as a set
of elements, possibly with attributes, where each element
has a list of sub-elements or scalar values (PCDATA). We
propose that a wide range of useful transformations can be
? This work supported in part by the National Science Foundation

through grants EIA 9983518 and IIS 9817492.

performed through mappings between representation scheme
constructs,e.g., elements to tuples in tables, and so on.

To this end, we present a uniform framework that allows
the description of arbitrary representation schemes along
with a transformation language that can easily convert infor-
mation within and across schemes. The goals of our research
are to:

1. capture the representation scheme or data model
explicitly—by instantiating and composing the basic
structures (or construct types) of a metamodel,

2. support representation schemes with varying types of
conformance,i.e., we model schema-instance relation-
ships for representation schemes where schema (or type
information) can be required, optional, or can occur at
multiple levels, and

3. express transformation rules declaratively,e.g., by allow-
ing users to indicate simple correspondences between
data model constructs and converting the associated in-
formation automatically.

This paper is organized as follows. Section 2 describes var-
ious data models and representation schemes, with emphasis
on how each differs in their use of conformance relationships.
Section 3 presents the uniform framework for representing
structured information, along with the four relationships of
interest. Section 4 introduces transformation rules that ex-
ploit this representation and also discusses the possibility of
higher-level transformation rules, making rule specification
easier. Section 5 discusses related work and we conclude in
Section 6 with a brief discussion of work in progress.

2 Data Models and Conformance

Database systems areschema-firstin that a schema must be
defined before any data can be placed in the database. The
role of the schema is to introduce and name application-
specific structures (such as the “Employee” table with “SSN”
and “Name” as attributes for Employee) that will be used to
hold application data. A schema imposes uniform structure
and constraints on application data. Various tools such as a
query processor, in turn, can exploit this uniform structure.

A number of data models exists that are not schema-first,
including XML and other semi-structured models, RDF, the
Topic Map Model, and various hypertext data models [1,2].
Both RDF and XML are models where the schema,i.e., the
RDF schema or DTD, respectively, is optional. More than
that, even with a schema, the Topic Map model, RDF, and
XML (with an “open” DTD) permit additional, schema-free
structures to be freely mixed with structures that conform to
a schema.

We modelconformance relationshipsexplicitly, as appro-
priate, for each data model of interest. Table 1 provides

20 Bowers and Delcambre

example data models with some of their associated struc-
tures that participate in conformance. For example, in object-
oriented models, objects conform to classes, whereas in
XML, elements conform to element types, and so on.

Table 1.Example data model structures involved in conformance

Data Model Selected structures, related by the conformance
relationship

Object-OrientedObjects conform to Classes.
Relational A Table of Tuples conforms to a Relation Scheme.
XML w/ DTD Elements conform to Element Types and

Attributes to Attribute Types.
RDF w/ RDFS Objects (resources) conform to Classes and

Properties to Property Types.
XTM Topics conform to Topic Types (Topics),

Associations conform to Association Types
(Topics), and Occurences conform to Occurence
Types (Topics).

E-R Entities conform to Entity Types, Relationships
conform to Relationship Types, and Values
conform to Value Types.

Table 2 describes some of the properties of conformance
that are present in the data models of Table 1. First, we con-
sider how the conformance relationship is established with
three possibilities: implicitly, upon request, and explicitly as
shown in the first section of Table 2. In the next section of Ta-
ble 2, we see that the schema-first models also require confor-
mance for their data values whereas the other models do not.
And the models with optional conformance are also open:
they permit conforming and non-conforming data to be freely
mixed, as shown in the third section of Table 2. Some models
allow a construct to conform to several structures, namely all
but the relational model (fourth section of Table 2). Finally,
we see that all of the non-schema-first models except XML
permit multiple levels of conformance.

To represent a wide range of data models explicitly, we
must support variations in the conformance relationship as
shown by Table 2. We discuss the details of our representa-
tion in the next section, discuss transformation in Section 4,
and further consider related work in Section 5.

3 The Uniform Framework

The main component of the uniform framework is a three-
level, metamodel architecture that incorporates conformance
relationships. In this section, we describe our metamodel ar-
chitecture, introduce a concrete metamodel (i.e., a specific
set of basic structures), and present a logic-based description
language that enables uniform data model, schema, and in-
stance description.

3.1 The Generic Metamodel Architecture

Figure 1 exemplifies a typical metamodel architecture. As
shown, the architecture has four levels: the metamodel, data
model, schema, and data levels, where each item in a level
is considered an instance of an item in the level above it.

Table 2.Examples properties of the conformance relationship

Conformance Data Model
Properties
How is the conformance relationship established?
when data is createdObject-Oriented, Relational, and E-R
(implicitly)
when computed XML w/ DTD (documents must be validated)
(upon request)
when conformance isRDF w/ RDFS (viardf:type property) and
declared (explicitly) XTM (via class-instance association)
Is conformance required?
required Object-Oriented, Relational, and E-R
optional RDF (RDF Schema is not required),

XTM (type information not required), and
XML (DTD is not required)

Is conformance open?
no Object-Oriented, Relational, and E-R
yes RDF w/ RDFS, XTM, and XML
Is multiple conformance allowed?
no Relational
yes Object-Oriented (inheritance), RDF w/ RDFS

(Property/Class with multiple inheritance),
XTM (Topics can be instances of multiple
Topic Types), and E-R

How many levels of conformance are permitted?
one Relational, E-R, and

Object-Oriented (when not in the next entry)
two (sometimes) Object-Oriented (some models support classes

as objects)
zero to any number XML (zero or one), XTM, and RDF

As shown, typical metamodel architectures are characterized
by their assumption that data models are schema-first,i.e.,
schema items must be created prior to data items.

In contrast, Figure 2 shows the three-level metamodel ar-
chitecture we employ. The top level (denoted as the meta-
model) consists ofconstruct types, which represent the ba-
sic structures used within data models for defining schema
and data. Examples include types such as collection, name-
value pair, atomic, and so on. The middle layer defines data
model and schemaconstructsalong with their composition.
For example, both aclass and object construct along
with an explicit conformance definition between them (rep-
resented by the relationship type labeledconf) are defined
in the middle layer. In this way, the metamodel is used to de-
fine all the constructs of the data model, not just those for
creating schema.

Finally, the bottom level representsinstancesand (data-
level) conformance relationships. For example, an object
(with the value “steve”) would be connected with a particular
class (with name “person”) using thed-inst relationship.

The architecture distinguishes three kinds of instance-of
relationships, in addition to the conformance relationship, as
shown in Figure 2. Constructs introduced in the middle layer
are necessarily an instance (ct-inst , read as “construct-
type instance”) of a metamodel construct type. (Note that
the metamodel currently has a range of basic structures as
construct types and the set of construct types can be eas-
ily extended if needed.) Similarly, any value introduced in
the bottom layer is necessarily an instance (c-inst , read

On Modeling Conformance for Flexible Transformation 21

(Types)
Schema

(Meta Types)
Data Model

(Meta Meta-Types)
Meta Model

Data
(Instances)

instance-of

instance-of

instance-of

class construct

meta construct

person (class)

 "steve" (person object)

Fig. 1.A typical four-level metamodel architecture.

(Data Constructs)
Data ModelData Model

(Schema Constructs)

Metamodel
(Construct Types)

Data
(Instances)

Schema
(Instances)

conf

ct-inst ct-inst

c-inst c-inst

d-inst

Fig. 2.The three-level metamodel architecture.

as “construct instance”) of the constructs introduced in the
middle layer. The flexibility of the framework is due to the
conformance relationships. Conformance relationships are
expressed within the middle layer (e.g., to indicate that an
XML element can optionally conform to an XML element
type) and the corresponding data-level instance-of relation-
ships (d-inst , read as “data instance”) expressed within
the bottom layer (e.g., to indicate that a particular element is
an instance of another element type).

To make our framework concrete, we introduce the no-
tion of aconfiguration, which consists of a particular choice
of metamodel (i.e., set of construct types), a particular data
model (i.e., constructs) defined using the construct types, and
a collection of instances defined using the constructs. A con-
figuration serves as input to a transformation. Thus, a trans-
formation takes one (or possibly more) configurations and
generates a new configuration.

A configurationC is a tuple(M,D, I, T) whose compo-
nents are defined as follows.

– M is a set of named construct types in the top layer. (The
Metamodel)

– D is a tuple(C,R) whereC is a set of named constructs
defined using the types ofM , andR is a set of ordered
pairs(c1, c2) for c1, c2 ∈ C denoting a conformance def-
inition and is read as “instances ofc1 can conform to
instances ofc2.” (The Middle Layer)

– I is a set of named instances. The name of an instance
acts as its unique identifier. (The Bottom Layer)

– T is a tuple(Tct, Tc, Td) in whichTct∪Tc∪Td is the set
of type-instance relationships of the configuration where
Tct, Tc, andTd are disjoint sets of ordered pairs(i1, i2)

such that fort ∈ Tct we requirei1 ∈ C andi2 ∈M (i.e.,
ct-inst), for t ∈ Tc we requirei1 ∈ I and i2 ∈ C
(i.e., c-inst), and fort ∈ Td we requirei1, i2 ∈ I (i.e.,
d-inst) such that(i1, c1), (i2, c2) ∈ TC and(c1, c2)∈
R. (Cross-Layer Connections and Data Instances)

We informally define construct type, construct, and in-
stance as follows.1

– A construct typect is a tuple(adt, P) such thatadt rep-
resents an abstract (or paramaterized) data type andP is
a set of restriction properties.

– A constructc is a tuple(ct, ρ) such thatct ∈ M is
a construct type for whichc is an instance (and hence
(c, ct) ∈ Tct) andρ is a set of restrictions that obeyP
and serve to restrict the instances of the construct and
define its compositional aspects.

– An instancei is a tuple(c, val) such thatc ∈ C andval
is a valid instance of its associated construct type’sadt
and obeys the restrictionsρ of c.

Intuitively, a construct type specificies a basic data struc-
ture. Thus, the value of a construct instance is an instance
of its construct type’s basic data structure. A description of
composition constraints on the basic structures (i.e., con-
structs) of a model is also given. For example, a particular
construct might represent a collection of name-value pairs.

3.2 Example Description Language and Basic
Structures

Here we introduce an example metamodel,i.e., a concrete
set of metamodel construct types, and demonstrate their use
for describing data models. We also present a logic-based
language for representing constructs and instances.

The construct types in this metamodel are collec-
tion, (specifically,set ct, list ct, bag ct), struct ct, and
scalar ct, representing collections, name-value pairs, and
atomic data (like strings and integers), respectively. We
should note that this choice of construct types is only one
possible set of structures that are sufficient for the data mod-
els we describe in this paper. Figure 3 shows the XML, Rela-
tional, RDF, and Topic Map data model constructs expressed
using our construct types (note that we useCOLLto represent
the collection construct types). Conformance is shown ex-
plicitly, e.g., XML elements can conform to element types,
Relational tables to schemes, RDF resources to resources,
and Topic Map associations to topics.

We use the following predicates for representing the in-
stance and conformance relationships of configurations.

ct-inst (c,ct) .
conf (c1,c2) .
c-inst (d,c) .
d-inst (d1,d2) .

Thect-inst predicate relates a construct (shown asc)
to a construct type (shown asct), which must be either
set ct, list ct, bag ct, struct ct, orscalar ct. Theconf

1 We are currently investigating methods for formally representing
construct types and constructs, however, such a formal descrip-
tion is not required for the purpose of this paper.

22 Bowers and Delcambre

XML/DTD Model
(Constructs) attrattrtypedoc

elemtype elem

cdata

SCALARSTRUCT

dtd

COLL

(Constructs)
Relational Model

SCALARSTRUCTCOLL

RDF Model
(Constructs)

(Constructs)
XTM Model

construct type instance (ct-inst)

conformance definition (conf)

domaintype

SCALAR

tuple

tablescheme

value

db

literaltripleresourcealtseqbagmodel

COLL

associationoccurrencetopictopicmap

COLL

STRUCT

STRUCT

Fig. 3.Relational, RDF, and XTM data models described within the
generic framework.

predicate specifies that a construct (shown asc1) can con-
form to another construct (shown asc2). Thec-inst pred-
icate relates an instance (shown asd) with a construct (shown
asc). Finally, thec-inst predicate defines a conformance
relationship between instances (shown asd1 andd2).

We introduce thecomp predicate for describing compo-
sition constraints over model constructs. The predicate can
take the following forms.

comp(c1, setof (c1, . . . ,cn)).
comp(c2, listof (c1, . . . ,cn)).
comp(c3, bagof (c1, . . . ,cn)).
comp(c4, structof (a1 →c1, . . . ,an →cn)) .
cmp(c5, union (c1, . . . ,cn)).

As shown, each kind ofcomp formula uses an additional
formula to specify composition constraints, namely,setof ,
listof , bagof , or structof . For example,c1 is as-
sumed to be defined asct-inst (c1, set ct) whose in-
stances are sets that can contain instances of constructsc1 ,
c2 , . . . , cn (i.e., the setof predicate defines the homo-
geneity of the construct’s instances). We also permit the def-
inition of convenience-constructs (as shown byc5 above),
which do not have correspondingct-inst formulas and
must be associated with aunion predicate. Such constructs
serve as a place-holder for the union of the corresponding
constructs.

The last predicate we define isval , which gives the value
of an instance. Each groundval formula must have an asso-
ciatedc-inst formula (which is also ground) of the appro-
priate form, as shown below.

val (d1, set (v1, . . . ,vn)).
val (d2, list (v1, . . . ,vn)).
val (d3, bag (v1, . . . ,vn)).
val (d4, struct (a1 =v1, . . . ,an =vn)).
val (d5, scalar (v)).

To illustrate the definition language, Figures 4, 5, 6, and
7 define (simplified versions of) the XML with DTD, Rela-
tional, Topic Map, and RDF data models, respectively. Note
that we assumestring is a default scalar construct for each
model and that the juxtaposition of entries is for exposition
only. Finally, Figure 8 shows example instances for the XML
model.

ct-inst (dtd, set ct) . ct-inst (elem-t, struct ct) .
ct-inst (attr-t, struct ct) . ct-inst (pcdata, scalar ct) .
ct-inst (subelem-t, struct ct) . ct-inst (attr-tset, set ct) .
ct-inst (doc, struct ct) . ct-inst (elem, struct ct) .
ct-inst (attr, struct ct) . ct-inst (attrset, set ct) .
ct-inst (nestedelem, struct ct) . ct-inst (cdata, scalar ct) .
conf (doc,dtd) . conf (elem,elem-t) .
conf (attr,attr-t) .

comp(dtd, setof (elem-t)) .
comp(elem-t, structof (tag →string,attrtypes →attr-tset)) .
comp(attr-t, structof (name→string)) .
comp(subelem-t, structof (parent →elem-t,child →elem-t)) .
comp(attr-tset, setof (attr-t)) .
comp(doc, structof (root →elem)) .
comp(elem, structof (tag →string,attrs →attrset)) .
comp(attr, structof (name→string,val →cdata)) .
comp(attrset, setof (attr)) .
comp(node, union (elem,pcdata)) .
comp(nestedelem, structof (parent →elem,child →node) .

Fig. 4.Simplified description of the XML with DTD data model.

ct-inst (db, set ct) . ct-inst (scheme, set ct) .
ct-inst (table, struct ct) . ct-inst (tuples, bag ct) .
ct-inst (tuple, set ct) . ct-inst (fieldtype, struct ct) .
ct-inst (field, struct ct) . ct-inst (domaintype, struct ct) .
ct-inst (value, scalar ct) . conf (taple,scheme) .
conf (tuple,scheme) . conf (value,domaintype) .

comp(db, setof (scheme,table)) .
comp(scheme, setof (fieldtype)) .
comp(table, structof (name→string,rows →tuples)) .
comp(tuples, bagof (tuple)) .
comp(tuple, setof (field)) .
comp(fieldtype, structof (name→string,dom →domaintype)) .
comp(field, structof (name→string,val →value)) .
comp(domaintype, structof (name→string)) .

Fig. 5.Simplified description of the Relational data model.

3.3 Specifying Constraints

In addition to describing composition of basic structures, we
also provide a mechanism for defining the constraints of a
data model. Namely, we leverage the logic-based description
language for constraints by allowing constraint expressions
(i.e., rules). We denote constraints using the annotationcon-
straint , e.g., the following rule defines a conformance
constraint over the Relational model.

On Modeling Conformance for Flexible Transformation 23

ct-inst (tm, set ct) . ct-inst (association, struct ct) .
ct-inst (topic, struct ct) . ct-inst (assoc-mem, struct ct) .
ct-inst (topic-occ, struct ct) . ct-inst (occurrence, struct ct) .
ct-inst (member, struct ct) . ct-inst (mem-topic, struct ct) .
ct-inst (resource, struct ct) . conf (topic,topic) .
conf (association,topic) . conf (occurrence,topic) .

comp(tm, setof (topic,assoc)) .
comp(topic, structof (name→string)) .
comp(topic-occ, structof (top →topic,occ →occurrence)) .
comp(occ-val, union (resource,string)) .
comp(occurrence, structof (val →occ-val)) .
comp(association, structof ()) .
comp(assoc-mem, structof (assoc →association,mem →member)) .
comp(member, structof (role →string)) .
comp(resource, structof (uri →string)) .

Fig. 6.Simplified description of the Topic Map (XTM) data model.

ct-inst (rdfmodel, set ct) . ct-inst (uriref, struct ct) .
ct-inst (literal, scalar ct) . ct-inst (blank, struct ct) .
ct-inst (alt, set ct) . ct-inst (seq, list ct) .
ct-inst (bag, bag ct) . ct-inst (triple, struct ct) .
conf (resource,resource) .

comp(rdfmodel, setof (literal,blank,triple,coll)) .
comp(resource, union (uriref,blank,coll,triple)) .
comp(node, union (resource,literal)) .
comp(uriref, structof (uri →string)) .
comp(blank, structof ()) .
comp(coll, union (set,bag,alt)) .
comp(alt, setof (node)) .
comp(seq, listof (node)) .
comp(bag, bagof (node)) .
comp(triple, structof (pred →uriref,subj →resource,

obj →node)) .

Fig. 7.Simplified description of the RDF data model.

(a).

<!ELEMENT activity (profession | hobbyist | ...)*>
<!ELEMENT profession (surgeon | professor | ...)*>
<!ELEMENT professor (#PCDATA)>

(b).

<activity>
<profession>

<professor>Lois</professor>
</profession>

</activity>

(c).

c-inst (t,dtd) . val (t, set (et1,et2,et3)) .
c-inst (t1,elem-t) . val (t1, struct (name =’activity’) .
c-inst (t2,elem-t) . val (t2, struct (name =’profession’) .
c-inst (t3,elem-t) . val (t3, struct (name =’professor’) .
c-inst (s1,subelem-t) . val (s1, struct (parent =t1,child =t2) .
c-inst (s2,subelem-t) . val (s2, struct (parent =t2,child =t3) .
c-inst (d, doc) . val (d, struct (root =e1) .
c-inst (e1,elem) . val (e1, struct (tag =’activity’)) .
c-inst (e2,elem) . val (e2, struct (tag =’profession’)) .
c-inst (e3,elem) . val (e3, struct (tag =’professor’)) .
c-inst (n1,nestedelem) . val (n1, struct (parent =e1,child =e2) .
c-inst (n2,nestedelem) . val (n2, struct (parent =e2,child =e3) .
c-inst (l,pcdata) . val (l, scalar (’Lois’)) .
c-inst (n3,nestedelem) . val (n3, struct (parent =e3,child =l) .
c-inst (d,t) . d-inst (e1,t1) .
d-inst (e2,t2) . d-inst (e3,t3) .

Fig. 8. An example (a) XML DTD, (b) conforming document, and
(c) both represented in the description language.

constraint: d-inst (X,Y) :-
c-inst (X,table) & c-inst (Y,scheme) &
not(d-inst (X,Yp) & Y 6=Yp) &
not(d-inst (Xp,Y) & X 6=Xp) &
val (X,B) & member(V,B) & d-inst (V,Y).

The constraint is read as: “X can conform to Y if X is a Ta-
ble, Y is a Scheme, X doesn’t conform to any other Schemes,
Y doesn’t have any other conforming Tables, and every Row
in X conforms to Y.” Note that specifying constraints in this
way provides a powerful mechanism for describing complex
data model descriptions.

4 Transforming Representation Schemes

In this section, we present a language for transforming repre-
sentation schemes based on horn-clause logic rules, provide
example mappings, and discuss higher-level transformations
for simplifying the specification and implementation of com-
plex transformations.

4.1 A Transformation Langauge

A transformation is applied to one or possibly more config-
urations in which the result is a new configuration. Here,
we only consider the case where a single configuration is
transformed. We define a transformation as a functionσ :
M × C → C′ whereM is a set ofmapping rules, C is the
source configuration, andC′ is the new configuration called
the “destination” of the transformation. The transformation
functionσ computes the fix-point of the mapping rules ap-
plied to the source and destination configurations.

Mapping rules can take the following form:

dp1 & . . . & dpn :- p 1 & . . . & pm,

where bothdp andp are (a) formulas (using the predicates
of Section 3) with ground literals or variables as arguments
or (b) the formulaID (I,id) . TheID predicate takes a list
I of input constants and provides a constant (i.e., id) that
serves as a unique identifier for the input list. TheID pred-
icate is implemented as a skolem function.2 The syntax we
use for mapping rules is shorthand for rules having a sin-
gle, outer formula in the head of the program clause (via the
head formula):

head (dp 1, . . . ,dp n) :- p 1 & p2 & . . . &
pm.

Mapping rules are read in the normal way,i.e., if eachpi
for 1 ≤ i ≤ n is true, then eachdpj for 1 ≤ j ≤ m is
true. Additionally, we permit two annotations on mapping
rule formulas. Theadd annotation indicates that the formula
be added to the destination configuration. Thedest anno-
tation matches formulas against those in the destination con-
figuration (the source configuration is the defaul). We do not
allow transformations to modify the source configuration.

2 We use the abbreviationID (v1+v2+ . . . ,id) to denote the list
[v1, v2, . . .]

24 Bowers and Delcambre

% element types become schemes
add: c-inst (S,scheme) :-

c-inst (ET,elem-t) & ID (ET,S) .
% attribute types become field types
add: c-inst (FT,fieldtype) :-

c-inst (AT,attr-t) & ID (AT,FT) .
% elements become tuples
add: c-inst (T,tuple) :-

c-inst (E,elem) & ID (E,T) .
% attribute become fields
add: c-inst (F,field) :-

c-inst (A,attr) & ID (A,F) .
% cdata to values
add: c-inst (V2,value) :-

c-inst (V1,cdata) & ID (V1,V2) .
% sub element types to schemes
add: c-inst (S,scheme) :-

c-inst (ST,subelem-t) & ID (ST,S) .
% field types for sub element type schemes
add: c-inst (FT1,fieldtype) &
add: c-inst (FT2,fieldtype) :-

c-inst (ST,subelem-t) &
val (ST, struct (parent →P,child →C) &
ID (ST+P,FT1) & ID (ST+C,FT2) .

% nested elements become tuples
add: c-inst (T,tuple) :-

c-inst (NE,nestedelem) & ID (NE,T) .
% each scheme has a table
add: c-inst (T,table) :-

dest: c-inst (S,scheme) & ID (S,T) .
% tables conform to their schemes
add: d-inst (T,S) :-

dest: d-inst (S,scheme) & ID (S,T) .
% values conform to the cdatatype domain type
add: d-inst (V,cdatatype) :-

dest: c-inst (V,value) .
% tuples conform to their schemes
add: d-inst (TP,S) :-

c-inst (E,elem) & ID (E,TP) & d-inst (E,ET) & ID (ET,S) .

Fig. 9.Rules for a model-to-model transformation.

4.2 An Example Model-to-Model Mapping

Figures 9 and 10 show a portion of a simple model-to-model
mapping between XML and the Relational model using their
descriptions from Section 3. Figure 9 shows instance and
conformance rules and Figure 10 shows basic structure con-
versions. This mapping converts XML element types to Rela-
tional schemes and converts the rest of the data accordingly.
Specifically, tables contain elements with their associated at-
tribute values and a new table is created for each subelement-
type relationship, which is where nested elements are stored.
Figure 11 shows the tables that would result from example
XML data. Note that we choose to skolemize each identifier
to assure uniqueness in the destination (e.g., the destination
may contain other values prior to the transformation).

While model-to-model transformations are useful, there
are a number of other transformations that can be supported
in this framework, including schema-to-schema, model-to-
schema (also call “modeling the model” [3]), and various
mixtures of each [4,5].

4.3 Higher-Level Transformations

While mapping rules are expressed using a declarative lan-
guage, they specify the low-level details of transformations.
Such an approach is attractive since it enables extremely
flexible transformations (e.g., model-to-model, schema-to-
schema, and arbitrary combinations), however, specifying
mapping rules is not trivial. In the remainder of this sec-
tion, we describe two approaches for higher-level rule spec-
ification (each of which builds on the current mapping rule

% create an empty scheme for each element type
add: val (S, set ()) :-

c-inst (ET,elem-t) & ID (ET,S) .
% add a field type for each attribute type
add: val (FT, struct (name =N,dom=cdatatype)) :-

c-inst (AT,attr-t) & val (AT, struct (name =N)) &
ID (AT,FT).

% add a field type for element ids
add: val (FT, struct (name =’id’,dom =stringtype)) :-

c-inst (ET,elemtype) & ID (ET+’id’,FT).
% add field types to associated element type schemes
add: member(FT,FTSet) :-

c-inst (ET,elem-t) &
val (ET, struct (tagname = ,attrtypes =ATSet)) &
val (ATSet,Set) & member(AT,Set) & ID (ET,S) &
ID (AT,FT) & dest: val (S,FTSet).

% create an empty scheme for each sub-element type
add: val (S, set ()) :-

c-inst (ST,subelem-t) & ID (ET,S) .
% create two field types for sub element type scheme
add: val (FT1, struct (name =PN,dom=stringtype)) &
add: val (FT2, struct (name =CN,dom=stringtype)) :-

c-inst (ST,subelem-t) &
val (ST, struct (parrenttype →P,childtype →C) &
val (P, struct (tagname →PN,attrtypes →) &
val (C, struct (tagname →CN,attrtypes →) &
ID (P,FT1) & ID (C,FT2).

% create a table element type
add: c-inst (R,tuples) & add: val (R, bag ()) &
add: val (T, struct (name =N, rows =R)) :-

c-inst (ET,elem-t) &
val (ET, struct (tagname →N,attrtypes →) &
ID (ET,S) & ID (S,T) & ID (T,R) .

% create a field for each attribute
add: val (F, struct (name→N,val →V)) :-

c-inst (A,attr) & val (A, struct (name→N,val →C) &
ID (A,F) & ID (C,V) .

% create a field for each element as an id
add: val (F, struct (name→’id’,val →V)) :-

c-inst (E,elem) & ID (E+’id’,F) & tostring(F, V) .
. . .

Fig. 10.Structural rules for a model-to-model transformation.

approach), which we believe can make writing rules sim-
pler. We briefly describetransformation patternsfor captur-
ing and re-using common transformation conventions and
discuss semi-automaticrule derivation, which is enabled
through our generic framework.

We view a transformation pattern as a mapping rule ab-
straction, i.e., a transformation pattern is a parameterized
specification taking mapping rules as input to create a more
complex transformation. In this way, patterns are analogous
to higher-order functions likemap and fold in functional
programming languages. In general, a pattern can be used as
a runtime operation where a set of arguments is provided to
perform the concrete transformation, or, as a mapping rule
generator,i.e., given a set of arguments, the pattern is used to
generate (one or more) concrete mapping rules.

<!ELEMENT professor (person)>
<!ATTLIST professor dept CDATA #REQUIRED>
<!ELEMENT person EMPTY>
<!ATTLIST person name CDATA #REQUIRED>

<professor dept=’’CSE’’>
<person name=’’Lois’’/>

</professor>

e1 "CSE"

Professor Table

deptid

e2

person

Professor-Person Table

professor

e1e2 "Lois"

name

Person Table

id

Fig. 11.Results from the XML to Relational transformation.

On Modeling Conformance for Flexible Transformation 25

For example, there are often many ways to transform be-
tween models allowing multiple levels of conformance to
models permitting only a single level. One such convention
is to flatten multiple levels of conformance, making the con-
formance implicit in the destination. A different convention
is to represent source instance-of relationships as hierarchi-
cal relationships in the destination (again, conformance be-
comes implicit). Examples are shown in Figure 12 where the
source is a Topic Map and the target a Relational database
(for the flattening approach) and an XML document (for the
hierarchy approach). The source has three levels of confor-
mance: topic “Lois” is an instance of topic “Professor”; topic
“Professor” is an instance of topic “Profession”; and topic
“Profession” is an instance of topic “Activity.”3 In the case
of XML, the hierarchical relationship is modeled as nested
elements, and for the Relational example, each table repre-
sents a path of the original conformance relationship.

Profession

topic

Activity

Professor

topic

Activity-Profession

</activity>

 </profession>

 </professor>

 Lois

 <professor>

<activity>

 <profession>

Hierarchy Conversion to XML

Topic

Activity Profession

Topic Topic

Professor Lois

Topic

T3T2T1T

Lois

topic

Activity-Profession-Professor

Flattened into the Relational Model

The Topic Map Model

Fig. 12. An example of flattening and hierarchy conversion of the
Topic Map model.

Figure 13 shows an example transformation pattern called
hierarchy-convert for generically applying the hier-
archy conversion. (The language shown for describing pat-
terns is for exposition only; we are currently developing a
pattern language for transformations.) The pattern takes five
arguments: the construct instanceT serving as the top item
of the multi-level conformance relationship (e.g., “Activity”
in Figure 12); a mapping ruleM1 to map source items to tar-
get items (e.g., topics to XML elements); a special mapping
rule M2 for converting items at the leaf level (e.g., instead of
mapping topics to elements, we would map topics to XML
element content); and mapping rulesA1 andA2 for attaching
the hierarchical relationships in the destination.

The hierarchy-convert pattern is broken into two
sub-rules. The first rule identifies items above the leaf con-
formance items (e.g., the “Activity” and “Profession” topics)
and converts them to target items (usingM1). The second rule
is similar, but for leaf nodes. In our example, the second rule
would convert the topic “Lois” into XML content (usingM2),
and attach it to the “Professor” element (usingA2).

We see a number of potential patterns as useful,e.g., a sim-
ple class of patterns are those that convert between construct

3 To see this is correctly modeled, notice that “Lois” is an instance
of a “Professor,” but not an instance of a “Profession.”

pattern:hierarchy-convert(T,M 1,M2,A 1,A 2) =
% convert inter-nodes T and T1
map T to S and T1 to S1 using rule M 1 &
attach S1 to S using rule A 1 :-

d-inst (T3,T2) & d-inst (T1,T) &
c-inst (T,C) & c-inst (T1,C) & c-inst (T2,C).

% convert last node
map T2 to S2 using rule M 1 &
map T3 to S3 using rule M 2 &
attach S3 to S2 using rule A 2 :-

d-inst (T3,T2) & not d-inst (T4,T3) &
c-inst (T2,C) & c-inst (T3,C) & c-inst (T4,C).

Fig. 13.Example of the conformance flattening pattern.

types. That is, patterns for converting lists to sets and bags,
flattening nested sets, merging sets, lists, bags, and structs,
and converting a group of structs into sets, and so on.

Patterns help make it easier to write rules by enabling the
reuse of commonly used transformations. Another approach
for simplifying rule writing is semi-automatic rule deriva-
tion. The goal is to generate the structural mapping rules (like
those in Figure 10) whenever possible from the simpler con-
struct level rules (such as those in Figure 9) by leveraging the
composition constraints of constructs.

For example, consider the excerpt of XML and Relational
models shown in Figure 14. The following mapping rule
specifies a construct transformation between XML element
types and Relational schemes.

c-inst (ET,scheme) :- c-inst (ET,elem-t) .

Based on the description and constraints of the source model,
we can conclude the following: (1) everyscheme must have
exactly onetable (and vice versa), (2) everytable is a
bag oftuple ’s, (3) everytuple must conform to itsta-
ble s conformingscheme , and (4) more than oneelem can
conform to anelem-t .

1:1

1:1

tuple table (bag)

0:n

1:1

scheme

Destination
composition

conformance

Source

elem

0:n

0:1

elem-t

Fig. 14.Source and destination constructs for rule derivation.

From the above mapping rule requesting eachelem-t
be converted to ascheme and the above constraints, it is
reasonable to consider the following mappings.

1. Eachelem should be mapped to atuple since many
elem ’s can be associated with eachelem-t , and it is
only throughtuple ’s that multiple items can be associ-
ated with a giventable .

2. A table should be created for each convertedelem-t
(i.e., each newscheme).

3. The correspondingtable (for the new scheme)
should contain the convertedtuple items.

Note that to generate these rules, we can employ struc-
tural transformation patterns,e.g., to convert the sourced-inst

26 Bowers and Delcambre

relations into a bag (table) of the appropriatetuples ,
and so on. Although a simple example, the derived rules are
equivalent to those used to map element types to schemes
in the transformation of Section 4.2. Thus, combining pat-
terns and constraint-based rule derivations can ease the task
of rule specification, both of which are enabled by the uni-
form framework. We intend to investigate both patterns and
rule derivation further.

5 Related Work

In this paper, we extent our earlier work [4,5], which in-
troduced the use of a uniform, RDF-based representation
scheme allowing model, schema, and instance information
to be represented in triples. First, the metamodel is signifi-
cantly more complex. It also has a relatively complete set of
structural primitives, including most database modeling con-
structs:struct (much like an object in object-oriented mod-
els) and explicit collection primitivesset, bag, andlist. More
importantly, these basic structures can be freely composed as
appropriate for the data model being described using the con-
straint facility. We also contribute a clear separation of basic
structures (i.e., construct types) from instance-of and confor-
mance relationships—this separation differs from RDF and
Topic Map models each having only a single version. Thus,
the choice of construct types (i.e., metamodel) is extensible
and the architecture can be exploited to provide high-level
transformation rules (i.e., patterns and constraint-based rule
derivation).

The metamodel architecture we propose is the only ap-
proach we know of that explicitly models conformance. Ex-
isting metamodel approaches [6,7,8,9,10,11] primarily focus
on solving database interoperability issues and assume (and
exploit) schema-first data models. Typically, transformation
is defined at the data model level or at the schema level (but
not both). The transformation approach we propose enables
mappings at differing levels of abstraction,e.g., model-to-
model, model-to-schema, and combinations of these. In ad-
dition, we permit partial mappings,i.e., we do not require
complete (or one-to-one) transformations.

The use of logic-based languages for transformation
has been successfully applied [10,12],e.g., WOL [12]
is a schema transformation language that uses first-order
logic rules for both schema transformations and specifying
(schema) constraints. Similar to WOL, we use a logic-based
approach for specifying constraints.

Finally, a number of recent model-to-model and model-to-
schema mappings (without a formal description of the trans-
formation) have been defined between XML and Relational
models [13] and between Topic Maps and RDF [3,14]. We
believe using a formal tranformation language can benefit
both defining such mappings, and implementing them.

6 Summary and Future Work

The three-level architecture we propose has the following
advantages. It allows the data model designer to explicitly
define when and how one construct conforms to another
(through conformance links). It can be used to describe mod-
els that require schema, don’t require schema, permit multi-

ple schemas, allow multiple levels of schema-instance con-
nections, and include any or all of these possibilities. It intro-
duces four explicit relationships,ct-inst, conformance, c-inst,
andd-inst, which can be easily exploited in a transformation
language as well as by other tools such as a query language
or a browser. Finally, it provides orthogonal, complementary
specification of conformance and instance-of relationships
versus composition and constraints for describing actual data
structures that exist in the information representation.

We believe patterns and constraint-based transformation
offer powerful mechanisms for specifying mapping rules and
intend to further investigate their use. We are also exploring
“in-place transformation” for performance optimization,i.e.,
transforming information without first converting it to an in-
termediate representation. Thus, mappings are implemented
by calls to the associated source and destination native tech-
nology. Such native rule generation is made possible by the
specification of the data model using the framework we have
presented.

References

1. Marshall, C., III, F.S., Coombs, J.: Viki: Spatial hypertext sup-
porting emergent structure. In: European Conf. on Hypertext
Technology (ECHT ’94), ACM (1994) 13–23

2. Nanard, J., Nanard, M.: Should anchors be typed too? An ex-
periment with macweb. In: Proc. of Hypertext. (1993) 51–62

3. Moore, G.: RDF and TopicMaps: An exercise in convergence.
In: XML Europe. (2001)

4. Bowers, S., Delcambre, L.: Representing and transforming
model-based information. In: Proc. of the First Inter. Work-
shop on the Semantic Web. (2000)

5. Bowers, S., Delcambre, L.: A generic representation for ex-
ploiting model-based information. In: ETAI Journal. Volume 6.
(2001)

6. Atzeni, P., Torlone, R.: Management of multiple models in an
extensible database design tool. In: EDBT. Volume 1057 of
Lecture Notes in Computer Science. (1996) 79–95

7. Atzeni, P., Torlone, R.: A unified framework for data translation
over the web. In: Proc. of WISE. IEEE Computer Society Press
(2001)

8. Barsalou, T., Gangopadhyay, D.: M(DM): An open framework
for interoperation of multimodel multidatabase systems. In:
Proc. of ICDE. (1992) 218–227

9. Christophides, V., Cluet, S., Siḿeon, J.: On wrapping query
languages and efficient XML integration. In: Proc. of SIG-
MOD. (2000) 141–152

10. McBrien, P., Poulovassilis, A.: A uniform approach to inter-
model transformations. In: Proc. of CAiSE’99. Volume 1626
of Lecture Notes in Computer Science. (1999) 333–348

11. Papazoglou, M., Russell, N.: A semantic meta-modeling ap-
proach to schema transformation. In: Proc. of CIKM, ACM
(1995) 113–121

12. Davidson, S., Kosky, A.: WOL: A language for database trans-
formations and constraints. In: Proc. of ICDE. (1997) 55–65

13. Bohannon, S., Freire, J., Roy, P., Siméon, J.: From xml schema
to relations: A cost-based approach to xml storage. In: ICDE.
(2002)

14. Lacker, M., Decker, S.: On the integration of Topic Maps and
RDF. In: Proc. of the 1st International Semantic Web Working
Symposium (SWWS ’01). (2001)

Tracking Changes in RDF(S) Repositories

Atanas Kiryakov and Damyan Ognyanov

OntoText Lab, Sirma AI EOOD,
38A Chr. Botev blvd, 1000 Sofia, Bulgaria{naso, damyan }@sirma.bg

Abstract. The real-world knowledge management
applications require administrative features such as
versioning, fine-grained access control, and meta-
information to be supported by the back-end in-
frastructure. Those features together with the needs
of the ontology maintenance and development pro-
cess raise the issue of tracking changes in knowl-
edge bases. Part of the research presented is as ba-
sic as defining the rules of the game, the proper
formal models to build upon – what to count as
a change and what to ignore, how to represent
and manage the tracking information. A number of
more ‘technical’ issues such as tracking changes
in imported and inferred knowledge are also dis-
cussed. The implementation is a part of the ontol-
ogy middleware module developed under the On-
To-Knowledge project where it is implemented as
extension of the Sesame RDF(S) repository.

1 Introduction

The ontology middleware can be seen as an ‘administrative’
software infrastructure that makes the rest of the modules
in a KM toolset easier for integration in real-world applica-
tions. The central issue is to make the tools available to the
society in a shape that allows easier development, manage-
ment, maintenance, and use of middle-size and big knowl-
edge bases1. The following basic features are considered:

– Versioning (tracking changes) of knowledge bases;
– Access control (security) system;
– Meta-information for knowledge bases.

These three aspects are tightly interrelated among each
other as depicted on the following scheme.

The composition of the three functions above represents a
Knowledge Control System (KCS) that provides the knowl-
edge engineers with the same level of control and manage-
ability of the ontology in the process of its development and
maintenance as the source control systems (such as CVS)
provide for the software. However, KCS is not only limited
to support the knowledge engineers or developers – from the
perspective of the end-user applications, KCS can be seen
as equivalent to the database security, change tracking (often
called cataloguing) and auditing systems. A KCS is carefully
designed to support these two distinct use cases.

Further, an ontology middleware system should serve as a
flexible and extendable platform for knowledge management
solutions. It should provide infrastructure with the following
features:

– A repository providing the basic storage services in
a scalable and reliable fashion. Such example is the
Sesame RDF(S) repository, [2];

1 See the next sub-section for discussion on ontology vs. instance
data vs. knowledge base.

– Multi-protocol client access allowing different users and
applications to use the system via the most efficient
transportation media;

– Knowledge control – the KCS introduced above;
– Support for plugable reasoning modules suitable for var-

ious domains and applications. This ensures that within a
single enterprise or computing environment one and the
same system may be used for various purposes (that re-
quire different reasoning services) so providing easy in-
tegration, interoperability between applications, knowl-
edge maintenance and reuse.

In the rest of this introductory section we define better the
scope of our research and the terminology used. Section 2
is dedicated to an overview on tracking changes in RDF(S)
repositories – related work and principles. The design and
implementation approach of the change tracking and version-
ing is presented in Section 3 and Section 4 covers the meta-
information and it’s tracking followed by an implementation
approach and formal representation respectively in Sections
5 and 6. Future work and conclusion are presented in the last
section.

The work presented here was carried as part of the On-To-
Knowledge project. The design and implementation of our
ontology middleware implementation is just an extension of
the Sesame architecture (see [2]) that already covers many
of the desired features. Earlier stage of the research is pre-
sented in bigger details in [7] where the reader can find more
about the Access control system (security), which is out of
the scope of this paper.

1.1 Scope, Ontologies vs. Knowledge Bases

A number of justifications in the terminology are necessary.
An almost trivial but still relevant question is ‘What the KM
tools support: ontologies, data, knowledge, or knowledge
bases?’ Due to the lack of space we are no going in to com-
ment this basic notions here. A simple and correct answer is
‘All of this’. The ontology middleware module extends the
Sesame RDF(S) repository that affects the management of
both ontologies and instance data in a pretty much unified
fashion.

For the purpose of compliance with Sesame, here the
term repository will be used to denote a compact body of
knowledge that could be used, manipulated, and referred as
a whole. Such may contain (or host) both ontological asser-
tions and instance data.

2 Overview

The problem for tracking changes within a knowledge base is
addressed in this section. It is important to clarify that higher-
level evaluation or classification of the updates (consider-
ing, for instance, different sorts of compatibility between two

28 Atanas Kiryakov, Damyan Ognyanov

Knowledge

Control System

Meta-
Information

Access
Control

Tracking
Changes

Sto
re

as
Trac

k by
Filtered and

preserved by

Current User Info.

Change Investigation

Fig. 1.Knowledge Control System

states or between a new ontology and old instance data) is be-
yond the scope of this work. Those are studied and discussed
in [3], sub-section 2.2. The tracking of the changes in the
knowledge (as discussed here) provides the necessary basis
for further analysis. For instance, in order to judge the com-
patibility between two states of an ontology a system should
be able to at least retrieve the two states and/or the differ-
ences between them.

In summary, the approach taken can be shortly character-
ized as ‘versioning of RDF on a structural level in the spirit
of the software source control systems’.

2.1 Related Work

Here we will shortly review similar work, namely, several
other studies related to the management of different ver-
sions of a complex objects. In general, although some of
the sources discuss closely related problems and solutions,
there is not one addressing ontology evolution and version
management in a fashion that allows granularity down to the
level of statements (or similar constructs) and capturing in-
teractive changes in knowledge repositories such as asserting
or retracting statements.

One of the studies that provide a methodological frame-
work pretty close to the one need here is [8]. The authors
model a framework, which is designed to handle the iden-
tification, control, recording, and tracking of the evolution
of software products, objects, structures, and their interre-
lationships. The paper investigates the different models and
versioning strategies for large scale software projects and
present a way to express the meta-information and the im-
pact of a single change over the various components of the
project in RDF(S) – in this case used just for representation
of the related meta-information, the objects being tracked are
from the software domain.

Database schema evolution and the tasks related to keep-
ing schema and data consistent to each other can be rec-
ognized as very similar to ours. A detailed and pretty for-
mal study on this problem can be found in [4] – it presents
an approach allowing the different sorts of modifications of
the schema to be expressed within suitable description logic.

More detailed information about the reasoning and other re-
lated tasks could be found in [5].

Another study dealing with the design of a framework han-
dling database schema versioning is presented in [1]. It is
similar to [4] and [5] and can be seen as a different approach
of handling the changes of the evolving object and the pro-
cess of class evolution.

Probably the most relevant work was done under the On-
To-Knowledge project – among the reports concerning vari-
ous aspects of the knowledge management, most relevant is
[3], mentioned earlier in this section.

3 Versioning Model for RDF(S) Repositories

A model for tracking of changes, versioning, and meta-
information for RDF(S) repositories is proposed. To make it
more explicit (i) the knowledge representation paradigm sup-
ported is RDF(S) and (ii) the subject of tracking are RDF(S)
repositories – independently from the fact if they contain on-
tologies, instance data, or both. The most important princi-
ples are presented in the next paragraphs.

VPR1: The RDF statement is the smallest directly man-
ageable piece of knowledge.

Each repository, formally speaking, is a set of RDF state-
ments (i.e. triples) – these are the smallest separately man-
ageable pieces of knowledge. There exist arguments that the
resources and the literals are the smallest entities – it is true,
however they cannot be manipulated independently. It is the
case that none of them can independently ‘live’ in a reposi-
tory because they always appear as a part of a triple and never
independently. The moment when a resource was added to
the repository may only be defined indirectly as the same
as ‘the moment when the first triple including the resource
was added’. Analogously a resource may be considered re-
moved from a repository when the last statement containing
it gets out. To summarize, there is no way to add, remove, or
update (the description of) a resource without also changing
some statements while the opposite does not hold. So, the re-
sources and the literals from a representational and structural
point of view are dependent on the statements.

Tracking Changes 29

VPR2: An RDF statement cannot be changed – it can only
be added and removed.

As far as the statements are nothing more than triples,
changing one of the constituents, just converts it into an-
other triple. It is because there is nothing else but the
constituents to determine the identity of the triple, which
is an abstract entity being fully defined by them. Let us
take for instance the statementST1=<A, PR1, B> and
suppose B is a resource, i.e. an URI of resource. Then
ST1 is nothing more but a triple of the URIs of A,
PR1, and B – if one of those get changed it will be al-
ready pointing to a different resource that may or may not
have something in common with the first one. For exam-
ple, if the URI of A washttp://x.y.z/o1#A and it
get changed tohttp://x.y.z/o1#C then the statement
ST2=<C,PR1,B> will be a completely different statement.

Further, if the resource pointed by an URI gets changed
two cases could be distinguished:

– The resource is changed but its meta-description in RDF
is not. Such changes are outside the scope of the problem
for tracking changes in formally represented knowledge,
and particularly in RDF(S) repositories.

– The description of the resource is changed – this can hap-
pen iff a statement including this resource get changed,
i.e. added or removed. In such case, there is another
statement affected, but the one that just bears the URI
of the same resource is not.

There could be an argument, that when the object of
a triple is a literal and it gets changed, this is still the
same triple. However, if there is for instance statement
<A,R,"abc"> and it get changed to<A,R,"cba"> , the
graph representation shows that it is just a different arc be-
cause the new literal is a new node and there could be other
statements (say,<B,P,"abc">) still connected to the note
of the old literal. As a consequence here comes the next
princple:

VPR3: The two basic types of updates in a repository are
addition and removal of a statement

In other words, those are the events that necessarily have
to be tracked by a tracking system. It is obvious that more
event types such as replacement or simultaneous addition of
a number of statements may also be considered as relevant
for an RDF(S) repository change tracking system. However,
those can all be seen as composite events that can be modeled
via sequences of additions and removals. As far as there is
no doubt that the solution proposed should allow for tracking
of composite events (say, via post-processing of sequence of
simple ones), we are not going to enumerate or specify them
here.

R PA “abc” B

“cba”
R

VPR4: Each update turns the repository into a new state

Formally, a state of the repository is determined by the
set of statements that are explicitly asserted. As far as each
update is changing the set of statements, it is also turning the
repository into another state. A tracking system should be
able to address and manage all the states of a repository.

3.1 History and Versions

Some notes and definitions that complement the above stated
principles are presented below.

History, Passing through Equivalent States.The history
of changes in the repository could be defined as sequence
of states, as well, as a sequence of updates, because there
is always an update that turned repository from one state to
the next one. It has to be mentioned that in the history, there
could be a number of equivalent states. It is just a question of
perspective do we consider those as one and the same state or
as equivalent ones. Both perspectives bear some advantages
for some applications. We accepted that there could be equiv-
alent states in the history of a repository, but they are still
managed as distinct entities. Although it is hard to provide
formal justification for this decision the following arguments
can be presented:

– For most of the applications it is not typical a reposi-
tory to pass through equivalent states often. Although
possible, accounting for this phenomenon does not ob-
viously worth taking into account that finding (or match-
ing) equivalent states could be a computationally very
heavy task.

– It is the case that, if necessary, equivalent states could be
identified and matched or combined via post-processing
of a history of a repository.

Versions are labeled states of the repository.Some of the
states of the repository could be pointed out as versions. Such
could be any state, without any formal criteria and require-
ments – it completely depends on the user’s or application’s
needs and desires. Once defined to be a version, the state
becomes a first class entity for which additional knowledge
could be supported as a meta-information (in the fashion de-
scribed below.)

4 Meta-Information

Meta-information is supported for the following entities: re-
sources, statements, and versions. As far as DAML+OIL
ontologies are also formally encoded as resources (of type
daml:Ontology) meta-information can be attached to them
as well.

4.1 Model and Representation of the Meta-Information

We propose the meta-information to be modeled itself in
RDF – something completely possible taking into account
the unrestricted meta-modeling approach behind RDF(S). A
number of objections against such approach can be given:

30 Atanas Kiryakov, Damyan Ognyanov

– It increases the number of meta-layers and so it makes
the representation more abstract and hard to understand.
However, adding meta-information always requires one
more layer in the representation, so, making it via ex-
tension of the same primitives used for the ‘real data’
(instead of defining some new formalization) can even
be considered as a simplification.

– It makes possible confusion and may introduce techni-
cal difficulties, say, because of intensive use of heavy
expressive means such as reification.

The schema proposed below handles in some degree these
problems and provides number advantages:

– It is probably the most typical role of RDF to be used for
encoding of meta-information

– One and the same technology can be used for viewing,
editing, and management of both knowledge and meta-
information. Any RDF(S) reasoners and editors will be
able to handle meta-information without special support
for it.

– Queries including both knowledge and meta-information
will be pretty straightforward. So, lookup of knowledge
according to conditions involving both meta-information
and ‘real’ knowledge is possible. Imagine a situation,
when a complex ontology is being developed and there
is meta-information supporting this process, say, a meta-
property ‘Status’ (with possible values ‘New’, ‘Verified
against the ontology’, ‘Verified against the sample data’,
‘Done’) being attached to each class. Then a lookup of
all classes that are subclasses of C and have status ‘New’
will be just a typical query against the RDF(S) reposi-
tory.

– Representing the meta-information as RDF could be
done in a flexible way that allows it to be customized
for the specific needs of the use case.

4.2 Tracking Changes in the Meta-Information

An important decision to be taken is whether changes in the
meta-information should be tracked. The resolution proposed
here is: Changes in the meta-information should be consid-
ered as regular changes of the repository, so, they turn it from
one state to another. Here are few arguments backing this po-
sition:

– There are number of cases when the only result of a se-
rious work over an ontology is just a single change in
the meta-information. Let is use again the example with
the ‘Status’ meta-property for classes (described above.)
The result of a complex analysis of the coherence of a
class definition may result just in changing the status
from ‘New’ to one of the other values. In such case, al-
though there is no formal change in the ‘real’ data, some-
thing important get changed. From an ontology develop-
ment and maintenance point of view it is extremely im-
portant tracking of such changes to be possible.

– If necessary, it is possible appropriate analysis to be
made so that changes that affect only meta-information
to be ignored. This way both behaviors can be achieved.
In case of the opposite decision (not to track changes in
meta-information), no kind of analysis can reconstruct
the missing information.

– An analogy with the software source control systems
may also provide additional intuition about this issue.
If we consider the comments in the software code as a
meta-information, it becomes clear that the source con-
trol systems definitely account the changes in the meta-
information as equal to the ‘real’ changes in the code.

5 Implementation Approach

Let us first propose the technical schema for tracking changes
in a repository. For each repository, there is anupdate
counter (UC)– an integer variable that increases each time
when the repository is updated, that in the basic case means
when a statement get added to or deleted from the reposi-
tory. Let us call each separate value of the UCupdate identi-
fier, UID. Then for each statement in the repository the UIDs
when it was added and removed will be known – these val-
ues determine the ‘lifetime’ of the statement. It is also the
case that each state of the repository is identified by the cor-
responding UID.

The UIDs that determine the ‘lifetime’ of each statement
are kept, so, for each state it is straightforward to find the
set of statements that determine it – those that were ‘alive’ at
the UID of the state being examined. As far as versions are
nothing more than labeled states, for each one there will be
also UID that uniquely determines the version.

The approach could be demonstrated with the sample
repository KB1 and its ‘history’. The repository is repre-
sented as a graph – each edge is an RDF statement which
lifetime is given separated with semicolons after the prop-
erty name. The history is presented as a sequence of events
in format

UID:nn {add|remove} <subj, pred, obj>

History:
UID:1 add <A, r1, B>
UID:2 add <E, r1, D>
UID:3 add <E, r3, B>
UID:4 add <D, r3, A>
UID:5 add <C, r2, D>
UID:6 add <A, r2, E>
UID:7 add <C, r2, E>
UID:8 remove <A, r2, E>
UID:9 add <B, r2, C>
UID:10 remove <E, r3, B>
UID:11 remove <B, r2, C>
UID:12 remove <C, r2, E>
UID:13 remove <C, r2, D>
UID:14 remove <E, r1, D>
UID:15 remove <A, r1, B>
UID:16 remove <D, r3, A>

Here follow two ‘snapshots’ of the states of the repository
respectively for UIDs [2] and [8].

It is an interesting question how we handle in the above
model, multiple additions and removals of one and the same
statement, which in a sense periodically appears and dis-
appears form the repository. We undertake the approach to

Tracking Changes 31

A
B

r1:1-15

r2:6-8

C
r2:5-13

r3:4-16

D

r1:2-14

E

r3:3-10

r2:7-12
r2:9-11

Repository KB1

A B
r1

D

r1

E

KB1, State UID:2

A B
r1

Cr2

r3

D

r1

E

r3

r2

KB1, State UID:8

consider the appearance of such statement as separate state-
ments, because of reasons similar to those presented for the
support of distinguishable equivalent states of the repository.

5.1 Batch Updates

We callbatch updatethe possibility the update counter of the
repository to be stopped, so not to increment its value for a
number of consequent updates. This feature is important for
cases when it does not make sense the individual updates to
be tracked one by one. Such example could be an assertion
of a DAML+OIL element that is represented via set of RDF
statements none of which can be interpreted separately.

Another example for a reasonable batch update would
be an application that works with the repository in a trans-
actional fashion – series of updates are bundled together,
because according to the logic of the application they are
closely related. Finally, batch updates can also be used for
file imports (see subsection 5.4.).

5.2 Versioning and Meta-information for Imported
Statements

New statements can appear in the repository when an ex-
ternal ontology is imported in the repository either by
xmlns:prefix="uri" attribute of an XML tag in the
serialized form of the ontology either bydaml:imports
statement found in the header of a DAML+OIL ontology. In
each of those cases the statements imported in the repos-
itory are treated as read-only and thus the users cannot
change them. All these statements will be added and removed
to/from the repository simultaneously with the statement that
causes their inference or import. An additional note about the
imported statements related to the security: these statements
should be recognized as external, and not belonging to the
repository and thus we can avoid the application of the secu-
rity policies to them. Meta-information may not be attached
to such statements.

5.3 Versioning and Meta-information for Inferred
Statements

There are cases when addition of a single statement
in the repository leads to the appearance of several
more statements in it. For example, the addition of
the statement ST1=<B,rdfs:subClassOf, C>
leads to the addition of two new statements
ST2=<B, rdf:type, rdfs:Class> and
ST3=<C,rdf:type, rdfs:Class> . This is a kind of
simple inference necessary to ‘uncover’ knowledge that is
implicit but important for the consistency of the repository.
There are number of such inferences implemented in Sesame
down the lines of [10].

The question about the lifetime of such inferred state-
ments is far not trivial. Obviously, they get born when
inferred. In the simplest case, they should die (get re-
moved) together with the statement that caused them
to be inferred. However, imagine that after the addition
of ST1 in the repository, there was another statement
added, namely ST4=<B, rdfs:subClassOf, D> .
As far, as ST2 is already in the repository only

32 Atanas Kiryakov, Damyan Ognyanov

ST5=<D,rdf:type, rdfs:Class> will be in-
ferred and added. Now, imagineST1 is deleted next while
ST4 remains untouched. Should we deleteST2? It was
added together withST1 on one hand, but on the other it
is also ‘supported by’ST4. One approach for resolving
such problems is the so-called ‘truth maintenance systems’
(TMS) – basically, for each statement information is being
kept about the statements or expressions that ‘support’ it, i.e.
such that (directly) lead to its inference. Sesame currently
implements such a TMS.

Suppose, there is a TMS working in Sesame (because it
could be ‘switched off’ for performance reasons), the track-
ing of the inferred statements is relatively easy. When the
TMS ‘decides’ that an inferred statement is not supported
anymore, it will be deleted – this is the natural end of its life-
time. It will be considered as deleted during the last update in
the repository, which automatically becomes a sort of batch
update (if it is not already.)

This is the place to mention that the pragmatics of the re-
move operation in an RDF(S) repository is a bit not obvious.
When a statement is removed this only means that it is not ex-
plicit any more. However, if it follows from other statements,
it effectively remains in the repository and there is no way to
remove it, without removing all of its ‘supporters’. Imagine
a situation when one statements was inferred on update U1,
next explicitly asserted on updated U4, next deleted at U6,
but still supported by other sentences until U9. Than the life
time of the statement is U1-U9.

For many applications, the ‘explicitness’ of the statements
bear significant importance, so, in our implementation we
keep track for this – for each state it is not only possible to
uncover the statements that were ‘alive’, but also which of
them were explicit.

As with the imported statements, meta-information may
not be attached to inferred statements. The security restric-
tions towards inferred statements can be summarized as fol-
lows:

– Inferred statements may not be directly removed;
– A user can read an inferred statement iff s/he can read

one of the statements that support it.
– The rights for adding statements are irrelevant – a user

may or may not be allowed to add a statement indepen-
dently from the fact is it already inferred or not.

5.4 Versioning of Knowledge Represented in Files

The issues concerning the work with knowledge represented
in files and its versioning can be discussed in two main top-
ics – each of them presenting a different involvement of the
content of the files.

The first one is the case when the Sesame uses a specific
storage and inference layer (SAIL) to access knowledge di-
rectly from the underlying file – so files used for persistency
instead of, say, relational database. In such case we cannot
control the appearance and disappearance of distinct state-
ments, which easily can happen independently from Sesame.
The knowledge control system (KCS) presented here is not
applicable for such SAILs.

The second case is to import knowledge into the Sesame
from files - one of the typical usage scenarios. The first step
than is to convert the file F into a set of statements FS, which

also includes the inferred ones. Next, the appropriate changes
are made in the repository within a single batch update (see
subsection 5.1.) Three different modes for populating repos-
itory from files are supported:

Re-initializing the existing content of the repository is
cleared and the set of statement FS is added. No kind of
tracking or meta-information is preserved for the state-
ments that were in the repository before the update. This
is equivalent to Clear followed by Accumulative import;

Accumulative FS is added to the repository, it actually
means that the statements from FS that are already
in the repository are ignored (any tracking and meta-
information for them remains unchanged) and the rest
of the statements are added. This type of import has to
be used carefully, because it may lead to inconsistency of
the repository even if its previous state and the file were
consistent on their own;

Updating after the import the repository contains only the
statements form the file, the set FS (as in the re-
initializing mode). The difference is that the statements
from the repository that were not in FS are deleted but
not cleared, i.e. after the update, they are still kept to-
gether with their tracking and meta-information. The
statements from FS that were not already in the repos-
itory are added.

The Updating import mode is the most comprehensive one
and allows the repository to be used to track changes in a file
that is being edited externally and ‘checked-in’ periodically.
This can also be used for outlining differences between ver-
sions or different ontologies represented in files.

5.5 Branching Repositories

Branching of states of repositories is possible. In this case a
new repository is created and populated with a certain state of
an existing one – the state we want to make branch of. When
a state is getting branched, it will automatically be labeled as
a version first. The appropriate meta-information indicating
that this version was being used to create a separate branch
of the repository into a new one will be stored.

As it can be expected, no kind of operations with the
branch of the repository will affect the original one. Branches
have to be used, for instance, in cases when the develop-
ment of an ontology have to be split into two separate pro-
cesses or threads. A typical situation when this is necessary
is when an old version has to be supported (which includes
making small maintenance fixes) during the development of
a new version. The state, which is used in production, can be
branched and the development of the new one can take place
in the branch while at the same time, the old version can still
be supported and updated.

5.6 Controlling the History

The possibility for tracking changes in a repository and gath-
ering history has an important consequence: the history has
to be controlled! The most important reasons for this and the
appropriate mechanisms are discussed here.

Reason 1: The volume of the data monotonously grows.

Tracking Changes 33

As far as nothing is really removed from the repository
(the statements are only marked as ‘dead’) all the state-
ments that were ever asserted in the repository together
with their tracking and meta-information can be expected
to be preserved forever. This way the volume of the data
monotonously grows with each update.

Reason 2: The history may need refinement.The automatic
tracking of the changes allows a great level of control, how-
ever the fine-grained information may also be obsolete or
confusing. For instance, after the end of a phase of devel-
opment of an ontology, the particular updates made in the
process may become unimportant – often it is the case that
finally the differences with a specific previous state (say, a
version) are those that count.

Therefore the following methods control over the tracking
information are implemented:

Clear the history before certain state all the statements
died before this state (say S1), together with any kind
of tracking and meta-information about them will be per-
manently removed from the repository. The same applies
for the labeled versions before this state. All values of the
update counter form a kind of ‘calendar’ and all changes
are logged against it. There will be two options for man-
aging the tracking information for statements that were
‘born’ before S1 and died after it. Under the first option,
they will be stated to be born at a special moment ‘be-
fore the Calendar’ and all calendar records before S1 will
also be deleted. Under the second option, the ‘calendar’
will be preserved, so no changes will be introduced to the
tracking information for those statements that remain in
the repository and the Calendar will be cleared from all
the records that are not related to such statements.

Aggregate updates a number of sequential updates (say,
between UID1 and UID2) to be merged and made equiv-
alent to specified one, say UID3. In this case, all refer-
ences to UIDs between UID1 and UID2 will be replaced
with UID3, which may or may not be equal to UID1 or
UID2.

6 Formal Representation of the
Meta-Information

All the Knowledge Control System (KCS) related informa-
tion would be represented in RDF according to a schema
that could be found at:http://www.ontotext.com/
otk/2002/03/kcs.rdfs . That includes tracking, ver-
sioning, and security information as well as user-defined
meta-information. It is important to acknowledge that al-
though this schema provides a well-structured conceptual
view to the meta-information, its support by a repository
is not be implemented directly after this schema because
of obvious performance problems. So, the schema presents
the way this information can be imported, exported, and ac-
cessed via RQL queries. It also facilitates good formal un-
derstanding of the supported model.

The basic idea is that all the meta-information is en-
coded via kind of special, easily distinguishable, properties
– namely such defined as sub-properties of a kcs:metaInfo.
Also, all the related classes are defined as sub-classes of

kcs:KCSClass. Here follows the set of pre-defined meta-
properties, mostly related to the tracking information The hi-
erarchy of the properties is presented together with the do-
main and range restrictions for each property:

metaInfo
trackingInfo (domain=rdfs:Statement

range=)
bornAt (domain=rdfs:Statement

range=Update)
diedAt (domain=rdfs:Statement

range=Update)
securityInfo

lockedBy (domain=rdfs:Statement
range=User)

The bornAt and diedAt properties define the lifetime of
the statement via references to the specific updates. In simi-
lar manner we express the information associated with each
particular update – the user who made it, the actual time and,
etc.

Obvious extensions of the above schema are the Dublin
Core primitives – there is no problem those to be declared
to be sub-properties of metaInfo. The above-proposed model
has number of advantages:

– Flexibility. Various types of meta-information could be
defined – the appropriate schema has to be created with
the only requirement the properties there to be defined as
sub-properties of metaInfo and the classes as sub-classes
of MetaInfoClass.

– The different meta-properties may have their appropriate
domain and range restrictions.

– It is easy to preserve the meta-info, just ignoring
the statements which predicates are sub-properties of
metaInfo and the resources of class MetaInfoClass.

6.1 Meta-Information for Statements

Assigning meta-information to statements is trickier than to
resources at least because there is no URIs to identify each
statement. For each statement that we like to attach a meta-
information we need to apply a sort of explicit- or pseudo-
reification in order to associate the required meta-properties
with the appropriate instance of rdf:Statement. A special
class is defined in the KCS schema for this purpose:

<rdfs:Class
rdf:about="&kcs;StatementMetaInfo"

rdfs:label="StatementMetaInfo">
<rdfs:comment>

A common super-class for all the
meta-information about statements

</rdfs:comment>
<rdfs:subClassOf

rdf:resource="&rdf;Statement"/>
<rdfs:subClassOf

rdf:resource="&kcs;MetaInfoClass"/>
</rdfs:Class>

When we need to associate some meta-information to a state-
ment we can instantiate kcs:StatementMetaInfo for that state-
ment directly referring to its subject, predicate and object.
Here is an example of such instantiation:

34 Atanas Kiryakov, Damyan Ognyanov

<kcs:StatementMetaInfo
rdf:about="&mex;status1">

<rdf:subject rdf:resource="&mex;Jim"/>
<rdf:predicate

rdf:resource="&mex;childOf"/>
<rdf:object rdf:resource="&mex;John"/>
<rdfs:comment>Comment on statement

(Jim,childOf,John)</rdfs:comment>
<mex:customMetaProp>customMetaProp on
statement (Jim,childOf,John)
</mex:customMetaProp>

</kcs:StatementMetaInfo>

In this case, two pieces of meta-information are attached to
the<Jim,childOf,John> statement. The first one is just
a comment encoded using the standard rdfs:comment prop-
erty. The second one is a sample for custom meta-property,
which was defined by the user.

We can easily extract all the meta-information about spe-
cific statement using an RQL query. To do that we need the
subject, predicate and object of the statement – it is sad but
true, there is no other standard way to refer to or specify
a triple. A sample query retrieving the meta-properties and
comments about the statement<Jim, childOf, Jonh>
from the above example may looks like:

select
@metaProp, result

from
{X : $CX } &rdfs;subject {A},
{X : $CX } &rdfs;predicate {B},
{X : $CX } &rdfs;object {C},
{X : $CX } @metaProp {result}

where
A=&mex;Jim and B=&mex;childOf

and C=&mex;John
and

(@metaProp=&rdfs;comment or
@metaProp < &kcs;metaInfo)

and $CX > &rdf;Statement

6.2 Low-level Representation of Meta-Information for
Statements

Although conceptually clear, the above model for keeping
meta-information (including tracking data) for statements
has at least the following problems:

– Technically speaking, it requires reification, which is the
most criticized RDF(S) feature, also not supported by
many tools;

– For each statement of ‘real’ data, there should be five
statements tracking it (one for each of the sub-properties
of kcs:trackingInfo and three more that define the appro-
priate updates), i.e. the volume of the tracking data is
five times (!) bigger than the volume of the repository
without it.

In order to resolve this issues, the KCS meta-information is
actually stored and queried internally using more appropriate
encoding -x- the RDF(S) engine takes care to support some
level of mimicry to preserve the abstraction of the above pre-
sented schema for the applications.

A simple database schema is presented next to provide
a general idea for possible implementation of a KCS – the
real implementation uses a bit more complex schema which
still follows the same ideas. Suppose, an RDF(S) reposi-
tory works on top of an RDBMS (which is the case with
SESAME) and there is a table Statements with columns Sub-
ject, Predicate and Object each row of which represents a
single statement. Few more columns could be added to this
table with references to the tables with security and track-
ing information. This way the problems with the volume and
performance will be resolved at least with respect to the most
critical use cases.

The Updates table can keep the information relevant to
each update: the time when it happened and the user who per-
formed the update (this information can easily be extended
on demand.) In the Statements table, for each statement, the
UID when it appeared and disappeared is kept as a reference
to the Updates table.

With respect to the tracking of the changes, design as the
one proposed above has a number of advantages compared
to a variant where the update information is kept directly in
the Statements table:

– All the necessary information is kept;
– The tracking information is not messing with the ‘real’

information about the statements, however when neces-
sary the two tables can be easily joined;

– The most basic operations (that are expected to be per-
formed most frequently) can be done over the Statements
table without need for joining with the Updates table.
Such operation is to take all the statements that were
‘alive’ at certain state identified by UID;

– There is significant reduction of the volume of the track-
ing information in cases of batch updates when multiple
statements are getting added or removed at once and thus
refer to one and the same UID.

7 Conclusion and future work

The ontology middleware, part of which is tracking changes
module presented still have to prove itself in real-world ap-
plications. At this stage it is work in progress inspired by
the methodology, tools, and case studies developed under the
On-To-Knowledge project.

We see two interesting areas for development. First, the
tracking changes mechanism will be used under the On-
toView (see [12]) project to serve as a basis for develop-
ment of the higher-level ontology versioning services. Sec-
ond, the whole ontology middleware will be applied in lan-
guage engineering domain for management of linguistic and
world knowledge for the purposes of information extraction
and ontology extraction application.

To achieve the first goal, we are already working for im-
plementation of the OntoView – ambitious ontology version-
ing portal. On the linguistic front, the Ontology Middle-
ware module will be integrated with GATE (see [11] and
http://gate.ac.uk) – one of the most mature plat-
forms for language engineering that already provides sub-
stantial support of ontology-based annotations and integra-
tion of lexical knowledge bases such as WordNet.

Tracking Changes 35

Statements
SID Subje

ct
Predi
cate

Object Born
UID

Died
UID

Lock

… … … …
11 RefA Refr2 RefE 6 8 Usr5
12 RefB Refr3 RefE 4 10 …
13 RefA Refr1 RefB 6 9 …
14 RefD Refr1 RefF 7 11 …
… … … …

Updates
UID Time User

… … …
6 … Usr3
7 … Usr5
8 … Usr3
9 … Usr6
… … …

References

1. B. Benatallah, Z.Tari. Dealing with Version Pertinence to De-
sign an Efficient Schema Evolution Framework. In: Proceedings
of a ‘International Database Engineering and Application Sym-
posium (IDEAS’98)’, pp.24-33, Cardiff, Wales, U.K. July 8-10,
1998

2. J. Broekstra, A. Kampman. Sesame: A generic Ar-
chitecture for Storing and Querying RDF and RDF
Schema.Deliverable 9, On-To-Knowledge project, October
2001. http://www.ontoknowledge.org/downl/del10.pdf

3. Y. Ding, D. Fensel, M. Klein, B. Omelayenko. Ontol-
ogy management: survey, requirements and directions.
Deliverable 4, On-To-Knowledge project, June 2001.
http://www.ontoknowledge.org/downl/del4.pdf

4. E. Franconi, F. Grandi, F. Mandreoli. Schema Evolution and
Versioning: a Logical and Computational Characterization. In
‘Database schema evolution and meta-modeling’ - Ninth Inter-
national Workshop on Foundations of Models and Languages
for Data and Objects, Schloss Dagstuhl, Germany, September
18-21, 2000. LNCS No. 2065, pp. 85-99

5. E. Franconi, F. Grandi, F. Mandreoli. A Semantic Approach for
Schema Evolution and Versioning of OODB. Proceedings of the
2000 International Workshop on Description Logics (DL2000),
Aachen, Germany, August 17 - 19, 2000, pp. 99-112

6. A. Kiryakov, K. Simov, M. Dimitrov. OntoMap – the Guide to
the Upper-Level.In: Proceedings of the International Semantic
Web Working Symposium (SWWS), July 30 - August 1, 2001,
Stanford University, California, USA.

7. A. Kiryakov, K. Simov, D. Ognyanov. Ontology Middle-
ware: Analysis and Design. Deliverable 38, On-To-Knowledge
project, March 2002.

8. S. Kitcharoensakkul and V. Wuwongse. Towards a Unified Ver-
sion Model using the Resource Description Framework (RDF).
International Journal of Software Engineering and Knowledge
Engineering (IJSEKE), Vol. 11, No. 6, December 2001.

9. W3C; O. Lassila, R. Swick, eds. Resource Descrip-
tion Framework (RDF) Model and Syntax Specification.
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

10. P. Hayes. RDF Model Theory. W3C Working Draft, 2001
http://www.w3.org/TR/rdf-mt/

11. H. Cunningham. GATE, a General Architecture for Text Engi-
neering. Computing and the Humanities, 2002. (to appear).

12. M. Klein, A. Kiryakov, D. Fensel, D. Ognyanov. Finding and
characterizing changes in ontologies. Proceedings of the 21st In-
ternational Conference on Conceptual Modeling – ER 2002, Oc-
tober 7-11, 2002, Tampere, Finland. (to appear)

Tracing Data Lineage Using Schema Transformation Pathways

Hao Fan and Alexandra Poulovassilis

School of Computer Science and Information Systems, Birkbeck College,
University of London, Malet Street, London WC1E 7HX,{hao,ap }@dcs.bbk.ac.uk

Abstract. With the increasing amount and diver-
sity of information available on the Internet, there
has been a huge growth in information systems that
need to integrate data from distributed, heteroge-
neous data sources. Tracing the lineage of the in-
tegrated data is one of the current problems being
addressed in data warehouse research. In this pa-
per, we propose a new approach for tracing data
linage based on schema transformation pathways.
We show how the individual transformation steps
in a transformation pathway can be used to trace
the derivation of the integrated data in a step-wise
fashion. Although developed for a graph-based data
model and a functional query language, our ap-
proach is not limited to these and would be useful
in any data transformation/integration context.

1 Introduction

A data warehouseconsists of a set of materialized views
defined over a number of data sources. It collects copies
of data from remote, distributed, autonomous and heteroge-
neous data sources into a central repository to enable anal-
ysis and mining of the integrated information. Data ware-
housing is popularly used for on-line analytical processing
(OLAP), decision support systems, on-line information pub-
lishing and retrieving, and digital libraries. However, some-
times what we need is not only to analyse the data in the
warehouse, but also to investigate how certain warehouse in-
formation was derived from the data sources. Given a tu-
ple t in the warehouse, finding the set of source data items
from whicht was derived is termed thedata lineageproblem
[8]. Supporting lineage tracing in data warehousing environ-
ments brings several benefits and applications, including in-
depth data analysis, on-line analysis mining (OLAM), scien-
tific databases, authorization management, and materialized
view schema evolution [2,20,6,8,10,9].

Automed (http://www.ic.ac.uk/Automed) is a
data transformation and integration system, supporting both
virtual and materialized integration of schemas expressed in
a variety of modelling languages. This system is being de-
veloped in a collaborative EPSRC-funded project between
Birkbeck and Imperial Colleges, London

Common to many methods for integrating heterogeneous
data sources is the requirement for logical integration [11] of
the data, due to variations in the design of data models for
the same universe of discourse. A common approach is to
define a single integrated schema expressed using acommon
data model(CDM). In previous work within the Automed
project [18,12], a general framework has been developed to
support schema transformation and integration. This frame-
work consists of a low-levelhypergraph based data model
(HDM) and a set of primitive schema transformations de-
fined in terms of this lower-level model.

[13] gives the definitions of equivalent HDM representa-
tions for ER, relational and UML schemas, and discusses
how inter-model transformations can be supported via this
underlying common data model. The approach is extended to
also encompass XML data sources in [14], and current work
in Automed is also extending its scope to formatted data files
and plain text files.

Using a higher-level CDM such as an ER model or the
relational model can be complicated because the original
and transformed schemas may be represented in different
high-level modelling languages and there may not be a sim-
ple semantic correspondence between their modelling con-
structs. In contrast, HDM schemas containNodes, Edges
and Constraintsas their constructs, which can be used as
the underlying representation for higher-level modelling con-
structs. Thus, inter-model transformations can be performed
by transforming the HDM representations of higher-level
modelling constructs. We term the sequence of primitive
transformations defined for transforming a schemaS1 to a
schemaS2 a transformation pathwayfrom S1 to S2. That is,
a transformation pathway consists of a sequence of primitive
schema transformations.

[12] discusses how Automed transformation pathways are
automatically reversible, thus allowing automatic translation
of data and queries between schemas. In this paper we show
how Automed’s transformation pathways can also be used
to trace the lineage of data in a data warehouse which in-
tegrates data from several sources. We assume that both the
source schemas and the integrated schema are expressed in
the HDM data model since, as discussed in [13], higher-
level schemas and transformations between them can be au-
tomatically translated into an equivalent HDM representa-
tion. We use a functionalintermediate query language(IQL)
for expressing the semantic relationships between schema
constructs in transformations.

The remainder of this paper is as follows. Section 2 dis-
cusses related work and existing methods of tracing data lin-
eage. Section 3 reviews the Automed framework, including
the HDM data model, IQL syntax, and transformation path-
ways. Section 4 gives our definitions of data lineage and de-
scribes the methods of tracing data lineage we have adopted
in Automed. Section 5 gives our conclusions and directions
of future work.

2 Related work

[20] proposes a general framework for computingfine-
graineddata lineage using a limited amount of information
about the processing steps. The notion ofweak inversionis
introduced. Based on a weak inverse function, which must be
specified by the transformation definer, the paper defines and
traces data lineage for each transformation step in a visual-
ization database environment.

Tracing Data Lineage 37

[8] provides some fundamental definitions relating to the
data lineage problem, including tuple derivation for an op-
erator, and tuple derivation for a view. It has addressed the
derivation tracing problem using bag semantics and has pro-
vided the concept ofderivation setandderivation poolfor
tracing data lineage with duplicate elements. We use these
ideas in our approach and define the notions ofaffect-pool
andorigin-pool in Automed.

Another fundamental concept is addressed in [4,5],
namely the difference between “why” provenance and
“where” provenance. Why-provenance refers to the source
data that had some influence on the existence of the inte-
grated data. Where-provenance refers to the actual data in
the sources from which the integrated data was extracted.
The problem of why-provenance has been studied for rela-
tional databases in [8,20,6,7]. Here, we introduce the notions
of affectandorigin provenance, give definitions for data lin-
eage in Automed, and discuss the lineage tracing algorithms
for these the two kinds of provenance.

There are also other previous works related to data lineage
tracing [2,9,10]. Most of these considercoarse-grainedlin-
eage based on annotations on each data transformation step,
which provides estimated lineage information not the exact
tuples in the data sources. Using our approach,fine-grained
lineage, i.e. a specific derivation in the data sources, can
be computed given the source schemas, integrated schema,
and transformation pathways between them. All of our al-
gorithms are based on bag semantics using the HDM data
model and the IQL query language.

3 The Automed Framework

This section gives a short review of the Automed schema
transformation framework, including the HDM data model,
IQL language, and transformation pathways. More details of
this material can be found in [18,12,13,17].

A schemain the Hypergraph Data Model (HDM) is a
triple (Nodes, Edges, Constraints) containing a set of nodes,
a set of edges, and a set of constraints. Aquery q over a
schemaS is an expression whose variables are members of
Nodesand Edges. Nodesand Edgesdefine a labelled, di-
rected, nested hypergraph. It is nested in the sense that edges
can link any number of both nodes and other edges.Con-
straintsis a set of boolean-valued queries overS. The nodes
and edges of a schema are identified by theirscheme. For a
node this is just its name and for an edge it is of the form
〈〈edgeName, scheme1, scheme2, . . . , schemen〉〉, where
scheme1, . . . , schemen are the schemes of the constructs
connected by the edge. Edge names are optional and the ab-
sence of a name is denoted by “”.

An instance I of a schemaS = (Nodes, Edges, Con-
straints) is a set of sets satisfying the following:

(i) each constructc ∈ Nodes ∪ Edges has an extent, de-
noted byExtS,I(c), that can be derived fromI ;

(ii) conversely, each set inI can be derived from the set of
extents{ExtS,I(c)|c ∈ Nodes ∪ Edges}

(iii) for eache ∈ Edges,ExtS,I(e) contains only values that
appear within the extents of the constructs linked bye;

(iv) the value of every constraintc ∈ Constraints
is true, the value of a query q being given by

q[c1/ExtS,I(c1), . . . , cn/ExtS,I(cn)] where c1, . . . ,
cn are the constructs inNodes ∪ Edges.

The functionExtS,I is called anextension mapping. A
HDM model is a triple(S, I, ExtS,I). The primitive trans-
formations on HDM models are as follows, each transforma-
tion being a function that when applied to a model returns a
new model. Note that only the schema and extension map-
ping are affected by these transformations, not the instance
i.e. not the data:

– renameNode(fromName, toName) renames a node.
– renameEdge(〈〈fromName, c1, . . . , cn〉〉, toName)

renames an edge.
– addConstraint c adds a new constraintc.
– delConstraint c deletes a constraint.
– addNode(name, q) adds a node named name whose ex-

tent is given by the value of the queryq over the existing
schema constructs.

– delNode(name, q) deletes a node. Here,q is a query
that states how the extent of the deleted node could be
recovered from the extents of the remaining schema con-
structs (thus, not violating property (ii) of an instance).

– addEdge(〈〈name, c1, . . . , cn〉〉, q) adds a new edge
between a sequence of existing schema constructs
c1, . . . , cn. The extent of the edge is given by the value
of the queryq over the existing schema constructs.

– delEdge(〈〈name, c1, . . . , cn〉〉, q) deletes an edge.q
states how the extent of the deleted edge could be re-
covered from the extents of the remaining schema con-
structs.

A composite transformation is a sequence ofn ≥ 1
primitive transformations. We term the composite transfor-
mation defined for transforming schemaS1 to schemaS2 a
transformation pathwayfrom S1 to S2.

The query,q, in each transformation is expressed in a
functional intermediate query language, IQL [18]. This
supports a number of primitive types such as booleans,
strings and numbers, as well as product, function and bag
types. The set ofsimpleIQL queries are as follows, where
D, D1 . . . , Dr denote a bag of the appropriate type,++
is bag union,−− is bagmonus[1], group groups a bag
of pairs on their first component,sortDistinct sorts a bag
and removes duplicates,aggFun is an aggregation function
(max,min, count, sum, avg), andgc groups a bag of pairs
on their first component and applies an aggregation function
to the second component:

q = D1 + +D2 + + . . .+ +Dr

q = D1 −−D2

q = group D
q = sort D
q = sortDistinct D
q = aggFun D
q = gc aggFun D
q = [p|p← D1; member D2 p]
q = [p|p← D1; not (member D2 p)]
q = [p|p1 ← D1; . . . ; pr ← Dr; c1; . . . ; ck]

General IQL queries are formed by arbitrary nesting of the
above simple query constructs.

The last three constructs above arecomprehensions[19].
These have the general syntax[e|Q1; . . . ;Qn], whereQ1 to

38 Hao Fan and Alexandra Poulovassilis

Qn are qualifiers, each qualifier being either a filter or a gen-
erator. A filter is a boolean-valued expression (theci above
are filters). A generator has syntaxp← q wherep is a pattern
andq is a collection-valued expression. A pattern is either a
variable or a tuple of patterns. In IQL, the head expressione
of a comprehension is also constrained to be a pattern.

IQL can represent common database query operations,
such as select-project-join (SPJ) operations and SPJ oper-
ations with aggregation (ASPJ). For example, to get the
maximum daily sales total for each store in the relation
StoreSales(store_id,daily_total,date) , in
SQL we use:

SELECT store_id, max(daily_total)
FROM StoreSales
GROUP BY store_id

In IQL this query is expressed by

gc max [(s, t) | (s, t, d)← StoreSales]

Example: Transforming between HDM schemas
Consider two HDM schemasS1 = (N1, E1, C1) andS2 =

(N2, E2, C2), where
N1 = {mathematician, compScientist, salary},
C1 = {},
E1 = {〈〈 ,mathematician, salary〉〉,

〈〈 , compScientist, salary〉〉},
N2 = {dept, person, salary, avgDeptSalary},
C2 = {},
E2 = {〈〈 , dept, person〉〉, 〈〈 , person, salary〉〉,

〈〈 , dept, avgDeptSalary〉〉}.
Figure 1 illustrates these two schemas, withS1 on the left

andS2 on the right of the figure:

mathematician compScientist

avgDeptSalary

dept salary

person

salary

Fig. 1.Transforming SchemaS1 to SchemaS2

S1 can be transformed toS2 by the sequence of primitive
schema transformations given below. The first 6 transforma-
tion steps create the constructs ofS2 which do not exist in
S1. The query in each step gives the extension of the new
schema construct in terms of the existing schema constructs.
The last 4 steps then delete the redundant constructs ofS1.
The query in each of these steps shows how the extension
of each deleted construct can be reconstructed from the
remaining schema constructs:

addNode(dept, {“Maths” , “CompSci”});
addNode(person, [x|x← mathematician] + +

[x|x← compScientist]);
addNode(avgDeptSalary,

{avg[s |(m, s)← 〈〈 ,mathematician, salary〉〉]}
++
{avg[s|(c, s)← 〈〈 , compScientist, salary〉〉]});

addEdge(〈〈 ,dept,person〉〉,
[(“Maths” , x)|x← mathematician] + +
[(“CompSci”, x)|x← compScientist]);

addEdge(〈〈 ,person, salary〉〉, 〈〈 ,mathematician, salary〉〉
+ + 〈〈 , compScientist, salary〉〉);

addEdge(〈〈 ,dept,avgDeptSalary〉〉,
{(“Maths” ,
avg[s|(m, s)← 〈〈 ,mathematician, salary〉〉]),
(“CompSci”,
avg[s|(c, s)← 〈〈 , compScientist, salary〉〉])});

delEdge (〈〈 ,mathematician, salary〉〉,
[(p, s)|(d, p)← 〈〈 ,dept,person〉〉;
(p′, s)← 〈〈 ,person, salary〉〉;
d = “Maths” ; p = p′]);

delEdge (〈〈 , compScientist, salary〉〉,
[(p, s)|(d, p)← 〈〈 ,dept,person〉〉;
(p′, s)← 〈〈 ,person, salary〉〉;
d = “CompSci”; p = p′]);

delNode (mathematician,
[p|(d, p)← 〈〈 ,dept,person〉〉; d = “Maths”]);

delNode (compScientist,
[p|(d, p)← 〈〈 ,dept,person〉〉; d = “CompSci”]);

4 Tracing data lineage in Automed

The fundamental definitions regarding data lineage are given
in [8], including tuple derivation for an operator, tuple deriva-
tion for a view, and methods of derivation tracing with both
setandbagsemantics. However, these definitions and meth-
ods are limited towhy-provenance[5] and what they consider
is a class of views defined over base relations using the re-
lational algebra operators:selection(σ), projection(π), join
(./), aggregation(α), set union(

⋃
), andset difference(−).

The query language used in Automed is IQL based onbagse-
mantics allowing duplicate elements in a data source schema
or the integrated data, and also within the collections that
are derived during lineage tracing. Also, we consider both
affect-provenanceandorigin-provenancein our treatment of
the data lineage problem.

What we regard as affect-provenance includes all of the
source data that had some influence on the result data.
Origin-provenance is simpler because here we are only in-
terested in the specific data in the sources from which the
resulting data is extracted.

4.1 Data lineage with set semantics in IQL

The definition oftuple derivation for an operationwas given
in [8] considering only the aspect of affect-provenance.
We use the notions ofmaximal witnessandminimal witness
from [5] to classify data lineage into two aspects:affect-set
and origin-set. For set semantics and simple IQL queries,
the definitions of affect-set and origin-set for a tuple in the
integrated database are as follows. Theq in these definitions

Tracing Data Lineage 39

is any IQL simple query.

Definition 1 (Affect-set for a simple query in IQL) .
Let q be any simple query over setsT1, . . . , Tm, and let
V = q(T1, . . . , Tm) be the set that results from apply-
ing q to T1, . . . , Tm. Given a tuplet ∈ V, we definet’s
affect-set in T1, . . . , Tm according to qto be the sequence
of setsqA〈T1,... ,Tm〉(t) = 〈T ∗1 , . . . , T ∗m〉, whereT ∗1 , . . . , T ∗m
aremaximal subsets ofT1, . . . , Tm such that:

(a) q(T ∗1 , . . . , T ∗m) = {t}
(b) ∀Ti’: q(T ∗1 , . . . , Ti’, . . . , T ∗m) = {t} ⇒ Ti’ ⊆ T ∗i
(c) ∀T ∗i : ∀t∗ ∈ T ∗i : q(T ∗1 , . . . , {t∗}, . . . , T ∗m) 6= Ø

Also, we say thatqATi(t) = T ∗i is t’s affect-set in Ti.

Definition 2 (Origin-set for a simple query in IQL).
Let q, T1, . . . , Tm, V andt be as above. We definet’s origin-
set in T1, . . . , Tm according to qto be the sequence of sets
qO〈T1,... ,Tm〉(t) = 〈T ∗1 , . . . ,T ∗m〉, whereT ∗1 , . . . ,T ∗m aremin-
imal subsets ofT1, . . . , Tm such that:

(a) q(T ∗1 , . . . , T ∗m) = {t}
(b) ∀Ti’:Ti’ ⊂ T ∗i : q(T ∗1 , . . . , Ti’, . . . , T ∗m) 6= {t}
(c) ∀T ∗i : ∀t∗ ∈ T ∗i : q(T ∗1 , . . . , {t∗}, . . . , T ∗m) 6= Ø

Also, we say thatqOTi(t) = T ∗i is t’s origin-set in Ti.

In the above definitions, condition (a) states that the
result of applying queryq to the lineage must be the tracing
tuple t; condition (b) is used to enforce the maximizing
and minimizing properties respectively; and condition (c)
removes the redundant elements in the computed derivation
of tuplet (see [8]).

Proposition 1.The origin-set of a tuplet is a subset of the
affect-set oft.

4.2 Data lineage with bag semantics in IQL

As mentioned above, our approach for tracing data lineage
is based on bag semantics which allow duplicate elements
to exist in the source schemas, the integrated schema and
the computed lineage collections. We use the notions of
affect-pool and origin-pool to describe the data lineage
problem with bag semantics:

Definition 3 (Affect-pool for a simple query in IQL).
Let q be any simple query over bagsT1, . . . , Tm, and let
V = q(T1, . . . , Tm) be the bag that results from applying
q to T1, . . . , Tm. Given a tuplet ∈ V, we definet’s affect-
pool in T1, . . . , Tm according to qto be the sequence of
bagsqAP〈T1,... ,Tm〉(t) = 〈T ∗1 , . . . , T ∗m〉, whereT ∗1 , . . . , T ∗m
aremaximal sub-bags ofT1, . . . , Tm such that:

(a) q(T ∗1 , . . . , T ∗m) = {x|x← T ; x = t}
(b) ∀Ti’: q(T ∗1 , . . . , Ti’, . . . , T ∗m) = {x|x ← T ; x = t}
⇒ T ′i ⊆ T ∗i

(c) ∀T ∗i : ∀t∗ ∈ T ∗i : q(T ∗1 , . . . , {t∗}, . . . , T ∗m) 6= Ø

Also, we say thatqAPTi (t) = T ∗i is t’s affect-pool in Ti.

Definition 4 (Origin-pool for a simple query in IQL).
Let q,T1, . . . ,Tm,V andq be as above. We definet’s origin-
pool in T1, . . . , Tm according to qto be the sequence of
bagsqOP〈T1,... ,Tm〉(t) = 〈T ∗1 , . . . , T ∗m〉, whereT ∗1 , . . . , T ∗m
areminimal sub-bags ofT1, . . . , Tm such that:

(a) q(T ∗1 , . . . , T ∗m) = {x|x← T ; x = t}
(b) ∀T ∗i : ¬∃t∗: t∗ ∈ T ∗i , t∗ ∈ (Ti – T ∗i)
(c) ∀T ∗i : ∀t∗ ∈ T ∗i : q(T ∗1 , . . . , {x|x ← T ∗i ; x 6= t∗}, . . . ,

T ∗m) 6= { x|x← T ; x = t}
(d) ∀T ∗i : ∀t∗ ∈ T ∗i : q(T ∗1 , . . . , {t∗}, . . . , T ∗m) 6= Ø

Also, we say thatqOPTi (t) = T ∗i is t’s origin-pool in Ti.

Note that the condition (b) in Definition 4 ensures that if
the origin-pool of a tuplet is T ∗i in the source bagTi, then
for any tuple inTi, either all of the copies of the tuple are in
T ∗i or none of them are inT ∗i .

Proposition 2.The origin-pool of a tuplet is a sub-bag of
the affect-pool oft.

¿From above definitions and the definition of simple
IQL queries in Section 3, we now specify the affect-pool
and origin-pool for IQL simple queries. As in [8], we use
derivation tracing queriesto evaluate the lineage of a tuple
t with respect to a sequence of bagsD. That is, we apply a
query tot and the result is the derivation oft in D. We call
such a query thetracing query for t on D, denoted asTQD(t).

Theorem 1 (Affect-poolandOrigin-pool for a tuple with
IQL simple queries.) LetV = q(D) be the bag that results
from applying a simple IQL queryq to a sequence of bags
D. Then, for any tuplet ∈ V , the tracing queriesTQAPD (t)
below give the affect-pool oft in D, and the tracing queries
TQOPD (t) give the origin-pool oft in D:

q = D1 + + . . .+ +Dr (D = 〈D1, . . . , Dr〉)
TQAPD (t) = TQOPD (t) =

〈[x|x← D1;x = t], . . . , [x|x← Dr;x = t]〉

q = D1 −−D2 (D = 〈D1, D2〉)
TQAPD (t) = 〈[x|x← D1;x = t], D2〉
TQOPD (t) = 〈[x|x← D1;x = t], [x|x← D2;x = t]〉

q = group D
TQAPD (t) = TQOPD (t) =

[x|x← D; first x = first t]

q = sort D / sortDistinct D
TQAPD (t) = TQOPD (t) =

[x|x← D;x = t]

q = max D / min D
TQAPD (t) = D
TQOPD (t) = [x|x← D;x = t]

q = count D / sum D / avg D
TQAPD (t) = TQOPD (t) = D

40 Hao Fan and Alexandra Poulovassilis

q = gc max D / gc min D
TQAPD (t) = [x|x← D; first x = first t]
TQOPD (t) = [x|x← D;x = t]

q = gc count D / gc sum D / gc avg D
TQAPD (t) = TQPPD (t) =

[x|x← D; first x = first t]

q = [x|x← D1;member D2 x]
(D = 〈D1, D2〉)

TQAPD (t) = TQOPD (t) =
〈[x|x← D1;x = t], [x|x← D2;x = t]〉

q = [x|x← D1;not (member D2 x)]
(D = 〈D1, D2〉)

TQAPD (t) = 〈[x|x← D1;x = t], D2〉
TQOPD (t) = [x|x← D1;x = t]

q = [p|p1 ← D1; . . . ; pr ← Dr; c1; . . . ; ck]
(D = 〈D1, . . . , Dr〉)

TQAPD (t) = TQOPD (t) =
〈[p1|p1 ← D1; p1 = t1; . . . ;
pr ← Dr; pr = tr; c1; . . . ; ck], . . . ,

[pr|p1 ← D1; p1 = t1; . . . ;
pr ← Dr; pr = tr; c1; . . . ; ck]〉

In the last query form above, each patternpi is a sub-
pattern ofp and all tuplest ∈ V matchp; for anyt ∈ V , ti is
the tuple derived by projecting the components ofpifrom t.

It is simple to show that the results of queriesTQAPD (t)
and TQOPD (t) satisfy Definition 3 and 4 respectively. For
more complex IQL queries, the above formulae can be suc-
cessively applied to the syntactic structure of an IQL query.
An alternative approach would be to decompose a transfor-
mation step containing a complex IQL query into a sequence
of transformation steps each containing a simple IQL query.

4.3 Tracing data lineage through transformation
pathways

For simplicity of exposition, henceforth we assume that all
of the source schemas have first been integrated into a sin-
gle schemaS consisting of the union of the constructs of
the individual source schemas, with appropriate renaming of
schema constructs to avoid duplicate names.

Suppose an integrated schemaGShas been derived from
this source schemaS though a transformation pathway
TP = tp1, . . . , tpr. Treating each transformation step
as a function applied toS, GS can be obtained asGS =
tp1 ◦ tp2 ◦ . . . ◦ tpr(S) = tpr(. . . (tp2(tp1(S))) . . .). Thus,
tracing the lineage of data inGSrequires tracing data lineage
via a query-sequence, defined as follows:

Definition 5 (Affect-pool for a query-sequence)
LetQ = q1, q2, . . . , qr be a query-sequence over a sequence
of bagsD, and letV = Q(D) = q1 ◦ q2 ◦ . . . ◦ qr(D) be
the bag that results from applyingQ to D. Given a tuple
t ∈ V , we definet’s affect-pool in D according to Qto be
QAPD (t) = D∗, whereD∗i = qAPi (D∗i+1) (1 ≤ i ≤ r), D∗i+1

= {t} andD∗ = D∗1 .

Definition 6 (Origin-pool for query-sequence).
Let Q, D, V and t be as above. We definet’s origin-pool
in D according to Qto beQOPD (t) = D∗, whereD∗i =
qOPi (D∗i+1) (1 ≤ i ≤ r),D∗i+1 = {t} andD∗ = D∗1 .

Definitions 5 and 6 show that the derivations of data in an
integrated schema can be derived by examining the transfor-
mation pathways in reverse, step by step.

An Automed transformation pathway is a composite trans-
formation consisting of a sequence of primitive transforma-
tions which generate the integrated schema from the given
source schemas. The constructs of an HDM schema are
Nodes, Edges, andConstraints.When considering data lin-
eage tracing, we treatNodesandEdgessimilarly since both
of these kinds of constructs have an extent, i.e. contain data.
We ignore theConstraintspart of a schema because a con-
straint is just a query over the nodes and edges of a schema
and does not contain any data.

Thus, for data lineage tracing, we consider the primitive
transformationsaddNodeandaddEdgeas a singleaddCon-
struct transformation,delNodeanddelEdgeasdelConstruct,
renameNodeand renameEdgeas renameConstruct, and we
ignoreaddConstraintanddelConstrainttransformations.

We thus summarize the problem of data lineage for each
kind transformation step as follows:

(a) For anaddConstruct(O, q) transformation, the lineage of
data in the extent of schema constructO is located in the
extents of the schema constructs appearing inq.

(b) For a renameConstruct(O′, O) transformation, the lin-
eage of data in the extent of schema constructO is lo-
cated in the extent of schema constructO′.

(c) All delConstruct(O, q) transformations can be ignored
since they create no schema constructs.

4.4 Algorithms for tracing data lineage

In our algorithms below, we assume that each schema con-
struct,O, has two attributes:relateTPis the transformation
step that createdO, andextentis the current extent ofO. If a
schema construct remains in the global schema directly from
one of the source schemas, itsrelateTPvalue is Ø.

In our algorithms, each transformation steptp has four at-
tributes:

– transfType, which is“add” , “ren” or “del” ;
– query, which is the query used in this transformation step

(if any);
– source, which for arenameConstruct(O′, O) returns just
O′, and for anaddConstruct(O, q) returns a sequence of
all the schema constructs appearing inq; and

– result which isO for both renameConstruct(O′, O) and
addConstruct(O, q).

It is simple to trace data lineage in case (b) discussed
above. IfB is a tuple bag (i.e. bag of tuples) contained in
the extent ofO, B’s data lineage inO′ is justB itself, and we
define this to be both the affect-pool and the origin-pool ofB
in O′.

In case (a), where the constructO was created by a trans-
formation stepaddConstruct(O, q), the key point is how to
trace the lineage using the queryq. We can use the formulae
given in Theorem 1 to obtain the lineage of data created in

Tracing Data Lineage 41

this case. The proceduresaffectPoolOfTuple(t, O) andorig-
inPoolOfTuple(t, O) below can be applied to trace the affect
pool and origin pool of a tuplet in the extent of schema con-
structO. The result of these procedures,DL, is a sequence
of pairs

〈(D1, O1), . . . , (Dn, On)〉

in which eachDi is a bag which containst’s derivation
within the extent of constructOi. Note that in these proce-
dures, the sequence returned by the tracing queriesTQAP

and TQOP may consist of bags from different schema
constructs. For any such bag,B, B.construct denotes the
schema construct from whose extentB originates.

proc affectPoolOfTuple(t, O)
input : a tracing tuplet in the extent of construct O
output : t’s affect-pool,DL
begin

D = [(O′.extent,O′) |O′ ← O.relateTP.source]
D∗ = TQAPD (t);
DL = [(B,B.construct) |B ← D∗]
return(DL);

end

proc originPoolOfTuple(t, O)
input : a tracing tuplet in the extent of construct O
output : t’s origin-pool,DL
begin

D = [(O′.extent,O′) |O′ ← O.relateTP.source]
D∗ = TQOPD (t);
DL = [(B,B.construct) |B ← D∗]
return(DL);

end

Two proceduresaffectPoolOfSet(T,O) andoriginPoolOf-
Set(T,O) can then be used to compute the derivations of a
tuple set (i.e. set of tuples),T . (Because duplicate tuples have
an identical derivation, we eliminate any duplicate items and
convert the tracing bag to a tracing set first.) We giveaffect-
PoolOfSetbelow. originPoolOfSet(T,O) is identical, with
originPoolOfTuplereplacingaffectPoolOfTuple. In these two
procedures, we trace the data lineage of each tuplet ∈ T
in turn and incrementally merge each time the result intoDL:

proc affectPoolOfSet(T,O)
input : a tracing tuple set T contained in construct O
output : T ’s affect-pool,DL
begin

DL = 〈〉; / ∗ the empty sequence ∗ /
for each t ∈ T do
DL = merge(DL, affectPoolOfTuple(t, O));

return(DL);
end

Because a tuplet∗ can be the lineage of bothti and tj
(i 6= j), if t∗ and all of its copies in a data source have
already been added toDL as the lineage ofti, we do
not add them again intoDL as the lineage oftj . This is
accomplished by the proceduremerge given below, where
the operator− removes a element from a sequence and the
operator+ appends an element to a sequence:

proc merge(DL,DLnew)
input : data lineage sequence DL =

〈(D1, O1), . . . , (Dn, On)〉;
new data lineage sequenceDLnew

output : merged data lineage sequence DL
begin

for each (Dnew, Onew) ∈ DLnew do
if Onew = Oi for some Oi in DL then {
oldData = Di;
newData = oldData + +

[x |x← Dnew; not (member oldData x)];
DL = (DL − (oldData,Oi)) +

(newData,Oi);
}
else
DL = DL + (Dnew, Onew);

return(DL);
end

Finally, we give below our algorithmtraceAffectPool(B,
O) for tracing affect lineage using entire transformation path-
ways given a integrated schemaGS, the source schemaS,
and a transformation pathwaytp1, . . . , tpr from S to GS.
Here,B is a tuple bag contained in the extent of schema con-
structO ∈ GS. We recall that each schema construct has
attributesrelateTPandextent, and that each transformation
step has attributestransfType, query, sourceandresult.

We examine each transformation step fromtpr down to
tp1. If it is a delete step, we ignore it. Otherwise we deter-
mine if the result of this step is contained in the current
DL. If so, we then trace the data lineage of the current data
of O in DL, merge the result intoDL, and deleteO from
DL. At the end of this processing the resultingDL is the
lineage ofT in the data sources:

proc traceAffectPool(B,O)
input : tracing tuple bag B contained in constructO

transformation pathway tp1, . . . , tpr
output : B’s affect-pool, DL
begin

DL = 〈(B,O)〉;
for j = r downto 1 do
case tpj .transfType = “del”
continue;

case tpj .transfType = “ren”
if tpj .result = Oi for some Oi in DL then
DL = (DL − (Di, Oi)) + (Di, tpj .source);

case tj .transfType = “add”
if tpj .result = Oi for some Oi in DL then {
DL = DL − (Di, Oi);
Di = sortDistinct Di;
DL = merge(DL, affectPoolOfSet(Di, Oi));
}

end
return(DL);

end

ProceduretraceOriginPool is identical, obtained by re-
placingaffectPoolOfSetby originPoolOfSet.

42 Hao Fan and Alexandra Poulovassilis

5 Conclusions and future work

We have presented definitions for data lineage in Automed
based on both why-provenance and where-provenance,
which we have termedaffect-poolandorigin-pool, respec-
tively. Rather than relying on a high-level common data
model such as an ER or relational model, the Automed inte-
gration approach is based on a lower-level CDM – the HDM
data model. Heterogeneous source schemas can be automati-
cally translated into the equivalent HDM representation, and
transformations between them expressed as transformations
on their HDM representations. The contribution of the work
described in this paper is that we have shown how the in-
dividual steps of Automed schema transformation pathways
can be used to trace the affect-pool and origin-pool of items
of integrated data in a step-wise fashion.

Fundamental to our lineage tracing method is the fact that
add anddel schema transformations carry aquerywhich de-
fines the new or deleted schema construct in terms of the
other schema constructs. Thus, our general approach is not
limited to the HDM data model and IQL query language
and can be applied to schema transformations defined on
other data models using different query languages, or indeed
to inter-model schema transformation pathways (as used in
[14,15] for example).

The data lineage problem and the solutions presented in
this paper have led to a number of areas of further work:

– Combining our approach for tracing data lineage with
the problem of incremental view maintenance.We have
already done some preliminary work on using the Au-
tomed transformation pathways for incremental view
maintenance. We now plan to explore the relationship
between our lineage tracing and view maintenance al-
gorithms, to determine if an integrated approach can be
adopted for both.

– Implementing our lineage tracing and view maintenance
algorithms. As a part of the Automed project, we are im-
plementing these algorithms over the Automed reposi-
tory and API [3].

– Extending the lineage tracing and view maintenance al-
gorithms to a more expressive transformation language.
[16] extends the Automed transformation language with
parametrised procedures and iteration and conditional
constructs, and we plan to extend our algorithms to this
more expressive transformation language.

References

1. J. Albert. Algebraic properties of bag data types. InProc.
VLDB’91, pages 211–219, 1991.

2. P. Bernstein and T. Bergstraesser. Meta-data support for data
transformations using microsoft repository.IEEE Data Engi-
neering Bulletin, 22(1):9–14, 1999.

3. M. Boyd and N. Tong. The Automed repositories and API.
Technical report, Automed Project, 2001.

4. P. Buneman, S. Khanna, and W.C. Tan. Data provenance: some
basic issues. InProc. FSTTCS 2000, pages 87–93, 2000.

5. P. Buneman, S. Khanna, and W.C. Tan. Why and Where: a
characterization of data provenance. InProc. ICDT 2001, pages
316–33, 2001.

6. Y. Cui. Lineage tracing in data warehouses. phd thesis. Techni-
cal report, Computer Science Department, Stanford University,
2001.

7. Y. Cui and J. Widom. Lineage tracing for general data ware-
house transformations. InProc. VLDB’01, pages 471–480,
2001.

8. Y. Cui, J. Widom, and J.L. Wiener. Tracing the lineage of view
data in a warehousing environment.ACM TODS, 25(2):179–
227, 2000.

9. C. Faloutsos, H.V. Jagadish, and N.D. Sidiropoulos. Recover-
ing information from summary data. InProc. VLDB’97, pages
36–45, 1997.

10. H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.A.
Saita. Improving data cleaning quality using a data lineage
facility. In Proc. DMDW’01, page 3, 2001.

11. R. Hull. Managing semantic heterogeneity in databases. In
Proc. PODS’97, pages 51–61, 1997.

12. P. McBrien and A. Poulovassilis. Automatic migration and
wrapping of database applications - a schema transformation
approach. InProc. ER’99, pages 96–133, 1999.

13. P. McBrien and A. Poulovassilis. A uniform approach to inter-
model transformations. InProc. CAiSE’99, pages 333–348,
1999.

14. P. McBrien and A. Poulovassilis. A semantic approch to inte-
grating XML and structured data sources. InProc. CAiSE’01,
pages 330–345, 2001.

15. P. McBrien and A. Poulovassilis. Schema evolution in hetero-
geneous database architectures, a schema transformation ap-
proach. InProc. CAiSE’02, 2002.

16. A. Poulovassilis. An enhanced transformation language for the
HDM. Technical report, Automed Project, 2001.

17. A. Poulovassilis. The Automed Intermediate Query Language.
Technical report, Automed Project, 2001.

18. A. Poulovassilis and P. McBrien. A general formal framework
for schema transformation.Data and Knowledge Engineering,
28(1):47–71, 1998.

19. P. Trinder. Comprehensions, a query notation for DBPLs. In
Proc DBPL’91, pages 55–68, 1991.

20. A. Woodruff and M. Stonebraker. Supporting fine-grained
data lineage in a database visualization environment. InProc
ICDE’97, pages 91–102, 1997.

An Algebra for the Composition of Ontologies?

Prasenjit Mitra and Gio Wiederhold

Infolab, Stanford University, Stanford, CA 94305, USA
{mitra, gio }@db.stanford.edu

Abstract. Information needs to be composed from
multiple sources to create new information. Such
composition is essential, for example, to answer
queries posed by end-users on websites enabling
electronic commerce. In order to facilitate the com-
position of information, ontologies have been used
to explicitly define the vocabulary used in the infor-
mation sources. Today, a large number of such on-
tologies are available. These ontologies in turn are
semantically heterogeneous and the need arises to
align and compose them before we can compose in-
formation from the sources. In this paper, we out-
line an algebra for the composition of ontologies
and show the properties of the algebraic operators.
We show how the articulation generation function
determines the properties of the operators and dis-
cuss the conditions that these functions must satisfy
to enable optimized composition of ontologies.

1 Introduction

Often, queries cannot be answered from information ob-
tained from one information source but need information to
be composed from multiple sources. Composing information
from multiple information sources creates new and useful
information. Thus, in a distributed framework like today’s
World-Wide Web, it is absolutely crucial for us to compose
information from multiple sources.

Several approaches to integrate information from diverse
information sources have been proposed and implemented
with varying success [1], [2], [3], [4] etc.. However, a ma-
jor problem to integrating information from various sources
are the heterogeneity in their vocabularies. In order to solve
this problem, ontologies are increasingly being used to ex-
plicitly define the terms and relationships used in an infor-
mation source. Since the ontologies themselves are indepen-
dently created, we need to resolve the semantic heterogeneity
among them. Thus, before we can compose information from
information sources, there arises a need to compose their cor-
responding ontologies [5]. Ontology-based integration of in-
formation has been widely proposed.

In this work, we propose an algebra to enable systematic
composition of ontologies. Composition of ontologies can
then be expressed in terms of expressions using the ontolo-
gies and operators from the algebra. The properties of the
algebraic operators determine the types of optimization that
can be enabled while composing the ontologies. We describe
the properties of the composition operations formally and
discuss how they can be used to optimize the composition
process.

To resolve semantic heterogeneity among ontologies be-
fore composing them, we assume that there exists functions
? This work has been supported by the AFOSR New World Vistas

program and the DARPA DAML program.

that take in two ontologies and generatearticulation rules
among them. An articulation rule establishes the correspon-
dence between two (or more) terms belonging to the different
ontologies that are being articulated. Functions that gener-
ate articulation rules are calledarticulation generation func-
tions. Articulation rules generated by the articulation gener-
ation function form the basis for the composition of ontolo-
gies.

The binary operators of the algebra depend upon the artic-
ulation rules generated by the articulation generation func-
tion. For example, to compute the intersection of two ontolo-
gies we need to know which concept in one ontology is simi-
lar to which concepts in the other. Not surprisingly, therefore,
the properties of the algebraic operators are determined by
the articulation generation functions. Most articulation gen-
eration functions are manually written or semi-automatically
generated using heuristic methods that try to match two on-
tologies and generate their articulation.

In this paper, we discuss the conditions the articulation
generation functions should satisfy so that the composition of
the ontologies can be optimized. Even though a lot of work
has been done on suggesting heuristics for articulating and
aligning ontologies (or mapping schemas) [6], [7], [8], [9],
[10], to the best of our knowledge, no prior work has studied
the properties of such heuristics and shown how the task of
composition of ontologies (or databases) is affected by their
properties.

The rest of the paper is organized as follows. In the next
section, we discuss some preliminaries. In Section 3, we de-
scribe the algebra and its operators. In Section 4, we discuss
the properties of the operators and in Section 5, we conclude.

2 Preliminaries

2.1 Ontologies

The term ”ontology” has many definitions[11],[12]. It has
been represented using various data formats and rule lan-
guages. Our approach is to use a definition and data for-
mat that is simple - a ”least common format”. The for-
mat captures the basic features common to most machine-
represented ontologies and is simple enough to allow easy
transformations from various other ontology formats to ours.

In its core, we represent an ontology as a graph and a set
of horn-clause rules. Formally, an ontologyO = (G,R) is
represented as a directed labeled graphG and a set of rules
R. The graphG = (V,E) comprises a finite set of nodesV
and a finite set of edgesE. The label of a node inV is given
by a non-null string. In the context of ontologies, the label is
often a noun-phrase that represents a concept.

The label of an edge inE is the name of a semantic rela-
tionship among the concepts inV and can be “null” if the re-
lationship is not known. An edge is expressed as aStatement

44 Prasenjit Mitra et al.

of the form(SubjectRObject), whereSubject, Object ∈
V andR is therelationshipbetween them.

The semantics of the relationships are typically specified
in the document it is defined in and the namespace of the
relationship is tagged along to clarify the relationship we
are referring to. For example,rdfs : subClassOf where
rdfs is an alias ofhttp : //www.w3.org/2000/01/rdf −
schema# indicates that the relationship that is being used is
”subclassOf” as specified in therdfs document. In the rest
of the paper, we omit the namespace unless we need to dif-
ferentiate between two relationships of the same name or we
need to mention the source of the relationship to make our
point.

Rules in an ontology are expressed in a logic-based lan-
guage. Although, theoretically, it might make sense to use
first-order logic as the rule language due to its greater expres-
sive power, in order to limit the computational complexity we
will use a simpler language like Horn Clauses. A typical rule
r ∈ R is of the form :

CompoundStatement⇒ Statement

A Statementis of the form(Subject R Object). Subject
andObject are either labels of node in the ontology graph
or a variable that can be bound to one or more nodes in
the ontology graph. As in an edge, the relationshipR ex-
presses a relationship between the two conceptsSubject and
Object. The antecedent of the ruleCompoundStatement
is either a Boolean value (true or false) or a conjunction
of Statements. If the antecedent of the rule istrue, we
simplify the notation by dropping the body of the rule and
writing the consequent as a statement that holds (like edges).
Edges can be thought of as rules whose antecedent is always
true. Minimally we could define an ontology as a set of con-
cepts and rules (since edges can be expressed as rules), how-
ever, we believe the graphical representation aligns with hu-
man intuition much better and thus describe our work using
the above definition. A more detailed description of the on-
tology format can be found in [13].

For ease of description of the algebra,
we will introduce the following terminology:
For a statements = (Subject R Object), Nodes(s)
contains Subject(Object) provided Subject(Object)
is not a variable (that is, it is a node in some on-
tology graph). For an ontologyO1, Nodes(O1)
represents the set of nodes consisting of each
node that belongs to the ontology graph forO1.
For a set of rulesR, Nodes(R) represents the union
of Nodes(s) for all s, such thats is a statement in any rule
r ∈ R.

Example 1.We introduce a running example in Figure 1,
which we will use throughout the paper.O1, O2, andO3
are three ontologies. We only show selected portions of the
ontology graphs corresponding to the three ontologies. In
order to specify which ontology a concept is defined in,
we tag the name of the ontology it belongs to the name of
the node. For example, the node labeledO2.Car refers the
conceptCar as defined in the ontologyO2. However, where
the origin of the definition is not important (or is obvious)
to the topic of discussion, we will simply use the concept
name without mentioning the fully qualified name (that is,

Car HouseBoat

MSRP

Denomination

Dollar

O2

hasA

hasA

InstanceOf

Boat Automobile

RetailPrice

Denomination

Dollar

O3

hasA

hasA

InstanceOf

LuxuryCar
SubClassOf

Vehicle
O1

Articulation Rules:

true => (O2.Car SubClassOf O1.Vehicle)

(X InstanceOf O1.Car),(X hasA X.MSRP),(Y InstanceOf X.MSRP),

(Y hasA Y.Value), (Z InstanceOf Y.Value), (Y.Value > 40,000)

=> (X InstanceOf O2.LuxuryCar)

Value

hasA

Value

hasA

hasA

SubClassOf

SubClassOf

Fig. 1.Ontologies and Articulation Rules

drop the ontology name tagged in front of it). Let the set
R = {(O2.Car SubClassOf O1.V ehicle),
(O2.HouseBoat SubClassOf O1.V ehicle)}, then
Nodes(R) = {O2.Car,O1.V ehicle,O2.HouseBoat}.

Edges(E,n), whereE is a set of edges andn is a node
in an ontology graph, represents all edges inE incident upon
or incident from the noden. Formally,Edges(E,n) = {s ∈
E| ∃n′, l : s = (n, l, n′) or s = (n′, l, n)}. Edges(E,N),
whereN andE are a set of nodes and edges respectively
in an ontology graph, represents a set of edgesS ∈ E.
Both nodes (the node from which an edge is incident from
and the node to which it is incident upon) of each edge
in the setS must belong to the set of nodesN . Formally,
Edges(E,N) = s = (n1, l, n2) ∈ E|n1, n2 ∈ N .

2.2 Articulation Rules and Articulation Generation
Functions

To resolve heterogeneity among ontologies, we need a pro-
cedure to generate the correspondences and relationships
among concepts in the ontologies. Such relationships are
coded as articulation rules. We call such procedures that gen-
erate articulation rules between ontologiesarticulation gen-
eration functions. Note that the articulation generation func-
tion can be an automatic subroutine that takes in the two on-
tologies and outputs the articulation rules or it could be a
manual effort where a human expert identifies the articula-
tion rules by inspecting the two ontologies or a hybrid semi-
automatic strategy that involves both a component that auto-
matically suggests articulations and a human component that
ratifies them. An articulation generation function takes is two
ontologies (domain: the set of all possible ontologiesO) and
outputs a subset of the set of all possible rules (range: the set
of all possible rulesR) between them (f : OxO → 2R. We
expect the articulation generation to be a complete function.
That is, given any two ontologies, the function always termi-
nates and outputs a set of articulation rules that link them. An
articulation ruler articulating two ontologiesO1 andO2 is
such that∃O1.n ∈ Nodes(r) and∃O2.n′ ∈ Nodes(r) for
some nodesn andn′ in O1 andO2 respectively.

Example 2.In our running example, we show a few of the ar-
ticulation rules generated by an articulation generation func-
tion. For lack of space, all articulation rules are not shown in

An Algebra for the Composition of Ontologies 45

Figure 1, but we show two rules graphically, and two textu-
ally at the lower part of the figure. The two graphical rules
are shown by dotted arrows spanning different ontologies in
contrast to the edges in an ontology indicated by solid ar-
rows. Specifically, we see thatO2.Car is related via the re-
lationshipSubClassOf toO1.V ehicle. SimilarlyO3.Boat
is related via the relationshipSubClassOf to O1.V ehicle.
We show the rule expressing the first relationship both graph-
ically and textually, and the second only graphically. The
second articulation rule indicated textually at the bottom of
the figure gives a Horn Clause that indicates the relation-
ship betweenO2.Car andO3.LuxuryCar. Any instance of
O2.Car that has aO2.MSRP that, in turn, has aO2.V alue
that is greater than40, 000 is aO3.LuxuryCar. Of course,
such a rule should also consider theO2.Denomination of
theO2.MSRP but for the sake of simplicity we have omit-
ted the denomination from the rule.

A notation we use is illustrated byX.MSRP . Whenever,
we instantiate a concept in an ontology, we duplicate

For the sake of describing the algebra below, we now define
the terminology related to articulation generation functions.

Definition 1. An articulation generator function,f , directly
relatestwo nodesn1 ∈ O1, andn2 ∈ O2, whereO1 andO2
are the source ontologies it is articulating, ifff generates an
edge(n1 R n2) or an edge(n2 R n1), whereR is a relation.

Example 3.In our example, the articulation function that
generated the articulation rules directly relates the nodes
O2.Car and O1.V ehicle , and the nodesO3.Boat and
O1.V ehicle.

If an articulation generation functionf directly relates two
nodesn1 andn2, we will denote that hereafter as(n1f :
dreln2).

Definition 2. An articulation generator functionf is said to
be transitively connectiveiff it satisfies the following condi-
tion:

– if ∀O1, O2, O3 ∈ O, ∃r1, r2, O1.A,O2.B,O3.C|r1 ∈
f(O1, O2), r2 ∈ f(O2, O3), O1.A,O2.B ∈
Nodes(r1), O2.B,O3.C ∈ Nodes(r2),
then ∃r3, r4, O1.D,O3.E|r3, r4 ∈
f(O1, O3), O1.A,O3.E ∈ Nodes(r3), O1.D,O3.C ∈
Nodes(r4)

In other words, if the articulation generation function dis-
covers thatO1.A is related toO2.B andO2.B is related to
O3.C, then a transitively connective articulation generation
function will discover thatO1.A is related to some element
in O3, andO3.C is related to some node inO1.

Example 4.In our running example, if f dis-
covers O2.Car SubClassOf O1.V ehicle and
O3.Boat SubClassOf O3.V ehicle, we expect a tran-
sitively connective articulation generator to find some
node inO2 that is related toO3.Boat (it might generate
the edge(O2.HouseBoat SubClassOf O3.Boat)) and
some node inO3 (presumably bothO3.Automobile and
O3.LuxuryCar) that is related toO2.Car.

A desirable property of an articulation generation function
is that it is “consistent”, that is, presented with the same on-
tologies it generates the same set of articulation rules always.
During the process of ontology composition, parts of an on-
tology are selected and are composed with other selected por-
tions of ontologies to createintermediate ontologies. A node
derived from the source ontology will then be aliased with a
label comprised of the concept name along with the name of
the intermediate ontology. However, both the original name
as well as the alias will refer to the same concept. For exam-
ple, if the node labeledO1.Car in ontologyO1 is selected
and included in ontologyO3, it can be referred to asO1.Car
as well asO3.Car.

Definition 3. An articulation generator functionf is said to
be consistent, if and only if, for any two source ontologies
O1, andO2, and any two intermediate ontologiesO3 andO4
such that∀n1 ∈ O1, n2 ∈ O2, O1.n1 ∈ O3, O2.n2 ∈ O4 :
R1 = f(O1, O2),
R2 = f(O3, O4),
∀r1 ∈ R1|n1, n2 ∈ Nodes(r1),
∃r2 ∈ R2|O1.n1, O2.n2 ∈ Nodes(r2), andr1 ≡ r2.

Let there be three nodesO1.n1, andO1.n1′ belonging to
ontologyO1, andn2, belonging to ontologyO2. Let us as-
sume an articulation generator functionf generates a rule
between nodesn1 andn2, while articulating the source on-
tologiesO1 andO2. respectively. Letn1 be selected to an
intermediate ontologyO3 butn1′ is not inO3. Also, letn2
be selected to an intermediate ontologyO4. Now, if we want
to articulateO3 with O4, a consistentf must still gener-
ate a rule betweenn2 andn1 that is equivalent to the rule
that it generated while articulatingO1 andO2. A consistent
f should generate such a rule despite the absence of some
nodes (likeO1.n1′) or edges that are present in the source
ontologies but not in the intermediate ontology.

Example 5.In our running example, let us suppose that
an articulation generation functionf generates a rule
O3.LuxuryCarSubClassOfO2.Car based on its price.
However, let us assume that in two intermediate ontologies
O4 andO5 that containO3.LuxuryCar andO2.Car re-
spectively, only the concepts useful for describing the ap-
pearance and functionality of the cars have been chosen but
not their prices. Now iff cannot generate the rule between
O3.LuxuryCar andO2.Car - which might be perfectly
reasonable - we will not callf a consistent articulation gen-
eration function.

Obviously, articulation generation functions that bank on
structural matches will oftentimes not be consistent, since
the structure in the neighbourhood ofn1 andn2 in the in-
termediate ontology potentially can be much different and
not match the structure in the neighbourhood of the nodes
in the source ontologies. On the other hand, an articulation
generation functionf that matches nodes based only on their
labels, for example, natural language processing systems that
generate similarities of noun phrases, will be consistent since
it checks only the label, which for a node remains the same
in the source ontologies as well as in the intermediate ontolo-
gies.

The property of consistency places a strong restriction on
articulation generation functions but as we will see later, ar-
ticulation generation functions that are consistent enables a

46 Prasenjit Mitra et al.

sequence of two intersections to be associative. Associativity
of operators allow us to compose the ontologies in any or-
der and the rearrangement of operators can be often used to
optimize the composition process.

In this work, we do not consider articulation rules that
might introduce new nodes. For example, while articulating
betweenPoundSterling andGuilders, an articulation gen-
eration function might generate an intermediate node called
Euro and then give the relation betweenPoundSterling
and theEuro and that between theGuilder and theEuro.
However, the presence of such an intermediate node influ-
ences the properties of the algebraic operators. For example,
if an articulation generation function generates intermediate
nodes, the intersection operation between ontologies can not
be guaranteed to be associative. Thus, we do not consider
such articulation generation functions in this work but it is
an interesting problem to handle in future.

If an articulation generation functionf relates two nodes
in two different ontologies using at least one intermediate
node, we say thatf indirectly relatesthe two nodes (using the
intermediate node). We denote this as(nf : ireln′), where
n, n′ are the two nodes in different ontologies connected by
the articulation generation functionf .

3 The Ontology-Composition Algebra

In order to formalize the task of composing ontologies, we
propose an algebra for the composition of ontologies. If we
use the algebraic framework to systematically compose on-
tologies, we can enable optimizations depending upon the
properties of the operators. In this section, we describe the
ontology-composition algebra and in the next section we dis-
cuss properties of its operators.

The algebra has one unary operator:Select, and three bi-
nary operations:Intersection, Union, andDifference.

3.1 Unary Operator

Select: The Select operator is useful to select portions of an
ontology that might be of interest. For example, a person who
wants to buy a car and does not care about houseboats, might
want to select only portions of ontologyO2 that contain ter-
minology about cars and cut out the portions that are not re-
lated to cars.

Definition 4. The Select operator has two forms:

1. Given an ontologyO = ((N,E), R), and a noden ∈ N ,
Select(O,n) = (Gn, Rn) whereGn = (Nn, En) is a
subgraph ofG such that for all nodesn′ in Nn, there
exists a path fromn to n′ in G. The setEn = {e =
(n1 R n2) ∈ E|n1, n2 ∈ Nn} is such that each edge
in En expresses a relationship between nodesn1 andn2

where both nodesn1 andn2 are inNn Similarly,Rn =
{r ∈ R|Nodes(r) ⊆ Nn} is the set of rules obtained
fromR containing all rules inO whose concepts are all
in Nn.

2. Given an ontologyO = ((N,E), R), and set of nodes
V , Select(O, V) = (G,Rv) whereG = (V,Ev). The
setEv = {e = (n1 R n2) ∈ E|n1, n2 ∈ V and the set
Rv = {r ∈ R|Nodes(r) ⊆ V }.

Example 6.In our example, the ontologyO3 contain the
edges (O3.LuxuryCar SubClassOf O3.Automobile),
and (O3.LuxuryCar hasA O3.RetailPrice).
Select(O3, Automobile) would select all nodes
reachable from the node O3.Automobile
(LuxuryCar,RetailPrice,Denomination, V alue,
and Dollar), and the edges between them.
Select(O3, {Automobile, LuxuryCar}) would
on the other hand only select the nodes
O3.LuxuryCar,O3.Automobile and the edge
(O3.LuxuryCar SubClassOf O3.Automobile).

Note that a ruler in R that does not involve any node in
O hasNodes(r) = φ. Such a rule is included in the se-
lected ontology since the empty set is a subset ofN . For
example, a rule expressing the transitivity of the relationship
SubClassOf

(XSubClassOfY), (Y SubClassOfZ)⇒ (XSubClassOfZ)

contains only variablesX, Y , andZ and no concepts from
any ontology. Such a rule is included in any selected ontology
S since the rule might be useful to reason about the relation-
ships and concepts inS.

There is a case that could be made to include in
the results of the select operation edges (and rules)
that can be derived using the edges and rules avail-
able in the source ontology. For example, let us sup-
pose that we had edges(LuxuryCar SubClassOf Car),
and (Car SubClassOfV ehicle) in an ontology O.
Select(O, {V ehicle, Car}) would select the last edge. On
the other handSelect(O, V ehicle, LuxuryCar) would in-
clude the nodesV ehicle, andLuxuryCar but no edges
since there are no edges between them. We could define Se-
lect to add an edge(LuxuryCar SubclassOf V ehicle)
if such a relationship could be derived from the ontology
O, for example, using a rule that said that the relationship
SubClassOf is transitive.

Similarly, it is easy to see that we could introduce addi-
tional rules over and above the ones that the currentSelect
operation includes in the selected ontology. However, in or-
der to generate these derived edges and rules, the ontology
composition engine would need to interpret the rules of the
ontology. In order to allow our framework to be applicable
to different ontologies with different interpretation seman-
tics for rules and because potentially we could derive an infi-
nite number of facts in certain scenarios (say with recursive
rules), the ontology composition engine does not interpret the
rules so as to maintain its simplicity.

3.2 Binary Operators

Intersection Each binary operator takes as operands two on-
tologies that we want to articulate, and generates an ontology
as a result, using the articulation rules. The articulation rules
are generated by an articulation generation function.

Intersection is the most important and interesting bi-
nary operation. The intersection of two ontologiesO1 =
((N1, E1), R1), andO2 = ((N2, E2), R2) with respect to
the set of articulation rule generating functionf is:
OI1,2 = O1 ∩f O2, whereOI1,2 = (NI,EI,RI),
NI = Nodes(f(O1, O2)),

An Algebra for the Composition of Ontologies 47

EI = Edges(E1, NI ∩ N1) + Edges(E2, NI ∩ N2) +
Edges(f(O1, O2)) ,
andRI = Rules(O1, NI ∩N1) +Rules(O2, NI ∩N2) +
f(O1, O2))).
The nodes in the intersection ontology are those nodes that
appear in the articulation rules. An edge in the intersection
ontology are the edges among the nodes in the intersection
ontology that were either present in the source ontologies or
have been output by the articulation generation function as
an articulation rule. The rules in the intersection ontology are
the articulation rules that are present in the source ontology
that use only concepts that occur in the intersection ontology.

Note that since we consider each node as an object instead
of the subtree rooted at the node, we will get only the node
in the intersection by virtue of its appearing in an articula-
tion rule and not automatically include its attributes or sub-
classes. Again, a minimal linkage keeps the intersection on-
tologies small and avoids the inclusion of possibly irrelevant
concepts. Inclusion of attributes will be required to define
subclass relationships among nodes in the source ontologies
precisely.

Each node in the intersection has a label which contains
the URI of the source in which it appears. If the attributes
of the object that it represents are required, the application’s
query processor has to get that information from the original
source. Defining the intersection with a minimal outlook re-
duces the complexity of the composition task, and the main-
tenance costs, which all depend upon the size of the articula-
tion.

Union The union OU between two ontologies
O1 = (V 1, E1, R1) and O2 = (V 2, E2, R2) is ex-
pressed asOU = O1 ∪AR O2 = (V U,EU,RU) where
V U = V 1 ∪ V 2 ∪ V I1,2,
EU = E1 ∪ E2 ∪ EI1,2,
andRU = R1 ∪R2 ∪RU1,2,
and whereOI1,2 = O1 ∩AR O2 = (V I1,2, EI1,2, RI1,2) is
the intersection of the two ontologies.

The setV I1,2 is non-null only if the articulation rules do
not introduce new nodes. However, even if two nodes in the
ontologies being articulated have the same label, say,O1.x
andO2.x andf indicates that they represent the same con-
cept by generating the ruleO1.x Equals O2.x, in the inter-
section and the union ontology, we would retain bothO1.x
andO2.x and the edge between them instead of collapsing
them into one node. The articulation rules almost always in-
dicate relationships between nodes in the two source ontolo-
gies and thus introduces new edges (the setEI1,2) that were
not there in the source ontologies.

Though queries are often posed over the union of several
information sources, we expect this operation to be rarely
applied to entire source ontologies. The union of two source
ontologies is seldom materialized, since our objective is not
to integrate source ontologies but to create minimal articula-
tions and interoperate based on them. However, we do expect
that larger applications will often have to combine multiple
articulations and here is where the union operation is handy.

Difference The difference between two ontologiesO1 and
O2, written asO1 − O2, between two ontologiesO1 =

((V 1, E1), R1) andO2 = ((V 2, E2), R2) is expressed as
OD = ((V D,ED), RD), whereV D = V 1 − V I1,2,
ED = E1 − EI1,2, andRD = RI − RI1,2, and where
OI1,2 = O1 ∩f O2 = (V I1,2, EI1,2, RI1,2) is the intersec-
tion of the two ontologies using the articulation generation
function f. That is, the difference ontology includes portions
of the first ontology that are not common to the second ontol-
ogy. The nodes, edges and rules that are not in the intersec-
tion ontology but are present in the first ontology comprise
the difference.

3.3 Properties of the Operators

We defined the operators in the algebra on the basis of the ar-
ticulation rules produced by the articulation generating func-
tion. Not surprisingly, most of the properties of the binary
operations are based on the properties of the articulation gen-
erating function.

Idempotence Idempotence is a very important property that
should hold for operations like union and intersection. In-
tuitively, we believe that the union (and intersection) of an
ontology with itself should result in the same ontology.

For the union operation to be idempotent to hold, we re-
quireO1 ∪f O1 = O1. Also, letOU = O1 ∪f O1. Let
AR = f(O1, O2). From the definition of the union it follows
thatNodes(OU) = Nodes(AR). For union to be idempo-
tent, we needNodes(OU) = Nodes(O1) = Nodes(AR).
That is,f must generate articulation rules involving all nodes
in the ontologyO1. This requirement is obvious since we are
matching the same ontology to itself and would expect a set
of rules to be generated that matches each node to itself.

Although, the nodes inOU andO1 are the same, the for-
mer contains more edges and rules by virtue of the defini-
tion of theunion operator. The extra edges are self-edges
between a node and itself generated byf that are included in
the union ontology.

Since the edges and rules ofOU andO1 are not the same,
OU 6= O1, and theUnion operator is not idempotent. Al-
though the strict definition of idempotence is not satisfied, we
introduce the concept ofsemantic idempotence. An binary
operator is semantically idempotent if and only if the result
of the operation on two copies of the same ontology results
in an ontology from which if we remove all self-edges and
self-rules, the resulting ontology is the same as the source
ontology. Recall that self-edges are edges between one node
and itself and a self-rule is a rule that has only one node (con-
cept) in its definition.

Similarly, we can show that the intersection operator is se-
mantically idempotent, if and only if, the articulation gener-
ation function that generated the articulation rules between
an ontology and itself generates self-edges and self-rules for
each node in the ontology.

It is easy to see that the difference operator is not idempo-
tent but a difference operation using a well-behaved articula-
tion generation function should return the empty set.

The semantic idempotence property serves as a sanity
check to make sure that the articulation generation functions
that we employ are semantically meaningful and intuitively
correct. Although, in order to guarantee that an articulation
generation function is idempotent, we would have to check

48 Prasenjit Mitra et al.

over the set of all (potentially infinite) ontologies, in practice
we simply check to see that for the purposes of an applica-
tion, the articulation generation function is idempotent for all
ontologies used by the application. That is, though we do not
prove the functions to be idempotent, we check to see that
none of the ontologies that is useful for the application can
be used to prove that the function is not idempotent. Articula-
tion generator functions that do not satisfy the above equality
areunsoundand for the purposes of our compositions, we do
not use any unsound articulation generator function.

Commutativity Commutativity of operators is another im-
portant property. If an operator is commutative, the optimizer
that is generating a plan for the composition of the ontologies
has the freedom to flip the order of the operands if it sees that
an optimization can be achieved by flipping the order.

Theorem 1. The intersection and union operators are com-
mutative if and only if the articulation generation function,
on which they are based, is commutative.

The proofs of the theorems are not included in this paper
for space considerations but are provided in [14]. However,
strict commutativity of the articulation generation function
might not be achievable or necessary in order to allow the
operands to be swapped.

Consider the example where an articulation generator gen-
erates articulation rules

f(O1, O2) = (O1.Car NM.SubClassOf O2.V ehicle)

and

f(O2, O1) = (O2.V ehicle NM.SuperClassOf O1.Car)

where O1, O2 are two ontologies andNM refers to
the namespace where the semantics of the relationships
SubClassOf and SuperClassOf are defined. Although
the articulation generation function is not commutative,
the semantic information contained in the articulation rules
are equivalent as long as the relationsSubClassOf and
SuperClassOf defined in the namespaceNM are seman-
tically similar after we invert their parameters. Thus, if the
rules obtained by swapping the operands are semantically
equivalent, we can swap the operands without compromis-
ing on the correctness of the result.

To capture this, we define the concept ofsemantic commu-
tativity.

Definition 5. An articulation generation function,f , is se-
mantically commutativeiff
f(O1, O2) ⇔ f(O2, O1)∀O1, O2, whereO1, andO2 are
ontologies.

and the necessary and sufficient condition for intersection to
be semantically commutative is:

Theorem 2. An intersection operator is semantically com-
mutative iff the articulation generation function that it uses
to derive the articulation rules is semantically commutative.

To determine the semantic commutativity of an articula-
tion generation function, we need to prove that for any pairs

of ontologies, the articulation rules produced by the artic-
ulation generation function are in fact semantically equiva-
lent. Automatically proving an articulation generator com-
mutative or semantically commutative might be easy for the
SubClassOf andSuperClassOf examples, but is not al-
ways feasible. In such cases, the system requires the pro-
grammer of the articulation generation function and/or the
expert to indicate whether the function is semantically com-
mutative. In the absence of such information, the system con-
servatively assumes that the operation is not semantically
commutative if it cannot prove otherwise.

We have identified the desired properties that a ”well-
behaved” articulation generation function should have so that
query optimization can be enabled. The algebra plays an im-
portant part in influencing query rewriting, optimization and
systematic composition of information that forms the basis
for enabling interoperation among information sources.

Associativity If the operators are associative, then the or-
der of their execution can be changed and we can optimize
the execution of the query based on available statistics about
the size of the ontologies and their intersections. Therefore,
associativity is a very desirable property to have for the op-
erators.

Example 7.For example, if we need to compute(O1 ∩f
O2) ∩f O3 whereO1 andO2 are very large ontologies and
O3 = null. The resulting intersection will obviously be null.
If the intersection operator with the articulation generatorf
was associative, we could rewrite the above composition as
O1∩f (O2∩f O3). If a query planner chose the former plan
to execute, it would spend a lot of time articulating the first
two large ontologies and then articulate it with a null ontol-
ogy. On the other hand, if the intersection operator was as-
sociative, an intelligent query planner that knows the sizes
of the ontologies could opt for the second formula since in
that case we articulate a large ontology with the null ontol-
ogy and then articulate a null ontology with the other large
ontology. The presence of the null ontology in both articu-
lations should make the second plan faster and require less
storage for intermediate steps.

Intersection We need to show(O1 ∩ARules O2) ∩ARules
O3 = O1 ∩ARules (O2 ∩ARules O3).

Theorem 3. The intersection operator using an articulation
generation functionf is associative ifff is consistent and
transitively connective.

A stricter form of a transitively connective articulation
generator is one that is transitive.

Example 8.Consider the exampleO1 = (car, null, null),
O2 = (truck, null, null) andO3 = (vehicle, null, null).
That is, the three ontologies simply have one node each
and no edges or rules. Letf be an articulation genera-
tion function that is not transitively connective. The the
articulation rules betweenO1 and O2 be as follows:
f(O1, O2) = null. Articulating this null ontology withO3
returns null. Therefore,(O1 ∪f O2) ∪f O3 = null On
the other hand, let the articulation rulesf(O2, O3) =
(O2.T ruck, SubclassOf,O3.V ehicle). Therefore,

An Algebra for the Composition of Ontologies 49

(O2 ∪f O3) = OI1 = ((O2.T ruck,O3.V ehicle),
((O2.truck, SubclassOf,O3.V ehicle)), null). Intersect-
ingOI with ontologyO1, we have(O1 ∪f (O2 ∪f O3)) =
OI2 = ((O1.Car,O3.V ehicle),
((O1.Car, SubclassOf,O3.V ehicle)), null). Since OI1
andOI2 are not the same, we see that the intersection is
not associative but depends upon the order of the operand
ontologies.

In a lot of situations in practice, the person wishing to com-
pose the two ontologies does not necessarily have a pref-
erence in the order in which the ontologies are composed.
In such a scenario, the composer might instruct the system
to assume associativity (and thus enable rearranging of the
operands), even though the articulation generation function
is not provably strictly transitively connective (and thus the
intersections are not entirely independent upon the order of
the operands).

Union The Union operation is associative if and only if
∀O1,∀O2,∀O3|(O1∪f (O2∪fO3)) = ((O1∪fO2)∪fO3)
wheref is the articulation generation function andO1, O2,
andO3 are ontologies.

Theorem 4. The Union operation is associative if and only
if the associated articulation generation functionf is consis-
tent.

A consistent articulation generation functionf is a neces-
sary and sufficient condition forUnion with respect tof to
be associative.

Difference Difference is not associative under any con-
ditions. We need to show thatO1 − (O2 − O3) is not
equal to(O1 − O2) − O3. Let O1, O2, O3 contain only
one node each:n1, n2, andn3 (respectively). Letf generate
rulesRule(n1, n2), Rule(n1, n3), Rule(n2, n3) while artic-
ulatingO1 andO2,O1 andO2, andO2 andO3 respectively.
Using the definition of difference,(O2−O3) is a null ontol-
ogy since the only nodes inO2 andO3, namelyn2 andn3 are
related byf . ThusO1−(O2−O3) = O1. Again(O1−O2)
is a null ontology since the only nodes inO1 andO2, namely
n1 andn2 are related byf . Therefore,(O1−O2)−O3 is a
null ontology. Thus, difference is not associative.

Associativity and Articulation Generation Functions It
follows from the necessary and sufficient conditions that the
intersection operation is not associative when the generation
of the articulation rules is done by a function that bases its de-
cision on the context of the nodes. Functions like structural
matchers depend upon the presence of certain edges between
nodes in an ontology. Now, the process of intersection might
not copy all edges in the neighbourhood of a node into the in-
tersection ontology. Thus, when the intersection ontology is
composed with another ontology, the same articulation rules
might not be generated as would have been if the source on-
tology was composed with the second ontology.

Therefore, if the articulation generation function depends
upon structural matchers are employed, the optimization
needs to be disabled unless the matcher is guaranteed to sat-
isfy the conditions mentioned above (primarily consistency
and transitive connectiveness).

Articulation generation functions that are based on linguis-
tic matchers just look at the words appearing to describe the
concept and thus often satisfy such conditions.

With respect to optimizing compositions of ontologies, we
prefer linguistic matchers to structural matchers. However, if
the structural matchers generate significant semantic matches
that are necessary for the application, we just have to pay the
price and not optimize the composition process.

Distributivity Similarly, we show that with a consistent ar-
ticulation generation function the∪f and the∩f operations
are distributive as stated below. The distributivity property,
again, enables the ontology composition engine to rewrite
and reorder a composition task to optimize its performance.

Theorem 5. : (O1∪fO2)∩fO3) = (O1∩fO3)∪(O2∩fO3)
iff the articulation generation functionf is consistent.

4 Conclusion

In this paper, we propose an algebra for the composition of
ontologies. The algebraic operators closely depend upon the
properties of an articulation generation function that gener-
ates the rules on which the algebra is based. Optimizations
can be enabled if the operations are commutative and asso-
ciative. We identified the necessary and sufficient conditions
that articulation generation functions need to satisfy before
the optimizations can be turned on. As an important corol-
lary, we find that linguistic matchers are more well behaved
than structural matchers and allow more scope for optimizing
the process of composing ontologies.

References

1. The stanford-ibm manager of multiple information sources
http://www-db.stanford.edu/tsimmis/

2. Information integration using Infomaster
http://infomaster.stanford.edu/infomaster-info.html

3. Kirk, T., Levy, A.Y., Sagiv, Y., Srivastava, D.: The information
manifold. In Knoblock, C., Levy, A., eds.: Information Gath-
ering from Heterogeneous, Distributed Environments, Stanford
University, Stanford, California (1995)

4. C. H. Goh, S. E. Madnick, M.D.S.: Semantic interoperabil-
ity through context interchange: Representing and reasoning
about data conflicts in heterogeneous and autonomous systems
http://citeseer.nj.nec.com/191060.html

5. Wiederhold, G.: An algebra for ontology composition. In:
Monterey Workshop on Formal Methods. (1994) 56–61

6. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flood-
ing: A versatile graph matching algorithm and its application
to schema matching. In: Proceedings of the Twelfth Interna-
tional Conference on Data Engineering, San Jose, CA, IEEE
Computer Society (2002)

7. Doan, A., Domingos, P., Halevy, A.Y.: Reconciling schemas
of disparate data sources: A machine-learning approach. In:
SIGMOD 2002. (2001)

8. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema
matching with cupid. In: VLDB 2001, Proceedings of 27th In-
ternational Conference on Very Large Data Bases, September
11-14, 2001, Roma, Italy, Morgan Kaufmann (2001) 49–58

9. Noy, N., Musen, M.: Prompt: Algorithm and tool for automated
ontology mergin and alignment. In: Seventh National Confer-
ence on Artificial Intelligence (AAAI-2000). (2000)

50 Prasenjit Mitra et al.

10. McGuiness, D., R.Fikes, Rice, J., Wilder., S.: The chimaera
ontology environment. In: Seventh National Conference on Ar-
tificial Intelligence (AAAI-2000). (2000)

11. Gruber, T.R.: Toward principles for the design of ontologies
used for knowledge sharing. In Guarion, N., ed.: Padua Work-
shop on Formal Ontology. (1993)

12. Sowa, J.F.: http://users.bestweb.net/ sowa/ontology (2000)
13. Mitra, P., Kersten, M., Wiederhold, G.: A graph-oriented model

for articulation of ontology interdependencies. In: Advances in
Database Technology- EDBT 2000. Lecture Notes in Computer
Science, 1777, Springer-Verlag (2000) 86–100

14. Mitra, P.: An algebra for semantic interoperation of information
sources, http://www-db.stanford.edu/ prasen9/alg.txt. Techni-
cal report, Infolab, Stanford University (2001)

Knowledge Representation and Transformation
in Ontology-based Data Integration?

Silvana Castano and Alfio Ferrara

University of Milano
DSI - Via Comelico, 39

20135 Milano, Italy
{castano,ferrara }@dsi.unimi.it

Abstract. The vision of the Semantic Web envis-
ages the Web enriched with several domain ontolo-
gies specifying formal semantics of data for vari-
ous intelligent services. The paper describes an on-
tology architecture for integration of heterogeneous
XML data sources, where information about DTDs
and their contents are represented at a semantic
level by means of a semantic mapping scheme and a
mediation scheme. In the paper, we first describe in-
formation transformation techniques for designing
such ontology schemes with heterogeneous XML
data. Then, we present a rule-based approach for
automatic derivation of a DAML+OIL representa-
tion of the ontology knowledge, to enable ontology
interoperability in Semantic Web.

1 Introduction

The vision of the Semantic Web envisages the Web enriched
with several domain ontologies, which specify formal se-
mantics of data, for different intelligent services for infor-
mation search, retrieval, and transformation. In this paper,
we focus on ontologies for the integration of heterogeneous
XML data sources. The advent of the Web and of XML
has dramatically increased the need for efficient and flexible
mechanisms to provide integrated views over multiple het-
erogeneous information sources, and semantic integration of
XML data sources has recently received special attention in
the database community [1,2]. Research in this field is con-
cerned with the development of methods and tools for infor-
mation integration with respect to existing semantic hetero-
geneity and for semantics management to capture the mean-
ing of XML data appropriately [3,4].
In this paper, we consider our reference architecture of do-
main ontology for XML datasource integration [5], where
information about DTDs and their contents are represented at
the global level by means of asemantic mapping schemeand
a mediation scheme. Design techniques for building the do-
main ontology in a semiautomated way have been developed
in the framework of theARTEMIS/MOMIS system [6,7,8]. In
this paper, we first summarize information transformation is-
sues in ontology design, for abstracting XML DTDs into a
high level representation formalism (calledX-formalism[3]),
and the schema matching and unification techniques for
deriving the semantic mapping scheme and the mediation
scheme. Then, we introduce a rule-based approach for the
representation of the ontology knowledge in the DAML+OIL

? This paper has been partially funded by MIUR COFIN2000 D2I
project.

ontology language standard proposal [9,10]. In this way, on-
tology knowledge can be exported to Semantic Web in a uni-
form and standardized way, ensuring ontology interoperabil-
ity.
The paper is organized as follows. In Section 2, we describe
the reference ontology architecture for XML data integration.
In Section 3, we describe the reference ontology formalism
for XML datasource integration and the associated ontology
design techniques. In Section 4, we describe ontology knowl-
edge representation in DAML+OIL. In Section 5, we discuss
related work on data integration. Finally, Section 6 presents
concluding remarks and future work.

2 Ontology-based XML data integration

We consider a Web-based scenario, where XML is the stan-
dard adopted for data exchange among different datasources
in a given domain. We assume that, for each datasource, data
to be integrated are described by means of a DTD, the most
commonly used type description for XML data. In this sce-
nario, we follow a semantic approach to information sharing
and integration by setting up adomain ontology, organizing
knowledge about datasource DTDs and their contents (e.g.,
meaning of elements, sub-elements, attributes, inter-schema
properties), according to asemantic mapping scheme, and a
mediation scheme. Each scheme constitutes a layer of the on-
tology, provides a semantic view of the different datasources,
and is organized as a network ofconceptsandlinks.
In the semantic mapping scheme network, we have sets
(clusters) of semantically related datasource concepts, for-
mally represented asX-classesdefined according to theX-
formalismwe adopt for abstracting DTDs [3]. In the media-
tion scheme network, we have global concepts, formally rep-
resented as global X-classes, providing an integrated repre-
sentation of underlying datasource concepts. A global con-
cept has associatedmapping rulesspecifying how to map the
structure of the global concept to the structure of the data-
source concepts in its associated cluster.

Semantic links expresses semantic relationships between
concepts at a given layer (intra-layer links) and also between
concepts at different layers (inter-layer links). An intra-layer
link expresses an equivalence relationship between similar
datasource concepts forming a cluster in the semantic map-
ping layer, or a generic semantic relationship between global
concepts in the mediation scheme layer, or an is-a relation-
ship between global concepts in the mediation scheme layer.
An inter-layer link expresses the relationship between a clus-
ter and the global concept representative of the cluster at the
mediation scheme layer above.

52 Silvana Castano, Alfio Ferrara

<!ELEMENT TVSCHEDULE (CHANNEL+)>
<!ATTLIST TVSCHEDULE NAME CDATA #REQUIRED>
<!ELEMENT CHANNEL (BANNER, DAY+)>
<!ATTLIST CHANNEL CHAN CDATA #REQUIRED>
<!ELEMENT BANNER (#PCDATA)>
<!ELEMENT DAY ((DATE, HOLIDAY) | (DATE, PROGRAMSLOT+))+>
<!ELEMENT HOLIDAY (#PCDATA)>
<!ELEMENT DATE (#PCDATA)>
<!ELEMENT PROGRAMSLOT (TIME, TITLE, DESCRIPTION?)>
<!ATTLIST PROGRAMSLOT VTR CDATA #IMPLIED>
<!ELEMENT TIME (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>
<!ATTLIST TITLE RATING CDATA #IMPLIED>
<!ATTLIST TITLE LANGUAGE CDATA #IMPLIED>
<!ELEMENT DESCRIPTION (#PCDATA)>

http://videdot.com/project-report.html (a)

<!ELEMENT TVSCHEDULE (DATE, TVSTATION*)>
<!ELEMENT DATE EMPTY>
<!ATTLIST DATE day CDATA #REQUIRED

month CDATA #REQUIRED
year CDATA #REQUIRED>

<!ELEMENT TVSTATION (PROGRAMME*)>
<!ATTLIST TVSTATION name CDATA #REQUIRED

subscription (yes | no) ’no’
adult (yes | no) ’no’>

<!ELEMENT PROGRAMME (TIME, TITLE, VIDEOPLUS?, DESCRIPTION?)>
<!ATTLIST PROGRAMME language (irish | english | french |

german) ’english’
genre (general | drama | film |

science | quiz |
documentary | sport | chat |
politics | comedy | news |
soap | music | children) ’general’

subtitles (yes | no) ’yes’
signlanguage (yes | no) ’no’
repeat (yes | no) ’no’>

<!ELEMENT TIME EMPTY>
<!ATTLIST TIME hour CDATA #REQUIRED

minute CDATA #REQUIRED>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT VIDEOPLUS (#PCDATA)>
<!ELEMENT DESCRIPTION (TEXT?, CLIP?, FEATURES?, FILM?)>
<!ATTLIST DESCRIPTION rating

(NA | U | PG | 12 | 15 | 18) ’NA’
starrating (NA |1 | 2 | 3 | 4 | 5) ’NA’>

<!ELEMENT TEXT (SHORT?, LONG?)>
<!ELEMENT SHORT (#PCDATA)>
<!ELEMENT LONG (#PCDATA)>
<!ELEMENT CLIP (AUDIO*, STILL*, VIDEO*)>
<!ELEMENT AUDIO (#PCDATA)>
<!ATTLIST AUDIO source CDATA #REQUIRED>
<!ELEMENT STILL (#PCDATA)>
<!ATTLIST STILL source CDATA #REQUIRED>
<!ELEMENT VIDEO (#PCDATA)>
<!ATTLIST VIDEO source CDATA #REQUIRED>
<!ELEMENT FILM (ACTOR*, DIRECTOR?)>
<!ATTLIST FILM colour (yes | no) ’yes’

year CDATA #REQUIRED>
<!ELEMENT ACTOR (#PCDATA)>
<!ELEMENT DIRECTOR (#PCDATA)>
<!ELEMENT FEATURES (PRESENTER*,GUEST*)>
<!ELEMENT PRESENTER (#PCDATA)>
<!ELEMENT GUEST (#PCDATA)>

http://student.cs.ucc.ie/mmedia00/ak1/theWeb.html (b)

Fig. 1. An example of DTDs of two real datasources in the TV en-
tertainment domain

The ontology modelling schemes give raise to a semantic
search space where users can browse on concept networks at
different layers through intra-layer semantic links, and move
across layers through inter-layer links. The ontology supports
also mediator services for query formulation and processing,
to correctly answer a query formulated on the structure of
a global concept. By exploiting the mapping rules, such a
query can be reformulated by the mediator using the spe-
cific terminology and structure of each datasource concept
involved in the definition of the global concept. Source data
can then be retrieved and merged by the mediator according
to the global concept structure for presentation to the user.

3 Ontology design

The domain ontology is built according to a bottom-up pro-
cess, articulated in the following steps: (1)DTD abstrac-
tion, where DTDs associated with datasources are abstracted
into a set of X-classes according to a reference formalism
called X-formalism; (2)semantic DTD matching, where
X-classes of different DTDs are grouped on the basis of se-
mantic mappings established between them; (3)mediation

scheme design, where X-classes belonging to the same clus-
ter are abstracted and unified intoglobal X-classes. More-
over, mapping rules are defined between global X-classes
and the X-classes in the corresponding clusters to map global
X-classes structure onto the structure of original XML data-
sources. In this section, we first summarize X-formalism and
then the schema matching and unification techniques for con-
structing the domain ontology schemes. A detailed descrip-
tion of such techniques can be found in [8,7,3].

3.1 Reference formalism for DTD abstraction

To build the domain ontology, we assume that XML data
to be integrated have associated a DTD, the most com-
monly used type description for XML documents1. DTDs
are abstracted into a set of X-classes according to the X-
formalism [3], capable of describing at a high abstraction
level the contents of a given DTD, by capturing the semantics
of various elements within the DTD through the concepts of
X-class, property, attribute, link, and referenced X-class. In
X-formalism, an X-classxc corresponds to an element dec-
laration with element content in XML, and is a 6-tuple of the
form xc=(nxc, sxc, Pxc, Lxc, Rxc, Axc), where:nxc is the
class name;sxc is the class structure;Pxc is a set, possibly
empty, of properties;Lxc is a set, possibly empty, of links;
Rxc is a set, possibly empty, of referenced X-classes (i.e.,
X-classes whose name appears insxc); Axc is a set, possi-
bly empty, of attributes. A propertyp of an X-class corre-
sponds to an element withPCDATA, any , or empty content
in XML, and is a triple of the formp=(np,tp,Ap) wherenp
is a name appearing insxc, tp ∈ {PCDATA,empty,any }
is the property type, andAp is a set, possibly empty, of at-
tributes. An attributea associated with an X-class (property
or link, respectively) corresponds to an attribute defined in
the attribute list declaration of an element in XML, and is
a triple of the forma=(na,ta,ka), wherena is the attribute
name,ta is the attribute type, andka is the attribute cardi-
nality. A link l corresponds to anXLink elementin XML,
and is represented as a class name insxc or as an attribute
of a property/class in (Pxc ∪ Rxc). A referenced X-classr
corresponds to an element with element content in the struc-
ture of a considered DTD, and is an X-class whose name
appears insxc. In the remainder of the paper, the term “fea-
ture” is used to denote a property, link, referenced X-class,
or attribute of a given X-class. The cardinality symbols used
in the XML DTD syntax are used to derive cardinality con-
straints for X-class features. In particular, ‘+’ corresponds to
the cardinality constraint (1,n), ‘*’ to (0,n), and ‘?’ to (0,1),
respectively. If no symbol is specified, the cardinality con-
straint (1,1) is taken. In the X-formalism representation, an
X-class, property, and attribute is represented as a rectangu-
lar, oval, and double oval node, respectively. A link is rep-
resented as an oval (or rectangular, depending on its type)
labeled with the name of the link and connected by a dou-
ble directed arc to the appropriate X-class node. There is an
arc between two nodes if there is a containment relationship
between them. An XML DTD union structure (‘|’) is repre-
sented as anor -labeled dashed arc crossing the arcs enter-

1 X-formalism has been recently extended to support other schema
definition formalisms for XML, such as XML Schemas or
DSDs [11].

Knowledge Representation in Data Integration 53

ing the class/property nodes involved in the union. An XML
DTD sequence structure with a cardinality constraint apply-
ing to the whole structure is represented as anand -labeled
arc crossing the arcs entering the involved X-class/property
nodes. A description of the basic X-formalism concepts and
of their graphical representation is shown in Table 1. Finally,

X-formalism Graphical Description
Concept representation

X-class Corresponds to an element decla-
ration with element content in a
DTD.

Property Corresponds to an element with
PCDATA, any , or empty content
in a DTD.

Attribute Corresponds to an attribute de-
fined in the attribute list declara-
tion of an element in a DTD.

Link Corresponds to anXLink element
in a DTD.

Referenced
X-class

Corresponds to an element with
element content in the structure of
a DTD.

Table 1.Basic X-formalism concepts

cardinality constraints associated with properties, links, at-
tributes, and referenced X-classes are explicitly represented,
if different from (1, 1), as labels attached to arcs;(1, 1) is
implicitly taken as a default.
For instance, consider the DTDs illustrated in Figure 1 de-
scribing information about two real TV entertainment data-
sources. The X-classes of the first DTD areTvSchedule ,
Channel , Day, andProgramslot , while the X-classes
of the second DTD areTvSchedule , TvStation , Pro-
gramme, Description , Film , Features , Text , and
Clip . The X-formalism graphical representation of the two
DTD is shown in Figure 2 and in Figure 3, respectively.

TvSchedule

Channel

Day

(1,
n
)

name

chan

Holiday

Date

Date

(1,
n
)

Banner

Programslot
 vtr

Time
 Title
 Description

Rating
 language

(1,
n
)

(1,
n
)

(1,
n
)

OR

Fig. 2.X-formalism representation of the DTD in Fig. 1 (a)

3.2 Ontology design techniques

Schema matching techniques.The first step in the con-
struction of the ontology consists in defining the semantic
mapping scheme. This involves the comparison of X-classes
of DTDs associated with different datasources to find simi-
larities between them. To this purpose,ARTEMIS provides
schema matching techniques based on the concept ofaffinity
to identify X-classes having a semantic relationship. Affinity
evaluation in ARTEMIS exploits a thesaurus of weighted
terminological relationships (e.g., synonymy, hyperonymy)
expressing inter-schema knowledge characterizing source
DTDs. In particular, a validated thesaurus (called Common
Thesaurus inARTEMIS/MOMIS) is defined containing the
following kinds of weighted terminological relationships:
i) automatically extracted from WordNet for names of
X-classes and features (basic ontological knowledge); ii)
automatically extracted considering X-classes and structure
(schema knowledge); iii) manually supplied by the designer
(domain knowledge). Terminological relationships capture
interschema knowledge between X-classes of different
DTDs both at the intensional level and at the extensional
level (i.e., with reference to possible kinds of instance
overlappings). We represent the thesaurus as a network,
where nodes correspond to names (of X-classes and features)
and labeled, weighted edges between nodes correspond to
terminological relationships. A semantic mapping is estab-
lished between X-classes and their features if their names
have affinity according to the terminological relationships
in the thesaurus. Two namesn andn′ have affinity if there
exists at least one path between them in the thesaurus and
the strength of the path is greater than or equal to a given
threshold. The highest the number of attributes, properties,
links, and referenced X-classes with affinity, the higher the
strength of the semantic mapping between two X-classes.
A hierarchical clustering algorithm is used to find clusters
of semantically related X-classes based on the semantic
mapping strengths [8]. The interested reader can refer
to [7,8] for a detailed discussion of affinity-based schema
matching and some experimental results. For instance,
with reference to the DTDs in Figures 2 and 3,ARTEMIS

determines three clusters containing X-classes of both
sources: cl1 = {S1.Tvschedule ,S2.TVschedule },
cl2 = {S1.Programslot ,S2.Programme }, and cl3 =
{S1.Channel ,S2.TVstation }. remaining X-classes
are placed in singleton clusters.

Unification techniques.The subsequent step of the ontol-
ogy design is the definition of the mediation scheme. This
is performed through rule-based unification techniques by
which X-classes belonging to a given cluster are reconciled
into global X-classes. The mediation scheme design pro-
cess proceed as follows. In a first phase, we consider clus-
ters of X-classes and we define preliminary global X-classes
out of them, which constitute the skeleton global concepts
of the mediation scheme. For each global X-class, in this
stage we identify its basic features, namely, attributes, prop-
erties, and links. We leave referenced X-classes pending in
this stage, to be fixed after completing this phase of the
process. The second phase of the mediation scheme design
process is devoted to revise preliminary global X-classes,
to identify their structure and links. Finally, mapping rules

54 Silvana Castano, Alfio Ferrara

PROGRAMME S1.Programslot S2.Programme

ATTRIBUTES
Language language CDATA #IMPLIED language (irish | english |

french | german) ’english’
...
PROPERTIES
Time <!ELEMENT TIME (#PCDATA)> <!ELEMENT TIME EMPTY>
Genre NULL genre (general | drama | film |

science | quiz | documentary |
sport | chat | politics | comedy |
news | soap | music | children)
’general’

...
REFERENCED X-CLASSES
Description <!ELEMENT DESCRIPTION (#PCDATA)> <!ELEMENT DESCRIPTION (TEXT?,

CLIP?, FEATURES?, FILM?) >

Table 2.Example of mapping table for the global X-classProgramme

Programme

Description

subtitles

repeat

vtr

signlanguage

time

title

videoplus

genre

minute

hour

language

rating

(0,1)

(0,1)

(0,1)

language

Fig. 4.Example of global X-class

between global X-classes and corresponding local X-classes
belonging to the associated cluster are defined. The global
X-class obtained from a singleton cluster coincides with the
X-class in the cluster, that is, it has the same name and
the same features. For clusters containing more than one
X-class, the corresponding global X-class is obtained by rec-
onciling properties, attributes, and referenced classes of the
X-classes belonging to it by applying a set of basicrecon-
ciliation rules whose purpose is to unify names, types, and
cardinality constraints. Two kinds of features are consid-
ered in unifying X-classes of a cluster, namelyhomologous
features (i.e., attribute-attribute and property-property) and
non-homologousones (i.e., attribute-property and property-
referenced X-class). This is due to the fact that the same
concept can be represented in different ways in different
DTDs, using XML elements of different kind and complex-
ity. The reconciliation procedure first processes homologous
features (i.e., attributes, properties, Xlink attributes). The
reconciliation of non-homologous features is postponed till
all homologous features have been reconciled and a medi-
ated feature representative of all them has been obtained.
A detailed description of the reconciliation rules for medi-
ation scheme design is described in [5]. As an example, the
global X-classProgramme obtained from reconciliation of

X-classes of clustercl2 is shown in Figure 4. To complete the
global X-class definition,mapping rulesare specified. For
each global X-class, a persistentmapping-tablestoring all
the mapping rules is generated; it is a table whose columns
represent the set of the local X-classes belonging to the clus-
ter associated with a given global X-class and whose rows
represent the global X-class features. For a given row, each
entry of the table contains the XML syntax of the correspond-
ing feature of the involved local X-class in the cluster. An ex-
ample of mapping rules for the global X-classProgramme
is shown in Table 2.

4 Ontology knowledge representation

In order to increase ontology interoperability for Seman-
tic Web, a RDF and RDFSchema representation of the
knowledge in our ontology is required. To this purpose, we
describe ontology scheme knowledge representation using
DAML+OIL. In particular, we provide a set of rules to auto-
matically derive the DAML+OIL description of the ontology
semantic mapping scheme and mediation scheme from the
X-formalism formalization.
First, we define the basic DAML+OIL concepts for X-
formalism. Then, we define the rules for deriving the
DAML+OIL representation of X-classes and clusters of
them. Finally, we define the rules for deriving the
DAML+OIL representation of the global X-classes and as-
sociated mapping rules.

4.1 Basic concepts definition

The basic ontology concept to be represented in DAML+OIL
is the X-class, which can be local or global depending
on the scheme layer of the ontology we are considering.
An X-class is defined by a name and a structure. The
X-class structure is defined in terms of names of proper-
ties and/or names of other referenced X-classes. We de-
fine a DAML+OIL classX-class in order to represent
X-classes and two DAML+OIL subclasses ofX-class
namedLocalX-class and GlobalX-class to repre-
sent X-classes in the semantic mapping scheme (named
local X-classes in the following) and global X-classes in

Knowledge Representation in Data Integration 55

<daml:Class rdf:ID=LocalX-class>
<rdfs:subClassOf rdf:resource=#X-class/>
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty

rdf:resource=#hasProperty/>
<daml:toClass rdf:resource=#Property/>

</daml:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource=#hasLink/>
<daml:toClass rdf:resource=#Link/>

</daml:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty

rdf:resource=#hasAttribute/>
<daml:toClass rdf:resource=#Attribute/>

</daml:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty

rdf:resource=#hasRefX-class/>
<daml:toClass rdf:resource=#X-class/>

</daml:Restriction>
</rdfs:subClassOf>

</daml:Class>

Fig. 5.DAML+OIL definition of LocalX-class

the mediation scheme, respectively. Furthermore, we de-
fine a DAML+OIL classCluster to represent the clusters
of the semantic mapping scheme. We define DAML+OIL
classesProperty , Link , and Attribute , to repre-
sent properties, links, and attributes of X-classes. Moreover,
we define DAML+OIL object propertieshasProperty ,
hasLink , hasAttribute , and hasRefX-class to
represent the relationships between X-classes and their
properties, links, attributes, and referenced X-classes, re-
spectively. Attribute, property and link types are repre-
sented through the datatype propertiesAttributeType ,
PropertyType , andLinkType , respectively. TheAt-
tributeType range is the union of the attribute types
allowed in XML, the PropertyType range is the set
{PCDATA, any, empty }, and theLinkType range is
the union of the property types and the features of the X-class
structure. Feature cardinalities are represented by the object
property card , whose range is the class of the cardinal-
ities used in X-formalism, expressed as a pair (mc,MC),
wheremc denotes the min cardinality andMC the max
cardinality. As an example, the DAML+OIL definition of
LocalX-class is reported in Figure 5. A summary of
these basic DAML+OIL concepts is given in Table 3.

4.2 Rules for semantic mapping scheme representation

For each X-classxc of the semantic mapping scheme, an
instance of the DAML+OIL classLocalX-class is de-
fined whose structure is derived from attributes, properties,
links, and referenced X-classes ofxc applying the following

DAML+OIL concept Description

Classes

X-class Represents the general structure of
X-classes in the ontology schemes.

LocalX-class Represents the structure of the
X-classes describing the datasource
concepts in the semantic mapping
scheme.

GlobalX-class Represents the structure of the
global X-classes describing global
concepts in the mediation scheme.

Cluster Represents the structure of clusters
in the semantic mapping scheme.

Property Represents properties of X-classes.
Link Represents links between

X-classes.
Attribute Represents attributes of X-classes.

Object properties

hasProperty Represents the relationship be-
tween an X-class and its properties.

hasLink Represents the relationship be-
tween an X-class and its links.

hasAttribute Represents the relationship be-
tween an X-class and its attributes.

hasRefX-class Represents the relationship be-
tween an X-class and its referenced
X-classes.

card Represents the relationship be-
tween each feature X-class and its
cardinality.

Datatype properties

AttributeType Represents the attribute types.
PropertyType Represents the property types.
LinkType Represents the link types.

Table 3.Description of the basic DAML+OIL concepts

X-formalism-to-DAML+OIL translation rules.

Attribute. An attribute a = (na, ta, ka) is translated
into an instance of the DAML+OIL classAttribute ,
namedna. The instance type is the attribute typeta. The
attribute cardinalityka is represented by means of the object
propertycard in the DAML+OIL class instance defined for
a.

Property. A property p = (np, tp, Ap) is translated
into an instancenp of the DAML+OIL basic classProp-
erty . The property typetp is the value of the DAML+OIL
property PropertyType . For each attributeai ∈ Ap
an object property clausehasAttribute is defined.
The target of this property is the DAML+OIL instance
representingai. The property cardinality specified in the
X-class structure is represented using the object property
card in the DAML+OIL class instance defined forp.

Link. A link l = (nl, tl) is translated into an instance
nl of the DAML+OIL classLink . The link typetl is the
value of the DAML+OIL propertyLinkType .

Referenced X-class.A referenced X-classr is trans-

56 Silvana Castano, Alfio Ferrara

<LocalX-class rdf:ID=S2.Programme>
<card>(0,n)</card>
<hasAttribute rdf:resource=#S2.language/>
<hasAttribute rdf:resource=#S2.genre/>
<hasAttribute rdf:resource=#S2.subtitles/>
<hasAttribute rdf:resource=#S2.repeat/>
<hasAttribute

rdf:resource=#S2.signlanguage/>
<hasProperty rdf:resource=#S2.time/>
<hasProperty rdf:resource=#S2.title/>
<hasProperty rdf:resource=#S2.videoplus/>
<hasRefX-class

rdf:resource=#S2.Description/>
</LocalX-class>

Fig. 6. Example of DAML+OIL specification for the local X-class
S2.Programme

lated into an instancenr of the LocalX-class , where
nr is the name ofr. The referenced X-class cardinality
specified in the X-class structure is represented using the
object propertycard in the DAML+OIL specification forr.

X-class. An X-class xc = (nxc, sxc, Pxc, Lxc, Rxc,
Axc) is translated into an instancenxc of the DAML+OIL
classLocalX-class . If the X-classxc is a referenced
X-class, it is translated according to the referenced X-class
translation rule. In order to represent the X-class properties,
the DAML+OIL object propertyhasProperty is used.
Each propertypi ∈ Pxc which satisfieshasProperty has
to belong to the classProperty . According to the same
process, the propertieshasLink and hasAttribute
are used for each linkli ∈ Lxc, and for each attribute
ai ∈ Axc. Finally, a propertyhasRefX-class is used
for each referenced X-classri ∈ Rxc

2. As an example,
the DAML+OIL specification of the referenced X-class
S2.Programme is shown in Figure 6.

<Cluster rdf:ID= cl2>
<AffinityValue>0.667</AffinityValue>
<ClusterMember>

<rdf:bag>
<rdf:li>S1.Programslot</rdf:li>
<rdf:li>S2.Programme</rdf:li>

</rdf:bag>
</ClusterMember>

</Cluster>

Fig. 7.DAML+OIL representation on the clustercl2

Cluster. A cluster is represented as an instance of the class
Cluster . The instance name is the cluster name, and a
propertyAffinityValue is defined in order to represent
the affinity value associated with the cluster. Moreover, a
propertyClusterMember is defined in order to represent

2 The structuresxc of an X-class is not explicitly represented in
DAML+OIL; however it can be easily derived by considering
the set of DAML+OIL object properties of theLocalX-class

the X-classes composing the cluster. TheClusterMember
domain is the classCluster , while its range is the class
LocalX-class . As an example, the DAML+OIL specifi-
cation of the clustercl2 is shown in Figure 7.

4.3 Rules for mediation scheme representation

A global X-class is defined as an X-class plus a setMP
of mapping rules, which represent the mappings between
the features of the global X-class and the features of the
X-classes belonging to the cluster from which the global
X-class has been derived. A global X-class is translated
in DAML+OIL using the rules previously described for
the local X-class translation. An additional rule is now
introduced for translating mapping rules in DAML+OIL.

Mapping rule. A mapping rule defines for each property,
link, attribute, and referenced X-class of a global X-class
the corresponding feature (if any) of each local X-class of
the involved cluster. We define a basic DAML+OIL object
propertyMappingRule to represent a mapping rule. For
each property, link, attribute, and referenced X-class of a
global X-class, aMappingRule property is specified to
represent the corresponding features in each source X-class.
For each MappingRule , a GlobalFeature and a
SourceFeature object properties are defined to represent
the feature of the global X-class and the corresponding
features in local X-classes, by referring to the corresponding
DAML+OIL class. If a global feature does not have a
corresponding feature in a local X-class of the cluster, (i.e.,
aNULLvalue is specified in the mapping table), such a local
feature is not listed in theSourceFeature DAML+OIL
object property.

Global X-class.A global X-classgxc is translated into an in-
stancengxc of the DAML+OIL classGlobalX-class by
applying the translation rules for X-class and mapping rules.
For eachhasProperty , hasLink , hasAttribute ,
and hasRefX-class property, aMappingRule prop-
erty is specified which links the DAML+OIL class instance
representing the global feature with the DAML+OIL class
instance representing the corresponding source feature. In
Figure 8, we show an example of DAML+OIL specification
for the global X-classProgramme of Figure 4, with the
sample mapping rules of Table 2.

5 Related work

Work related to the issues discussed in the paper regards in-
formation integration. The goal of information integration is
to construct a global description, called global schema, of a
multitude of heterogeneous datasources, to provide the user
with a uniform query interface against the sources, indepen-
dent from their location and from heterogeneity of their data.
In the literature, several approaches and tools for the inte-
gration of heterogeneous data sources have been developed,
and information integration architectures based on media-
tor/middleware data models and ontologies have been pro-
posed [12,13,14,15]. More recently, approaches and systems
have been proposed specifically devoted to semantic repre-
sentation and integration of XML datasources. In the follow-

Knowledge Representation in Data Integration 57

<GlobalX-class rdf:ID=Programme>
<hasAttribute rdf:resource=#language/>
<MappingRule>

<GlobalFeature rdf:resource=#language/>
<SourceFeature>

<rdf:Bag>
<rdf:li rdf:resource=#S1.language/>
<rdf:li rdf:resource=#S2.language/>

</rdf:Bag>
</SourceFeature>

</MappingRule>
...
<hasProperty rdf:resource=#TIME/>
<MappingRule>

<GlobalFeature rdf:resource=#TIME/>
<SourceFeature>

<rdf:Bag>
<rdf:li rdf:resource=#S1.TIME/>
<rdf:li rdf:resource=#S2.TIME/>

</rdf:Bag>
</SourceFeature>

</MappingRule>
<hasProperty rdf:resource=#GENRE/>
<MappingRule>

<GlobalFeature rdf:resource=#GENRE/>
<SourceFeature rdf:resource=#S2.genre/>

</MappingRule>
...
<hasRefX-class rdf:resource=#Description/>
<MappingRule>

<GlobalFeature rdf:resource=#Description/>
<SourceFeature>

<rdf:Bag>
<rdf:li>S1.DESCRIPTION</rdf:li>
<rdf:li>S2.DESCRIPTION</rdf:li>

</rdf:Bag>
</SourceFeature>

</MappingRule>
...

</GlobalX-class>

Fig. 8.Example of DAML+OIL specification for the global X-class
Programme of Figure 4

ing, we consider such works by focusing on schema match-
ing and integration techniques and on metadata representa-
tion issues, which are more strictly related with our work de-
scribed in the paper.

Cupid [1] is a schema matching system providing differ-
ent matching techniques for discovering mappings between
elements of heterogeneous schema descriptions. Metadata
representation is through through graphs, using an extended
Entity-Relationship model. Cupid computes similarity coef-
ficients among elements of different schemas, using a combi-
nation of matching techniques. In a linguistic matching stage,
a linguistic similarity coefficient is computed between pairs
of elements, by considering their name, type and domain. In a
structural matching stage, the similarity of the elements con-
text is also considered. Finally, the similarity between each
pair of elements is computed as the average of the two simi-
larity coefficients obtained in the two phases. In this system,
the focus is mainly on schema matching techniques, rather
than to datasource integration. Our schema matching tech-

niques for XML data, can be performed by taking into ac-
count both linguistic and structure information on X-classes
by means of X-formalism and of the thesaurus of termino-
logical relationships.

In the Xyleme project [2], automated data integration tech-
niques are developed for creating a dynamic XML ware-
house for the Web. In particular, a DTD classification into
domains is performed based on a statistical analysis of the
similarities between labels in the considered DTDs. These
similarities are defined using ontologies or thesauri. Then,
semantic mappings between elements in different DTDs are
identified. Metadata representation at the global level is pro-
vided by the so calledabstract DTDs. An abstract DTD is
a unified representation of the DTDs associated with a set
of XML documents in a given domain, and is modeled as a
tree. The proposed solution for defining path mappings uses
standard natural language techniques and a thesaurus, and
relies on human interaction especially for identifying map-
pings between DTD paths. Machine-learning techniques for
XML datasource integration are described [4], for matching
source DTDs against a pre-defined global schema in form of
DTD. The system ask the user to provide semantic mappings
for a small set of datasources. A set of instance matchers,
called learners, are trained on such mappings during a pre-
processing step, in order to discover instance patterns and
matching rules to be applied for matching new DTDs against
the global schema. Also in this system, metadata represen-
tation is provided by XML schema trees. This system fol-
lows a “local-as-view” approach to integration, in that the
global schema is given and local source schemas are defined
as views over the global schema. In our approach, we follow
a “global-as-view” approach to integration, and we construct
the global schema (i.e., the mediation scheme of our ontolo-
gy) following a bottom-up process. The mediation scheme is
then mapped on local schemas, by means of mapping rules.

In [16], a methodological framework for information in-
tegration, based on a knowledge representation approach is
presented. The representation of both the sources and the
global domain is provided by Description Logics. The inte-
gration is performed according to a local-as-view approach,
and, as such, it is focused on representation of mappings
between source schemes and the global schema. The pro-
posed approach emphazises the role of Description Logics
for knowledge representation and reasoning in information
integration. The DAML+OIL representation described in this
paper can play an analogous role.

Main contributions of our work with respect to these pro-
posals regard: i) the organization of the ontology integration
knowledge into a semantic mapping scheme layer and a me-
diation scheme layer; ii) the use of X-formalism for repre-
senting source DTDs, which allows to conceptually describe
DTDs contents and their role following a data model ap-
proach (i.e., by distinguishing concepts like X-class, prop-
erty, link); iii) use of DAML+OIL for ontology knowledge
representation, using a language ensuring compatibility and
interoperability with Semantic Web.

6 Concluding remarks

In this paper, we have described ontology-based integration
of heterogeneous XML data sources, where ontology knowl-

58 Silvana Castano, Alfio Ferrara

edge is organized into a semantic mapping scheme and a me-
diation scheme. We have described the ontology design tech-
niques, which are schema matching techniques, for deriving
clusters of semantically related datasource concepts in the se-
mantic mapping scheme, and unification techniques, for de-
riving global concepts and links in the mediation scheme.
Such techniques rely on the X-formalism conceptual repre-
sentation of source DTDs for mapping DTD contents to con-
structs of X-class, properties, attributes, links, and referenced
X-class and on a thesaurus of terminological relationships
specifying interschema knowledge. We have described on-
tology knowledge representation with DAML+OIL to export
the ontology knowledge to Semantic Web in a standardized
way.

Future research work will proceed in the following
directions. A CORBA module for producing DAML+OIL
specification of the ontology is being developed in the
framework of the ARTEMIS tool environment. Actually,
ARTEMIS implements the ontology using ODLI3 , the
ODL-based object-oriented integration language developed
in MOMIS [7]. In particular, ODLI3 describes heterogeneous
schemas of structured and semistructured data sources in
a common way and represents the mediation scheme and
associated mapping rules obtained from the integration
process by means of the basic construct of ODLI3 class with
attributes of predefined or complex type. We are studying
how to derive the DAML+OIL specification of the ontology
knowledge by considering directly ODLI3 . In this respect,
the results presented in this paper will constitute the starting
base for designing the rules for the ODLI3-to-DAML+OIL
representation. Moreover, the DAML+OIL knowledge rep-
resentation can be the basis to export metadata knowledge to
a metadata repository. We will address this problem in the
context of the D2I (Integration, Warehousing, and Mining
of Heterogeneous Data Sources) project, where a metadata
repository has been defined, providing a centralized and
unified representation of the metadata documenting all
activities related to integration applications. Finally, we
will study how our matching and unification techniques can
be extended to the problem of matching and integrating
ontologies, by considering DAML+OIL specifications as an
input to the ontology design process.

References

1. Madhavan, J., Bernstein, P., Rahm, E.: Generic schema match-
ing with cupid. In: Proc. of the Int. Conf. on Very Large Data
Bases (VLDB’01), Rome, India (2001) 49–58

2. Reynaud, C., Sirot, J., Vodislav, D.: Semantic integration
of XML heterogeneous data sources. In: Proc. of the Inter-
national Database Engineering and Applications Symposium
(IDEAS’01), Grenoble, France (2001) 199–208

3. Castano, S., Antonellis, V.D., di Vimercati, S.D.C.: An XML-
based interorganizational knowledge mediation scheme to sup-
port B2B solutions. In: 9th IFIP 2.6 Working Conference on
Database Sematics (DS-9), Hong Kong, China (2001)

4. Doan, A., Domingos, P., Halevy, A.: Reconciling schemas
of disparate data sources: A machine-learning approach. In:
Proc. of ACM SIGMOD 2001, Santa Barbara, California, USA
(2001) 509–520

5. Castano, S., Antonellis, V.D., Ferrara, A., Ottathycal, G.K.: A
disciplined approach for the integration of heterogeneous XML
datasources. In: Proc. of DEXA WEBS Workshop, Aix-en-
Provence, France (2002) To appear.

6. The ARTEMIS project http://www.ing.unibs.it/∼deantone/ in-
terdatatema3/Artemis/artemis.html.

7. Bergamaschi, S., Castano, S., Vincini, M., neventa no, D.B.:
Semantic integration of heterogeneous information sources.
Data and Knowledge Engineering36 (2001)

8. Castano, S., Antonellis, V.D., di Vimercati, S.D.C.: Global
viewing of heterogeneous data sources. IEEE Transactions on
Knowledge and Data Engineering13 (2001)

9. Connolly, D., van Harmelen, F., Horrocks, I., McGuinness,
D., Patel-Schneider, P., Stein, L.: DAML+OIL (March 2001)
Reference Description http://www.w3.org/TR/2001/NOTE-
daml+oil-reference-20011218.

10. Horrocks, I.: DAML+OIL: a reason-able web ontology lan-
guage. In: Proc. of EDBT 2002. (2002)

11. Castano, S., Antonellis, V.D., di Vimercati, S.D.C., Melchiori,
M.: Semi-automated extraction of ontological knowledge from
XML datasources. In: Proc. of DEXA WEBH Workshop, Aix-
en-Provence, France (2002) To appear.

12. Fernandez, M., Florescu, D., Kang, J., Levy, A., Suciu, D.:
Catching the boat with strudel: Experiences with a web-site
management system. In: Proc. of ACM SIGMOD Interna-
tional Conference on Management of Data, Seattle, Washing-
ton, USA (1998) 414–425

13. Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajara-
man, A., Sagiv, Y., et al., J.U.: The tsimmis approach to medi-
ation: Data models and languages. Journal of Intelligent Infor-
mation Systems2 (1997) 117–132

14. Haas, L., Miller, R., Niswonger, B., Roth, M., Schwarz, P.,
Wimmers, E.: Transforming heterogeneous data with database
middleware: Beyond integration. IEEE Data Engineering Bul-
letin 1 (1999) 31–36

15. Levy, A., Rajaraman, A., Ordille, J.: Querying heterogeneous
information sources using source descriptions. In: Proc. of the
22nd Int. Conf. on Very Large Data Bases (VLDB’96), Mum-
bay (Bombay), India (1996) 251–262

16. Calvanese, D., Giacomo, G.D., Lenzerini, M., Nardi, D.,
Rosati, R.: Knowledge representation approach to information
integration. In: Proc. of AAAI Workshop on AI and Informa-
tion Integration, AAAI Press/The MIT Press (1998) 58–65

Knowledge Representation in Data Integration 59

TvSchedule

TvStation

Programme

Description

Film
 Features
 Text
 Clip

date

day

year

month

name

subscription

adult

language

subtitles

genre

repeat

time

title

videoplus

signlanguage

hour

minute

colour

year

director
 actor
 presenter
 guest

short

long

audio

still

video

source
 source

source

(0,
n
)

(0,
n
)

(0,
n
)
 (0,
n
)
 (0,
n
)
 (0,
n
)
 (0,
n
)
 (0,
n
)

(0,
n
)

(0,1)

(0,1)

(0,1)
 (0,1)
 (0,1)
 (0,1)

rating

starrating

(0,1)

(0,1)

Fig. 3.X-formalism representation of the DTD in Fig. 1 (b)

MAFRA — A MApping FRAmework for Distributed Ontologies
in the Semantic Web

Alexander Maedche1, Boris Motik1, Nuno Silva12, and Raphael Volz1

1 FZI Research Center for Information Technologies at the University of Karlsruhe, D-76131 Karlsruhe, Germany
{maedche,motik,silva,volz }@fzi.de

2 ISEP Instituto Superior de Engenharia, Instituto Politecnico do Porto, Portugal

Abstract. Ontologies as means for conceptualiz-
ing and structuring domain knowledge within a
community of interest are seen as a key to realize
the Semantic Web vision. However, the decentral-
ized nature of the Web makes achieving this con-
sensus across communities difficult, thus, hamper-
ing efficient knowledge sharing between them. In
order to balance the autonomy of each community
with the need for interoperability, mapping mech-
anisms between distributed ontologies in the Se-
mantic Web are required. In this paper we present
MAFRA, an interactive, incremental and dynamic
framework for mapping distributed ontologies in
the Semantic Web.

1 Introduction

The current WWW is a grea1t success with respect to the
amount of stored documents and the number of users. How-
ever, the ever-increasing amount information on the Web
places a heavy burden of accessing, extracting, interpreting
and maintaining information on the human users of Web. Tim
Berners-Lee, the inventor of the WWW, coined the vision of
Semantic Web, providing means for annotation of Web re-
sources with machine-processable metadata providing them
with background knowledge and meaning (see [2]). Ontolo-
gies as means for conceptualizing and structuring domain
knowledge are seen as the key to enabling the fulfillment of
the Semantic Web vision.

However, the de-centralized nature of the Web makes in-
deed inevitable that communities will use their own ontolo-
gies to describe their data. In this vision, ontologies are them-
selves distributed and the key point is the mediation be-
tween distributed data using mappings between ontologies.
Thus, complex mappings and reasoning about those map-
pings are necessary for comparing and combining ontolo-
gies, and for integrating data described using different on-
tologies [15]. Existing information integration systems and
approaches (e.g., TSIMMIS [6], Information Manifold [8],
Infomaster3, MOMIS4, Xyleme5) are “centralized” systems
of mediation between users and distributed data sources,
which exploit mappings between a single mediated schema
and schemas of data sources. Those mappings are typically
modeled as views (over the mediated schema in the local-as-
view approach, or over the sources schemas in the global-as-
view approach) which are expressed using languages having
a formal semantics. For scaling up to the Web, the “central-

3 http://infomaster.stanford.edu/infomaster-info.html
4 http://sparc20.ing.unimo.it/Momis/
5 http://www.xyleme.com

ized” approach of mediation is probably not flexible enough,
and distributed systems of mediation are more appropriate.

Building on this idea and on existing work, we introduce
in this paper MAFRA, an Ontology MApping FRAmework
(MAFRA) for distributed ontologies in the Semantic Web.
Within MAFRA we provide an approach and conceptual
framework that provides a generic view onto the overall dis-
tributed mapping process. The distributed nature of Semantic
Web entails significant degrees of information redundancy,
incoherence and constant evolution, thus changing the nature
of the ontology mapping problem: instead of creating a static
specification document relating entities in two ontologies, a
continuous, incremental, interactive and highly dynamic pro-
cess supporting mapping evolution is required to scale up to
the ever-changing nature of ontologies being mapped. Estab-
lishing a mapping between two ontologies is an engineering
process of consensus building between two communities al-
ready agreeing on common ontologies for their own respec-
tive domains. This task implies negotiation, so attention is
paid to providing means for cooperative mapping. Thus, pro-
posed framework offers support in all parts of the ontology
mapping life-cycle.

Organization of this paper.In section 2 we motivate our
work by introducing an application for whose success a solu-
tion to the distributed ontology mapping problem is required.
Based on this application, we have collected the requirements
for developing MAFRA. In section 3 we introduce the un-
derlying conceptual architecture of MAFRA. In section 4 we
focus on mapping representation and present the current sta-
tus of our semantic bridging ontology and discuss its fea-
tures. Section 5 presents the realized mapping implementa-
tion within KAON - an ontology and Semantic Web applica-
tion framework6. Before we conclude a short discussion of
related and future work is given in section 6.

2 MAFRA – Application Scenarios

Design of MAFRA recognizes specific requirements of sev-
eral concrete application scenarios. In this section we present
one of these scenarios and discuss its respective require-
ments.

“People can’t share knowledge if they do not speak a com-
mon language”. This simple insight accurately characterizes
what makes knowledge management a challenging task. Its
goal to reach global knowledge access within different de-
partments of an enterprise is usually difficult due to the fact
that different departments usually encompass different vo-
cabularies, which hinders communication. Large companies

6 http://kaon.semanticweb.org

MAFRA — An Ontology MApping FRAmework 61

typically consist of departments such as Human Resources,
Production, Sales, Marketing and Finance. By using ontolo-
gies, the task of collecting, organizing, and distributing the
knowledge within one department may be solved – ontolo-
gies provide a sound semantic basis for the definition of
meaning that can be understood by both humans and ma-
chines. Also, a single department is typically small enough
so that achieving consensus among interested parties is fea-
sible. However, designing a large-scale ontology covering the
needs of all departments has shown to be a very difficult task
due to effort, scale and maintainability. Interoperability be-
tween departments can then be achieved by mapping of on-
tologies of each department. It is anticipated that mapping
existing ontologies will be easier than creating common on-
tology because a smaller community is involved in the pro-
cess. It is important to emphasize that we do not consider a
closed world and centralized information integration system
as a possible solution for the problem introduced above.

Ontologging7 is an ontology-based environment tackling
this problem. It builds on Semantic Web standards with the
goal of enabling next generation knowledge management ap-
plications allowing management and usage of multiple on-
tologies. An important requirement within the development
of the Ontologging multi-ontology system is that there ex-
ists extensive tool support for supporting the overall mapping
process. A specific requirement was the support of automatic
detection of similarities of entities contained in the two dif-
ferent department ontologies.

3 Conceptual Framework

An ontology mapping process, as defined in [14], is the set
of activities required to transform instances of a source on-
tology into instances of a target ontology. By studying the
process and analyzing different approaches from the liter-
ature [14] we observed a set of commonalities and assem-
bled them into the MAFRA conceptual framework, outlined
in Figure 1. The framework consists of five horizontal mod-
ules describing the phases that we consider fundamental and
distinct in a mapping process. Four vertical components run
along the entire mapping process, interacting with horizontal
modules.

3.1 Horizontal Dimension of MAFRA

Within the horizontal dimension, we identified following five
modules:

Lift & Normalization. This module focuses on raising all
data to be mapped onto the same representation level, coping
with syntactical, structural and language heterogeneity [16].
Both ontologies must be normalized to a uniform represen-
tation, in our case RDF(S), thus eliminating syntax differ-
ences and making semantics differences between the source
and the target ontology more apparent [14]. To facilitate that,
we developed a LIFT tool providing means to bring DTDs,
XML-Schema, and relational databases to the structural level
of the ontology. Lift is not further elaborated in this paper -
we shall simply assume that the source and target ontologies
are already represented in RDF-Schema with their instances
in RDF.

7 http://www.ontologging.com

Similarity. This module establishes similarities between en-
tities from the source and target ontology. Similarity between
conceptual models is hard to measure and often establishing
a suitable similarity measure is a very subjective task. Several
different similarity measures have been proposed in literature
[14,3,5,10,1], focusing on different aspects of ontology enti-
ties. We don’t further elaborate on this issue, as it is not in
scope of this paper.

Semantic Bridging.Based on the similarities computed in
the previously described phase, the semantic bridging mod-
ule is responsible for establishing correspondence between
entities from the source and target ontology. Technically,
this is accomplished by establishing semantic bridges - enti-
ties reflecting correspondence between two ontology entities.
Apart from the semantic correspondence, additional “proce-
dural” information is needed to further specify the transfor-
mation to be performed, e.g. translation of measures like cur-
rencies. Semantic bridging is further discussed in section 4.

Execution. This module actually transforms instances from
the source ontology into target ontology by evaluating the se-
mantic bridges defined earlier. In general two distinct modes
of operation are possible, namely offline (static, one-time
transformation) and online (dynamic, continuous mapping
between source and the target) execution. Execution issues
further discussed in section 5.

Post-processing.The post-processing module takes the re-
sults of the execution module to check and improve the qual-
ity of the transformation results. The most challenging task
of post-processing is establishing object identity - recogniz-
ing that two instances represent the same real-world object
[7]. Furthermore, by computing statistical properties of trans-
formed instances, it is possible to check whether semantic
bridges were underspecified.

3.2 Vertical Dimension of MAFRA

The vertical dimension of MAFRA contains modules that in-
teract with horizontal modules during the overall mapping
process. Following four modules have been identified and
will be only shortly mentioned in this paper:

Evolution. This modules focuses on keeping semantic
bridges obtained by the “Semantic Bridge” module, which
must be kept in synchrony with the changes in the source
and target ontologies. Evolving ontologies on the Semantic
Web result in an update requirement of the corresponding se-
mantic bridges. Although this may be achieved by reapplying
the mapping process, this is probably not the most efficient or
accurate way. Thus, the mapping process must have an evolu-
tion component that will reuse the existing semantic bridges
in adapting them to new requirements.

Cooperative Consensus Building.The cooperative Consen-
sus Building module is responsible for establishing a consen-
sus on semantic bridges between two communities partici-
pating in the mapping process. This is a requirement as one
has to choose frequently from multiple, alternatively possi-
ble mappings .The amount of human involvement required to
achieve consensus may be reduced by automating the map-
ping process as much as possible.

62 Alexander Maedche et al.

Fig. 1.Conceptual Architecture

Domain Constraints and Background Knowledge.The qual-
ity of similarity computation and semantic bridging may be
dramatically improved by introducing background knowl-
edge and domain constraints, e.g. by using glossaries to help
identify synonyms or by using lexical ontologies, such as
WordNet or domain-specific thesauri, to identify similar con-
cepts.

Graphical User Interface.Mapping is a difficult and time
consuming process, which is not less difficult than building
an ontology itself, i.e. deep understanding of both conceptu-
alizations required on human side, thus extensive graphical
support must be given and it is a separate issue how this can
be achieved in an optimal way. The graphical user interfaces
(GUI) modules allows the users drive the mapping process,
provide domain constraint and background knowledge, cre-
ate semantic bridges, refine bridges according to the results
of the execution module, etc. Some aspects of the GUI are
further elaborated in section 5.

4 Semantic Bridging

As mentioned in subsection 3.1, the role of the semantic
bridging component is to semantically relate entities from the
source and target ontologies. This is achieved by creating so-
called semantic bridges. A role of a semantic bridge is to en-
capsulate all necessary information to transform instances of
one source ontology entity to instances of one target ontology
entity. In the rest of this section we first explore the nature of
semantic bridges by analyzing their different dimensions de-
termining each bridge. Next we discuss our approach of us-
ing a meta-ontology to enable the specification of semantic
bridges. At last we give an example of how semantic bridges
can be defined between two domain ontologies.

4.1 Dimensions of Semantic Bridges

The nature of semantic bridges may be understood by con-
sidering different dimensions, each describing one particular

aspect of a semantic bridge. By analyzing ontologies used on
the Semantic Web, we identified following five dimensions
of semantic bridges:

1. Entity dimension reflects the type of ontology entities
being bridged,

2. Cardinality dimension reflects the number of ontology
entities being bridged,

3. Structural dimension reflects the way how elementary
bridges may be combined into more complex bridges,

4. Constraint dimension reflects constraints applied dur-
ing the execution phase to instances from the source on-
tology,

5. Transformation dimension reflects how instances of
the source ontology are transformed during the mapping
process.

Entity dimension.Semantic bridges may relate the ontology
entities (i) concepts (modeling classes of objects from the
real world), (ii) relations (modeling relationships between
objects in the real world), and,(iii) attributes (modeling sim-
ple properties of objects in the real world) and(iv) exten-
sional patterns (modeling the content of the instances).

Cardinality dimension.This dimension determines the num-
ber of ontology entities at both sides of the semantic bridge,
ranging from1 : 1 tom : n. However, we have found that in
most casesm : n is not a common requirement, so1 : n and
m : 1 suffice. Even whenm : n are encountered, often they
may be decomposed into m1 : n bridges.

Structural dimension.This dimension reflects the way how
elementary bridges may be combined into more complex
bridges. We distinguish between the following different re-
lations that may hold between bridges:

– Specializationallows a bridge to reuse definitions from
another bridge and provide additional information (e.g. a
bridge relating Employee concepts from two ontologies
may be a specialization of a more general bridge relating
Person concepts),

MAFRA — An Ontology MApping FRAmework 63

– Abstraction is a variation of the type of the super-
classes. When this attribute is set, the specified bridge
should not be executed independently, but only as super-
class of another.

– Composition relation between to bridges specifies that a
bridge is composed of other bridges,

– Alternatives relation between bridges specifies a set of
mutually exclusive bridges.

Constraint dimension.The constraint dimension permits to
control the execution of a semantic bridge. It reflects relevant
constraints applied during the execution phase to instances
from the source ontology. Constraints act as conditions that
must hold in order the transformation procedures is applied
onto the instances of the source ontology, e.g. the bridge eval-
uate only if the value of the source instance matches a certain
pattern.

Transformation dimension.This dimension reflects how in-
stances of the source ontology are transformed during the
mapping process. Transformations assume different com-
plexity and variety depending on the ontologies being
bridged.

4.2 Semantic Bridging Ontology (SBO)

Within our approach four different types of relations between
entities, a particular semantic bridge exists. A specification
of all available semantic bridges, organized in a taxonomy,
is a semantic bridging ontology (SBO). To actually relate
the source and target ontology, the mapping process creates
an instance of SBO containing semantic bridge instances,
each encapsulating all necessary information to transform in-
stances of one source entity to instances of the target entity.
In the following sections we will describe the semantic bridg-
ing ontology in more detail.

Figure 2 describes the most important entities of the se-
mantic bridging ontology. We refer to the five, previously
described semantic bridge dimensions:

– Three basic types of entities are considered: Concepts,
Relations and Attributes,

– The class SEMANTIC BRIDGE is the most generic
bridge, it defines the relations to source and target en-
tities. It is specialized according to the entity type and
according to cardinality. Though, there are many combi-
nations of entity types and cardinality bridges that are not
explicitly specified, it is important to mention that they
can be easily specialized from more general bridges.

– The class SERVICE represents a class used to reference
resources that are responsible to connect to, or describe
transformations. This class is intended to be used to de-
scribe these transformations resources. Because services
are normally external to the execution engine, it is re-
quired to describe some fundamental characteristics like
name, interface (number and type of arguments) and lo-
cation. Argument and its sub classes Arg and ArgArray
permits to describes these characteristics in a simple and
direct form.

– RULE is the general class for constraints and
transformation-relevant information, which provides a
relation to the service class.

– The class TRANSFORMATION is mandatory in each se-
mantic bridge except if the semantic bridge is set as ab-
stract. It uses the inService relation to link to the trans-
formation procedure, and any execution engine and func-
tion specific attributes in order to specify extra require-
ments;

– The class CONDITION represents the conditions that
should be verified in order to execute the semantic
bridge. Condition is operationally similar to transforma-
tion in the sense that it must specify all the extra require-
ments for the function that test the conditions. Because
any semantic bridge may have a condition, it allows to
control complex transformations according to both the
schema and instances data, specially in combination with
SemanticBridgeAlt and the Composition constructs.

– The COMPOSITION modelling primitive identified
above is supported by the hasBridge relation in the
SEMANTICBRIDGE class. It has no cardinality limit nor
type constraint which allows any semantic bridge to ag-
gregate many different bridges. Those semantic bridges
are then called one by one, and processed in the context
of the former.

– The ALTERNATIVE modelling primitive is supported by
the SemanticBridgeAlt class. It groups several mutual
exclusive semantic bridges. The execution parser checks
each of the bridges condition rules and the first bridge
which conditions hold is executed while the others are
discarded.

In the following, we will describe how the semantic bridg-
ing ontology has been represented so it may be used within
Semantic Web applications.

SBO represented in DAML+OIL. DAML+OIL 8 has
been choosen to represent the semantic bridge ontology.
DAML+OIL builds on and extends RDF-Schema and pro-
vides a formal semantics for it. One of the goals in
specifying the semantic bridge ontology was to main-
tain and exploit the existent constructs and minimize ex-
tra constructs, which would maximize as much as possi-
ble the acceptance and understanding by general Seman-
tic Web tools. The SBO ontology is available online at
http://kaon.semanticweb.org/2002/04/SBO.daml.

4.3 Example

Let us consider Figure 3 where a small part of two different
ontologies are represented. The ontology on the left side (o1)
describes the structure of royal families and associated indi-
viduals. These concepts are combined with events, both indi-
vidual events (birth date and death date) and families events
(marriages and divorces). The ontology on the right side (o2),
characterizes individuals using a very simple approach. It is
mainly restricted in representing if the individual is either
a Man or a Woman. Unlike o1 that extensively enumerates
marriages and divorces, o2 is concerned just with the num-
ber of marriages. The goal of this example is to specify a
mapping between the source and target ontology (o1 and o2
respectively), using the developed semantic bridge ontology

8 http://www.daml.org/2001/03/daml+oil-index.html

64 Alexander Maedche et al.

Fig. 2.Bridging Ontology view in UML

(SBO). In order to exploit the SBO potentialities, the map-
ping specification follows the structure of the ontologies be-
ing mapped, normally in the form of a taxonomy. Therefore,
a mapping structure represented according to SBO tends to
arrange bridges in a hierarchical way.

First, the mapping must define the two ontologies being
mapped. Additionally, one may specify top-level semantic
bridges which serve as entry points for the translation, even
if there are not mandatory. In this case the translation engine
starts executing the ”Individual-Individual” bridge.

<Mapping rdf:ID="mapping">
<relatesSourceOntology rdf:resource="&o1;"/>
<relatesTargetOntology rdf:resource="&o2;"/>
<hasBridge rdf:resource="#Individual-Individual"/>

</Mapping>

Notice that the target ontology intends to create instances
of either ”o2:Woman” or ”o2:Man”, but not ”o2:Individual”.
In object oriented terminology ”o2:Individual” class is said
to be abstract. It is therefore required to state that this con-
cept bridge should not be used to create instances, but serve
just as support to sub bridges, like it happens in object ori-
ented paradigm. SBO uses the abstract property in these cir-
cumstances. If no abstract property is specified or if it is
set to FALSE, then the concept bridge is considered as non-
abstract.

It is now necessary to set the alternative between
”o1:Individual” and either ”o2:Woman” or ”o2:Man”. This
situation is specified by a SemanticBridgeAlt. In this case the
alternatives are two ConceptBridge’s: ”Individual-Woman”
and ”Individual-Man”. Bridges may be numerically ordered
which can useful if the last bridge has no specified condition.
Both rdf: n like syntax and the one presented are allowed to
specify the order.

<SemanticBridgeAlt rdf:ID="ManOrWoman">
<hasBridge>

<Seq ordinal="1">
<bridge rdf:resource="#Individual-Woman"/>

</Seq>
</hasBridge>
<hasBridge>

<Seq ordinal="2">
<bridge rdf:resource="#Individual-Man"/>

</Seq>
</hasBridge>

</SemanticBridgeAlt>

The alternative ConceptBridge’s are presented next:
”Individual-Woman” and ”Individual-Man”.

<ConceptBridge rdf:ID="Individual-Woman">
<subBridgeOf rdf:resource="#Individual-Individual"/>
<relatesSourceEntity rdf:resource="#Individual"/>
<relatesTargetEntity rdf:resource="#Woman"/>
<whenVerifiedCondition rdf:resource="#isFemale"/>

</ConceptBridge>

<ConceptBridge rdf:ID="Individual-Man">
<subBridgeOf rdf:resource="#Individual-Individual"/>
<relatesSourceEntity rdf:resource="#Individual"/>
<relatesTargetEntity rdf:resource="#Man"/>

</ConceptBridge>

Both bridges rely on the ”Individual-Individual” bridge
to translate ”o2:Man” and ”o2:Woman” inherited attributes
from ”o2:Individual”. Hence, both are specified as sub-
bridges of ”Individual-Individual” concept bridge. Addition-
ally, ”Individual-Woman” concept bridge specifies the when-
VerifiedCondition property to ”isFemale”. As remarked bel-
low, this condition is responsible to test if the individual is
of feminine sex. If the condition is verified the bridge is ex-
ecuted. Otherwise, and because the condition is tested in the
context of a SemanticBridgeAlt, the next concept bridge in
the alternative is processed. The next concept bridge in the
alternative is ”Individual-Man” which has no associated con-
dition, and therefore it is unconditionally executed.

Respecting the translation process, consider that an
”o1:Individual” instance is to be translated. The translation
engine seeks for bridges relating ”o1:Individual” to any o2
entity. Three are found, but one of them is abstract and is
therefore rejected. The other two are both defined in the con-
text of a SemanticBridgeAlt. The SemanticBridgeAlt choos-
ing/exclusion process starts. One of the bridges (or even-
tually none if none of the associated conditions is veri-
fied) is selected. The concept bridge must then create a tar-

MAFRA — An Ontology MApping FRAmework 65

Fig. 3.UML representation of two small ontologies

get instance which will serve as context for complementary
bridges.

Complementary attribute bridges are in this example sim-
ple 1:1 attribute bridges, relating one attribute from o1 to an
attribute in o2, through the associated transformation.

<AttributeBridge rdf:ID="name-name">
<relatesSourceEntity rdf:resource="#name"/>
<relatesTargetEntity rdf:resource="#name"/>
<accordingToTransformation rdf:resource="#copyName"/>

</AttributeBridge>

<Transformation rdf:ID="copyName">
<mapSourceArgument>

<MapArg>
<from rdf:resource="#name"/>
<to>sourceString</to>

</MapArg>
</mapSourceArgument>
<mapTargetArgument>

<MapArg>
<from>targetString</from>
<to rdf:resource="#name"/>

</MapArg>
</mapTargetArgument>
<inService>CopyString</inService>

</Transformation>

The ”name-name” attribute bridge for example, bridges
”o2:Individual.name” to ”o2:Individual.name”. The associ-
ated transformation in this bridge has the responsibility to
copy/create the attribute and assign it to the concept instance.
Remember that the concept instance has been created by the
concept bridge previously.

Concerning the transformation, it intends to map between
the bridge entities and the transformation service arguments.
This mapping specification varies according to the service be
requested, either in type, cardinality and used tags. For ex-
ample, the ”copyName” transformation specifies the ”Copy-
String” service to be called. This service expects to receive
a source argument called ”sourceString” and the output is
named ”targetString”. The transformation maps ”sourceS-
tring” with the attribute ”o1:Individual.name” and ”target-
String” to the ”o2:Individual.name”. ”title-title” attribute
bridge is very similar to the previous and is not be presented.

In contrast, ”marriages” attribute bridges for example, are
slightly different from previous ones. Notice that the source
entity is not an attribute but a relation to another concept.
Normally an AttributeBridge would not be correctly applied.
However, since this is a very common mapping pattern the
translation engine allows to process the relation as an at-
tribute. That could eventually be a problem if the translation
service expects an attribute. However, the ”CountRelations”

service expects a relation which is the case of ”spouseIn” and
therefore no problem occurs. A similar situation occurs with
”birth-birth” AttributeBridge. Once again there is no prob-
lem because the source entity is accepted as an attribute and
the rest is up to the transformation and its associated service.

<AttributeBridge rdf:ID="mariages">
<relatesSourceEntity rdf:resource="#spouseIn"/>
<relatesTargetEntity rdf:resource="#noMariages"/>
<accordingToTransformation rdf:resource="#countSpouses"/>

</AttributeBridge>

<Transformation rdf:ID="countSpouses"> <putServiceArgument>
<MapArg>

<from>relation</from>
<to rdf:resource="#spouseIn"/>

</MapArg>
</putServiceArgument>
<mapTargetArgument>

<MapArg>
<from>count</from>
<to rdf:resource="#noMariages"/>

</MapArg>
</mapTargetArgument>
<inService>CountRelations</inService>

</Transformation>

<AttributeBridge rdf:ID="birth-birthDate">
<relatesSourceEntity rdf:resource="#birth"/>
<relatesTargetEntity rdf:resource="#birthDate"/>
<accordingToTransformation rdf:resource="#Birth"/>

</AttributeBridge>

<Transformation rdf:ID="Birth">
<putServiceArgument>

<MapArg>
<from>1</from>
<to rdf:resource="#birth"/>

</MapArg>
</putServiceArgument>
<putServiceArgument>

<MapArg>
<from>2</from>
<to rdf:resource="#date"/>

</MapArg>
</putServiceArgument>
<mapTargetArgument>

<MapArg>
<from>targetString</from>
<to rdf:resource="#birthDate"/>

</MapArg>
</mapTargetArgument>
<inService>RoyalDate</inService>

</Transformation>

Finally, the ”isFemale” condition is considered. This con-
dition is responsible to verify if an instance of an individual
is of feminine sex. In this case the pattern refers to the fact
that the value of sex attribute has value ”F”. Normally, the
services applied in a condition return a boolean value. How-
ever, this constraint would depend on the translation engine
once it is possible to create a table of correspondences be-
tween boolean types and other types. For example, it would
be reasonable to consider a true result if the service returns a
set of entities or false if it return a empty set.

<Condition rdf:ID="isFemale">

66 Alexander Maedche et al.

<putServiceArgument>
<MapArg>

<from>1</from>
<to rdf:resource="#sex"/>

</MapArg>
</putServiceArgument>
<putServiceArgument>

<MapArg>
<from>pattern</from>
<to>F</to>

</MapArg>
</putServiceArgument>
<inService>CascadeAndMatch</inService>

</Condition>

5 Implementation

MAFRA is currently under development within the KAON
Ontology and Semantic Web Framework9. KAON offers a
framework and a common set of tools for realizing scalable
and reliable ontology-enabled Semantic Web applications.
The architecture underlying KAON is depicted in Figure 4,
with elements split into three layers as described next.

– The Application and Services Layer contains com-
ponents providing interface to KAON. Human agents
typically use one of user interface applications realized
within OntoMat - a UI framework for ontology appli-
cations offering easy integration and interoperability of
different tools for managing ontologies and metadata.
KAON-Portal is a framework for the generation of Web
portals from ontology-based data. Interoperability with
non-Java platforms is realized through a Web-service in-
terface. Furthermore, machine agents use the Web Ser-
vice interface to access KAON methods and functional-
ity.

Fig. 4.KAON Architecture

– TheMiddleware Layer is focused around KAON API,
providing primitives for ontology access and manipula-
tion via different means. The middleware layer also in-
cludes a remote, J2EE-based implementation of KAON-
API which allows to work multiple user on the same
mapping task. Mapping execution is realized within this
layer.

– TheData and Remote Services Layeris the back-end
part of KAON. For local, in-memory operation storage
based on a modified version of RDF API may be used.
As mentioned above for enabling scalable and concur-
rent applications, KAON RDF Server is realized within
the J2EE framework. Atomicity of updates is ensured by
using transactions.

9 http://kaon.semanticeweb.org

As specified in section 4, mapping is specified and repre-
sented as an instance of a bridging ontology. Therefore, map-
pings can be created using OntoMat-SOEP – a tool for ontol-
ogy and metadata management. However to simplify the task
of establishing mappings, a plug-in for OntoMat has been im-
plemented. A screen-shot of the user interface for mapping
specification is presented in Figure 5. In this example two
ontologies have been opened side by side, and in between an
instance of the semantic bridging ontology is created using a
simplified user interface.

Fig. 5.Creating Mappings Using KAON Tools

As mentioned earlier mapping execution is implemented
within KAON API – the focal point of the KAON architec-
ture. KAON API models the domain of ontology applica-
tions, providing classes such as Concept, Relation, Instance
etc. and means for their creation and manipulation. Conse-
quently, instances of the semantic bridging ontology can be
expressed using KAON API constructs and processed and
stored in the desired storage systems available within KAON.

The KAON mapping service supports the mapping execu-
tion phase under two distinct modes of operation:

– Offline (static) execution, transforming source ontology
instances into target ontology instances once, without
later synchronization,

– Online (dynamic) execution, where a connection be-
tween source and target ontology instances is constantly
maintained.

Execution in either of the two modes is currently devel-
oped on the basis of the run-time structure model depicted in
Figure 6, taking the upper half of the KAON mapping ser-
vice box for offline execution and the lower half for online
execution.

Offline execution is supported as a batch process. To exe-
cute, a previously generated instance of the semantic bridg-
ing ontology and an instance of the ontology to be trans-
formed are passed to the offline mapping service. It can then
perform the execution and generate an instance of the tar-
get ontology by applying transformations from the semantic
bridging ontology. The offline mapping service as been im-
plemented in Java.

Online execution is more complex, since the connection
between instances of the source and target ontology is con-
stantly maintained - notifications of changes to source ontol-
ogy instance are mapped to changes in the target ontology

MAFRA — An Ontology MApping FRAmework 67

Source

Ontology

Source

Ontology

Instance

OntologySemantic

Bridging

Ontology

Semantic

Bridge

Instance

maps data from

Target

Ontology

Instance

Offline

Mapping

Service

generates

Virtual Instance

of Target

Ontology
KAON Mapping Service

source

Fig. 6.Mapping Run-time Structure

instance and propagated to the user. The user has no means
to detect that mapping is going on. To achieve this, as in the
offline case, first an instance of semantic bridging ontology
must be created. It and the source ontology instance are used
to create a virtual instance of the target ontology handling
online mapping. Execution occurs dynamically - e.g., when
the user queries for all instances of a concept of the target
ontology, the query is mapped into a query for the source on-
tology instance and executed there. Upon execution, the list
of all instances obtained is then mapped into all instances of
the target ontology and reported to the user.

6 Related Work

Much research has been done in the area of information in-
tegration. Existing information integration systems and ap-
proaches (e.g., TSIMMIS [6], Information Manifold [8], In-
fomaster10, MOMIS11, Xyleme12) are “centralized” systems
of mediation between users and distributed data sources,
which exploit mappings between a single mediated schema
and schemas of data sources. Those mappings are typically
modeled as views (over the mediated schema in the local-as-
view approach, or over the sources schemas in the global-as-
view approach) which are expressed using languages having
a formal semantics. For scaling up to the Web, the “central-
ized” approach of mediation is probably not flexible enough,
and distributed systems of mediation are more appropriate.

Furthermore, mapping approaches can mainly be dis-
tinguished along the following three categories: discovery,
[14,3,5,10,1], mapping representation [9,1,11,13] and execu-
tion [4,11]. However, none of the proposed solutions has re-
ally encompassed the overall mapping process specially con-
sidering the evolution and consensus building of semantic
bridges. Having this in mind, we have introduced the On-
tology MApping FRAmework (MAFRA) as a basis for man-
aging and executing mapping between distributed ontologies
in the Semantic Web. Within MAFRA we provide an ap-
proach and conceptual framework that provides a generic
view and figure onto the overall mapping process. In this pa-
per we have set a specific focus on the semantic bridging
phase corresponding to the mapping representation category.
The approaches which resemble our approach more closely
are [13] and [12]. Basically, our work has been motivated by
the work done in [13], where an ontology has been specified
for the translation between the domain-knowledge-base com-

10 http://infomaster.stanford.edu/infomaster-info.html
11 http://sparc20.ing.unimo.it/Momis/
12 http://www.xyleme.com

ponents and problem-solving-method components. The ap-
proach that comes nearest to ours has been described in [12].
They describe an approach for integrating vocabularies in-
cluding means for mapping discovery and representing map-
pings with a focus on B2B applications (product catalogues)
has been described. In contrast to our work, the RDFT on-
tology describes a set of core bridges to(i) lift XML tags to
the RDF model and(ii) to define bridges between RDF(S)
classes and properties and to(iii) translate transformation re-
sults back to XML. In the paper [12] it remains unclear, how
execution specific information in the form of the constraint
and transformation dimension is attached to the bridges. Fur-
thermore, it is also not discussed if the overall process is ex-
ecuted statically or dynamically, where we offer both solu-
tions.

7 Conclusion and Future Work

Ontologies may used for achieving a common consensus
within a user community about conceptualizing, structuring
and sharing domain knowledge. Based on the application
scenario provided by Ontologging we have motivated that
it is unrealistic to assume that one single ontology for dif-
ferent communities of users is realistic in real-world appli-
cations. We argue that decentralization has been one of the
key elements for the scalability of the World Wide Web and
its underlying applications. In order to balance the autonomy
of each community with the need for interoperability, map-
ping mechanisms between ontologies have been proposed.
In this paper we presented the Ontology Mapping Frame-
work (MAFRA) supporting the interactive, incremental and
dynamic ontology mapping process in the context of the Se-
mantic Web. In this paper a specific focus has been set on
the semantic bridging phase where we have provided a de-
tailed description of a semantic bridge meta-ontology, that is
instantiated when mapping between two domain ontologies.

In the future much work remains to be done. First, depend-
ing on the domain ontologies, data sources, application sce-
narios, user participation, capabilities and other factors fur-
ther semantic bridges may be necessary. For example, proce-
dural mechanisms may complement the taxonomy of seman-
tic bridges. Thus, we consider the semantic bridging ontol-
ogy as evolving. Second, considering the mapping process as
a consensus building process of two communities, we will on
the basis of our technological infrastructure KAON, perform
an experiment how multi-user mapping may be efficiently
supported. Third, we will develop an integrated LIFT tool
that allows to lift several existing data representations includ-
ing relational databases, XML-Schema, DTDs onto the same
data model. Executing a dynamic mapping process keeping
the autonomy of the different input data will be a challenging
task.

Acknowledgements.Research for this paper was financed
by European Commission, IST, project ”Ontologging” (IST-
2000-28293) and by Marie Curie Fellowship on Semantic
Web Technologies. Special thanks to Gabor Nagypal for
fruitful discussions on defining the semantic bridging ontol-
ogy and Oliver Fodor for stimulating discussions on the lift
component and cooperative mapping. Thanks to the students

68 Alexander Maedche et al.

Frank Westerhausen and Zoltan Varady who did the imple-
mentation work for the graphical user interface and the static
transformation engine.

References

1. S. Bergamaschi, S. Castano, D. Beneventano, and M. Vincini.
Semantic integration of heterogeneous information sources. In
Special Issue on Intelligent Information Integration, Data &
Knowledge Engineering, volume 36, pages 215–249. Elsevier
Science B.V., 2001.

2. T. Berners-Lee.Weaving the Web. Harper, San Francisco, 1999.
3. W. Cohen. The whirl approach to data integration.IEEE Intel-

ligent Systems, pages 1320–1324, 1998.
4. T. Critchlow, M. Ganesh, and R. Musick. Automatic gener-

ation of warehouse mediators using an ontology engine. In
Proceedings of the 5 th International Workshop on Knowledge
Representation meets Databases (KRDB’98), 1998.

5. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning
to map between ontologies on the semantic web. InProceed-
ings of the World-Wide Web Conference (WWW-2002), 2002.

6. J. Hammer, H. Garcia-Molina, K. Ireland, Y. Papakonstantinou,
J. Ullman, and J. Widom. Information Translation, Mediation,
and Mosaic-Based Browsing in the TSIMMIS System. InEx-
hibits Program of the Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, page 483, San
Jose, California, June 1995., 1995.

7. S. Khoshafian and G. Copeland. Object identity. InProceed-
ings of the 1st ACM OOPSLA conference, Portland, Oregon,
September 1986., 1985.

8. Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Query-
ing Heterogeneous Information Sources Using Source Descrip-
tions. InProceedings of VLDB-96, 1996, 1996.

9. J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema
matching with cupid. InProceedings of the 27th International
Conferences on Very Large Databases, pages 49–58, 2001.

10. A. Maedche and S. Staab. Measuring similarity between on-
tologies. InTechnical Report, E0448, University of Karlsruhe,
2001.

11. P. Mitra, G. Wiederhold, and M. Kersten. A graph-oriented
model for articulation of ontology interdependencies. InPro-
ceedings of Conference on Extending Database Technology
(EDBT 2000). Konstanz, Germany, 2000.

12. B. Omelayenko. Integrating Vocabularies: Discovering and
Representing Vocabulary Maps. InProceedings of the First In-
ternational Semantic Web Conference (ISWC-2002), Sardinia,
Italy, June 9-12, 2002., 2002.

13. J. Y. Park, J. H. Gennari, and M. A. Musen. Mappings for
reuse in knowledge-based systems. InTechnical Report, SMI-
97-0697, Stanford University, 1997.

14. E. Rahm and P. Bernstein. A survey of approaches to automatic
schema matching.VLDB Journal, 10(4):334–350, 2001.

15. M.C. Rousset. Standardization of a web ontology language.
IEEE Intelligent Systems, March/April 2002, 2002.

16. P.R.S. Visser, D.M. Jones, T.J.M. Bench-Capon, and M.J.R.
Shave. An analysis of ontology mismatches: Heterogeneity
versus interoperability. InAAAI 1997 Spring Symposium on
Ontological Engineering, Stanford CA., USA, pages 164–72,
1997.

Conceptual Normalisation of XML Data for Interoperability in Tourism

Oliver Fodor1, Mirella Dell’Erba1, Francesco Ricci1, Antonella Spada1, and
Hannes Werthner12

1 eCommerce and Tourism Research Laboratory
ITC-irst, Italy

{fodor, dellerba, ricci, spada, werthner }@itc.it
2 University of Trento, Italy

Abstract. Currently many tourism systems and
standardisation initiatives adopt XML as a stan-
dard for data representation. Together with XML,
XML Schema definition language is becoming
more widely used for describing the structure and
constraining the contents of the documents. How-
ever neither XML itself nor XML Schema provides
sufficient mechanisms for the representation of data
semantics.
In this paper we discuss the issue of conceptual nor-
malisation of XML documents. Conceptual normal-
isation is introduced as a pre-processing step of our
ontology-mediated framework for the harmonisa-
tion of electronic tourism systems. We propose to
use RDF Schema as a mechanism for conceptual
modelling of data sources and investigate the rela-
tion between semantics carrying constructs of XML
Schema and RDF Schema. Accordingly we elabo-
rate on the idea of transforming XML data into a
conceptual model corresponding to RDF statements
and vice-versa. Finally we propose a declarative so-
lution and a high-level architecture of a toolkit fa-
cilitating this process.

1 Introduction

Tourism in its nature is an industry strongly dependent on in-
formation exchange. In reality, however, the domain is highly
fragmented mainly due to the heterogeneity of data sources.

The problem of bringing together heterogeneous and dis-
tributed systems is known as the interoperability problem.
The data heterogeneity is a well-known obstacle, and the cur-
rent approach to achieve the data interoperability is, mainly,
to write ad-hoc data interface programs for each pair of com-
municating systems. Experience shows that development and
maintenance of these programs is expensive in terms of both
time and money. The total effort required increases with the
square of the number of communicating systems. Ontology-
mediated document exchange provides a solution for this
scalability problem. The data model of a source document
is aligned with the representation specified by the ontology
maintained by mediator. The data is transformed accordingly
in both ways.

Nowadays the W3C standard for semi-structured data rep-
resentation XML (eXtensible Markup Language) has been
adopted by many systems and domain specific standards for
data exchange over the Web. XML documents are often in
accordance to the schematic description provided by XML
Schema. Since XML Schema describes hierarchical structure
for data representation it can be considered as a logical model
for XML data. Nevertheless, XML Schema does not provide
a unified mechanism for representing semantics of the data.

Therefore an additional pre-processing step is necessary in
order to facilitate the ontology-mediated solution for inter-
operability. Explicit representation of concepts of the data
sources enables to align them with the concepts of the medi-
ation ontology.

Conceptual schemata can be used within the mediation
task to describe the semantics of information sources and
to make the content explicit. Mediation based on concep-
tual schemata instead of logical is preferable because concep-
tual schemata have more clear semantics and are not bound
to specific data structures. Presence of conceptual schemata
simplifies identification and association of semantically cor-
responding information concepts and consequent resolution
of semantic conflicts.

In this paper we present a bottom-up approach to the prob-
lem of conceptual normalisationof XML data sources. We
identify and discuss several related issues: re-engineering of
conceptual schemata from existing logical schemata, asso-
ciating between logical and conceptual schemata and trans-
forming of data instances into representation corresponding
to the associated conceptual schema and its notions.

The conceptual normalisation process, introduced here,
is a part of the ontology-mediated interoperability platform
Harmonise3. Harmonise aims at the development of a com-
prehensive solution for electronic tourism systems providing
them the possibility to freely cooperate by exchanging infor-
mation in a seamless manner. However we believe that the is-
sue of conceptual normalisation is relevant for a wider variety
of solutions for data integration. In Harmonise we decided to
make use of the W3C standards and recommendations for the
Semantic Web. We believe that relying on widely accepted
standards and technologies will make the Harmonise solution
compatible with related initiatives. Therefore we use RDF
Schema language (RDFS) for the representation of local con-
ceptual schemata and RDF (Resource Description Frame-
work) metadata format for representing the data instances.

This document is structured as follows: In the following
Section we will introduce the overall picture of the Har-
monise platform. The Harmonisation Consortium elaborated
user requirements for the interoperability task and analysed
relevant tourism standards to be considered as input for the
harmonisation process. An ontology-mediated solution has
been proposed, distinguishing two major tasks: conceptual
normalisation and semantic mapping. In Section 3 we will
focus on the conceptual normalisation as a pre-processing
step for the semantic mapping task. We will describe four
stages of the normalisation process: the re-engineering stage
supporting the creation of conceptual schemata, association
discovery and association definition stages for linking be-

3 http:// www.harmonise.org/

70 Oliver Fodor et al.

tween the logical and conceptual schemata and the dynamic
lift stage taking care of the XML-to-RDF transformation and
vice versa. In Section 4 we will propose a declarative solu-
tion relying on a set of customisable normalisation templates
providing basic association facilities between XML Schema
and RDF Schema. Finally, in Section 5, we will draft a high-
level architecture for the normalisation toolkit as a part of the
Harmonise solution.

2 Harmonise - Interoperability for Tourism

The Harmonise project is an initiative financed by the Euro-
pean Commission (EC), under the 5th Framework RTD Pro-
gramme, contract number IST-2000-29329. The primary aim
of the project is to establish an open international consortium
- Tourism Harmonisation Network (THN) - including major
tourism stakeholders, domain experts and IT professionals.
The THN will serve as a forum for discussing the interop-
erability issues and coordinating the related activities within
the tourism domain. Further, Harmonise aims to provide a so-
lution for the interoperability problem in tourism by means
of the so-called Harmonise Platform.

The Harmonise Platform is an ontology-mediated solution
relying on the newest technologies for knowledge representa-
tion and following the philosophy of the Semantic Web, i. e.
adding semantic annotations to the data sources. The goal is
to allow the participating tourism organisations to keep their
proprietary data format and simultaneously cooperate with
each other, by exchanging information in a seamless manner.
This will be possible through the help of a mediator module
- the Harmonisation tool (H-tool)- providing a mediation
service between different proprietary data formats and trans-
forming the fragmented services, data and events in a com-
mon environment, where those can be easily and transpar-
ently distributed. This mediator acts as a semantic gateway
between systems, permitting the receiver to view the source
as an extension of its own information system, without any
concern for the differences in names and representations of
data.

The H-tool is based on the following three technologies as
illustrated in Figure 1:

– A tourism ontologyIMHO (Interoperability Minimum
Harmonisation Ontology)modelling and storing the ba-
sic concepts used in representing the content of informa-
tion exchanges in tourism transactions.

– An interchange formatHIR (Harmonise Interchange
Representation)suitable to represent the instance data
used within interoperable tourism transactions.

– A set of mapping rulesdefining the transformation of
data from the proprietary local format into the Har-
monise Interchange Representation, and vice versa. Each
system participating in Harmonise will maintain its own
set of rules; the mapping rules will be defined on the base
of the semantic correspondence of the local data models
with respect to the IMHO.

2.1 XML as Common Input Format

The Harmonise Consortium agreed on XML as the common
syntax for systems participating in the harmonisation pro-

Fig. 1.Harmonise solution

cess. This constraint was carefully decided after a wide dis-
cussion with major tourism organisations, domain experts,
industry leaders and IT professionals. While the XML for-
mat was already accepted in some major industry standards
(e. g. OTA4), several standards are currently in the prepara-
tion phase or already undertaking the evolution step towards
XML. This is also true for the legacy systems of participating
National Tourism Boards and their local standards (Finland,
France, Portugal). Further it was agreed that logical schemata
(XML Schema) of the XML documents will be also provided
by the participants.

Nevertheless, it is intended to keep the Harmonise solution
open for possible future extensions towards other physical
level formats.

2.2 Interoperable Minimal Harmonisation Ontology
and Harmonise Interchange Representation

The Harmonise project will build the Interoperability Mini-
mum Harmonisation Ontology by adopting the OPAL (Ob-
ject, Process, Actor modelling Language) methodology. The
core of OPAL is a business and enterprise ontology frame-
work. The proposed framework is not a new language for on-
tology modelling, but intends to build, on top of an existing
ontology language, domain-oriented constructs more famil-
iar to enterprise experts than the basic modelling primitives
of existing languages. The additional constructs are intended
to ease the task of the tourism expert, by hiding the complex-
ity of the underlying ontology representation formalism and
supporting the construction of effective enterprise ontology.

As a starting point, it was decided to use RDF Schema lan-
guage for representing the IMHO. This decision was taken
based on an analysis of several ontology representation lan-
guages (DAML+OIL, UML, XML Schema) as a compro-
mise between the expressive power, user friendliness and
global distribution of the language. Although RDF Schema
has limited expressive power we consider it as sufficient for
the purpose of Harmonise whereas still allowing future ex-
tensions following new standards for representing ontolo-
gies.

Accordingly, RDF metadata format was adopted by Har-
monise for representing the Harmonise Interchange Repre-
sentation (HIR).

4 OpenTravel Alliance, http://www.opentravel.org/

Conceptual Normalisation of XML 71

2.3 Analysis of the relevant standards

An analysis of relevant tourism standards (SIGRT5, Tour-
InFrance6, OTA, xCBL7, IFITT RMSIG8, UN/EDIFACT
TT&L 9, CEN/TC 32910) has taken place in the early phases
of the Harmonise project. A comparison of overlapping con-
cepts has shown that two different kinds of conflicts arise
when an XML document has to be translated from one for-
mat to another one:

– Semantic clashes
– Structural clashes

Semantic clashes.Semantic clashes are clashes between
concepts of different standards, or more precisely, between
specific conceptual models or ontologies behind different
standards. Typical semantic clashes are completely different
concepts, different naming of concepts or different granular-
ity. Identified semantic conflicts have been classified in eight
categories. A detailed description can be seen in [13].

Table 1.Sample of semantic clashes

Different naming PostCode vs.PostalCode
Different position Postcode in Address rather than in

ContactInfo
Different scope TelephonePrefix and Tele-

phoneNumber separated vs. Pre-
fix TelephoneNumber as single
concept

Structural clashes. Structural clashes are caused by the het-
erogeneity of XML representation. Using XML format the
same concept can be expressed in several different ways.
XML Schema enables constraining of XML documents but
this was designed for constraining the content of XML doc-
uments not for the conceptual representation. Within XML,
structural clashes are mainly caused by the different usage
of specific constructs, e.g. by a different usage of attributes
rather than embedded elements or by expressing concepts in
enumeration values.

Usually freely designed XML documents used for specific
application purposes do not provide sufficient information
about the semantics of the data. The semantics of XML ele-
ments used by Web applications is hard-coded into the appli-
cations and is typically not available in machine-processable
form. This applies also to documents with available structural
schemata (XML Schema), which in the most cases define the
syntactical structure of XML documents without unified im-
plicit representation of their meaning.

5 Sistema de Informação de Gest̃ao de Recursos Turı́sticos, Portu-
gal

6 National Tourism Board, France
7 XML Common Business Library
8 IFITT Reference Model Special Interest Group
9 United Nations rules for Electronic Data Interchange for Admin-

istration, Commerce and Transport – Travel Tourism & Leisure
10 European Committee for Standardization/ Technical Committee

Tourism Services

The example in Table 2 shows three different ways of ex-
pressing the conceptPostalCode in XML.

Table 2.Structural heterogeneity of XML

<ContactInformation>
<Address PostalCode="X-1220" >
Wannaby Street 59, Dreamtown</Address>

</ContactInformation>
<ContactInformation>

<Address>
<Street>Wannaby Street 59</Street>
<City>Dreamtown</City>
<PostalCode>X-1220</PostalCode>

</Address>
</ContactInformation>
<ContactInformation>

<Address>
Wannaby Street 59,
<PostalCode>X-1220</PostalCode>
Dreamtown

</Address>
</ContactInformation>

In [5] the authors show that an attempt to resolve both
kinds of conflicts within one transformation step causes a
scalability problem. Such a solution would lead to a rather
complex set of rules and consequently to possible perfor-
mance problems of the processing engine.

The separation between semantic and structural clashes
indicates the need of a distinction between corresponding
steps in the overall transformation process. Due to these ar-
guments the Harmonise solution introduces a pre-processing
step called conceptual normalisation. This step enables a
separation of semantic mapping (resolution of the seman-
tic clashes) from the concrete physical representation of data
being transformed. In case different physical representations
will be used in the future, the semantic mapping definitions
will still remain valid.

Figure 2 depicts the two steps of data transformation from
local to the harmonised representation (HIR).

Fig. 2.Harmonise steps (forward harmonisation)

72 Oliver Fodor et al.

In the following Section we will discuss the basic issues
related to conceptual normalisation.

3 Conceptual Normalisation

As described above, we consider conceptual normalisation as
a pre-processing step facilitating the overall mediation task
of the Harmonise ontology-based solution. Systems willing
to participate in the harmonisation process will be encour-
aged to add semantics to their data by means of conceptual
schemata and normalisation maps described later in this pa-
per. We assume that there are no conceptual schemata avail-
able and a re-engineering based on existing data structures
will be necessary in order to obtain them. However, we ar-
gue that available logical schemata (XML Schemata) are a
promising base for the extraction of conceptual schemata.
Obviously not all information about the data semantics can
be extracted from the logical schemata, therefore an inter-
vention of a system engineer is also considered. Within Har-
monise we aim to develop a toolkit fully supporting the pro-
cess of conceptual normalisation of XML schemata and re-
spective data manipulation.

The process of conceptual normalisation is a bottom-up
approach based on the existence of local logical schemata.
We have identified four stages within the normalisation pro-
cess as indicated in Figure 3. These stages will take place in
a sequential step-by-step fashion.

Fig. 3.Stages of conceptual normalisation process

Conceptual Level. To facilitate the semantic interoperabil-
ity additional information has to be provided on the data
sources. The semantics has to be expressed in an unified form
(human and machine understandable) and referred to by the
data to be harmonised. Therefore, Harmonise addresses the
concept ofNormalized Conceptual Schemataas explicit def-
inition of the data semantics. Consequently, a new level of

abstraction is to be considered for the representation of lo-
cal data. We call this levelconceptual level, also commonly
referred to as data model level or semantic level.

The conceptual level has been introduced in the context of
a three-schema framework [1] for database management sys-
tems. Three-layered approach for information representation
on the Web was proposed in [2], where the semantic level
was introduced above the lower object and syntax layers.
Three layers for information integration (syntax, data model,
ontology) were also adopted by [6] where data model layer
serves for elimination of syntactical ambiguities of XML for-
mat.

Normalised Conceptual Schema. Originally, conceptual
schemata played a key role in the development of a large
variety of systems. In the above mentioned ANSI framework
a conceptual schema is defined as “a unique central descrip-
tion of the information that might be in the database”. Con-
ceptual schema is considered as a product of the conceptual
modelling process.

In the Harmonise solution, the purpose of Normalised
Conceptual Schema is to provide a unified human and ma-
chine understandable description of the concepts of local sys-
tems and relations among them. The important characteristic
of NCS is its ability to be aligned with the formal represen-
tation of the Interoperable Minimal Harmonisation Ontology
(IMHO). This intermediary product will simplify the process
of semantic mapping since the mappings will be defined over
representations of the concepts at the same abstraction level
(conceptual level).

As stated in Section 2.2, in Harmonise the IMHO is rep-
resented by RDF Schema language. Therefore we propose to
use RDF Schema as formalism for expressing the Normal-
ized Conceptual Schemata for the systems participating in
Harmonise. The convenience of RDF Schema for conceptual
modelling has been discussed in [2], [3], [5] and variety of
other sources. Accordingly, we use RDF format as a mecha-
nism for representation of the data instances.

Conceptual Schema Re-engineering.Assuming that no
conceptual schemata exist at the local sites these have to be
obtained by a re-engineering of the available local data struc-
tures. The available XML Schemata will serve as the basis
for the re-engineering of a corresponding conceptual schema.
The elementary constructs and default semantics carrying el-
ements of the logical schemata will be analysed in order to
obtain an abstract conceptual model defining them. The se-
mantic aspects of the logical schemata, e.g. the naming or
granularity, will be preserved within the process. The pur-
pose of this step is to resolve the structural heterogeneity of
XML Schema and to separate the conceptual layer from the
physical representation of the data.

Association Discovery. Association discovery is an inter-
mediary step between the re-engineering and association def-
inition and serves as a bridge between them. The knowl-
edge obtained in the re-engineering step is used here to pro-
pose basic associations between the underlying logical and
just produced conceptual schemata. Associations are derived
from the default semantic correspondences of both schemata.

Conceptual Normalisation of XML 73

We consider a possible merge of the re-engineering and dis-
covery phase and we will investigate the benefits in our future
work.

Association Definition In this stage the associations be-
tween logical and conceptual schemata will be made ex-
plicit. The linking between the building constructs will be
defined based on the associations proposed in the previous
step and the explicit knowledge of the data structures. There-
fore this step will be mainly depending on a human interven-
tion. The definitions produced here will allow the projection
of the underlying logical schema (tree) onto the conceptual
schema (graph) defined in the re-engineering step and vice-
versa. The symmetric character of the definitions is necessary
for the backward harmonisation step where data is translated
from the harmonised to the local representation.

Execution - Lift. According to the previously defined asso-
ciations the data instances must be transformed so that they
correspond to the representation of the concepts. Essentially,
in this step RDF statements are derived from the XML doc-
uments and vice versa. This transformation of the data in-
stances facilitates their further processing in the mediator.
The lift can be seen as wrapping and un-wrapping of the data
where the content is preserved, only some meta-information
about the concepts is added. As already mentioned both di-
rections must be supported therefore we distinguish between
XML-to-RDF lift and RDF-to-XML extraction.

4 Declarative Approach

To the problem of conceptual normalisation we propose a
declarative approach. This is based on a set of customisable
normalisation bridgesenabling declarative definition of the
associations between logical and conceptual schemata. Fur-
ther we propose a set ofnormalisation heuristicsbased on
default semantic interpretations of XML Schema constructs.
These heuristics will support automated and also manual
phase of the re-engineering step. Normalisation heuristics
will be interrelated with the association bridges, which en-
ables to partially automate also the association discovery
step. Therefore we consider our declarative approach as
semi-automatic.

It is obvious that there is only a partial overlapping with
respect to the semantic expressiveness of XML Schema and
RDFS. The dimensions of e.g. enumeration of property val-
ues or basic data types cannot be preserved within the nor-
malisation process. Hence, conceptual normalisation is a
lossy process. However we consider the information lost ac-
ceptable for the initial release of the Harmonise solution. In
the future this drawback can be removed by an extension of
RDFS or by adoption of higher level modelling formalism
based on RDFS.

Normalisation Ontology. First of all, we aim to create a
normalisation ontology identifying all concepts related to the
conceptual normalisation process. The mission of this ontol-
ogy is to specify an unambiguous human comprehensible ref-
erence model as a base for the specification of normalisation
bridges. The ontology will cover all elementary constructs

of XML (e. g. element, attribute), XML Schema (e.g. ele-
ment declaration, type definition), RDF (e. g. object, object
identity), RDFS (e. g. class, property) and mechanisms for
defining associations among them (normalisation heuristics,
normalisation bridges). We intend to specify this ontology in
common formats, like DAML+OIL, RDFS and OPAL.

Normalisation Heuristics. A set of heuristics related to the
default semantic interpretations can be applied to support the
modelling process in a semi-automatic way. These heuristics
address the components of XML Schema and suggest their
correspondences with components of RDF Schema. Usually,
there are several possibilities to interpret an XML Schema
construct in RDFS. To narrow down the number of options
we also look at other relevant characteristics of XML Schema
components, e.g. its naming (named, anonymous) or position
in the schema (top-level, nested).

Consequently, the association discovery phase introduced
in Section 3 can make benefit of the normalisation heuristics
and accordingly automatically derive associations between
the underlying schemata.

Table 3.Sample heuristics for conceptual modelling

Given an unnamed complex type definition. Create a concept
(rdfs:Class) and name it with the name of the declared parent
element plus suffix “class”.
Given a local element declaration declaring the element E of
a complex type. Create a relation (rdf:Property) and name it
with the name of the element E. Set the domain of E to the class
defined by the parent of the element declaration and the range
of E to the class defined by the element’s type.

Table 3 introduces two related sample heuristics. Figure 4
shows how a RDFS conceptual schema is created based on
an existing XML Schema fragment in accordance to these
heuristics.

Normalisation Bridges. Normalisation bridges are a set of
customisable templates implementing associations between
XML Schema and RDFS. The purpose of normalisation
bridges is to associate components of two concrete schemata
in order to support transformation of the data instances. Nor-
malisation bridges are customized within the association def-
inition phase.

Each component to be associated by a normalisation
bridge must be unambiguously addressed. To achieve this,
we currently evaluate several techniques for naming and ref-
erencing components and structures of both schemata: XML
Namespaces, XPath language and Uniform Resource Iden-
tifier (URI). We intend to rely on the URI mechanism for
naming of RDF resources and XPath like naming convention
(normalized uniform names) for XML Schema components.
The later is described in detail in [16].

Normalisation templates must support associations in both
directions. We expect that some association definitions will
be symmetric whereas in some cases an explicit definition
for each direction will be required. Also we expect that often
several bridges will be relevant for one information item in

74 Oliver Fodor et al.

Fig. 4.Re-engineering of a conceptual schema

the data instance. E. g. following two bridges apply to one
occurrence of the elementContactInformation in the
XML instance of the schema from Figure 4:

<xsd2rdfs_bridges:XSD2RDFSBridge
rdf:ID="ContactInformation_element2property"
xsd2rdfs_bridges:XSD_NuN="HotelAccommodation/*/ContactInformation"
xsd2rdfs_bridges:RDFS_URI="SIGRT:ContactInformation" />

<xsd2rdfs_bridges:XSD2RDFSBridge
rdf:ID="ContactInformation_type2class"
xsd2rdfs_bridges:XSD_NuN="HotelAccommodation/*/ContactInformation/*"
xsd2rdfs_bridges:RDFS_URI="SIGRT:ContactInformation_class" />

A set of customized normalisation bridges builds aNor-
malisation Map. Its mission is to support the transformation
process of underlying data instances. A Normalisation Map
will be explicitly related to the schemata it applies to. An ap-
propriate mechanism will be introduced in order to explicate
relations between bridges and their composition to build the
map.

Figure 5 shows how a piece of XML document is trans-
formed into RDF with respect to the schemata from Figure 4
and the corresponding map.

5 Harmonise Normalisation Toolkit

In order to support conceptual normalisation we aim to de-
velop a normalisation toolkit as a part of the Harmonise Plat-
form. Figure 6 displays the high-level architecture of the
toolkit including several components. In this Section we will
briefly describe these components. Naturally, in order to pro-
vide a solid solution an extensive requirement study and use
case analysis will take place within the next phases of the
Harmonise project. Consequently, we intend to develop a
prototype solution as a module based on the KAON11 on-
tology infrastructure.

The normalisation toolkit described in this paper supports
only manual process of semantic normalisation. The pro-

11 http://kaon.semanticweb.org/

Fig. 5.XML data transformation (lift)

Fig. 6.Normalisation toolkit

posed solution can be extended with automated engines, sup-
porting the re-engineering process of conceptual schemata
and the association discovery process.

RDFS Editor & Viewer. In the first release only manual cre-
ation of conceptual schemata will be supported. This requires
an intervention of a system engineer who is familiar with the
local data structures. This person manually extracts the con-
cepts and relations from the existing XML Schemata and cre-
ates an appropriate RDFS model. The basic component sup-
porting this process will be an editor tool providing an easy-
to-use graphical user interface for editing RDFS concepts.
Naturally, this tool will also serve as a viewer for already
existing models. KAON provides an ontology-management
component called SOEP which we consider as a candidate to
re-use.

XML Schema Viewer. We agreed that XML Schema is the
initial input for the normalisation process. Therefore, a com-
ponent enabling viewing of schema documents is also nec-
essary. A convenient visualization method for the XSD for-
mat will be proposed considering both efficiency and human
readability. The functionality of this component can be lim-
ited to passive browsing.

Association Editor. Once we can browse through the nor-
malized conceptual schemata (RDFS) and the underlying
logical schemata (XSD) we need to provide a support for the
definition of the associations among their elementary build-
ing blocks. For this purpose a GUI editor is foreseen. The

Conceptual Normalisation of XML 75

tool will cooperate with both schema viewers and provide
a support for intuitive definition of the mappings, e.g. in a
“drag-and-drop” fashion. The editor will implement the nor-
malisation templates described earlier in this document. The
output of this editor will be the Normalisation Map including
a set of association definitions (normalisation bridges).

Lift Engine. This component will process a Normalisation
Map at input and make use of it in order to transform the
data to be harmonised. The lift engine will support both di-
rections: XML-to-RDF lift and RDF-to-XML extraction. We
expect to compile the normalisation map into a lower-level
transformation language suitable for transforming XML, or
RDF documents. XSLT is a good candidate for the XML-to-
RDF whereas a RDF query language might be more appro-
priate for the RDF-to-XML direction.

6 Related Work

There is a rather big number of approaches to ontology-
mediated integration of heterogeneous data sources. Most of
these approaches, however, focus on integrated view over re-
lational databases. Nevertheless, there are approaches [8] for
mapping between XML documents although these mostly fo-
cus on direct transformation without considering the seman-
tic level.

In [6] a three-level solution for B2B catalogue integration
is presented. The authors introduce an RDF mapping lan-
guage RDF-T [7], which allows to map between two RDF
Schemata and translate RDF instance documents accord-
ingly. Recently, RDF-T has been extended with basic sup-
port for mapping XML tags to RDFS resources. We follow
the evolution of RDF-T and consider the language as a pos-
sible candidate for our normalisation bridges.

A rule-based approach to DTD to conceptual schema con-
version is presented in [4]. This proposal bases on a set
of conversion rules that takes into account DTD elements
and attributes, syntactical constructs and heuristics related
to their default semantic interpretations to generate a con-
ceptual schema. This approach doesn’t introduce any mech-
anism for an explicit definition of the associations between
DTDs and corresponding conceptual schemata.

In [15] the authors propose to combine XML Schema with
RDF Schema to enhance interoperability. Since this approach
is relevant for proprietary designed schemata within applica-
tions it is not suitable for existing schemata defined by al-
ready adopted standards.

7 Conclusions

In this paper we introduced the process of semantic normal-
isation as a part of ontology-based harmonisation platform
for tourism. Since the Harmonise solution builds on common
standards for data representation and especially on the fun-
damental technologies for the Semantic Web, this approach
can be also relevant for applications in other domains. Cur-
rently there are many systems and standards based on the
XML technology and more are to be expected. Therefore our
solution could be considered as a generic application for the
Semantic Web.

From the perspective of electronic tourism systems partic-
ipating in the harmonisation process we consider the seman-
tic normalisation as an approximation step towards modern
sophisticated solutions for interoperability. We believe that
tourism is a very specific domain and its evolution is tightly
coupled with the evolution of the information and commu-
nication technologies, the Internet in particular. Within Har-
monise we intend to disseminate new promising technologies
in order to preserve the tourism domain as one of the leading
domains in the World Wide Web.

Currently we are working on a high-level ontology for the
conceptual normalisation (heuristics and bridges) and its for-
mal description. Within the next phases of the Harmonise
project we intend to develop a prototype of the normalisa-
tion toolkit as a module for the KAON ontology framework.

8 Acknowledgement

Hereby we would like to thank the partners of Harmonise
project for their contribution to the realisation of this paper.
These are as follows:

– T6 (Italy)
– ICEP (Portugal)
– IFITT (Austria, IRL)
– CNR-IASI (Italy)
– LINK (Portugal)
– EC3 (Austria)

References

1. Interim Report: ANSI/X3/SPARC Study Group on Data Base
Management Systems 75-02-08. FDT - Bulletin of ACM SIG-
MOD Vol. 7, No. 2 (1975) 1-140

2. Melnik, S., Decker, S.: A Layered Approach to Information
Modelling and Interoperability on the Web. Proceedings of the
Workshop on the Semantic Web at the Fourth European Con-
ference on Research and Advanced Technology for Digital Li-
braries ECDL-2000, Lisbon, Portugal (2000)

3. Decker, S., Melnik, S., van Harmelen, F., Fensel, D., Klein, M.,
Broekstra, J., Erdmann, M., Horrocks, I.: The Semantic Web: the
Roles of XML and RDF. IEEE Internet Computing, Sept./Oct.
2000, Vol. 4, No. 5 (2000) 63-74

4. dos Santos Mello, R., Heuser, C. A.: A Rule-Based Conversion
of DTD to a Conceptual Schema. Proceedings of the 20th Inter-
national Conference on Conceptual Modeling ER 2001, Yoko-
hama, Japan (2001) 133-148

5. Omelayenko, B., Fensel, D.: Analysis of B2B Catalogue Inte-
gration Problems. Content and Document Integration, In: Filipe,
J., Sharp, B., Miranda, P. (eds.): Enterprise Information Systems
III, Kluwer Academic Publishers, Dordrecht (2002) 270-277

6. Omelayenko B., Fensel D.: Scalable Document Integration for
B2B Electronic Commerce. Submited (2001)

7. Omelayenko, B., Fensel, D., Klein, M.: RDF-T: An RDF Trans-
formation Toolkit. Submitted (2001)

8. Su, H., Kuno, H., Rundensteiner, E. A.: Automating the Transla-
tion of XML Documents. Technical Report WPI-CS-TR-01-13,
Computer Science Department, Worcester Polytechnic Institute
(2001)

9. Wiederhold, G.: Mediators in the Architecture of Future Infor-
mation Systems. IEEE Computer, March 1992, Vol. 25, No. 3
(1992) 38-49

76 Oliver Fodor et al.

10. Visser, U., Stuckenschmidt, H., Vögele, T., Wache, H.: En-
abling Technologies for Interoperability. Submitted to Transac-
tions in GIS (2001)

11. Harmonise technical committee: Harmonise Project Technical
Summary. http://www.harmonise.org (2002)

12. Harmonise technical committee: D.1.1: Electronic Classifica-
tion of Tourism standards. http://www.harmonise.org (2002)

13. Harmonise technical committee: D.1.2: Report on comparison
on standard methodologies. http://www.harmonise.org (2002)

14. Dell’Erba, M., Fodor, O., Ricci, F., Spada, A., Werthner, H.:
Harmonise: A Solution for Data Interoperability. Submitted
(2002)

15. Hunter, J., Lagoze, C.: Combining RDF and XML Schemas
to Enhance Interoperability Between Metadata Application Pro-
files. Proceedings of the Tenth International World Wide Web
Conference, WWW 10, Hong Kong, China (2001) 457-466

16. Brown, A., Fuchs, M., Robie, J., Wadler, P.: XML
Schema: Formal Description. W3C Working Draft,
http://www.w3.org/TR/xmlschema-formal/ (25 September
2001)

RDFT: A Mapping Meta-Ontology for Business Integration

Borys Omelayenko

Division of Mathematics and Computer Science
Vrije Universiteit, De Boelelaan 1081a, 1081 HV,

Amsterdam, The Netherlands
borys@cs.vu.nl

Abstract. To create new added value the Semantic
Web has to provide new means for business inte-
gration enabling open world-wide cooperation be-
tween various enterprises. Existing business inte-
gration techniques assume the enterprises having
similar conceptual models of the objects being ex-
changed, and this limits their application areas. The
Semantic Web needs to possess a technique capa-
ble of mapping different conceptual models in the
business integration context. We propose a map-
ping meta-ontology built on top of RDF Schema
using previous experiences in modelling mappings,
specifics of RDF Schema and business integration
tasks.

1 Introduction

Historically business integration has been performed within
the Electronic Document Exchange1 (EDI) paradigm via
costly Value-Added Networks (VANs) that use private ex-
change protocols and provide full range of network services
for large companies. Each EDI implementation requires a
substantial labor effort to program and maintain, and this
makes EDI unacceptable for small and medium enterprises
searching for cheap and easy solutions. In this respect the
World Wide Web and its successor the Semantic Web pro-
vide open standard representation means for modeling busi-
ness information on the Web and allowing development a
new generation of integration solutions.

At present time integrating two companies basically
means integrating their database inputs and outputs available
as EDI or XML documents. The databases are either accessi-
ble directly or via the Internet and with formal specification
of possible operations on them are now often referred as Web
services.

A number of toolkits have been developed to help the user
in performing such kind of integration. The MS BizTalk2

tool supports the integration of different databases accessi-
ble directly via SQL (or via EDI documents and appropriate
wrappers). The documents pass through several steps. First,
source documents are transformed into XML representation
by means of wrappers. Second, the source XML schema is
mapped to the target XML schema with the BizTalk Mapper
tool that provides a user interface for mapping and generates
XSLT scripts able to translate instance XML documents ac-
cording to the maps. Finally, the resulting database record or
EDI document is created from the target XML document.

Similar tasks are performed during the integration of dif-
ferent web services described in Web Service Definition

1 www.x12.org
2 www.biztalk.org

Language3 WSDL. In each message the service is expected
to receive or generate an XML document according to the
XML Schema specified in the service description. Capes-
tudio4 contains an XML mapping tool helping the user to
map two XML schemas and automatically generate the cor-
respondent XSLT file, similar to the Biztalk’s Mapper. In
addition, it provides advanced concerning working with on-
line services and WSDL service descriptions (the same func-
tionality is achieved with wrappers and SQL server in the
BizTalk’s database integration scenario).

The new generation of tools, e.g. the Unicorn5 toolkit, uses
ontologies as structured vocabularies that help the users in
developing the mapping rules. In this case the user maps doc-
ument’s elements to ontological concepts and uses the hier-
archy of ontological terms to navigate the elements. These
terms are used to provide mediating names for database at-
tributes, and do not constitute a mediating conceptual model.
For example, it cannot support the case when in the source
database a single object is stored in a single record while in
the target database the same object is splitted up into several
records.

At their present status the integration tools help in speci-
fying the maps between quite similar conceptual models and
require substantial programming effort for aligning different
conceptual models. We aim at creation of an architecture that
allows mapping different conceptual models via a mediating
conceptual model.

The paper is organized as follows. The business integration
task is outlined in Section 2 with typical conceptual mod-
els that need to be mapped, the mapping meta-ontology for
aligning conceptual models represented in RDF Schema is
discussed in Section 3, and the mapping tool is shown in
Section 5, followed by conclusions and future research di-
rections.

2 The Integration Task

Different companies play different roles in business collabo-
rations and hence develop different (and often partial) mod-
els of business objects. Each document is specialized for a
certain operation and represents an aggregation of properties
of several objects specially grouped to support the operation.
There does not exist any single exchanged document that rep-
resents a complete model of an object.

The mediator needs to aggregate these partial models to
construct the mediating model and perform document inte-
gration via the aggregated mediating model rather than di-
rectly translate the documents.

3 http://www.w3.org/TR/wsdl
4 http://www.capeclear.com/products/capestudio/
5 http://www.unicorn.com/

78 Borys Omelayenko

The mediating concepts might have the following features:

– All available knowledge about the objects is coming
from input and output messages.

– The model must represent all the objects being ex-
changed and be sufficient for producing all the necessary
documents required for interchange.

– The objects tend to change in time, and these changes
are often marked with the timepoints of the documents
or message validity times indicated in the messages.

– The model must evolve on-line with new customers
coming to the mediator and bringing new views of the
concepts they are willing to exchange.

– The documents are sometimes assigned to events in a
non-trivial way, and a substantial effort may be needed
to link the documents to workflow activities [1].

We treat the enterprise integration task as a service inte-
gration tasks. We assume that the enterprises, which we are
going to integrate, are represented as Web services specified
in WSDL. For each of them WSDL specifies the messages
that are expected and/or produced and XML Schemas of the
documents being transferred with the messages. These mes-
sages are produced by the company’s ERP system [2], and
the logic behind them is not accessible to the integration ser-
vice, and even not important for the integration.

Accordingly, the integration service interacts with the
world via messages (events) described in WSDL that have
XML documents attached, which structure is specified in the
XML Schemas included into WSDL descriptions.

2.1 Getting Conceptual Models from XML structures

Each message produced or expected by a company has
an XML Schema specifying its structure. XML DTDs and
Schemas are traditionally regarded as structural information
that possesses no formal semantics, however they clearly pre-
serve a large piece of knowledge about the domain objects
they represent. A well-defined XML structure captures most
of part-of relations between the domain objects and/or liter-
als.

DTDs, which are much less expressive than XML
Schemas, can be easily converted to reasonable conceptual
models for the objects being described in the documents. A
rule-based approach for extracting conceptual models from
DTDs [3] provides a list of heuristic rules of two types: lex-
ical rules that generate a taxonomy based on the inclusion
relationship between XML tag names and restructuring rules
that transfer XML trees into a conceptual model handling ob-
ject nesting, cardinality constraints, etc.

Let us consider a DTD sample

<!ELEMENT A (B,C,(D|E))>

where all the elementsB, C, D, andE are defined as literals
(#PCDATA) and show how it may be converted to a con-
ceptual model with the a slightly modified version of rules
from [3].

ExpressionD|E is processed with ruleC(Choice) that
creates a new elementcD_E. ElementsD and E are con-
verted to lexical conceptscD and cE that are connected
to cD_E with relationsD and E depicted in Figure 1. A

composite elementA is converted to conceptcA (rule CE-
Composite Element). Each of the elementsB andC is
converted to a literal conceptcB or cC respectively (rule
SCE-Simple Component element) and relationsB,
C, and D_E are added. More complicated examples incur
other rules concerning repeating elements, cardinality, and
complicated composite DTD elements.

cA cD _E

cB cC cD cE
B C D E

D_E

Fig. 1.A fragment of a conceptual model constructed from DTD

A similar algorithm has been proposed for converting
XML DTDs to relational schemas and back [4]. Such algo-
rithms take over all the routine tasks of converting DTDs to
conceptual models. As a result the user can concentrate at
extracting domain objects described in the documents and
aligning them to the mediating or upper-level ontologies.

Finally, these conversion techniques ease the step of shift-
ing the focus of the integration task from document inter-
change to concept exchange discussed in this paper.

2.2 RDF Modelling

There exist a number of means for representing conceptual
models: ER and UML (conceptual modeling) F-logic, RDB,
etc. (databases), DAML+OIL, description logic, etc. (knowl-
edge engineering). Open business integration techniques on
the Semantic Web might use Web standards for represent-
ing conceptual models on the Web, and currently RDF and
RDF Schema [5] seem to be the best candidates for such
a standard. There exist several extensions to RDF Schema,
e.g. DAML+OIL6 proposal that has more expressive power
than RDF Schema itself. However, we naturally expect core
languages to be adopted wider and faster than the extensions
and hence we first concentrate on the use of RDF Schema
still keeping in mind these extensions.

RDF (and its schema language RDF Schema) was primar-
ily targeted at annotation of existing documents with con-
ceptual models. The models are targeted at capturing some
partial knowledge and we face a number of problems while
representingcompletemodels of events and documents. This
leads to the following drawbacks:

– Properties are defined in RDF as first-class objects and
they exist independently from classes. Such an inter-
pretation is a bit unhandy for our needs. For exam-
ple, the propertyAddress must be mapped in differ-
ent ways depending on whether it is attached to class
Invoice , where it stands for billing address, or to class
DeliveryOrder , where it stands for delivery address.
RDF provides the means to distinguish between differ-
ent object-property-value triples on the level of instance

6 http://www.w3.org/TR/daml+oil-reference

RDFT: A Mapping Meta-Ontology 79

documents, where each property is assigned to a certain
class. However, property-class assignments are indistin-
guishable at the level of RDF Schema. DAML+OIL suf-
fers the same problem.

– RDF Schema uses therdfs:domain term which spec-
ifies the classes to which the property can be attached.
Multiple occurrence ofrdfs:domain has conjunctive
semantics, that is if propertyAddress can be used
with two classesInvoice andDeliveryOrder then
listing two rdfs:domain classes in the definition of
Address is a wrong way to go. Such statement means
that it can be used with a class, a subclass of both
Invoice andDeliveryOrder , and such a class will
most like have no sense from the domain point of view.
One can model the fact that propertyAddress can be
used with bothInvoice andDeliveryOrder is to
create an artificial superclass for bothAddress and
DeliveryOrder that hasAddress attached, but is
not really informative from the domain point of view.
This problem shows up in any attempt to build a map-
ping ontology where the same property of the ontology,
e.g.SourceClass , needs to occur many times point-
ing to different source classes.

– RDF Schema provides an easy way to represent reifi-
cation: the basicrdf:Resource class (theThing)
is an instance of and a subclass of itself. This creates
certain difficulties in meta-modelling and tool devel-
opment. In the integration tasks we need to model at
three different layers: instance data, conceptual models,
and meta-models (e.g. mapping meta-ontologies). These
three layers must be tighly integrated and still very well
distinguished. Hence, the introduction of three differ-
ent Thing s may be suitable: instance-level resource,
schema-level resource, and a meta-resource.

– Two types of things are mixed in common understanding
of RDF: universal resource locators URL’s that point to
a file on the web and should be treated as filenames and
universal resource identifiers URI’s that look the same
as URL’s but represent logical names of the things in
RDF Schema. Sometimes RDF Schemas stored in sep-
arate files need to be treated as logical units and state-
ments about these files need to be created and processed.

We tried to overcome these problems in our model de-
scribed in Section 3.

2.3 Things to be Mapped: Events, Documents, and
Vocabularies

To be able to reason about the inputs and outputs of the com-
panies being integrated we developed a conceptual model
of WSDL (the part of WSDL specification that is impor-
tant for the context of our mapping work skipping protocols
and bindings). The model is directly derived from the WSDL
specification and provides an RDF Schema for RDF annota-
tions for WSDL documents.

Specifically, WSDL defines the following basic elements
of services:

– Types that provide links to XML Schemas of the mes-
sages exchanged;

– Abstract definitions ofMessages in accordance with
Types ;

– Port Types that specify input and output messages;
– Bindings that specify concrete protocols and formats

for messages according toPort Types .

These elements allow describing the services but do
not represent any temporal knowledge about the messages
needed for the integration.

The Process Specification Language7 PSL temporal ontol-
ogy includes the classes:activity , activity occur-
rence , timepoint , and objects . Activities are per-
formed during certain time intervals marked with timepoints,
and each activity occurrence specifies a snapshot of an activ-
ity at a moment of time. The objects are defined as things
that are not timepoints, not activities and not activity occur-
rences, and do not possess temporal properties. They may
participate in activities at certain timepoints as defined by
theactivity-timepoint-object relation8. PSL pro-
vides basic temporal semantics of time intervals and time-
points, constraints on objects participating at certain activi-
ties, etc.

Accordingly, we extended our WSDL model with PSL
ontology. The class diagram of the composite ontology
is presented in Figure 2. In contains two root concepts:
mediator:Thing and psl:Thing , subclasses of the
former correspond to WSDL concepts and subclasses of the
latter correspond to PSL classes. These classes are linked
with a number of properties depicted in Figure 3. In both fig-
ures classes are represented with circles properties are shown
with labeled edges linking the classes.

We must note that the Web Service Flow Language9

WSFL built on top of WSDL provides the means to specify
temporal and workflow information for services, and in some
future it will make some of this model redundant. However,
WSFL has a longer way to go to become a world-wide stan-
dard than WSDL or PSL. And again, in this work we focus
at kernel technologies that has big chances of being widely
accepted and used rather than at extensions of those.

WSDL annotations made according to our ontology allow
performing inference over WSDL descriptions to validate the
links established between the enterprises. Also they represent
a bit stronger formalization of the services, e.g. by specifying
legal ordering of the events. A sample of a realistic sequence
of events with their order and timeout values is presented in
Figure 4.

3 Mapping Meta-Ontology

The Common Warehouse Model (CWM) Specification [6]
by the Object Management Group10 provides a general ar-
chitecture for a mapping ontology to be adopted by each
specific mapping application. We adopt it to mapping RDF
Schemas and specific concepts like events, messages, vocab-
ularies, and XML-specific parts of conceptual models that

7 http://www.mel.nist.gov/psl/
8 RDF Schema is bounded to binary relations and provides

no means to specify the ternaryactivity-timepoint-
object relation. To model it we had to introduce a spe-
cial class psl:activity at timepoint relation at-
tached topsl:object and linked topsl:activity and
psl:timepoint .

9 http://xml.coverpages.org/wsfl.html
10 http://www.omg.org/

80 Borys Omelayenko

mediator:Thing

mediator:Vocabulary

psl:object

psl:Thing

psl:activity_occurrence

mediator:Event

psl:timepoint

mediator:Document mediator:Message

psl:activity_at_
timepoint_relation

psl:activitymediator:PortType

isaisa

isa

isa isaisaisa isa isa

isaisa isa

isaisa

mediator:Thing

mediator:Vocabulary

psl:object

psl:Thing

psl:activity_occurrence

mediator:Event

psl:timepoint

mediator:Document mediator:Message

psl:activity_at_
timepoint_relation

psl:activitypsl:activitymediator:PortType

isaisa

isa

isa isaisaisa isa isa

isaisa isa

isaisa

Fig. 2.WSDL extension (class diagram)

mediator:PortType

mediator:Document

mediator:Event

mediator:Message

mediator:Vocabulary

psl:object

psl:activity_at_ timepoint_relation

psl:timepoint

psl:activity

psl:activity_occurrencemedia
tor:

Docu
ments

*

mediator:Events*

mediator:Messages*

mediator:Vocabularies*

isa

psl:at

psl:in

psl:before*

psl:begin*psl:end*

psl:occurrence_of_activity psl:exists_at

psl:participates_activity_ timepoint*

isa

isa

mediator:EventActivitymediator:EventDocument

psl:is_occurring_at*

isa

mediator:PortType

mediator:Document

mediator:Event

mediator:Message

mediator:Vocabulary

psl:object

psl:activity_at_ timepoint_relation

psl:timepoint

psl:activity

psl:activity_occurrencemedia
tor:

Docu
ments

*

mediator:Events*

mediator:Messages*

mediator:Vocabularies*

isa

psl:at

psl:in

psl:before*

psl:begin*psl:end*

psl:occurrence_of_activity psl:exists_at

psl:participates_activity_ timepoint*

isa

isa

mediator:EventActivitymediator:EventDocument

psl:is_occurring_at*

isa

Fig. 3.WSDL extension (descriptions of classes)

Fig. 4.Event sequence

occur in the business integration tasks. CWM specifies the
following basic primitives for mapping:

– Class TransformationMap a subclass of the
Transformation class. The former is a container for
ClassifierMaps .

– Each ClassifierMap links two groups of classes
with two properties source and target with multiple oc-

currence referring to the groups of source and target
classes being mapped with the map.

– EachClassifierMap connects two groups of proper-
ties with thefeatureMap property that links it to the
FeatureMap class connectingsource andtarget
properties (called features).FeatureMap also includes
a link to anotherClassifierMap mapping property
values.

– Each ClassifierMap may connect a group
of properties and a group of classes with the
ClassifierFeatureMap class referenced via
thecfMapproperty .

The CWM model concerns mapping generic conceptual
models and seems to be too expressive for our needs. Map-
ping classes that normally refer to physical objects to proper-
ties that refer to properties of those is a large source of mis-
understanding in the business tasks, while conceptually there
is nothing wrong with it. In RDF meta-model both properties
and classes are treated in a uniform way, while at the level
of models those are clearly differentiated. Accordingly, we
need to skip it in our mapping framework.

The RDFT (RDF Transformation) mapping meta-
ontology11 specifies a small language for mapping XML
DTDs to/and RDF Schemas specially targeted for business
integration tasks. The class diagram for the basic top-level
classes is presented in Figure 5 using the same notation as
our previous drawings.

11 http://www.cs.vu.nl/ borys/RDFT

RDFT: A Mapping Meta-Ontology 81

RDFT:RDFBridge

RDFT:Bridge

RDFT:VocabularyMap

RDFT:Map

RDFT:Interface

RDFT:RolesRDFT:Event2Event

RDFT:DocumentMap

RDFT:XMLBridge

RDFT:EventMap

isa

isa

RDFT:RDFBridges*

RDFT:IncludedMaps*

RDFT:InputInterface* RDFT:OutputInterface*

RDFT:PrivateRoleRDFT:PublicRoleisa

RDFT:DocumentMaps*isa

isa

RDFT:RDFBridges*

RDFT:VocabularyMaps*RDFT:XMLBridges*

isa

RDFT:EventBridges*

Fig. 5.Main RDFT classes: Bridge, Map, Interface, BridgeRelation, and Roles

The basic RDFT class isBridge that connects two con-
cepts (similar to the CWM’sClassifierMap). Bridge
describes common properties of bridges allowing only one-
to-many and many-to-one bridges opposite to CWM allow-
ing many-to-many mappings12.

The bridges also contain theRelation property
pointing to one of the relations subclassed from the
BridgeRelation class:EquivalenceRelation or
VersionRelation .

– Equivalence bridges specify that the source element
of a one-to-many bridge is equivalent to the target set of
elements, and the source set of elements is equivalent to
the target element for many-to-one bridges. E.g. a one-
to-many bridge connecting a source class to a group of
target classes states that the target group is semantically
equivalent with respect to the instance data transforma-
tion task to the source element.

– Version bridges specify that the target set of elements
form a (later) version of the source set of elements.
Opposite to equivalence bridges, they assume that both
source and target concepts belong to the same domain
(or document standard), and may refer to two concepts
with the same name (but different namespaces indicating
versions), and imply that all the relations that held for the

12 Largely the objective of CWM is to model, i.e. to understand the
things, while the objective of RDFT is to be able to transform
instance data according to the mappings that imposes certain ar-
chitectural restrictions.

original concept must hold for the versioned concept, if
the opposite is not stated explicitly.

Several types ofBridges are defined in RDFT:

– Event2Event bridges link different events, specify
temporal event generation conditions, and link the events
to the messages transmitted with them. They connect in-
stances of the meta-classmediator:Event .

– Two kinds of RDFbridges : Class2Class and
Property2Property bridges between RDF
Schema classes and properties.Class2Class
bridges containSourceClass and TargetClass
properties pointing to rdfs:Class instances.
Property2Property bridges contains
SourceProperty and TargetProperty prop-
erties pointing tordf:Property instances. Again,
only one-to-many and many-to-one bridges are allowed
in RDFT. In RDF Schema properties are defined as
first-class objects together with classes, and they capture
most of domain knowledge. Classes mostly specify
aggregation of properties, and thus we do not include
class-to-property and property-to-class bridges in RDFT.

– Four kinds of XMLBridges : Tag2Class and
Tag2Property bridges link source XML DTD
tags and target RDF Schema classes and properties.
Class2Tag and Property2Tag bridges connect
RDF Schema classes and properties, and the ele-
ments of the target DTD. These are constructed from
SourceTag andTargetTag properties in addition to

82 Borys Omelayenko

theSource/Target-Class/Property properties
mentioned above.

In some cases it is possible to declaratively specify the cor-
respondence of property or class values linked by a bridge
(e.g. by specifying the set ofClass2Class bridges). If it
is not feasible then we use theExpression property of
a Bridge . It specifies an XPath [7] expression transform-
ing instance data. XPath defines the means for two tasks:
addressing data elements in XML documents and perform-
ing element or attribute value transformations (Chapter 4 of
the specification). We use only the second part of the XPath
functions (e.g.substring_before).

We need to create an ontology of a DTD to represent
different DTDs in our framework and performing infer-
ence involving DTD elements and attributes (e.g. to check
whether all the elements are mapped with RDFT bridges).
The DTDs themselves are available to the mediating ser-
vice, and only DTD elements and attributes must be anno-
tated. Accordingly, we introduce two classes to represent
them: XMLElement and XMLAttribute , subclasses of
XMLTag. PropertiesSourceTag and TargetTag take
XMLTag instances as their values.

Several assignments of a property to a class (e.g. a prop-
erty with multiple cardinality) are not distinguishable in RDF
Schema because they are not that significant from the model-
ing point of view. However, they are crucially important from
the instance data transformation perspective, and we intro-
duce classRole to specify each property-class assignment.

The bridges are grouped into maps. EachMap is a
collection of bridges serving a single purpose. The maps
are identified by their names13 and form minimal reusable
modules of RDFT bridges. EachMap can include other
maps (theIncludedMaps property) and serves as a con-
tainer for Bridge s (the Bridges property). The maps
use some class and property names within the bridges
inside the maps and may be reused with other names
passed as formal parameters. These parameters are formal-
ized with theInterface class depicted in Figure 5. Each
Interface class contains two properties:PublicRole
and PrivateRole that specify the correspondence be-
tween external and internal names, correspondingly.

Connecting two services means connecting their events
(instantiating theEventMap depicted in Figure 5) consist-
ing of Event2Event bridges. Each of the bridges points to
aDocumentMap aligning the documents attached to events,
and, in turn, consisting ofXMLBridges , RDFBridges
andVocabularyMaps .

We do not impose any restriction on class names of a user
ontology conforming the RDFT meta-ontology. Instead, all
of them are marked as instances of RDFT meta-classes, as
it is illustrated with aClass2Class bridge in Figure 8. In
the figure user’s classes are marked asS0, S1, andT0, and a
bridge connecting them is marked withB_01.

It is important to differentiate the role of RDFT as a
meta-ontology versus a template. Assume a definition of
13 In this case we have a collision of resource identifiers URI’s

that’s are used in RDF Schema and represent a logical name with-
out any associated physical object and resource locators URL’s
that point to files somewhere on the Web. The maps are identi-
fied by their URI’s but should be accessible via their URL’s as
reusable files with bridges.

a metaclassmCand a definition of propertymP with do-
main mCand rangerdfs:Literal . ClassiC , an RDF
instance ofmCwill be a class definition that in addition to
RDF Schema standard properties for a class definition (e.g.
rdfs:subClassOf) possesses instantiated literal prop-
erty iC .

However, we would expectproperty definitionof iC to be
applicable tomCrather than theproperty itself. So, we would
rather need to call our RDFT ontology as a template ontol-
ogy, while the term ‘template’ is not specified within RDF
Schema. The instantiation semantics of RDF Schema class
definitions, opposite to properties, seems to be acceptable for
our needs.

Another important notion related to RDFT is its complete-
ness, i.e. possibility to map arbitrary RDF Schemas. The term
‘map’ can be defined in different ways and each definition as-
sumes a set of relations that need to be represented with the
maps. In our case we try to map different part-of decompo-
sitions of object’s properties, and one-to-many and many-to-
one bridges seem to be sufficient for that. For extracting parts
of properties we use quite expressive XPath language.

The main contribution of any architectural solution is to
extract several most important tasks in the area and provide
the means restricted in expressiveness but explicitly support-
ing these tasks. The unsupported cases may be handled by
programming in expressive languages. We follow this princi-
ple in our mapping framework.

SourceClass TargetClass
BridgeM

et
a-

O
nt

ol
og

y
O

nt
ol

og
y B_01

S0

rdfs:Class rdfs:Class

S1

T0

rdf:Property

rdfs:Resource

PS00

PS01
PT00

Fig. 8.The use of RDFT meta-ontology

4 Using Expressive Extensions of RDF
Schema

It is always possible to express RDFT with expressive ex-
tensions of RDF Schema. However, before using them we
should always ensure that this does not make things worse.
People using DAML+OIL use specific DAML+OIL exten-
sions quite seldom, and mostly they pick some minor but
convenient extensions ignoring really expressive language
constructs [8].

The business integration scenario is more specific and re-
stricted that a generic modeling scenario. Business objects
are quite simple and well-defined. Unlike the general case,
most or all the objects might have physical representation,
they are explicitly named, and are a part of a very shallow
taxonomy.

RDFT: A Mapping Meta-Ontology 83

RDFT:Class2Class

RDFT:RDFBridge

RDFT:Roles

RDFT:Bridge

RDFT:Property2Property

rdfs_Clas rdf_Propert

mediator:Document

RDFT:Event2Event

RDFT:DocumentMap mediator:Event

isa

RDFT:SourceClass*

RDFT:TargetClass*

isa

isa

RDFT:SourceProperty* RDFT:TargetProperty*

RDFT:Class RDFT:Property

isa

RDFT:DocumentMaps* RDFT:SourceEvent* RDFT:TargetEvent*

RDFT:RDFBridges* RDFT:SourceDocument RDFT:TargetDocument

Fig. 6.Bridges and Roles

Fig. 7.RDFT tool support: mapping two event sequences

84 Borys Omelayenko

Accordingly, we do not see any immediate needs for using
more expressive language than RDF Schema.

The intention of the mapping is to be able parse the maps
and generate XML transformation scripts able to translate in-
stance XML documents attached to the messages. That is,
for each target DTD element we need to trace which prop-
erty of which object corresponds to this element, and then
trace whether there is a map to a document from the source
models. Finally, we need to find out which element from the
source DTDs contains the original description of the prop-
erty.

We need to use search-based inference engines, e.g.
CLIPS14, to find these chains. Then, each chain needs to be
translated into an XML transformation language, e.g. XSLT.

5 Tool Support

We are currently developing a prototype tool providing an ad-
vanced map browsing and editing facilities and guiding the
user through the event, document and vocabulary integration
tasks. All these tasks are quite similar from the implementa-
tion point of view: all of them can be treated as RDF Schema
mapping tasks. In the case of event mapping (see Figure 7 for
a screenshot) the prototype tool allows the user to browse two
RDF Schemas representing two event sequences and create
RDFT maps between the schemas. Each bridge can be edited
in details and necessary vocabulary bridges are edited with
the same RDFT map editor applied to document schemas in-
stead of event sequences.

Several important features are still under development in
the tool: an interface to online web service described in
WSDL, an inference engine, and an RDFT execution mod-
ule. In addition, there are a number of small things that are
too annoying to ignore them and too unimportant to talk
about them.

6 Conclusions

We proposed a service integration architecture to match the
following requirements:

– Allow switching from document transformation and ex-
change between the services to concept and model ex-
change.

– Annotate WSDL descriptions with concepts from tem-
poral PSL ontology and some concepts from the business
integration domain.

– Contain a mapping meta-ontology specifying map-
ping information between DTD elements, RDF Schema
classes and properties, and events.

– Allow performing inference-based checks for complete-
ness and consistency of the mappings.

– Allow compiling the data transformation chains repre-
sented by the mappings to a low-level XML transforma-
tion language.

In the paper we present our current progress in satisfying
these requirements, namely switching between document-
based to concept-based integration, WSDL annotation, map-
ping meta-ontology and preliminary steps in inference-based
validation and compilation.
14 http://www.ghg.net/clips/CLIPS.html

Acknowledgements.The author would like to thank Di-
eter Fensel, Christoph Bussler, Michel Klein, and Volodymyr
Zykov for their helpful discussions and the reviewers for
their comments.

References

1. Bae, H., Kim, Y.: A Document-Process Association Model for
Workflow Management. Computers in Industry47 (2002) 139–
154

2. Bussler, C.: Modeling and Executing Semantic B2B Integra-
tion. In: Proceedings of the 12th International Workshop on Re-
search Issues on Data Engineering: Engineering E-Commerce
/ E-Business Systems (RIDE-2EC’2002) (In conjunction with
ICDE-2002), San Jose, USA, IEEE CS Press (2002)

3. Mello, R., Heuser, C.: A Rule-Based Conversion of a DTD to
a Conceptual Schema. In Kunii, H., Jojodia, S., Solvberg, A.,
eds.: Conceptual Modeling - ER’2001. Number 2224 in LNCS,
Yokohama, Japan, Springer (2001) 133–148

4. Lee, D., Chu, W.: CPI: Constraint-Preserving Inlining algorithm
for mapping XML DTD to relational schema. Data and Knowl-
edge Engineering39 (2001) 3–25

5. Brickley, D., Guha, R.: Resource Description Framework (RDF)
Schema Specification 1.0. Technical report, W3C Candidate
Recommendation, March 27 (2000)

6. CWM: Common Warehouse Model Specification. Technical
report, Object Management Group (2001)

7. Clark, J.: XSL Transformations (XSLT). Technical report, W3C
Recommendation, November 16 (1999)

8. van Harmelen, F.: The Complexity of the Web Ontology Lan-
guage. IEEE Intelligent Systems17 (2002) 71–73

Enabling Services for Distributed Environments: Ontology Extraction and
Knowledge Base Characterisation

Derek Sleeman1, Stephen Potter2, Dave Robertson2, and W. Marco Schorlemmer2

1 Department of Computing Science,
University of Aberdeen

sleeman@csd.abdn.ac.uk
2 Division of Informatics,
University of Edinburgh

stephenp@aiai.ed.ac.uk, {dr,marco }@dai.ed.ac.uk

Abstract. Existing knowledge base resources have
the potential to be valuable components of the
Semantic Web and similar knowledge-based envi-
ronments. However, from the perspective of these
environments, these resources are often under-
characterised, lacking the ontological and structural
characterisation that would enable them to be ex-
ploited fully.
In this paper we discuss two currently independent
services, both integrated with their environment via
a brokering mechanism. The first of these services
is an ontology extraction tool, which can be used to
identify ontological knowledge implicit in a knowl-
edge base. The second service involves characteris-
ing a given knowledge base in terms of the topic it
addresses and the structure of its knowledge. This
characterisation should permit a knowledge base to
be located and assessed as a potential candidate for
re-use in a more intelligent and flexible manner.
The discussion of some related research into broker-
ing systems illustrates the roles that these services
can play in distributed knowledge architectures as
precursors to problem-directed transformation and
reuse of knowledge resources.

1 Introduction

The principal challenge for the Semantic Web community is
to make machine-readable much of the material that is cur-
rently human-readable, and thereby enrich web operations
from their current information-based state into a knowledge-
centric form. Towards this end, for instance, the IBROW
project is addressing the complex task of developing a bro-
kering system which, given a knowledge base/knowledge
source and a specification of the processing to be performed,
would find an appropriate problem solver and perform any
necessary transformation of the knowledge sources [1]. The
focus of this paper is primarily on our research into two com-
plementary, and currently independent, techniques that en-
able brokering systems to become more effective and more
intelligent. These techniques, then, are intended to facilitate
the reuse and transformation of knowledge.

The first of these techniques involves the extraction of do-
main ontologies from existing knowledge bases. Work on on-
tologies has played a central role in recent years in Knowl-
edge Engineering, as ontologies have increasingly come to
be seen as the key to making (especially web) resources
machine-readable and -processable. Systems have been im-
plemented which help individuals and groups develop on-
tologies, detect inconsistencies in them, and merge two or

more. Ontologies are seen as theessenceof a knowledge
base, that is, they capture, in some sense, what is commonly
understood about a topic by domain experts. For a discussion
of how ontologies are often developed, see [2]. Recently, sys-
tems have been implemented which help domain experts lo-
cate domain concepts, attributes, values and relations in tex-
tual documents. These systems also often allow the domain
expert to build ontologies from these entities; it has been
found necessary, given the shortcomings of the particular text
processed, to allow the domain expert, as part of the knowl-
edge modelling phase, to add entities which are thought to
be important, even if they are not found in the particular text
[3].

Reflecting on this process has given us the insight that
knowledge bases3 themselves could act as sources of on-
tologies, as many programs essentially contain a domain on-
tology which although it may not be complete, is, in some
sense, consistent. (Since if it were inconsistent this would
lead, under the appropriate test conditions, to operational
problems of the system in which the ontology is embedded).
Thus, the challenge now becomes one of extracting ontolo-
gies from existing knowledge-based systems. The following
section describes one approach for doing this, from, in the
first instance, Prolog knowledge bases. As well as enabling
their re-use, this technique can also be seen as performing a
transformation of these knowledge bases into their implicit
ontological knowledge.

In any distributed environment, before it can be re-used
or transformed, an appropriate knowledge resource must be
located. Doing this efficiently is not a trivial task, since it
requires the ability to identify that a resource fulfils certain
domain requirements and structural criteria without entailing
the need to analyse the entire content of that resource. The
second technique discussed in this paper addresses this prob-
lem, attempting to summarise the essentials of a knowledge
base for this particular purpose.

The rest of the paper is structured as follows. Section 2 de-
scribes, with examples, the technique for acquiring ontolog-
ical knowledge from knowledge bases in a (semi-)automatic
fashion. Section 3 discusses the approach to characterising
knowledge bases, describing them in a concise and succinct

3 Throughout this paper, by “knowledge base” we mean some
knowledge-bearing computer program, not necessarily expressed
in some dedicated knowledge representation language, but for
which the decision has been made to express the knowledge at
a semantic, conceptual level. For our purposes, however, we as-
sume that an explicit ontology describing the terms of such a
knowledge base isnotavailable.

86 Derek Sleeman et al.

manner to better allow their re-use. Section 4 gives a brief
overview of a brokering system, in order to illustrate the role
that the two techniques can play in facilitating knowledge
services within distributed environments. Section 5 discusses
related work, and, to conclude, Section 6 summarises the pa-
per.

2 Extracting Ontologies from Prolog
Knowledge Bases

The method used to hypothesise ontological constraints from
the source code of a knowledge base is based on Clark’s com-
pletion algorithm [4]. Normally this is used to strengthen
the definition of a predicate given as a set of Horn clauses,
which have single implications, into a definition with double-
implication clauses. Consider, for example, the predicate
member(E,L) which is true ifE is an element of the list,
L:

member(X, [X|T])
member(X, [H|T]) ← member(X,T)

The Clark completion of this predicate is:

member(X,L) ↔ L = [X|T] ∨ (L = [H|T] ∧member(X,T))(1)

Use of this form of predicate completion allows us to hy-
pothesise ontological constraints. For example, if we were
to assert thatmember(c, [a, b]) is a true statement in some
problem description then we can deduce that this is inconsis-
tent with our use ofmember as constrained by its completion
in expression (1) above because the implication below, which
is an instance of the double implication in expression (1), is
not satisfiable.

member(c, [a, b]) → [a, b] = [c|T] ∨ ([a, b] = [H|T] ∧member(c, T))

(2)

Normally Clark’s completion is used for transformation
of logic programs where we are concerned to preserve the
equivalence between original and transformed code. It there-
fore is applied only when we are sure that we have a complete
definition for a predicate (as we had in the case ofmember).
However, we can still apply it in “softer” cases where defi-
nitions are incomplete. Consider, for example, the following
incomplete definition of the predicateanimal(X):

animal(X) ← mammal(X)
animal(X) ← fish(X)

Using completion as above, we could derive the constraint:

animal(X) → mammal(X) ∨ fish(X)

This constraint is over-restrictive since it asserts that an-
imals can only be mammals or fish (and not, for instance,
insects). Nevertheless, it is useful for two purposes:

– As a basis for editing a more general constraint on the
use of the predicate ‘animal’. We describe a prototype
extraction tool, which includes a basic editor, for these
sorts of constraints in Section 2.1.

– As a record of the constraints imposed by thisparticular
use of the predicate ‘animal’. We describe an automated
use of constraints under this assumption in Section 2.2.

2.1 A Constraint Extraction Tool: the EXTRACTexP
System

We have produced a basic system for extracting ontological
constraints of the sort described above from Prolog source
code. Our tool can be applied to any standard Prolog pro-
gram but is only likely to yield useful constraints for predi-
cates which contain no control-effecting subgoals (although
non-control-effecting goals such aswrite statements are ac-
commodated). While, in theory at least, the approach can be
applied to programs of any size, we will now demonstrate
the current tool using an example involving a small number
of predicates.

Figure 1 shows the tool applied to a simple example of an-
imal classification, following the introduction of the previous
section. The Prolog code is:

animal(X) :- mammal(X).
animal(X) :- fish(X).
mammal(X) :- vertebrate(X), warm_blooded(X),

milk_bearing(X).
fish(X) :- vertebrate(X), cold_blooded(X), aquatic(X),

gill_breathing(X).

which corresponds to the Horn Clauses:

animal(X) ← mammal(X)
animal(X) ← fish(X)

mammal(X) ← vertebrate(X) ∧ warm blooded(X)
∧milk bearing(X)

fish(X) ← vertebrate(X) ∧ cold blooded(X) ∧ aquatic(X)
∧gill breathing(X)

(3)

The constraints extracted for this program (seen in the
lower window of Figure 1) are:

animal(X) → mammal(X) ∨ fish(X)
fish(X) → vertebrate(X) ∧ cold blooded(X) ∧ aquatic(X)

∧gill breathing(X)
mammal(X) → vertebrate(X) ∧ warm blooded(X)

∧milk bearing(X)

(4)

If it is deemed necessary, the user of the tool can then
choose to edit manually the constraints. We show in Sec-
tion 2.2 how these constraints, which, in this case, were
extracted completely automatically from the Prolog source
code, can be used to check another Prolog program purport-
ing to adhere to the same ontology.

2.2 Ontological “Safe Envelopes”

The idea of running programs within ontological “safe en-
velopes” was introduced in [5]. Programs are run according
to the normal execution control regime of the language con-
cerned but a record is kept of the cases where the execution
uses terminology which does not satisfy a given set of onto-
logical constraints. When this happens we say the execution
has strayed outside its safe envelope (from an ontological
point of view). This sort of checking is not intended to al-
ter the execution of the program in any significant way, only
to pass back retrospective information about the use of ter-
minology during an execution. This style of checking can be
implemented elegantly for languages, such as Prolog, which
permit meta-interpretation, allowing us to define the control
structure for execution explicitly and then to augment this
with appropriate envelope checking. The Horn clauses shown

Enabling Services for Distributed Environments 87

Fig. 1.Ontology extraction tool

in expression (5) provide a basic example (extended versions
of this appear in [5]).

solve(true, {})
solve((A ∧ B), Ea ∪ Eb) ← solve(A,Ea) ∧ solve(B,Eb)
solve((A ∨ B), E) ← solve(A,E) ∨ solve(B,E)
solve(X,E ∪ {C|(X → C ∧ not(C))}) ← clause(X,B)

∧solve(B,E)

(5)

In the expressions above,clause(X,B) means that there
is a clause in the program satisfying goalX contingent on
conditions,B (where there are no conditions,B has the value
true). The implicationX → C is an ontological constraint
of the sort we are able to derive in the extraction tool of Sec-
tion 2.1. The operators←,∧,∨, and∪ are the normal logical
operators for (left) implication, conjunction, disjunction and
union, whilenot(C) is the closed-world negation of condi-
tionC.

The effect of the meta-interpreter above is to test each suc-
cessful goal in the proof tree for a query against the available
ontological constraints. The first clause of (5) matches the
goaltrue, which, as might be expected, violates no ontologi-
cal constraints (and so, the empty set is returned). The second
and third clauses deal with conjunctions and disjunctions of
goals respectively. In the case of the former, the union of the
sets of violated constraints is returned; in the latter case, the
set generated by the succeeding goal is returned.

In the final clause, if an assertedclause(X,B) is found
which satisfies the current goal,X, then the conditions,B, of
this goal become subgoals of the interpreter, while the goal
itself is tested against the ontological constraints. If a con-
straint exists (X → C) that is not found to be consistent with
the known facts of the current situation (not(C), under the
closed-world assumption), then it is added to the set of vi-
olated constraints. When a goal and its subgoals have been
solved, then the interpreter exits with success, returning the
set of all violated constraints; if, on the other hand, a goal
cannot be solved, then the interpreter fails.

For example, suppose we have the following information
about animals,a1 anda2 , using the animal ontology of Sec-
tion 2.1.

animal(a1).
vertebrate(a1).
warm_blooded(a1).
milk_bearing(a1).
animal(a2).
vertebrate(a2).
cold_blooded(a2).
terrestrial(a2).

We could query this database in the normal way, for ex-
ample by giving the goalanimal(X) which yields so-
lutions with X = a1 and X = a2. If we want to per-
form the same query while checking for violations of
the ontological constraints we extracted in Section 2.1,
then each of these facts is asserted in the form, e.g.,
clause(animal(a1),true) , and we pose the query
via the meta-interpreter we defined above — the appropri-
ate goal beingsolve(animal(X), C) . This will yield
two solutions, as before, but each one will be accompanied
by corresponding ontological constraint violations (as corre-
sponding instances of the variableC). The two solutions are:

X = a1 C = {}
X = a2 C = {mammal(a2) ∨ fish(a2)}

When presented with the first goal,
animal(a1) , the interpreter matches this with
clause(animal(a1),true) from the database; the
preconditiontrue generates no ontological problems, and
from expression (4), the constraintmammal(a1)∨fish(a1)
is placed onanimal(a1) . Now, the additional facts in
the database and the other ontological constraints allow the
conclusionmammal(a1) to be drawn, so it isnot the case
that not(mammal(a1) ∨ fish(a1)) is true (as tested by
the fourth clause of the interpreter), so no constraints are
violated, and the empty set is returned.

The solution of the second goal,animal(a2) proceeds
in a similar fashion, but in this instance, the constraints

88 Derek Sleeman et al.

and database facts do not allow eithermammal(a2) or
fish(a2) to be proved. Hence, under the closed-world as-
sumption,not(mammal(a2)∨fish(a2)) is true, and so this
constraint has been violated (this in spite of the fact that the
database allows the goalanimal(a2) itself to be proved).

2.3 Extracting Ontologies from Other Sorts of
Knowledge Bases

The majority of knowledge sources are not in Prolog so for
our extraction tool to be widely applicable it must be able to
deal with other sorts of source code. This would be very hard
indeed if it were the case that the ontological constraints we
extract have to encompass the entire semantics of the code.
Fortunately, we are not in that position because it is suffi-
cient to extract some of the ontological constraints from the
source code — enough to give a partial match when broker-
ing or to give a starting point for constraint editing. The issue
when moving from a logic-based language, like Prolog, to a
language perhaps having more procedural elements is how
much of the ontological structure we can extract. We discuss
this using CLIPS as an example.

Suppose we have the following CLIPS facts and rules:

(deftemplate person "the person template"
(slot name)
(slot gender (allowed-symbols female male)

(default female))
(slot pet))

(deftemplate pet "the pet template"
(slot name)
(slot likes))

(deffacts dating-agency-clients
(person (name Fred) (gender male) (pet Tiddles))
(person (name Sue) (pet Claud))
(person (name Tom) (gender male) (pet Rover))
(person (name Jane) (pet Squeak))
(pet (name Tiddles) (likes Claud))
(pet (name Claud) (likes Tiddles))
(pet (name Rover) (likes Rover))
(pet (name Squeak) (likes Claud)))

(defrule compatible
(person (name ?person1) (pet ?pet1))
(person (name ?person2) (pet ?pet2))
(pet (name ?pet1) (likes ?pet2))
=>
(assert (compatible ?person1 ?person2)))

To extract ontological constraints from these using the cur-
rent version of the EXTRACTexP tool we must translate
these CLIPS rules into Horn clauses. We outline below, in
informal terms, the transformation algorithm needed for this
task:

– For each CLIPS rule, take the assertion of the rule as
the head of the Horn clause and the preconditions as the
body of the clause.

– Consider each head, body or CLIPS fact as an object
term.

– For each object term, refer to itsdeftemplate defi-
nition and translate it into a series of binary relations as
follows:
• Invent an identifier,I, for the instance of the object.
• The relationobject(T, I) gives the type of object,
T , referred to by instanceI.
• The relationA(I, V) gives the value,V , for an at-

tributeA of instanceI.

Applying this algorithm to our CLIPS example yields the
Horn clauses shown below:

compatible(Person1, Person2)←

object(person,O1) ∧ name(O1, Person1) ∧ pet(O1, Pet1)∧
object(person,O2) ∧ name(O2, Person2) ∧ pet(O2, Pet2)∧
object(pet, O3) ∧ name(O3, Pet1) ∧ likes(O3, Pet2)

object(person, p1) name(p1, fred) gender(p1,male) pet(p1, tiddles)
object(person, p2) name(p2, sue) gender(p2, female) pet(p2, claud)
object(person, p3) name(p3, tom) gender(p3,male) pet(p3, rover)
object(person, p4) name(p4, jane) gender(p4, female) pet(p4, squeak)

object(pet, x1) name(x1, tiddles) likes(x1, claud)
object(pet, x2) name(x2, claud) likes(x2, tiddles)
object(pet, x3) name(x3, rover) likes(x3, rover)
object(pet, x4) name(x4, squeak) likes(x4, claud)

This does not capture the semantics of the original CLIPS
program, since, for example, it does not express notions of
state necessary to describe the operation of CLIPS working
memory. It does, however, chart the main logical dependen-
cies, which is enough for us then to produce ontological con-
straints directly from EXTRACTexP. This translation-based
approach is the most direct route to constraint extraction us-
ing our current tool but we anticipate more sophisticated
routes which perhaps do not translate so immediately to Horn
clauses.

Extending this technique beyond knowledge representa-
tion languages to enable the extraction of ontological infor-
mation from conventional procedural languages such as C
would prove difficult. Programmers of these languages have
no incentive to express their code at a conceptual level, with
the result that the ontological constraints, insofar as they are
expressed, tend to be embedded in the control elements and
structure of the code to a greater extent. Code written in
object-oriented languages, such as Java and C++, is poten-
tially more susceptible to ontological extraction of this sort,
since the object-oriented paradigm encourages the program-
mer to codify the concepts of the domain in an explicit and
structured manner (the CLIPS templates in the above exam-
ples can be viewed as simple objects in this sense). However,
we have yet to investigate the possibilities of mining conven-
tional object-oriented code for ontological information.

3 Characterising Knowledge Sources in a
Distributed Environment

Reuse of both problem solving components and knowledge
sources is a holy grail of knowledge engineering. While there
has been considerable discussion of re-use of problem solv-
ing algorithms in Knowledge Engineering [6] and in Soft-
ware Engineering [7], there has been much less work on
reuse of knowledge bases/sources. But if a company has
spent a great deal of time and resource in developing a
knowledge base for, say, the design of an engine, it would
seem prudent, if it were possible, to use that same knowl-
edge as the basis for a diagnostic knowledge base. In general
one could imagine designers making such requests over the
internet/company intranet:

“I am looking for a knowledge base which discusses
the design specification of machines for grape har-
vesting.”

Enabling Services for Distributed Environments 89

In general, these requests can be characterised as “Require
knowledge base on topic T” or, more likely, “Require knowl-
edge base on topic T where the knowledge conforms to cer-
tain constraints C”. The ability to respond to a request of this
form would be an important step towards creating the sort of
environment in which the re-use of knowledge components
is a commonplace.

We plan to address such knowledge base characterisation
issues as follows: Firstly, we will decide what is the princi-
pal topic, T, of a given knowledge base. Secondly we will
develop a series of other programs (orfilters if one uses a
LARKS-like nomenclature [8]) to look for different kinds of
structure/constraints in the knowledge base. Each of these is
dealt with briefly below.

3.1 Knowledge Base Topic Identification

Our current EXTRACTexP system can analyse a Prolog
knowledge base, and can extract all the predicates (and their
arities) which it contains (see top window of the tool in Fig-
ure 1). Using knowledge of Prolog, its basic constructs like
read , write , etc. are discarded, leaving a set of domain
terms. These terms could then be propagated through a pre-
defined ontology (c.f. the spreading activation through a Se-
mantic Network which was postulated in the ’70s as a possi-
ble model to explain human focus of attention change [9]).
This ontology would contain relevant concepts within the
universe of discourse.

As a simple example, suppose we have the ontology de-
picted in Figure 2. If the conceptsApples andPears were
passed to the system, it would suggest thatFruit might
be the relevant focus of the knowledge base. Similarly, pro-
viding the set{Apples, Pears, Potatoes, Car-
rots} would suggest thatFruit-Vegetables might
be the focus, and if one provided{Apples, Pota-
toes, Chicken, Game} it would suggestFood might
be the focus. We plan subsequently to extend the system so
that it will be able to detect two or more principal topics,e.g.
Fruit andFood Processing , drawn from a number of
complementary ontologies.

Fig. 2.Example classification ontology

3.2 Knowledge Base Structure Filters

Filters which detect the structure of a knowledge source
might:

– Constrain knowledge sources such that a high percentage
of their knowledge elements contain entities from both
ontologies. So using the example from the last point, an
appropriate goal for filtering might be “> P% of ele-
ments would contain elements from the Fruit/Food on-
tology and the Food Processing ontologies”.

– Require that elements of the knowledge base be strongly
related. Earlier in the COCKATOO system we demon-
strated that we could acquire knowledge bases/data sets
which were essentially consistent with an Extended BNF
grammar [10]. Here, with the ‘essentials’ of the required
knowledge expressed through such a grammar, rather
than using this approach to acquire a knowledge base
conforming to that grammar, it can instead be used to
check whether existing knowledge resources display an
acceptable degree of coherence with respect to the gram-
mar. To enable such an approach, it is likely that the ele-
ments of the knowledge source would need to be marked
up in XML or some comparable notation. As an illustra-
tion, below we give a section of such an EBNF grammar
we used in the earlier work to describe rock formations
[10]:

formation → <lithology>+
lithology → (<rock> <lithology-depth>

[<lithology-length>])
rock → (<rock-type> <rock-hardness>)
rock-type → (shale | clay | chalk | granite

| other)
rock-hardness → (very-soft | soft | medium | hard

| very-hard)

4 Knowledge Services and Brokering

In work reported elsewhere ([11]), we have been pursu-
ing parallel research into brokering mechanisms for knowl-
edge resources; the purpose of this section is to give a brief
overview of this work and to indicate how it relates to the
knowledge services described above which are the principal
focus of this paper.

If the potential of the internet as a provider of knowledge-
based services is to be fully realised, there would seem to be
a need for automated brokering mechanisms that are able to
match a customer’s knowledge requirements to appropriate
knowledge providers. One of the fundamental difficulties en-
countered when considering how to enable this sort of trans-
action lies in the ‘semantic mismatch’ between customer and
provider: how should a provider advertise its services and
a customer pose its queries so that advertisement and query
can be matched by the broker, and the transaction success-
fully completed?

One possible solution to this problem, as a number of re-
searchers into such agent-based architectures have realised
(for example, see [12,13,8]), lies in the use of ontologi-
cal knowledge. Since a well-built ontology can be seen as
a conceptual ‘language’ expressing what is essential about
a domain, and uses terms that are common to that disci-
pline, it offers some basis for enabling communication be-
tween customer and provider. However, while there may be a
large number of existing knowledge resources, not all are ac-
companied by explicit, machine-processable ontologies; un-
less some alternative approach were available, any poten-
tial gains to be made through the re-use of these resources
would have to be offset against the effort involved in ‘reverse-
engineering’ their ontologies manually. The ontology extrac-
tion tool described above in Section 2 offers one such alter-
native approach, by which an ontology can be constructed
(semi-) automatically, thus facilitating and encouraging the
reuse of knowledge.

90 Derek Sleeman et al.

As we conceive it, then, for the purposes of advertising its
capabilities to a broker, a knowledge resource describes itself
using the term:

k resource(Name,Ontology, CompetenceSet)

where:

– Nameis the unique identifier of this resource;
– Ontologyis the ontology to which the resource adheres,

and by which its services can be understood, and;
– CompetenceSetis a set of the services, orcompetences

that the resource provides and which it is making avail-
able through the broker. Each item in this set is of the
form competence(C, In,Out,Ge) where:

• C is a term of the formG ← P , whereG is a goal
which is satisfiable by the resource, given the satis-
faction of the conditionsP .
• In is a set of constraints placed on variables in
C which must hold before the competence can be
utilised (successfully).
• Out is a set of constraints placed on variables inC

which hold after the competence has been applied.
• Ge is a set of competence goals that are known to be

necessary for the successful discharge of this com-
petence and that must be supplied by some external
agent.

As should be evident, the manner in which a resource ad-
vertises its services has a major impact on the effectiveness
and extent of the brokering that can be performed. We find
that, although relatively concise, the above information is
rich enough to allow the broker to configure complex and
detailed responses to the requests it receives. When success-
ful, these responses are in the form of one or more brokerage
structures, each describing a sequence of steps invoking the
available competences of knowledge resources, which, when
executed in order, should achieve the target.

Without going into too much detail about the construc-
tion of these sequences, an incoming request for service, in
the form of a goal described in terms of some ontology in
the system,4 is matched against available competence-goals;
the setsIn, Out andGe place additional constraints on any
matches. These constraints take the form of either an onto-
logical check of some item, or else of an additional goal that
must be satisfied by the system, in which case the broker is
invoked recursively. Of particular interest here is the notion
of bridgesin the system; a bridge (which will usually be con-
structed manually) allows terms (and thus, competences) de-
scribed according to one ontology to be described according
to a second ontology.5 Bridges are a powerful concept for
extending the range of the knowledge and capabilities of any
system; however, they can only be defined if the ontology of
a knowledge resource is made explicit.

4 Currently, it is assumed that the ontologies used to describe ser-
vices are available to all. Furthermore, in this discussion, we ig-
nore all issues of access privileges, service costs, resource man-
agement and so on that are pertinent to systems of this sort.

5 The use of bridges here is analogous to the use of bridges in
UPML[6].

4.1 Ontology Extraction and the Broker

It can be seen, then, that ontologies are fundamental to any
approach to brokering of this sort: they enable queries to
be posed to appropriate brokers, and semantic checks to be
made and bridges to be built. Unfortunately, it is not re-
alistic to expect every potential knowledge resource to be
equipped with its ontology; but nor is it desirable to simply
ignore those without ontologies, given the intrinsic value of
knowledge resources. In this context, EXTRACTexP offers
a means by which resources lacking ontological definitions
can be made accessible to brokers.

4.2 Knowledge Base Characterisation and the Broker

While this should lead to more flexible and intelligent envi-
ronment, the language available for expressing queries to the
broker is still relatively impoverished, and perhaps not best
suited to the sort of queries that will arise in a knowledge-
centred system. In particular, while a certain knowledge re-
source may conform to a particular ontology and satisfy
stated goals consistent with that ontology, this gives little in-
dication of the range of the knowledge base, and the structure
of the inferences it can make. To address this problem, we
can call upon the knowledge base characterisation services
outlined above in Section 3.

Consider the case where a query to the broker is now in the
form of a request for a knowledge resource that addresses
a topic T , and which conforms to a set of constraintsC.
The technique outlined in Section 3.1 allows a description
of the topic that the resource addresses to be extracted. This
description is in terms of some pre-defined ontologies that
could be supplied by the querying agent. Alternatively (and
perhaps more appropriately) these ontologies could be man-
aged by the broker itself, along with any known characteri-
sations of available knowledge sources. The topics of poten-
tial candidate resources known to the environment could be
extracted by the tool (again acting as a knowledge-service
provider in this environment) at the instigation of the broker.

Assuming that a number of knowledge resources are found
that cover the desired topic area, the next step would be to ap-
ply the constraint setC to these candidate resources, through
the invocation (in a similar fashion) of the appropriate fil-
ters. The result of this would be to locate those resources (if
any) that match the initial query. While providing no guaran-
tee that these will fulfil the querying agent’s needs, it would
seem to offer an approach that goes beyond the simple syn-
tactic matching often adopted, and a move towards richer,
semantic modes of transaction.

5 Related Work

The aim of this section is to summarise the related work in
the fields of ontology extraction and knowledge base char-
acterisation and, as a result, set the knowledge services de-
scribed in this paper in their proper context.

5.1 Ontology Extraction

In recent years there has been an increasing awareness of
the potential value of ontologies — an awareness accompa-
nied by a growing realisation of the effort required to de-
velop them manually. As a consequence, there has been a

Enabling Services for Distributed Environments 91

certain amount of research into techniques by which onto-
logical knowledge might be extracted from existing promis-
ing sources in which it is considered to be implicit. The aim
of this section is to summarise this research, and its relation-
ship with the ontology extraction tool described in preceding
sections.

One related research area in which there has been a lot of
interest, probably due to the amount of available source ma-
terial, is that of ontology extraction from natural language
texts. Typically, this involves identifying within a text cer-
tain linguistic or grammatical cues or patterns that suggest
a certain ontological relationship between the concepts in-
stantiating that pattern (for examples see [14,15,16]). Some
researchers have attempted to increase the inferential power
of these techniques by invoking machine learning algorithms
to try to generalise the relationships that are found [17,18].
Thus far, the successes of these text-centred approaches have
been limited, with unresolved questions surrounding the ex-
tent of the background knowledge that is required for such
techniques (which often try to extend an existing ontology),
the amount of linguistic processing of the texts that is nec-
essary, and, indeed, the extent and range of the ontological
knowledge that it is possible to infer from texts.

Similarities can also be found to the discipline of data
mining, the application of machine learning and statistical
learners to large databases. As for texts, the vast numbers of
data often held by organisations — and the desire to exploit
these — make this an appealing approach. Applications of
data mining are focused not only upon extracting ontological
information, but also upon finding more ‘actionable’ knowl-
edge implicit in the data. However, the limiting factor is often
the data themselves: there is no guarantee that these contain
any useful knowledge of any sort, but rather they are merely
a collection of arbitrary or inconclusive facts. Indeed, it is of-
ten the case that the sole outcome of a data mining exercise
is a confirmation of the limitations of the data in question.

The work reported here has certain parallels with the work
of the software reverse-engineering community, whose mem-
bers are concerned with the extraction of information from
legacy software systems. There is a relationship with the
concept assignment problem[19], the (often very difficult)
task of relating program terms and constructs to the real-
world entities with which they correspond. Some techniques
which attempt to extract ontological knowledge from code,
and which give, perhaps unsurprisingly, often mixed results,
have emerged from this discipline [20,21].

However, while the EXTRACTexP tool undoubtedly has
similar intentions and shares certain concerns with the work
outlined above, it is distinguished from them by the choice
of an existing knowledge base as the source of ontologi-
cal knowledge. In some respects, it is surprising that hith-
erto there has been little research into the possibilities for
extracting ontologies from such sources. In constructing a
knowledge base, its developers make conscious decisions
to express knowledge at a conceptual level. Consequently,
it would seem to be a more immediate and more fertile
ground for ontological extraction than text, data or conven-
tional code.

5.2 Knowledge Base Characterisation

The characterisation of knowledge bases (and, more gen-
erally, knowledge-based systems) has been a concern of
AI research for many years, principally for the purposes
of construction and analysis. As one example, the KADS
[22] methodology involves characterising the knowledge sur-
rounding a particular task — and hence, the knowledge base
to address that task — attask, inferenceand domain lev-
els according to its nature and content, and the role that it
plays in problem-solving. This sort of characterisation can
promote the re-use of knowledge components (of, for exam-
ple, problem-solving methods at the inference level). More
recently, projects such as that to develop UPML [6] have ex-
tended some of these ideas with the express purpose of mod-
elling distributed environments of knowledge-based compo-
nents.

Here, we are interested specifically in characterising a
knowledge base from the perspective of the potential re-user,
and the nature of the requests for knowledge that are made.
However, a feature essential to the work reported here is that,
if it is to be of use, this characterisation should be (at least)
semi-automatic; there has been little work published regard-
ing this aspect, and, as such, we believe that there is a contri-
bution to be made in this area.

6 Conclusions

The success of initiatives such as the semantic web effort will
be increased if existing resources can be brought within its
compass without the need for extensive re-engineering. In-
deed, this might even be thought a necessary feature if these
initiatives are to gain the widespread support that they require
to succeed. This paper has introduced two techniques that, in
a relatively simple, low-cost manner, extract latent informa-
tion from knowledge bases, namely implicit ontological con-
straints and characterisation information. This information is
of the sort that enables and facilitates the future reuse and
transformation of these knowledge bases within distributed
environments and, as a consequence, serves to increase the
scope and potential of those environments.

Acknowledgements

This work is supported under the Advanced Knowledge
Technologies (AKT) Interdisciplinary Research Collabora-
tion (IRC), which is sponsored by the UK Engineering and
Physical Sciences Research Council under grant number
GR/N15764/01. The AKT IRC comprises the Universities of
Aberdeen, Edinburgh, Sheffield, Southampton and the Open
University.

References

1. M. Crubezy, W. Lu, E. Motta, and M. A. Musen. The inter-
net reasoning service: delivering configurable problem-solving
components to web users. InProc. Workshop on Interactive
Tools for Knowledge Capture at the First International Confer-
ence on Knowledge Capture (K-CAP 2001), Victoria, Canada,
pp. 15–22, 2001.

92 Derek Sleeman et al.

2. M.F. Lopez, A. Gomez-Perez, and M.D. Rojas-Amaya. Ontol-
ogy’s crossed life cycle.Proc. EKAW-2000 Conference, Juan-
les-Pins, France, Springer, pp. 65–79, 2000.

3. G. Lei, D. Sleeman, and A. Preece. N MARKUP: a system
which supports text extraction and the development of associ-
ated ontologies. Technical Report, Computing Science Depart-
ment, University of Aberdeen, UK (in preparation).

4. K.L. Clark. Negation as failure. In H. Gallaire, and J. Minker
(eds.),Logic and Databases, pp.293–322. Plenum Press, 1978.

5. Y. Kalfoglou and D. Robertson. Use of formal ontologies to
support error checking in specifications. InProc. 11th Euro-
pean Workshop on Knowledge Acquisition, Modelling and Man-
agement (EKAW-99), Germany, pages 207–221. Springer Verlag
(Lecture Notes in Computer Science 1621), 1999.

6. D. Fensel, V.R. Benjamins, E. Motta and B. Wielinga. UPML:
a framework for knowledge system reuse. InProc. International
Joint Conference on AI (IJCAI-99), Stockholm, Sweden, July 31–
August 5, 1999, Morgan Kaufmann, pp. 16–23, 1999.

7. D.J. Reifer.Practical Software Reuse. John Wiley, New York,
1997.

8. K. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic service
matchmaking among agents in open information environments.
In ACM SIGMOD Record (Special Issue on Semantic Interop-
erability in Global Information Systems), A. Ouksel, A. Sheth
(Eds.),28(1), March 1999, pp. 47–53, 1999.

9. A.M. Collins, and E.F. Loftus. A spreading-activation theory of
semantic processing.Psychological Review, 82, pp. 407–428,
1975.

10. S. White, and D. Sleeman. A grammar-driven knowledge ac-
quisition tool that incorporates constraint propagation. InProc.
First Int Conf on Knowledge Capture (KCAP-01), October 21–
23, Victoria, Canada, ACM Press, pp. 187–193, 2001.

11. W. M. Schorlemmer, S. Potter, D. Robertson, and D. Sleeman.
Formal knowledge management in distributed environments. In
Workshop on Knowledge Transformation for the Semantic Web,
15th European Conference on Artificial IntelligenceECAI-2002,
Lyon, France, 2002.

12. K. Arisha, T. Eiter, S. Kraus, F. Ozcan, R. Ross and V.S. Sub-
rahmanian. IMPACT: interactive Maryland platform for agents
collaborating together,IEEE Intelligent Systems magazine,
14(2), pp. 64–72, 2000.

13. M. Nodine, and A. Unruh. Facilitating open communication in
agent systems. InIntelligent Agents IV: Agent Theories, Archi-
tectures, and Languages, M. Singh, A. Rao and M. Wooldridge
(Eds.), pp. 281–296. Springer-Verlag (Lecture Notes in AI V.
1365), 1998.

14. P.R. Bowden, P. Halstead, and T.G. Rose. Extracting concep-
tual knowledge from text using explicit relation markers. In
N. Shadbolt, K. O’Hara, and G. Schreiber (eds.),Proc. Ninth Eu-
ropean Knowledge Acquisition Workshop (EKAW-96), Notting-
ham, UK, May 14-17 1996, Springer-Verlag, Berlin, pp. 147–
162, 1996.

15. D. Faure, and C. Ńedellec. Knowledge acquisition of predicate
argument structures from technical texts using machine learning:
the system ASIUM. In D. Fensel, R. Studer (eds.),Knowledge
Acquisition, Modeling and Management, Proc. Eleventh Euro-
pean Workshop, EKAW ’99, Dagstuhl Castle, Germany, May
26-29, 1999Lecture Notes in Computer Science, Vol. 1621,
Springer, Berlin. pp. 329–334, 1999.

16. U. Hahn, M. Klenner, and K. Schnattinger. Automated knowl-
edge acquisition meets metareasoning: incremental quality as-
sessment of concept hypotheses during text understanding. In
N. Shadbolt, K. O’Hara, and G. Schreiber, (eds.),Proc. Ninth
European Knowledge Acquisition Workshop (EKAW-96), Not-
tingham, UK, May 14-17 1996, Springer-Verlag, Berlin, pp.
131–146, 1996.

17. A. Mädche, and S. Staab. Discovering conceptual relations
from text. In W. Horn (ed.),Proc. Fourteenth European Confer-
ence on Artificial Intelligence (ECAI 2000), August 20-25 2000,
Berlin, Germany, IOS Press, Amsterdam, pp. 321–325, 2000.

18. U. Reimer. Automatic acquisition of terminological knowledge
from texts. In L. C. Aiello (ed.),Proc. Ninth European Confer-
ence on Artificial Intelligence (ECAI-90), Stockholm, August 6-
10, 1990, Pitman, London, pp. 547–549, 1990.

19. T.J. Biggerstaff, B.G. Mitbander, and D.E. Webster, Program
understanding and the concept assignment problem,”Comm.
ACM, 37(5), pp. 72–83, 1994.

20. Y. Li, H. Yang, and W. Chu. Clarity guided belief revision for
domain knowledge recovery in legacy systems. InProc. 12th
International Conference on Software Engineering and Knowl-
edge Engineering (SEKE), Chicago, USA, Springer, 2000.

21. H. Yang, Z. Cui, and P. O’Brien. Extracting ontologies from
legacy systems for understanding and re-engineering. InProc.
IEEE 23rd International Conference on Computer Software and
Applications (COMPSAC ‘99), October 1999, IEEE Press, 1999.

22. G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog,
N.R. Shadbolt, W. Van de Velde, and B. Wielinga.Knowledge
Engineering and Management, MIT Press, 2000.

The ‘Family of Languages’ Approach to Semantic Interoperability

Jérôme Euzenat1 and Heiner Stuckenschmidt2

1 INRIA Rhône-Alpes,
655 avenue de l’Europe, 38330 Montbonnot Saint-Martin, France

Jerome.Euzenat@inrialpes.fr
2 Vrije Universiteit Amsterdam,

AI Department, Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
heiner@cs.vu.nl

Abstract. Exchanging knowledge via the web
might lead to the use of different representation
languages because different applications could take
advantage of this knowledge. In order to function
properly, the interoperability of these languages
must be established on a semantic ground (i.e.,
based on the models of the representations). Sev-
eral solutions can be used for ensuring this interop-
erability.
We present a new approach based on a set of
knowledge representation languages partially or-
dered with regard to the transformability from one
language to another by preserving a particular prop-
erty. The advantages of the family of languages ap-
proach are the opportunity to choose the language
in which a representation will be imported and the
possibility to compose the transformations available
between the members of the family. For the same
set of languages, there can be several structures de-
pending on the property used for structuring the
family. We focus here on semantic properties of dif-
ferent strength that allow us to perform practicable
but well founded transformations.

1 Motivation

The World Wide Web is the largest information system ever.
Its size and heterogeneity makes ontology-based search and
integration even more important than in other information
systems. The “semantic web” [5] is supported by the anno-
tation of web pages, containing informal knowledge as we
know it now, with formal knowledge. These documents can
reference each other and depend on ontologies and back-
ground knowledge. Taking advantage of the semantic web
requires to be able to gather, compare, transform and com-
pose these annotations. For several reasons (legacy knowl-
edge, ease of use, heterogeneity of devices and adaptability,
timelessness), it is unlikely that this formal knowledge will
be encoded in the very same language. The interoperability
of formal knowledge languages must then be studied in or-
der to interpret the knowledge acquired through the seman-
tic web. The problem of comparing languages is well known
from the field of formal logic, but it takes a greater impor-
tance in the context of the semantic web.

We refer to the problem of comparing and interpreting the
annotations at the semantic level, i.e., to ascribe to each im-
ported piece of knowledge the correct interpretation, or set of
models, assemantic interoperability. It will be further char-
acterized below. There are several reasons to non interop-
erability and several approaches to semantic interoperability
[17,8,19] using different techniques. In this paper, the em-

phasis is on the mismatch between knowledge representation
languages, leaving aside other important problems (e.g., ax-
iomatization mismatches).

Consider a company developing applications involv-
ing printer maintenance that is neither a printer spe-
cialist nor a technical support specialist, it might have
great interest in taking advantage of readily available
and acknowledged ontologies. There is not a printer sup-
port ontology available so the company will have to
merge different knowledge sources. Fortunately, the li-
brary of DAML (DARPA Agent Markup Language) con-
tains an ontology describing a technical support applica-
tion (http://www.daml.org/ontologies/69) and a printer ontol-
ogy can be found at http://www.ontoknowledge.org/oil/case-
studies/. However, the first ontology is encoded in DAML-
ONT [18] and the second one in the OIL language [12].

The company wants to merge both representations for its
own business but it also wants to check the consistency of the
result. It thus requires an integration process through trans-
formations that preserve the consequences and a path from
that representation to a consistency checker that preserves
consistency (so that, if the target representation is found in-
consistent, then the source representation was too).

We discuss an approach that helps achieving semantic in-
teroperability through a structured set of knowledge repre-
sentation languages for which the properties of transforma-
tions from one language to another are known. The transfor-
mation of representations from one language to another (e.g.,

the initial languages in which the ontologies were formu-
lated to the language used by the consistency checker) can
take advantage of these characterized transformations in the
family, minimizing the effort.

This paper first contrasts the family of languages approach
with other known approaches (§2). It then puts forth several
structures for a family of languages based on different prop-
erties (§3). We show that all these properties concur to se-
mantic interoperability. Then, we show what concrete imple-
mentation of this approach can be realized (§4).

2 Approaches to language interoperability

We first give a few definitions of the kind of languages that
will be considered in this paper. Then, several approaches for
importing from one language to another are presented.

2.1 Languages

For the simple purpose of the present paper, a languageL
will be a set of expressions. A representation (r) is a set of
expressions inL.

94 J́erôme Euzenat and Heiner Stuckenschmidt

However, a language can be generated from a set of atomic
terms and a set of constructors. A knowledge representations
language mainly consists of operators that can be used to
form complex terms (or formulas or classes) from simple
ones.

For the sake of concreteness, this paper will take advan-
tage of the results obtained in the field of description logics
to illustrate the family of languages approach. This does not
mean that the approach only applies to description logics, it
can be applied as well to first-order logic [9] or conceptual
graphs [3]. In the following we give an abstract definition of
such a language:

Example 1(Abstract description language [2]).An abstract
description languageL is the set ofL-expressionsδ, over a
setT of atomic terms (name of atomic classes) and a setF
of operators, whereL-expressions are recursively defined as
follows:

– everyt ∈ T is aL-expression
– if δ is aL-expression, then¬t is also aL-expression
– it δ1 andδ2 areL-expressions, thenδ1 ∧ δ2 andδ1 ∨ δ2

areL-expressions
– if f ∈ FL in an n-ary operator andδ1, · · · , δn areL-

expressions thenf(δ1, · · · , δn) is aL-expression

Note that the setT of atomic terms is independent of a spe-
cific language.

The concepts in an ontology can be intentionally described
byL-expressions. Knowledge representation formalisms are
subject to a well-known trade-off between expressiveness of
representation and complexity of reasoning [16]. This trade-
off leads to a situation that different formalisms are suited for
different application scenarios. This also holds for ontology
language: there is not one language that fits all situations.

Several approaches have been proposed for ensuring se-
mantic interoperability. We present them under the stand-
point of the transformation (τ : 2L −→ 2L

′
) from one

knowledge representation language (L) to another (L′).

2.2 The Mapping Approach

The most direct and often used approach maps certain types
of expressions in the source language and create correspond-
ing expressions in the target language. The formal nature of
these mappings vary from purely syntactic matches to “the-
ory interpretations” [9] with well defined properties. There-
fore we characterize the mapping approach solely by the ex-
istence of a function that maps expressions from one lan-
guage to another.

∃τ, (∀δ ⊆ L, τ(δ) ⊆ L′)(1)

This approach has the drawback of requiring transforma-
tions from any language to any other. It is thus not very
reusable and requires to check individually the properties
of the transformations. The existence of a transformationτ
fromL toL′ is denoted by byL ≺ L′. A current example of
the mapping approach is described in [7].

2.3 The Pivot Approach

In order to reduce the number of transformations necessary
to integrate a certain number of languages, a special transfor-
mation architecture can be used. One of the most common is
the use of a single pivot languageP all other languages are
translated to. In order to be able to preserve semantics, this
pivot language has to cover all other languages. More for-
mally, the pivot approach is characterized by the following
assumption:

∃!P,∀L, (L ≺ P)(2)

Probably the most prominent example of a pivot archi-
tecture is Ontolingua [13]. In this approach the Ontolingua
language serves as a pivot language. However, translations
are also performed from Ontolingua into less expressive lan-
guages leading to a loss of information the approach has of-
ten been criticized for.

2.4 The Layered Approach

A third approach to deal with semantic interoperability is the
use of a layered architecture containing languages with in-
creasing expressiveness. This approach has been proposed in
order to avoid the problems arising from the need of using
a very expressive language and to ensure tractable reason-
ing with the integrated languages. In such a layered architec-
ture, representations can be translated into languages higher
in the hierarchy without semantic mismatch. Formally speak-
ing, the languages form a total order induced by the coverage
relation.

∀i, j, (i ≤ j ⇒ Li ≺ Lj)(3)

A recent example of a layered architecture is the ontol-
ogy language OIL [12] that has been built onto existing web
standards. The idea is to use the W3C Standard RDF Schema
as the language on the lowest layer and build additional lan-
guage features on top of it. Doing this, it is possible to trans-
late RDF schema definitions into languages of the higher lev-
els in order to enrich it.

2.5 The Family of Languages Approach

The family of languages approach, presented in this paper,
considers a set of languages structured by a partial order (≺).
This is more general than a total order, difficult to choose a
priori, and more convenient for the users who can find lan-
guages closer to their needs (or, for an intermediate language,
languages closer to their own languages).

For every two languages in the family a third language
should exist that covers both of them.

∀L,L′,∃L′′, (L ≺ L′′ ∧ L′ ≺ L′′)(4)

This equation is different from equation 3 becauseL′′ is
dependent onL andL′. In fact, the family of languages ap-
proach is a generalization of the pivot and the layered ap-
proach that further increases the flexibility of the transforma-
tion process.

The ‘Family of Languages’ Approach 95

Consequence.The family of languages property generalizes
the pivot and the layered approach to language integration,
i.e.,(2)⇒ (4) and(3)⇒ (4).

The advantage of this approach are the ability to choose
an entry (resp. exit) point into the family that is close to the
input (resp. output) language. This enables the use of exist-
ing results on the family of languages for finding the best
path from one language to another (at least by not choosing
a very general pivot language). This path can be found with
the help of the coverage relation, i.e. by finding some least
upper language.

The approach generalizes the pivot approach insofar as the
pivot approach fulfills the family of languages property, be-
cause the pivot languageP can always be used as integration
language. It also generalizes the layered approach, because in
the layered framework the language that is higher in the hier-
archy can be used as the integration language in the sense of
the family of languages property. However, the family of lan-
guages approach is more flexible, because it does not require
a fixed pivot language nor a fixed layering of language. On
the contrary, any language that fulfills certain formal criteria
can be used as integration language. We discuss these formal
criteria in the following section.

3 The Semantic Structure of a Family

A family of languages is a setL of languages. The goal
of the family is to provide an organization that allows to
transform one representation from one language of the fam-
ily to another. We thus use the notion of a transformation
τ : 2L −→ 2L

′
from one representation into another as the

basis of the structure of the family. It will then be easier to use
this structure in transformations. The structure of a familly of
language is given by ordering this set with regard to available
transformations satisfying some constraints (with the cover-
ing order≺).

In order to provide a meaningful definition of this order-
ing, we investigate orders based on the semantics of the lan-
guages as provided by model theory. In this framework, an
interpretationI is a predicate over the set of assertions of
a language. Naturally, this interpretation can be defined by
structural rules such as those used for defining first-order
logic interpretations or description logics.

A model of a representationr ⊆ L, is an interpretationI
satisfying all the assertions inr. The set of all models of a
representationr of L is denoted byML(r). An expression
δ is said to be a consequence of a set of expressionr if it
is satisfied by all models ofr (this is notedr |=L δ). The
considerations below apply to first-order semantics but they
can be extended.

The languages of a familyL are interpreted homoge-
neously. This means that the constraints that apply to the def-
inition of the interpretations are the same across languages of
the family (and thus, if languages share constructs, like∨, ¬,
∧, they are interpreted in the same way across languages).
We generally consider languages defined by a grammar with
an interpretation function defined by induction over the struc-
ture of formulas (like description logics, first order logic or
conceptual graphs). In this case, the homogeneity is provided
by having only one interpretation rule per formula construc-
tor.

Again, this can be illustrated in the description logics
framework.

Example 2(Abstract Description Model [2]).An Abstract
description model is of the form:

= = 〈W,F= = (f=i)i∈I〉

whereW is a nonempty set andf=i are functions mapping
every sequence〈X1, · · · , Xni〉 of subsets ofW to a subset
of W .

We can define the interpretation mapping in two steps.
First we assume an assignmentA mapping everyt ∈ T to
a subset ofW , then we define the interpretation mapping re-
cursively as follows:

Example 3(Semantics [2]).Let L be a language and= =
〈W,F=〉 an abstract description model. AnassignmentA is
a mapping from the set of atomic termT to 2W . The assign-
ment of a subset ofW to a termt is denoted bytA. The
extensionδ=,A of aL-expression is now defined by:

1. t=,A := tA for everyt ∈ T
2. (¬δ)=,A := W − δ=,A
3. (δ1 ∧ δ2)=,A := δ=,A1 ∩ δ=,A2

4. (δ1 ∨ δ2)=,A := δ=,A1 ∪ δ=,A2

5. f(δ1, · · · , δn)=,A := f=(δ=,A1 , · · · , δ=,An) for every
f ∈ F

The semantics definition given above is the basis for de-
ciding whether an expressionδ is satisfiable and whether
an expressionδ1 follows from another expressionδ2. More
specifically, theL-expressionδ is satisfiable ifδ=,A 6= ∅, an
L-expressionδ1 is implied byδ2 if δ=,A1 ⊆ δ=,A2 . The defi-
nition is general enough to capture description logics as well
as modal and first-order predicate logic.

This section will provide tools for defining the structure
of a family of languages. It will focus on a semantic struc-
ture that is prone to provide semantic interoperability. The
structure is given by the coverage relation (≺ above) that can
be established between two languages when there exists a
transformation from one to the other. In this section, the cov-
erage relation will be characterized in function of a property
that it satisfies. The ultimate goal of these properties are to
ensure the possible preservation of the consequences while
transforming from a language to another.

3.1 Language inclusion

The simplest transformation is the transformation from a
language to another syntactically more expressive one (i.e.,
which adds new constructors).

Definition 1 (Language inclusion). A languageL is in-
cluded in another languageL′ iff ∀δ ∈ L, δ ∈ L′.

The transformation is then trivial: it is thus identity.
This trivial interpretation of semantic interoperability is one
strength of the “family of languages” approach because, in
the present situation, nothing have to be done for gathering
knowledge. This first property provides a first relation for
structuring a family:

96 J́erôme Euzenat and Heiner Stuckenschmidt

Definition 2 (Language-based Coverage).

L≤̆L′ ⇔def (L ⊆ L′)

Language inclusion can be defined in a more specific way
on languages defined as a term algebra where the inclusion
of languages can be reduced to the inclusion of the sets of
term constructors.

Example 4(The FaCT Reasoner).The FaCT description
logic reasoner implements two reasoning modules one for the
languageSHF and one for the languageSHIQ which sim-
ply extendsSHF with inverse roles and qualified number
restrictions. As a consequence,SHF models can be handled
by theSHIQ reasoner without change.

3.2 Interpretation preservation

The previous proposal is restricted in the sense that it only
allows, in the target language, expressions expressible in the
source language, while there are equivalent non-syntactically
comparable languages. This is the case of the description
logic languagesALC andALUE which are known to be
equivalent while none has all the constructors of the other3.
This can be described as the equality of the Tarskian style
interpretation for all the expressions of the language.

Definition 3 (Interpretation preservation). A transforma-
tion τ preserves the interpretations iff

∀δ ∈ L,∀I, I(τ(δ)) = I(δ)

Example 5(Reasoning in Core-OIL).The lowest layer of the
ontology language OIL which has gained significant atten-
tion in connection with the semantic web is Core -OIL which
provides a formal semantics for a part of RDF schema. In or-
der to provide reasoning services, the language is translated
into the logicSHIQ and the FaCT Reasoner is used to pro-
vide the reasoning services [14]. Core-OIL can contain

assertions restricting the applicability of a particular role
(R ≤ (domainC). These assertions must be expressed in
SHIQ which does not offer the domain constructor. It is
thus translated into an assertion stating that for any term
under>, the range of the inverse of this relation is this
particular domain. The translation contains the following
interpretation-preserving mapping4:

τ(R ≤ (domainC)) = > ≤ (all (invR)C)

For that purpose, one can defineL�L′ if and only if there
exists a transformation fromL toL′ that preserves the inter-
pretations of the expressions.

3 This is true if we consider that the languages here
are those described by their names:AL+negation vs.
AL+disjunction+qualified existentials. Of course, because
they have the same expressivity all the constructors of each
language can be defined in the other. But this equivalence must
be proved first.

4 This is not sufficient for eliminating all occurrences of do-
main. For instance,(all (domain C) C’) has to be trans-
formed into (or (not C) (all anyrelation C’)) .
This does not work forconcrete domainseither.

Definition 4 (Interpretation-based coverage).

L�L′ ⇔def

∃ an interpretation preserving tranformationτ : L→ L′

Obviously, language inclusion is stronger than interpre-
tation preservation because the languages are homogeneous
and the transformation is then reduced to identity.

Proposition 1 (Language-based coverage entails
interpretation-based coverage).If L′≤̆L thenL′�L.

The τ transformation is, in general, not easy to produce
(and it can generally be computationally expensive) but we
show, in [11], how this could be practically achieved.

3.3 Expressiveness

The previous property was subordinated to the coincidence
of interpretation. In particular, the domain of interpretation
has to be the same and the way entities are interpreted must
coincide.

Franz Baader [1] has provided a definition of expressive-
ness of a first-order knowledge representation language into
another by considering that a language can be expressed into
another if there exists a way to transform any theory of the
first into a theory of the second which preserves models up
to predicate renaming.

His definitions is based on the idea of “abstract models”
in which a language is a couple made of a languageL and
a model selection functionModL which filters the accept-
able models for the language (which are not all the first order
models). Here, we consider as acceptable all the first-order
models.

Definition 5 (Expressibility modulo renaming [1]). A lan-
guage L is expressible in a languageL′ if and only
if ∀r ∈ L, ∃ a transformationτ : L → L′, ∃ν :
Pred(r) → Pred(τ(r)) such that∀m ∈ ML(r),∃m′ ∈
ML′(τ(r));∀δ ∈ L,m(δ) = m′(ν(δ)) and ∀m′ ∈
ML′(τ(r)),∃m ∈ ML(r);∀δ ∈ L,m(δ) = m′(ν(δ)).
Pred(r) is the set of atomic termsT found in the expression
r.

Example 6(Eliminating undefined concepts axioms inT F).
Bernhard Nebel has shown that the transformation from a T-
Box with the introduction of undefined (primitive) concepts
can be translated into T-box with additional concepts (prim-
itive component concepts). So, each undefined concept≤̇, is
introduced by a definitioṅ= as the conjunction (and) of its
known subsumers and an undefined part (expressed with an
overline here):

τ(Man≤̇Human) = Man=̇(and Human Man)

This transformation preserves expressiveness [1].

We do not want to consider renaming here (it involves
knowing what to rename and using thePred function which
denotes the set of predicates used in an expression). So, ex-
pressibility is refined by simply using the transformationτ̂
instead ofν.

The ‘Family of Languages’ Approach 97

Definition 6 (Expressibility modulo transformation). A
languageL is expressible in a languageL′ if and only if
∀r ∈ L, ∃ a transformation̂τ : L → L′, such that∀m ∈
ML(r),∃m′ ∈ ML′(τ̂(r));∀δ ∈ L,m(δ) = m′(τ̂(δ))
and ∀m′ ∈ ML′(τ̂(r)),∃m ∈ ML(r);∀δ ∈ L,m(δ) =
m′(τ̂(δ))

Naturally, expressibility modulo transformation entails ex-
pressibility modulo renaming.

Definition 7 (Expressibility-based coverage).

L�̂L′ ⇔def L is expressible (modulo transformation) inL′

The following proposition is easily obtained by noting that
a interpretation-preserving transformation is also a model-
preserving transformation. So the corresponding model, can
be the model itself (or an extension of itself to formulas miss-
ing from the initial language).

Proposition 2 (Interpretation-based coverage entails
expressivity-based coverage).If L�L′, thenL�̂L′.

3.4 Epimorphic transformations

Full isomorphism between the models of a representation and
its transformations is prone to preserve a major part of the
meaning. However, an isomorphism would constrain the two
sets of models to have the same cardinality. This is relatively
artificial. We relax this constraint by asking each model of the
transformed representation to be closely related to one model
of the source representation. This can be useful when one
does want to consider axiomatizations of different natures.
This can be used when objects are taken as relations and vice
versa (dual representation of graphs is an example).

Definition 8 (Model epimorphism). A model epimorphism
π : M → M ′ is a surjective map from a set of modelM to
another set of modelsM ′.

Model epimorphisms ensure that all models of the trans-
formed representation are comparable to some model of the
source representation.

Definition 9 (Epimorphic transformation). A transforma-
tion τ is epimorphic iff there exists a model epimorphism
π : ML′(τ(r)) → ML(r) such that∀r ⊆ L,∀m′ ∈
ML′(τ(r)) and∀δ ∈ L, π(m′) |= δ ⇒ m′ |= τ(δ)

This kind of transformation allows the generated represen-
tation to have many more very different models than the ini-
tial representation, but constraint each of these models to pre-
serve all the consequences of one of the models of the initial
representation.

Definition 10 (Correspondance-based coverage).

L�̃L′ ⇔def ∃ an epimorphic transformatioñτ : L→ L′

This basically ensures that the transformation does not
loose information (i.e., does not generate unrelated models).
The following proposition is obtained by building the epimo-
sphism from the corresponding models in the second equa-
tion of definition 6.

Proposition 3 (Expressibility-based coverage entails
correspondance-based coverage).If L�̂L′, thenL�̃L′.

3.5 Consequence preservation

Consequence preservation can be considered the ultimate
goal of semantic interoperability: it denotes the fact that the
consequences (what are satisfied by all models) of the source
and the target representations are the same (modulo transfor-
mation).

Definition 11 (Consequence preservation).A transforma-
tion τ is said consequence-preserving iff∀r ⊆ L,∀δ ∈
L, r |=L δ ⇒ τ(r) |=L′ τ(δ)

If τ is a consequence-preserving transformation, then for
anyr ⊆ L, it is said thatτ(r) is a conservative extension of
r moduloτ .

Example 7(Translating fromDLR to SHIF). In order to
decide query containement inDLR, [6] displays a mapping
from theDLR logic (which introducesn-ary relations) to
CPDL. If one considers the restriction introduced in [15]
whereDLR does not contain regular path expressions. These
relations are represented by concepts with exactlyn features
to the components of the relation. This transformation is a
consequence preserving transformation.

This definition allows to define a coverage based on con-
sequence as usual:

Definition 12 (Consequence-based coverage).

L�L′ ⇔def

∃ a consequence preserving transformationτ : L→ L′

Model-based coverage is stronger than consequence-based
because it already included the notion of consequence-
preservation. The point is that there can be “more” models
in L′ than inL, but they satisfy the same assertions as one
model inL, they thus cannot inhibit any consequence.

Proposition 4 (Correspondance-based coverage entails
consequence-based coverage).If L�̃L′, thenL�L′.

It is known that expressivity modulo renaming alone does
not necessarily entail consequence preservation [1].

3.6 Consistency preservation

Preserving consistency is a very weak property (it is true of
any transformation that forgets knowledge). However, trans-
formations that preserve consistency can be used for check-
ing the inconsistency of a knowledge base: if the target
knowledge base is inconsistent, then the source was too.

Definition 13 (Consistency preservation).A transforma-
tion τ is said to be consistency-preserving iff∀r ⊆
L,ML(r) 6= ∅ ⇒ML′(τ(r)) 6= ∅

Example 8(Reasoning in Standard-OIL).The second layer
of the OIL language called standard OIL provides an expres-
sive language for building ontologies. Again, the language
is translated intoSHIQ in order to provide inference ser-
vices. Standard OIL also includes capabilities for expressing
assertional knowledge and instances in concept definitions.
As the FaCT reasoner does not support instance reasoning,
the translation from Standard OIL toSHIQ includes some

98 J́erôme Euzenat and Heiner Stuckenschmidt

mappings that do not preserve the complete semantics, but
preserve satisfiability [14].

τ((one− of i1 i2)) = (or I1 I2)

This transformation replaces the enumeration of instances by
a disjunction of concepts with the same name.

Consistency-based coverage is defined as usual.

Definition 14 (Consistency-based coverage).

L≤̇L′ ⇔def

∃ a consistency-preserving transformationτ̇ : L→ L′

Proposition 5 (Expressivity-based coverage entails
consistency-based coverage).If L�̂L′, thenL≤̇L′.

3.7 Composition of properties

As a consequence, all the coverage relations concur to pro-
viding the families of language with a structure which en-
riches the basic syntactic structure usually proposed for these
languages.

This defines a hierarchy of more and more constrained
structure for the family of language. Establishing this struc-
ture can be more or less easy, so it is useful to be able to
have several of them that can be used only if necessary. This
permits to have the best effort in looking for a path from one
language of the family to another.

There can be other useful properties (and thus other struc-
tures) that anyone can integrate in the structure of a family.
These properties do not have to be totally ordered from the
strongest to the weakest. However, for being useful to seman-
tic interoperability, new properties should entail some of the
properties above.

These structures enable the composition of transforma-
tions while knowing their properties. The following table
provides the minimal property satisfied by the composition
of two transformations given their properties.

≤̆ � �̂ ≤̇ �̃ �
≤̆ ≤̆ � �̂ ≤̇ �̃ �
��� �̂ ≤̇ �̃ �
�̂ �̂ �̂ �̂ ≤̇ �̃ �
≤̇ ≤̇ ≤̇ ≤̇ ≤̇ ∅ ∅
�̃ �̃ �̃ �̃ ∅ �̃ �
���� ∅ ��

In summary, the semantic structure of a family of lan-
guages provides us with different criteria for coverages all
based on the notion of transformability. These notions of cov-
erage do not only give us the possibility to identify and prove
coverage, they also specify a mechanisms for transforming
the covered into the covering language. Therefore we can
show that a suitable language can be generated and how the
generation is being performed. In the next section we present
an instanciation of this approach.

4 Implementing the Approach

The family of language approach can take advantage of
many knowledge representation formalisms that have been
designed in a modular way. A concrete example of a family
is presented below through an example (§4.2) using theDLML

encoding of description logics supplied with transformations
(§4.1).

4.1 A concrete family of languages

DLML [10] is a modular system of document type descriptions
(DTD) encoding the syntax of many description logics inXML .
It takes advantage of the modular design of description logics
by describing individual constructors separately. The speci-
fication of a particular logic is achieved by declaring the set
of possible constructors and the logic’sDTD is automatically
build up by just assembling those of elementary constructors.
The actual system contains the description of more than 40
constructors and 25 logics. ToDLML is a associated a set of
transformations (written inXSLT) allowing to convert a repre-
sentation from a logic to another.

The first application is the import and export of terminolo-
gies from a DL system. The FaCT system [4] has already
developed that aspect by using such an encoding. We also de-
veloped, for the purpose of the examples presented here, the
transformations from OIL and DAML-ONT toDLML . These
transformation are simpleXSLT stylesheets.

4.2 Example

The company which needs a printer support ontology has to
merge different knowledge sources the technical support ap-
plication ontology in DAML-ONT and the printer ontology
written in the OIL language [12]. It also wants to translate
the merged ontology into theSHIQ language in order to
check consistency of the result. The transformation must be
consistency preserving.

The translation methodology, from one language to an-
other, consists in choosing the input and output languages
within the family. The source representation will be trans-
lated in the input language and the target representation will
be imported from the output language. The input languages
are obviouslyDLML counterparts of OIL and DAML-ONT
and the translation is easily carried out because both lan-
guage have been inspired by description logics. The target
language will be theDLML language corresponding toSHIQ,
supported by the FaCT reasoner.

Then, a path from the input language to the output lan-
guage which satisfies required properties has to be found in
the family of languages used. This path is presented below.

The first goal will be achieved by translating the DAML-
ONT and OIL representations in a representation language
(calledG) which encompasses all the constructs of the initial
languages. The transformations depend only on the language
inclusion property between the two input languages andG.

The second goal will be achieved by composing threeDLML

transformations that rewrite some representations with a par-
ticular construct to representations without it, suitable to be
checked for consistency by the FaCT reasoner. This imple-
ments transformations already at work in the OIL-based tools

The ‘Family of Languages’ Approach 99

[14]. It thus chain the following transformations (summa-
rized by figure 1):

domain2allinv which replacesdomain restrictions on role
definitions by a general constraint applying to the re-
stricted terms (through the restriction of the inverse
role codomain): this transformation is interpretation-
preserving;

oneof2ornot which replaces enumerated domains (oneof)
by disjunctive concepts whose disjuncts represents the
elements of this domain: this transformation is only con-
sistency preserving;

cexcl2not which replaces concept exclusion (introduced by
the previous transformation) by conjunction with the
negated concept. This transformation is also interpreta-
tion preserving.

DAML OILLDAML LOIL

G = LDAML∨̆LOIL

Lint

L′int

LSHIQ SHIQ

- �

-

@
@
@
@R

�
�

�
�	

?

?

?

≤̆ ≤̆

�

≤̇

�

merge

domain2allinv

oneof2ornot

cexcl2not

Fig. 1. The transformation flow involved in importing the two on-
tologies toSHIQ.

Thus the import of OIL and DAML-ONT intoSHIQ de-
scribed above is consistency preserving.

5 Conclusion

The ’family of languages’ approach is one approach for fa-
cilitating the exchange of formally expressed knowledge in
a characterized way. It is not exclusive to other approaches
like direct translation or pivot approaches. It has several ad-
vantages over other solutions to the semantic interoperability
problem because it allows users:

– to translate to closer languages among many of them;
– to share and compose many simple transformations for

which the property are known and the transformations
available;

– to select the transformations to be used with regard to
the kind of properties that are required by the transfor-
mation.

This approach is thus a tool for better ‘ontology engineering’.
The approach generalizes previous proposals for transla-

tion architectures and provides a greater flexibility in terms

of languages that can be used for the integrated models. We
have presented here this approach in a unified framework and
proposed a first tower of structure for the family of languages
based on the properties that are satisfied by the transforma-
tions. Different semantic relations can be used to establish
the structure of a family of languages and ensure formal
properties of transformations between languages. We con-
cluded with a brief description of an existing implementation
of the approach.

The approach can easily be implemented using existing
web technologies such asXML andXSLT, but also provides an
infrastructure for ensuring formal properties by proving the
formal properties of transformations between concrete lan-
guages. It is even possible to annotate transformations with
these proof and use them for justifying or explaining the
transformations.

Acknowledgements

This work has benefited from the support of the OntoWeb
thematic network (IST-2000-29243) and the PAI Procope
program of the French Ministry of Foreign Affairs and
DAAD.

References

1. Franz Baader. A formal definition of the expresive power of
terminological knowledge representation languages.Journal
of logic and computation, 6(1):33–54, 1996.

2. Franz Baader, Carsten Lutz, Holger Sturm, and Frank Wolter.
Fusions of description logics and abstract description systems.
Journal of Artificial Intelligence Research, 16:1–58, 2002.

3. Jean-François Baget and Marie-Laure Mugnier. TheSG fam-
ily: extensions of simple conceptual graphs. InProc. 17th IJ-
CAI, Seattle (WA US), pages 205–210, 2001.

4. Sean Bechhofer, Ian Horrocks, Peter Patel-Schneider, and Ser-
gio Tessaris. A proposal for a description logic interface. In
Proc. int. workshop on description logics, Linkping (SE), num-
ber CEUR-WS-22, 1999. http://SunSITE.Informatik.RWTH-
Aachen.DE/Publications/CEUR-WS/Vol-22/bechhofer.ps.

5. Tim Berners-Lee, James Hendler, and Ora Lassila. The
semantic web. Scientific american, 279(5):35–43, 2001.
http://www.scientificamerican.com/2001/0501issue/0501berners-
lee.html.

6. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenz-
erini. On the decidability of query containment under con-
straints. InProc. of the 17th ACM SIGACT SIGMOD SIGART
Sym. on Principles of Database Systems (PODS’98), pages
149–158, 1998.

7. Hans Chalupsky. OntoMorph: a translation system for sym-
bolic knowledge. InProceedings of 7th international confer-
ence on knowledge representation and reasoning (KR), Breck-
enridge, (CO US), pages 471–482, 2000.

8. Mihai Ciocoiu and Dana Nau. Ontology-based semantics.
In Proceedings of 7th international conference on knowledge
representation and reasoning (KR), Breckenridge, (CO US),
pages 539–546, 2000. http://www.cs.umd.edu/ nau/papers/KR-
2000.pdf.

9. Herbert Enderton.A mathematical introduction to logic. Aca-
demic press, 1972. revised 2001.

10. Jérôme Euzenat. Preserving modularity in XML encoding
of description logics. In Deborah McGuinness, Peter Patel-
Schneider, Carole Goble, and Ralph Möller, editors,Proc. 14th
workshop on description logics (DL), Stanford (CA US), pages
20–29, 2001.

100 J́erôme Euzenat and Heiner Stuckenschmidt

11. Jérôme Euzenat. Towards a principled approach to semantic in-
teroperability. In Asuncion Gomez Perez, Michael Gruninger,
Heiner Stuckenschmidt, and Michael Uschold, editors,Proc.
IJCAI 2001 workshop on ontology and information sharing,
Seattle (WA US), pages 19–25, 2001.

12. Dieter Fensel, Ian Horrocks, Frank Van Harmelen, Stefan
Decker, Michael Erdmann, and Michel Klein. Oil in a nut-
shell. In 12th International Conference on Knowledge Engi-
neering and Knowledge Management EKAW 2000, Juan-les-
Pins, France, 2000.

13. Thomas Gruber. A translation approach to portable ontology
specifications.Knowledge Acquisitio, 5(2):199–220, 1993.

14. Ian Horrocks. A denotational semantics for Stan-
dard OIL and Instance OIL, november 2000.
http://www.ontoknowledge.org/oil/downl/semantics.pdf.

15. Ian Horrocks, Ulrike Sattler, Sergio Tessaries, and Stephan To-
bies. Query containment using aDLR abox - preliminary ver-
sion. LCTS Report 99-15, RWTH Aachen, 1999.

16. Hector Levesque and Ronald Brachmann.Readings in Knowl-
edge Representation, chapter A Fundamental Tradeoff in
Knowledge Representation and Reasoning (Revised Version),
pages 31–40. Morgan Kaufmann Publishers, San Mateo, 1985.

17. Claudio Masolo.Criteri di confronto e costruzione di teorie as-
siomatiche per la rappresentazione della conoscenza: ontolo-
gie dello spazio e del tempo. Tesi di dottorato, Universit di
Padova, Padova (IT), 2000.

18. Deborah McGuinness, Richard Fikes, Lynn Andrea Stein, and
Hendler James. DAML-ONT: An ontology language for the
semantic web. In Dieter Fensel, James Hendler, Henri Lieber-
man, and Wolfgang Walhster, editors,The semantic web: why,
what, and how?The MIT press, 2002. to appear.

19. Heiner Stuckenschmidt and Ubbo Visser. Semantic trans-
lation based on approximate re-classification. InPro-
ceedings of the KR workshop on semantic approximation
granularity and vagueness, Breckenridge, (CO US), 2000.
http://www.tzi.de/ heiner/public/ApproximateReClassification.ps.gz.

A Logic Programming Approach To
RDF Document And Query Transformation

Joachim Peer1

Institute for Media and Communications Management,
University of St.Gallen, Switzerland

joachim.peer@unisg.ch

Abstract. The Resource Description Framework
(RDF) provides a means to explicitly express se-
mantics of data. This makes it an attractive tool
for managing any kind of data, especially if mul-
tiple heterogenous vocabularies are involved. How-
ever, there exists neither a standard way of trans-
forming RDF documents nor of transforming RDF
queries yet. Several concepts have been proposed so
far, each concentrating on different goals. This pa-
per presents a concept following a Logic Program-
ming approach, providing the amount of expressiv-
ity needed to build generic services for management
of RDF data. In this paper we will focus on several
transformation problems not satisfactory discussed
yet and we will provide an overview of the algo-
rithms and data structures needed to cope with these
problems.

1 Introduction

Technical advancements and the success of the Internet and
the World Wide Web in the last years lead to an explosion
of the amount of data available. Today, large parts of the
economic and social world directly depend on the availabil-
ity and processing of this data. However, the usefulness of
data can be greatly enhanced if it is described in an ex-
plicit, machine interpretable manner. A first step towards
such a machine interpretable data format was provided by
the W3C with the eXtensible Markup Language (XML),
which has already changed the way electronic business is
conducted today. However, XML basically only provides a
means for parser-reuse and a means for machines to auto-
matically check syntactical and structural document correct-
ness. Although standardised XML DTDs and XML Schemas
partially provide semantics for certain defined XML ele-
ments, the language concept of XML itself does not provide
any sufficient means to allow the semantics of a document
be expressed explicitly. Therefore, the W3C developed the
Resource Description Framework (RDF) [1], which is from
ground up designed to be capable of explicitly expressing se-
mantics of data. RDF does so by incorporating a very generic
model of knowledge representation: It allows to formulate
statementsby assigningpropertiescombined with property
valuesto resources, whereby a property value may be either
a literal or another resource.

An important cornerstone of our work is that RDF can be
seen as a language of First Order Predicate Logic, with re-
sources being subjects, properties being predicates and prop-
erty values either being subjects or constants. Direct quo-
tation of other statements is - just as in First Order Pred-
icate Calculus - not permitted. Instead, a syntactical tool

calledreification is provided for this purpose. Therefore, de-
sirable computational properties (e.g. efficiency, tractability)
are generally preserved for RDF, in opposition to Higher
Order-Predicate Calculi. RDF contains a reserved property
rdf:type which provides a standardised way of typing re-
sources. Typing of resources provides a basic means to
distinguish between schema definitions and instance data
which makes use of that schema definition. Several addi-
tional constructs (like property-range and -domain restric-
tions, subClass- and subProperty-relationships) were intro-
duced in the RDF Schema specification [2], which is used to
define schemas for RDF instance documents. As discussed
above, RDF is suitable to present any kind of information in
any complexity, without necessarily giving up computational
tractability. Another useful characteristic of RDF is that it is
- in opposition to XML - syntax agnostic. As described in
[3] and [4] XML provides an arbitrary big number of pos-
sible valid XML trees to representone logical model. RDF
on the other hand, provides exactly one tree for one logical
model. Thus, RDF can be seen as a means to reduce ambigu-
ity and complexity of models to a minimum. Obviously, this
characteristics of RDF is very useful for any task of schema
integration, because in general the complexity of any trans-
formation scheme tends to form a polynomial function of the
complexity of the source and the destination schema. There-
fore, the reduction of complexity of both sides can lead to
more efficient transformations.

However, XML is much more in use than RDF today, espe-
cially in business-to-business applications. For transforma-
tion between XML files mainly XML based techniques like
XSLT [5] are currently used to map XML files directly into
each other, leading to complex transformation and prepara-
tion tasks. As a solution to this problem a multi-layered ap-
proach to ontology1 integration was proposed in [7]. It dis-
tinguishes three separate layers of information: (1) the syntax
layer, which presents the XML surface syntax of data, (2) the
data model layer, which represents the logical model of the
document and may be represented using RDF, (3) the ontol-
ogy layer, which relates elements from the data model layer
to establish (domain-) specific conceptualisations. Accord-
ing to this approach, XML data can be transformed to RDF,
which in turn can be more easily processed and transformed
by machines. Applying this framework to our work, we can
use both XML for exchange with legacy systems and RDF
for intelligent processing and querying of data.

This paper is organised as follows: in section 2 we present
an overview of selected RDF transformation approaches and
concepts, and we position our approach in relation to these

1 This paper uses the definition provided by Gruber [6], who de-
fines an ontology as aformalisation of a conceptualisation.

102 Joachim Peer

concepts. In section 3 we then present our concept of RDF
and RDF query transformations and we briefly describe the
context of its application. In section 4 we present the process
model of our concept, concrete algorithms for transforming
RDF documents and RDF queries. We conclude the paper
with a short summary of findings and an outline of future
work.

2 Related Work

Currently there exists no standard way of transforming RDF-
encoded documents or RDF queries, although we can iden-
tify several approaches with different characteristics:

2.1 DAML+OIL sameAs Properties

The DAML+OIL language [8] provides a means to link on-
tologies together in a very Web-like fashion. It defines a
propertyequivalentTowhich can be assigned to any resource,
stating that the resource is semantically equivalent to an-
other resource specified. Derived from that basic property
three specialised propertiessameClassAs, samePropertyAs
and sameIndividualAsare defined, providing the ability to
associate classes with classes, properties with properties and
instances with instances. This kind of mapping definition
works well for integrating ontologies with minor structural
differences. Especially synonym relations can be marked up
and resolved in an inexpensive way. Another advantage of
this concept is that queries can be automatically propagated
to the related ontologies: Let us consider an ontology A,
which contains several sameAs-properties referring to con-
structs of ontology B. If an agent submits a query using
constructs of vocabulary A to a semantic search engine and
if the semantic search engine is aware of the DAML+OIL
based definitions of A and B, it should be able to expand the
query to the equivalent concepts of Vocabulary B. The draw-
back of the sameAs-properties of DAML+OIL is that com-
plex relationships between properties and classes need to be
expressed using class expressions likeRestriction-elements,
which can be used in DAML+OIL ontologies only. There-
fore, a full fledged DAML+OIL reasoner is needed to resolve
such relationships.

2.2 XSLT Inspired Approach: RDFPath/RDFT

Given the fact that RDF can be expressed using an XML
based notation called RDF/XML [1] and given the fact
that the XML world provides specifications with production
ready implementations for transforming XML documents -
namely XPath [9] and XSLT - it is tempting to use XPath
and XSLT to perform transformations on RDF/XML docu-
ments. However, given the fact, that there exist several dif-
ferent variants of RDF/XML (i.e. abbreviated serialisations)
it turns out that using pure XPath/XSLT for transformations
is a tedious and improper approach.

An approach trying to overcome this problem and still
being modelled very closely after the XML transformation
tools XPath and XSLT is the RDFPath/RDFT approach pre-
sented in [10]. Just as in the XML-specific versions of these
languages, RDFPath is used to localise information in an
RDF model and to specify the path between two nodes in

a model. RDFT is, similar to XSLT, used to relate a source
document with a destination document, using the expres-
sions defined using RDFPath. The advantage of using RDF-
Path/RDFT over XPath/XSLT is that it abstracts from the
actual RDF/XML serialisation syntax, making RDF-to-RDF
transformations possible independent from the serialisation
format used. However, RDFT still focuses more on structure
than on the meaning of RDF documents. Characteristically,
it does not allow custom rules to be defined, making it diffi-
cult to resolve transitive relationships defined in custom RDF
schemata. Although RDFT is therefore not well suited for
complex RDF-RDF transformations, it may provide a good
concept for mapping XML to RDF and vice versa.

2.3 Performance Optimised Approach: RDF-T

A concept explicitly designed for the task of RDF trans-
formation is RDF-T [11]. It provides constructs (called
Bridges) to define relations between RDF schema classes
(using ClassBridges) and RDF property definitions (using
PropertyBridges) respectively. To define the characteristics
of an association drawn by a certain Bridge RDF-T provides
two propertiesrdft:Relationandrdft:Condition. Equivalence
relations, which we are particularly interested in, are repre-
sented by Bridges with a property ”Relation” of value ”Map”
and with a property ”Condition” containing the values ”Nec-
essary” and ”Sufficient”. Both ClassBrigdes and Property-
Bridges are capable of representing one-to-one, one-to-many
and many-to-many relationships.

This goal can also be achieved using the sameAs-
properties of DAML+OIL presented above: To specify 1:n
mappings using sameAs-properties DAML+OIL class ex-
pressions likedaml:Unioncan be used. However, as already
mentioned above, this would require the full machinery of a
DAML+OIL reasoner.

The philosophy behind RDF-T is a different one: One of
the core requirements of RDF-T is performance and it is
reasonable that specialised constructs as provided by RDF-
T can be processed much faster than general multi-purpose
constructs as represented by DAML+OIL. However, a po-
tential disadvantage of RDF-T is that it permits only homo-
geneous mappings between classes and classes and between
properties and properties. Cross-mappings between classes
and properties (or vice versa) are not permitted. For certain
areas and for certain controlled vocabularies this may be a
valid assumption and the performance advantage gained by
this simplification will justify the loss of mapping expres-
siveness in many cases. However, in a Semantic Web context
this simplification can not be uphold. Though it is true that
RDF provides exactly one representation of one interpreta-
tion (model) of a world, we must consider that there are, of
course, severaldifferentmodels of that world which can fol-
low very different modelling paradigms.

2.4 KR-Transformation Approach

An approach with very high expressiveness is represented
by OntoMorph [12]. OntoMorph is designed to transform in-
stance data between different knowledge bases. OntoMorph
allows to transfer meaning even between knowledge bases
using different logical and modelling paradigms, and using

A Logic Programming Approach To RDF Transformation 103

different notations. OntoMorph achieves the transformation
using so-calledrewrite rules. It defines two levels of trans-
formation - the syntactical and the semantical level - and for
each of these two levels it provides a special kind of rewrite
rules:Syntacticalrewrite rules are used to transfrom different
sentences from one knowledge respresentation (KR) - syntax
to another; syntactical rewrite rules have the formpattern⇒
result, whereby pattern and result are Lisp-style representa-
tions of the parse trees of terms to be translated. Because
syntactical rewrite rules provide no means for inference, On-
toMorph also providessemanticalrewrite rules: On the left
side of a semantical rewrite rule is a PowerLoom-expression
(which is a typed variant of a KIF expression) which de-
termines and selects certain instances from the knowledge
base. On the right side of the semantical rewrite rule is an-
other PowerLoom expression for reclassifying the translated
instances.

Although adapting OntoMorph to the domain of RDF
transformations would be conceivable, we think that doing
so may give away many opportunities for simplifications:
Because our transformation approach is restricted to a sin-
gle metamodel - the RDF model - we are able to dispense
some of the heavy weight expressive features of OntoMorph,
including the necessity of Full First Order inference systems
like PowerLoom.

2.5 Logic Programming Approach

An approach closely related to the RDF data model is pre-
sented in [13], which facilitates a Logic Programming2 ap-
proach.

The concept presented in [13] presents a meta-data ar-
chitecture which distinguishes between three levels of data:
instance level data (e.g. RDF triples, Topic Map Instances,
XML elements), schema level data (e.g. RDF- or Topic Map
Schemas, XML DTDs), and model constructs (RDF model,
Topic Map model, XML model). The idea behind that con-
cept is that the definition of a common - RDF based - meta-
model on top of the data model, similarly to the metamod-
elling concepts presented in [14] and [15] may provide a
means of universal translation between these models. This
claim is based on the premise that each level of the archi-
tecture can be viewed as an instantiation of the levels above
it. More specifically, model constructs are seen as particular
instantiations of the abstractions defined by the metamodel,
schema-level data as particular instantiations of the model’s
schema constructs, and instance-level data are interpreted as
instantiations of the model’s instance constructs. However,
since the metamodel described in [13] is expressed using
RDF, the findings of this paper are interesting to us indepen-
dently of the metamodel-concept itself. From our perspective
it is irrelevant if the RDF triples to be transformed represent
instance-, schema-, metaschema-data or other superimposed
information.

A transformation between two documents is defined by a
mapping definition M: M consists of a set of mapping rules
T ⇒ T’, where T and T’ are sets of S predicates (definition
given below). The rule can be read as follows: the left-hand

2 This paper uses the classical definition of this term, primarily
referring to Horn Logic based languages like Prolog and Datalog.

side S-predicates must be true in order to generate the right-
hand side S-predicates (i.e., the right-hand side S-predicates
areproducedby the rule). S, also called aproduction rule, is
a predicate of the form S(L, t) that is true if t∈ L, which is
a database of triples for a layer of information. Finally, the
predicate t(subject, predicate, object) presents an RDF triple.
As briefly sketched in the introduction section, RDF can be
interpreted as an application of First Order Predicate Calcu-
lus. Thus, the approach presented in [13] promises to fit the
characteristics of RDF very well. However, some problems
we are concerned with in RDF transformation are not treated
by this concept: One of these problems is the mapping of
RDF graphs with major structural differences, which poses
certain problems not discussed yet. Another open issue not
satisfyingly treated yet is the transformation of queries.

2.6 Our Position

We presented several approaches for translating RDF infor-
mation. Promising approaches include RDF-T, which em-
phasises performance rather than expressive power. At the
other end of the spectrum is the Full First Order Logic-based
approach presented by OntoMorph. Our approach is posi-
tioned in the range between these two concepts, building on
the findings presented in [13]. Additionally to the concept
described in [13] we focus on several questions important
to us, including the correct introduction and assignment of
anonymous nodes and the translation of queries.

3 The Proposed Concept

The concept presented serves as foundation for a part of a
larger system for storage and intelligent retrieval of RDF en-
coded data. This system is designed to be used as an infras-
tructural component in distributed systems, thus proving a
generic service according to [16].

Beside the ability to develop and facilitate domain specific
queries for intelligent data retrieval one of the core require-
ments (and reasons for facilitating RDF) is the support of in-
teroperability between multiple heterogeneous vocabularies.
We identified two requirements for interoperability between
vocabularies: The first requirement is the ability to transform
RDF instance data from one vocabulary into another (e.g.
to convert e-business documents). The second requirement
is the ability to transform queries executed against an RDF
triple store. The latter requirement is needed particulary if
the RDF documents queried use multiple different vocabu-
laries (e.g. RDF Schemas) and if queries should still be able
to reach most of the data.

3.1 Representing RDF Data and RDF Queries

At first we need to define the objects of interest for our trans-
formation concept and how they are represented.

Representing RDF Data As already described on several
places (e.g. in [17] and [18]) RDF statements can be repre-
sented as logical expressions. However, instead of defining a
triple (P,S,O) directly as predicate P(S,O), we follow the ad-
vise of [19] and define it as a ternary relation (which we will
call triple, throughout this paper)

104 Joachim Peer

triple(Subject,Predicate,Object).

The reason for choosing ternary relations is that statements
about properties (e.g. subProperty-relationships) would lead
to unwanted higher order constructs if the statements would
be expressed using binary relations.

An RDF document can therefore be represented as a set
of ternary predicatestriple. However, if the content of mul-
tiple RDF documents needs to be managed and processed, it
is necessary to preserve the URI of the location the triples
originally stem from. This information can be stored in a fact
data, whereby the URI of the documents containing the triple
is represented by the variableUri :

triple(Subject,Predicate,Object) :-
data(Uri, Subject,Predicate,Object)

Representing RDF QueriesSeveral RDF Query languages
and systems have been proposed following approaches like
the database approachor theknowledge base approach, as
identified in [20]. The database approach interprets an RDF
document primarily as an XML document, which leads to
several drawbacks described in [20]. For this reason, all of
the recently presented RDF Query languages and systems ad-
here to the knowledge base approach, explicitly dealing with
RDF triples instead of document trees. It is easy to see that
the knowledge base approach of RDF querying fits the abil-
ities of Logic Programming well. Queries can be expressed
as (Horn-) rules, which may be asserted to and executed by
any Logic Programming based engine.

The semantics of RDF query languages like RQL [21],
RDFDB-QL [22], SQUISH [23] or Sesame [24] can be ex-
pressed using Horn rules, even if the concrete implementa-
tions use imperative languages instead of Logic Program-
ming. In fact, these implementations can be seen as spe-
cialised versions of Logic Programming algorithms like SLD
resolution, which are (per se) imperative as well. Therefore
we suggest that the representation of RDF queries as Horn
rules is a very natural one. Several alternative logic based no-
tations to express RDF queries have been proposed, includ-
ing Frame-logic based notation as presented in [25]. How-
ever, even these notations can be translated back to Horn
rules as shown in [25]. Using Horn rules to represent RDF
queries leads to a query format as follows:

query(arguments) :-
rulehead1(arguments),
...
ruleheadN(arguments).

...
query(arguments) :-

rulehead1(arguments),
...
ruleheadM(arguments).

Each query may consist of a set of conjunctions as de-
picted above. Each conjunction consists of a set of ruleheads
containing arguements (atoms and variables).

Representing Rules Formulating RDF statements and
queries in the way described above opens the door for Logic
Programming-based processing of that data. As shown in

[26] and [25], rules may be defined that operate upon these
facts. In general we can distinguish two toplevel types of
rules for our concept:

– System rules, which are needed to provide basic predi-
cates liketriple.

– Individual rules, which build on the set of system rules.

We can distinguish several types of individual rules: They
may be defined to derive information according to semantics
defined by formalisms like RDF Schema or DAML+OIL. For
instance, asubClassOfrule may be defined to determine the
transitive closure of the subClassOf-relationsship provided
by RDF Schema, (further examples for such rules are pre-
sented in [27]) Another type of rules may encapsulatedo-
main specificknowledge. Individual rules may be used just as
system rules in both queries and mapping definitions. The re-
quirements and restrictions for using individual rules in map-
ping definitions are discussed in section 4.3.

3.2 Transformation Rules

We follow the approach presented by [13] and specify a
transformation schema as a set of rules. At first glance, this
may also look similar to the concept of rewrite rules as pre-
sented in [12]. However, the focus on a specific modelling
paradigm and data model (i.e. RDF) allows us to propose
several modifications and simplifications. First, we do not
need to distinguish between syntactic and semantical rewrite
rules. We can offer a single integrated rewrite method, which
transforms one RDF graph into another, operating on both
the syntactical and the semantical level, whereby the distinc-
tions between these two levels is unimportant in this context.
Second, because both source and destination documents ad-
here to the same metamodel (i.e. RDF), we deal with trans-
lations of much less inherent complexity. This allows us to
formulate mappings not only as unidirectional implications
(denoted as ’⇒’), but also as equivalences (denoted as ’⇔’).

A specification of a transformation schema T consists of:

– a disjunction of n equivalences. Each equivalence E con-
sists of two conjunctions of rule-heads, interconnected
by an equivalence operator⇔. Each rule-head can take
any number of arguments. Arguments can be atomic val-
ues (literals) or logic variables.

– an optional set of facts about the relationships between
variables assigned to the rule-heads. Syntax and seman-
tics of these optional facts are described in section 4.4.

To illustrate this concept, we will provide an example
for a tranformation of e-business documents. We will use
this example throughout this paper for illustration purposes.
The example makes use of two ontologies c and d, de-
rived from XML based e-commerce standards. The RDF
schema definitions of these ontologies are available online
at http://elektra.mcm.unisg.ch/wm.

One of the differences between the ontologies c and d is
that they provide different concepts for the term ”supplier”.
Ontology c provides an explicit class for this term, whereas
d treats suppliers as an organisation with a special attribute
value associated. The transformation between instance data
of c and d therefore needs a mapping statement like ”all Re-
sources X which are type c:Supplier are equal to Resources

A Logic Programming Approach To RDF Transformation 105

X of type d:Organization, given that a property d:Role with
value ’supplier’ is assigned to that resource”. This statement
can be expressed as a logical equivalence as follows:

type(?X,’c:Supplier’)
<=>
type(?X,’d:Organization’),
triple(?X,’d:role’,’supplier’)

According to the nature of logical equivalence, this trans-
formation rule may be read in both directions. Evaluating it
from left to right leads to abranchingof nodes, in the other
direction it leads to aconflationof nodes. Depending on the
translation direction each side of the equivalence serves ei-
ther as matching rule or as production rule.

Large ontologies may lead to complex mapping expres-
sions. Therefore, we provide ”syntactical sugar” in the
form of substitution rules. Consider the following exam-
ple: Large parts of the complex mapping statement ”all
Resources X with a property c:supplierLocation SL with
a c:address A (of type c:Address) with a c:postalAddress
PA (of type c:PostalAddress) with a c:street S is equiva-
lent to a Ressource X whichc:has_address PA (of type
d:Address) with a d:street S” can be encapsulated in substitu-
tion rules (e.g. addressLeft and addressRight), thus enabling
readable mappings:

addressLeft(?X,?SL,?A,?PA),
triple(?PA,’c:street’,?S)
<=>
addressRight(?X,?SL,?A,?PA),
triple(?PA,’d:street’,?S)

The complex substitution rules themselves may be defined
once in a document and can be reused by other rules.

addressLeft(?X,?SL,?A,?PA) :-
triple(?X,’c:supplierLocation’,?SL),
triple(?SL,’c:address’,?A),
type(?A,’c:Address’),
triple(?A,’c:postalAddress’,?PA),
type(?PA,’c:PostalAddress’)

addressRight(?X,?SL,?A,?PA) :-
triple(?X,’d:has_address’,?PA),
type(?PA,’d:Address’)

Without substitution rules, the matchings would look as
follows:

triple(?X,’c:supplierLocation’,?SL),
triple(?SL,’c:address’,?A),
type(?A,’c:Address’),
triple(?A,’c:postalAddress’,?PA),
type(?PA,’c:PostalAddress’),
triple(?PA,’c:street’,?S)
<=>
triple(?X,’d:has_address’,?PA),
type(?PA,’d:Address’),
triple(?PA,’d:street’,?S)

4 Execution Model and Algorithms

After presenting the underlying concepts and the static struc-
ture of our proposed concept, we will now focus on the algo-
rithmic aspects.

4.1 Transforming Ontologies

We introduce the following pseudocode representation of our
algorithm to ease its discussion:

(1) for each equiv. E in
Mapping-Rulebase {

(2) extract source rule part RPS
from E.

(3) extract destination part RPD
from E.

(4) find all solutions for RPS in
the triple store.

(5) for each solution S {
(6) gather values of bound

variables from the current
solution.

(7) for each rule-head R in RPD {
(8) for each variable argument

V in R {
(9) if a binding for V is part

of the solution {
(10) unify with that value.
(11) } else {
(12) unify with a new id.
(13) }
(14) }
(15) }
(16) assert equivalent triple in

destination triple store.
(17) }
(18) }

The basic tranformation algorithm presented above can be
described as follows. The transformation engine iterates over
a set of defined equivalences (line 1). Each of the equiva-
lences is split up in its left and its right side (lines 2, 3). De-
pending on the direction of the transformation process, one
side of each equivalence is used as matching rule and the
other side is used as production rule. For each matching rule
all solutions can be found using Logic Programming resolu-
tion techniques like SLD (line 4). These solutions represent
the essential information of the source document that need to
be incorporated into the destination document. The algorithm
iterates over all found solutions (line 5, 6). For each rulehead
(line 7) and each variable argument (line 8) the current solu-
tion is searched for values of matching variables. If a value
is found, then the resp. variable argument is unified with that
value (lines 9, 10). Otherwise a new (random) value is cre-
ated and assigned to the variable argument (lines 11, 12). In
any case, the values assigned to the variable arguments of
the production rule will be used to create new triples in the
destination document (line 16).

If we apply this algorithm (together with the equivalences
defined in section 3.2) to the following RDF fragment

106 Joachim Peer

<c:Supplier about="http://org1.com" />

then it will be transformed to its pendant

<d:Organisation about="http://org1.com">
<d:role>supplier</d:role>

</d:Organisation>

However, under certain conditions this basic algorithm
produces unwanted results. In section 4.4 we will analyse
these conditions and present an extension to this algorithm to
eliminate the unwanted behaviour.

4.2 Tranforming Queries

We suggest that a query can be seen as a special instantiation
of a document schema. Therefore, most parts of the algo-
rithm for document transformation as described above can
be applied to queries.

The first step in a query transformation process is to trans-
form the query into the same form as any other RDF docu-
ment to be transformed, so that we can apply our transforma-
tion algorithm on it. We will illustrate this using the follow-
ing example query:

q(X) :- triple(?X, ’isa’, ’c:Supplier’),
triple(?X, ’c:name’, ?N),
substring(?N, ’computer’)

q(X) :- triple(?X, ’isa’, ’c:Supplier’),
triple(?X, ’c:name’, ?N),
substring(?N, ’hardware’)

This query will be transformed to sets of ground rules,
which we will callquery stores. A query store contains all el-
ements (conjunctions) of a disjunction of a query. If a query
consists of N disjunctive parts, then N query stores will be
generated. The query above consists of 2 disjunctive parts
(i.e. N=2), therefore 2 query stores will be generated.

All variables in each query store are substituted by literals.
After substitution, the query stores for the query above may
look as follows:

triple(’varX’, ’isa’, ’c:Supplier’),
triple(’varX’, ’c:name’, ’varN’),
substring(’varN’,’computer’)
<=>
triple(’varX’, ’isa’, ’c:Supplier’),
triple(’varX, ’c:name’, ’varN’),
substring(’varN’,’hardware’).

Now, after the logic variables are treated as simple atoms,
we can apply the core algorithm provided above. All we need
to do is to wrap an additional iteration around the algorithm
as a whole (we introduce new lines 0 and 19). The adapted
algorithm may be expressed in pseudocode as follows:

(0) for each query store QS in the sets
of querystores {

(1) for each equiv. E in
Mapping-Rulebase {

(2) extract source rule part RPS
from R.

/** equal to
algorithm above **/

(18) }
(19) }

In the example case above, both query stores are processed
according to our algorihm, therefore twodestination con-
junctionsare constructed:

Conj. #1:
triple(’varX’,’type’,’d:Organisation’),
triple(’varX’,’d:role’,’d:Supplier’),
triple(’varX’,’d:org_name’,’varN’),
substring(’varN’,’computer’).

Conj. #2:
triple(’varX’,’type’,’d:Organisation’),
triple(’varX’,’d:role’,’d:Supplier’),
triple(’varX’,’d:org_name’,’varN’),
substring(varN,’hardware’).

After this transformation step, a simple substitution of the
masked variable names (varX, varN) will finish the conver-
sion of the query from vocabulary c to d:

q1’(X) :-
triple(?X,’type’,’d:Organisation’),
triple(?X,’d:role’,’d:Supplier’),
triple(?X,’d:org_name’, ?N),
substring(?N, ’computer’).

q1’(X) :-
triple(?X, ’type’,’d:Organisation’),
triple(?X, ’d:role’,’d:Supplier’),
triple(?X, ’d:org_name’, ?N),
substring(?N, ’hardware’).

4.3 Resolution of Production Rules

If a matching rule of a side of an equivalence evaluates to true
and binds free logical variables, we suppose the system to
trigger actions to produce the equivalent values on the other
side. We have to distinguish three kind of production rules:

– triples
– rules that can be reduced to a single conjunction of

triples
– rules that cannot be reduced to a single conjunctions of

triples

The first kind of rules, i.e. triples, are very easy to han-
dle. The algorithm only needs to substitute variable names
with their concrete bindings; the same is true for the sec-
ond kind of rules. However, there are rules that cannot be
directly translated to conjunctions of triples. These are rules
containing native rules (e.g. Prolog library predicates) or re-
cursion. Such rules can not be used as production rules di-
rectly, because the system would not be able to determine its
reciprocal semantics. Therefore it is necessary to define this
semantics individually.

As an example let us consider the recursive defined rule
type which reflects semantics of RDF Schema, namely the
transitive relationship between types and their subclasses.

A Logic Programming Approach To RDF Transformation 107

type(?I,?C) :-
triple(?I, ’rdf:type’, ?C).

type(?A, ?CSuper) :-
subClassOf(?Super, ?CSuper),
type(?A, ?Super).

subClassOf(?C1,?C2) :-
triple(?C1, ’rdf:subClassOf’, ?C2).

In the case of ontology transformation, an alternative pro-
duction rule triple(I, ’rdf:type’, C) may be individually as-
signed for the rule type(I,C). This will ensure that the knowl-
edge about the class membership of a certain resource will
be translated safely. However, in the case of query transla-
tion, this substitution is not always applicable, because in a
context of a query the modified semantics of the construct
can lead to unwanted consequences like too narrow or too
wide search spaces. For instance, if type(I,C) is a conjunctive
part of a query and if it is transformed to triple(I, ’rdf:type’,
C), the search space of the query is narrowed. Therefore, in
the case of query transformations many rules may be trans-
ferred unmodified. This was the case for thesubstring -
predicate, which was involved in the transformation example
above.

4.4 Dealing with Structural Differences

In many cases ontologies to be mapped show significant
structural differences that need to be captured by a proper
mapping mechanism. Consider the example ontologies c and
d, which model the concept ofaddressesin a very different
way: Ontology c is more generic and distinguishes multiple
SupplierLocations , which may consist of several ab-
stractAddresses with multiple PostalAddresses . In
contrast, ontology d defines the postal addresses of an or-
ganisation directly using a propertyhas_address . This is
illustrated in figure 1.

Fig. 1.Example of structural differences

If we need to map the conceptsc:street and
c:postalCode with their respective pendants
d:zipCode and d:street , we can, based on the
findings above, formulate two equivalences as follows (note
that these equivalences can be written down significantly
shorter using substitution rules as described above, but the
notation below reflects the problem depicted in figure 1 more
transparently):

triple(?X,’c:supplierLocation’,?SL),
triple(?SL,’c:address’,?A),
type(?A,’c:Address’),
triple(?A,’c:postalAddress’,?PA),
type(?PA,’c:PostalAddress’),
triple(?PA,’c:street’,?S)
<=>
triple(?X,’d:has_address’,?PA),
type(?PA,’d:Address’),
triple(?PA,’d:street’,?S)

triple(?X,’c:supplierLocation’,?SL),
triple(SL,’c:address’,?A),
type(A,’c:Address’),
triple(?A,’c:postalAddress’,?PA),
type(?PA,’c:PostalAddress’),
triple(?PA,’c:postalCode’,?Z)
<=>
triple(?X,’d:has_address’,?PA),
type(?PA,’d:Address’),
triple(?PA,’d:zipCode’,?Z)

Before we will present our solution, we will shortly dis-
cuss the problems sketched above in more detail. In our dis-
cussion we distinguish two common problems:

Problem of Branching If the equivalencies above are eval-
uated from left to right, i.e. from the simpler to the more
complex structure, the problem arises that there are no bound
values for the variables SL and A, because these variables
do not occur on the right side of the equivalence. The con-
cept described in [13] partially solves this problem by intro-
ducing a 0-ary Skolem functionguid() that delivers a unique
identifier to be unified with an unbound variable. However,
this approach only works if it is admitted that for each occur-
rence of a production rule containing an unbound variable
and its associated guid() function a new resource is gener-
ated. In many situations, including the situation above, this is
not the case: A translation algorithm successfully transform-
ing the example in figure 1 needs tore-useanonymous re-
source already generated, to preserve the semantic structure
of the transformed document.

Problem of Conflation The case of conflation may look less
error prone at the first glance: If the equivalences above are
evaluated from left to right, i.e. from the more complex to the
simpler structure, the bindings of the variable PA are used to
construct the simpler structure on the right side. Because all
nodes already exist, there is no problem of generating (un-
wanted) new anonymous ressources. However, if somewhere
in the mapping definition another equivalence dealing with
the address-objects exists, we run into a similar problem.
Consider the following equivalence:

triple(?X,’c:supplierLocation’,?X_SL),
triple(?X_SL,’c:address’,?A),
type(?A,’c:Address’),
triple(?A,’c:phone’,?P),
triple(?P,’c:name’,’CustomerCare’),
triple(?P,’c:value’,?V)

108 Joachim Peer

<=>
triple(?X,’d:has_address’,?A),
type(?A,’d:Address’),
triple(?A,’d:servicePhone’,?V)

The problem is, that the above equivalence is agnostic
of the entity ”postalLocation”. Therefore a tranformation
engine would use the value ofA to construct the object
for the statementtriple(X,’d:has_address’,A) on
the right side. However, the rules for translating ”street” and
”postalCode” objects (introduced in our examples above)
use the value of the postalAddressPA to create the same
construct. If these rules are used together in a single trans-
formation process (which would be desirable) these con-
flicts may become acute, leading to multiple occurrences of
has_address properties constructed in the resulting doc-
ument, which is unwanted.

Solution Each equivalence per se is logically correct (i.e. the
relationships of the variables are correctly formulated in each
equivalence), but in conjunction problems arise, because the
relationships between the variables across multiple equiva-
lences are undefined. Therefore, it is necessary to introduce
additional factsthat provide meta-information about the re-
lationships of the logic variables used in the production rules.

To solve the problem of branching for the example above,
we need to define the relationships of the potentially conflict-
ing variables. This can be achieved using a fact as follows:

dependence(’c’, [’X’, ’SL’, ’A’, ’PA’]).

This fact tells the translation engine that on the sidec the
variable PA depends on the variable A, which depends on
the variable SL, which depends on the variable X. For the
translation engine this means that, before assigning any value
to one of these variables (e.g. A) it has to compare the cur-
rent solutions for variables it depends on (e.g. X, SL) with
solutions of other equivalencies already processed. If such
a combination was found (e.g. a solution for X, SL and A,
produced while processing some other equivalence) then the
existing value of the dependent variable is taken in favour of
using the current binding or even creating a new one. This
kind of value-tracking can be implemented using data struc-
tures like trees.

Therefore we can now complete our algorithm for
document- and query transformation by replacing lines 9-13
with lines 9-22 of the pseudocode fragment below:

(7) for each rule-head R in RPD {
(8) for each variable

argument V in R {
(9) if(V is a dependent variable) {
(10) if solution-tree contains

matching existing values {
(11) unify with value found.
(12) add solution to

solution-tree.
(13) continue with next

variable.
(14) }
(15) }
(16) if a binding for V is part

of the solution {
(17) unify with that value.
(18) } else {
(19) unify with a new id.
(20) }
(21) add solution to solution-tree.
(22) }
(23) }

Each variable argument V is now tested if it is a dependent
variable, by looking up the set of defineddependence -
facts (line 9). If V is a dependent variable, a test for exist-
ing bindings is conducted (line 10). For this purpose the al-
gorithm uses a tree-structure which holds all variable values
used by production rules and which can be queried for exist-
ing bindings. If such a combination of values is found, then
the corresponding value is retrieved from the tree structure
and is assigned to V (line 11).

If the variable V is not a dependent variable or if no match-
ing combination of existing variable bindings was found,
then the algorithm proceeds by consulting the current solu-
tions (lines 16-20), as already introduced by the first version
of our algorithm in section 4.1.

In any case, a successful unification must be stored in the
solution tree (lines 12 and 21). This ensures that the bindings
are available for later iterations.

5 Summary and Outlook

RDF provides a good framework for effectively storing and
retrieving data, especially if multiple heterogenous vocabu-
laries are involved. Despite this fact, there exists neither a
standard for transforming RDF documents nor for transform-
ing RDF queries yet. However, several concepts have been
proposed so far, concentrating on different goals (e.g. expres-
siveness, performance). Our concept follows the approach of
applying Logic Programming as presented already in [13],
because it provides the expressivity that we need to build
generic transformation services. In this paper we focused on
problems not satisfactory discussed yet, e.g. the problems
arising when transforming documents with substantial struc-
tural differences.

As a proof of concept we have developed a first
version of a prototype incorporating the concepts pre-
sented in this paper. It can be accessed online via
http://elektra.mcm.unisg.ch/wm.

However, there are many other issues related with trans-
forming RDF documents that are not discussed in this paper:
among these problems are the correct transformation of RDF
collections and reified statements. Another problem not ex-
plicitly addressed in this paper is the problem of the seman-
tics of negation (”not”) used in transformation rules.

References

1. Lassila, O., Swick, R.: Resource description framework (RDF)
model and syntax specification. W3C Recommendation (1999)
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

2. Brickley, D., Guha, R.: Resource description frame-
work(RDF) schema specification 1.0. W3C Candidate
Recommendation (2000) http://www.w3.org/TR/2000/CR-rdf-
schema-20000327/.

A Logic Programming Approach To RDF Transformation 109

3. Berners-Lee, T.: Why RDF model is different from
the XML model. Informal note (Draft) (1998)
http://www.w3.org/DesignIssues/RDF-XML.html.

4. Berners-Lee, T.: Using XML for data. Informal note (Draft)
(1998) http://www.w3.org/DesignIssues/RDF-XML.html.

5. Clark, J.: XSL transformations (xslt). W3C Recommendation
(1999) http://www.w3.org/TR/xslt.

6. Gruber, T.R.: A translation approach to portable ontologies.
Knowledge Acquisition5(2) (1993) 199–220

7. Omelayenko, B., Fensel, D.: Scalable document integration
for b2b electronic commerce. Electronic Commerce Research
Journal, Special Issue (submitted) (2002)

8. Horrocks, I., van Harmelen, F., Patel-Schneider, P.:
Reference description of the DAML+OIL ontology
markup language. Language specification (2001)
http://www.daml.org/2001/03/daml+oil-index.html.

9. Clark, J., DeRose, S.: XML Path language (xpath). W3C Rec-
ommendation (1999) http://www.w3.org/TR/xpath.

10. Kokkelink, S.: RDFPath: A path language for RDF. In prepa-
ration (2001) http://zoe.mathematik.uni-osnabrueck.de/QAT/
Transform/RDFTransform/RDFTransform.html.

11. Omelayenko, B., Fensel, D., Klein, M.: RDF-T: An RDF
transformation toolkit. WWW 2002 (submitted) (2002)
http://www.cs.vu.nl/ borys/papers/RDFT-WWW02.pdf.

12. Chalupsky, H.: OntoMorph: A translation system for
symbolic knowledge. In: Principles of Knowledge
Representation and Reasoning. (2000) 471–482 cite-
seer.nj.nec.com/chalupsky00ontomorph.html.

13. Bowers, S., Delcambre, L.: Representing and transforming
model based information. In: Proc. of the Workshop of the
Semantic Web at the 4th European Conference on Research
and Advanced Technology for Digital Libraries (ECDL-2000).
(2000)

14. Object Management Group: Meta object facility (MOF)
specification. OMB Document ad/99-09-04 (1999)
http://www.omg.org/cgi-bin/doc?ad/99-09-04.

15. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling
Language User Guide. Addison Wesley (1999)

16. Schmid, B., Lechner, U.: Communities and media - towards a
reconstruction of communities on media. In Sprague, E., ed.:
Hawaiian Int. Conf. on System Sciences (HICSS 2000), IEEE
Press (2000)

17. Marchiori, M., Saarela, J.: Query + metadata + logic =
metalog. QL’98 - The Query Languages Workshop (1998)
http://www.w3.org/TandS/QL/QL98/pp/metalog.html.

18. Fikes, R., McGuinness, D.: An axiomatic semantics for RDF,
RDF Schema, and DAML+OIL. KSL Technical Report KSL-
01-01 (2001)

19. Hayes, P.: RDF model theory. W3C Working Draft (2002)
http://www.w3.org/TR/rdf-mt/.

20. Karvounarakis, G.: RDF query lan-
guages: A state-of-the-art (1998)
http://139.91.183.30:9090/RDF/publications/state.html.

21. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis,
D., Scholl, M.: RQL: A declarative query language for RDF.
In: The Eleventh International World Wide Web Conference
(WWW’02). (2002)

22. Guha, R.: RDFDB : An RDF database (2000)
http://rdfdb.sourceforge.net/.

23. Miller, L.: RDF query: Squish QL (2001)
http://swordfish.rdfweb.org/rdfquery/.

24. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: a
generic architecture for storing and querying RDF and RDF
schema. In Horrocks, I., Hendler, J., eds.: Proc. of the 2002 In-
ternational Semantic Web Conference (ISWC 2002). Number
2342 in Lecture Notes in Computer Science, Springer-Verlag
(2002) To appear.

25. Decker, S., Sintek, M.: TRIPLE-an RDF query, inference,
and transformation language. In Horrocks, I., Hendler, J.,
eds.: Proc. of the 2002 International Semantic Web Conference
(ISWC 2002). Number 2342 in Lecture Notes in Computer Sci-
ence, Springer-Verlag (2002) To appear.

26. Conen, W., Klasping, R.: A logical interpretation of RDF. Elec-
tronic Transactions on Artificial Intelligence (ETAI) (under re-
view) (2001)

27. Zou, Y.: DAML XSB rule version 0.3. working paper (2001)
http://www.cs.umbc.edu/ yzou1/daml/damlxsbrule.pdf.

Information Retrieval System Based on Graph Matching

Takashi Miyata1 and Kôiti Hasida1,2

1 Core Research for Evolutional Science and Technology,
Japan Science and Technology Corporation

miyata.t@carc.aist.go.jp
2 Cyber Assist Research Center,

National Institute of Advanced Industrial Science and Technology
hasida.k@aist.go.jp

1 Introduction

The recent increase of online documents demands more and
more laborious work to obtain necessary information. Infor-
mation retrieval (IR) systems play an important role here. An
IR task fundamentally relies on matching two different rep-
resentations: the query and the answer in the database. This
matching requires sophisticated and complicated inferences
based on background knowledge and/or context in general.

Suppose that the query contains keyword ‘build.’ In a con-
text related to housing, ‘build’ is similar to ‘construct.’ In a
context related to career, it would be similar to ‘promote.’
It is impossible to infer such contexts only from the limited
input. Some kind of collaborativeinteractionwith the user
is indispensable here. This interaction is mediated by the se-
mantic structures of the query and the database. Considering
the semantic structures around the retrieved answer candi-
dates, the IR system can better focus on the right answer, and
the user can revise her queries efficiently.

Although IR with linguistic structure[2] and IR with
interaction[1] have been separately studied by number of re-
searchers, we believe that their combination provides valu-
able hints both for the user and the system.

2 Interaction in Query Revision

Suppose that the user wants to retrieve documents which re-
port on a house built with lower cost by robots, and inputs
the graph in Fig. 1. The system will return thousands of doc-

house

cheap
build

��
@@ use

robot
@@

Fig. 1.Graph for “Build a House Cheaply (by) Using Robots.”

uments, which appear irrelevant. The system, however, also
indicates that the input keyword ‘house’ is often directly re-
lated (through syntactic dependency or anaphora) with verb
‘construct.’ The user then recalls that ‘construct’ is a syn-
onym of ‘build.’ She also recalls ‘inexpensive’ as a synonym
of ‘cheap.’ There are still thousands of seemingly irrelevant
candidates. The user notices that the agent of ‘build’ could
be ‘robot’ and revises her query graph by adding a link be-
tween ‘robot’ and ‘build.’ The number of documents reported
by the system remains the same but the ranking among them
changes, and the user notices that the highest ranked docu-
ment is the one she wants.

Similar situations were observed during our preliminary
experiment on 15 example retrieval tasks. The subject added
0.8 keywords by himself, picked up 3.73 synonyms from the
thesaurus, and adopted 0.53 keywords/synonyms from the
list of words often directly semantically related to input key-
words. Although the synonyms/keywords of this last type are
not very many, these words play an important role in query
revisions to raise the rank of the correct answers. Since the
thesaurus used in this experiment is of a general nature, its
coverage is far from complete. Even if the thesaurus were
specific to a particular domain, it could not be specialized to
a particular retrieval task. Indicating such words only by a
thesaurus would be impossible in practice.

3 Matching and Scoring Algorithm

A query graph can be formalized as an extension of conven-
tional “conjunctive normal form” of keywords,(k1,1 ∨ · · · ∨
k1,n1) ∧ · · · ∧ (km,1 ∨ · · · ∨ km,nm), where eachki,j is a
keyword. We regard each conjunct as a vertex, and introduce
edges among vertices. A vertex is labeled by one or more
keywords.

Our matching algorithm is divided into two phases. The
first phase considers only the correspondence and simi-
larity between vertices. The similarity score of each sub-
graph in the database (also a graph) against the input query
graph is calculated. To reduce computational complexity,
we have developed an incremental tabulation-based enumer-
ation algorithm based on Chart parsing with sophisticated
scheduling[3]. The second phase adjusts the similarity score
of each candidate subgraph by checking whether edges in
the query graph correspond to those in the candidates. Given
the correspondence among vertices, which can be calculated
in O(kN) time (k: # keywords,N : the maximum # docu-
ments that contain a keyword) by an inverted file, the com-
putational complexity of match finding isO(nr) (n: # ver-
tices in a query,r: # candidates to examine). Exact ranking
requires thatr beO(Nn) and we setr to a small value.

References

1. Roy Goldman and Jennifer Widom. Interactive query and search
in semistructured databases. Technical report, Stanford Univer-
sity, 1998.http://www-db.stanford.edu/lore/ .

2. Tomek Strzalkowski. Natural language information retrieval.In-
formation Processing and Management, 31(3):397–417, 1995.

3. Henry Thompson. Best-first enumeration of paths through a lat-
tice — an active chart parsing solution.Computer Speech and
Language, 4:263–274, 1990.

Formal Knowledge Management in Distributed Environments?

W. Marco Schorlemmer1, Stephen Potter1, David Robertson1, and Derek Sleeman2

1 CISA, Division of Informatics, The University of Edinburgh
2 Department of Computing Science, University of Aberdeen

In order to address problems stemming from the dynamic
nature of distributed systems, there is a need to be able to
express notions of evolution and change of knowledge com-
ponents of such systems. This need becomes more press-
ing when one considers the potential of the Internet for dis-
tributed knowledge-based problem solving — and the prag-
matic issues surrounding knowledge integrity and trust this
raises. We introduce a formal calculus for describing trans-
formations in the ‘lifecycles’ of knowledge components,
along with suggestions about the nature of distributed en-
vironments in which the notions underpinning the calculus
can be realised. The formality and level of abstraction of this
language encourages the analysis of knowledge histories and
allows useful properties about this knowledge to be inferred.

Formal Lifecycles in a Brokering Architecture

We take the real-life example ofEcolingua3, an ontology
for ecological meta-data. It was constructed on the Ontolin-
gua Server4 by reusing classes from other ontologies in the
server’s library, and then automatically translated into Prolog
syntax by the server’s translation service.

Fig. 1.Ecolingua’s lifecycle

Because the outcome of the translation process was an
overly large 5.3 Mb file, and in order to get a smaller and
more manageable set of axioms, it was necessary to reduce
the ontology, by implementing filters that first deleted all ex-
traneous clauses, and then pruned the class hierarchy and re-
moved irrelevant clauses accordingly. Finally, a translation
? Supported under the AKT IRC, which is sponsored by the UK

EPSRC under grant GR/N15764/01, and comprises the Univer-
sities of Aberdeen, Edinburgh, Sheffield, Southampton and the
Open University.

3 Corr̂ea da Sliva et al.: On the insufficiency of ontologies: prob-
lems in knowledge sharing and alternative solutions. Knowledge-
Based Systems15 (2002) 147–167.

4 Farquhar, A., Fikes, R., Rice, J.: The Ontolingua Server: a tool
for collaborative ontology construction. International Journal of
Human-Computer Studies46 (1997) 707–727.

into Horn clauses was performed in order to use the ontology
with a Prolog interpreter (see Figure 1).

We postulate that particular sequences of lifecycle steps
like those of Figure 1 might be common in particular do-
mains and perhaps with particular forms of knowledge com-
ponent. The ability to generalise and ‘compile’ these se-
quences intolifecycle patternswould encourage more effi-
cient behaviour when faced with the need to make similar
modifications in the future.

Fig. 2.EditingEcolingua’s lifecycle

For this reason we have implemented alifecycle editor and
interpreter that (1) enables a knowledge engineer to anal-
yse the lifecycle of a knowledge component, extract its ab-
stract pattern, and devise a formal representation of it (see
Figure 2), using rules of a formal lifecycle calculus that cap-
ture abstract lifecycle steps such asweaken the ontologyby
means of a channel-theoretic semantics5; and (2) is capable
of executing the formal representation of a lifecycle.

Since lifecycle patterns are described at a generic level, we
have implemented abrokering servicethat enacts the lifecy-
cle execution in a distributed environment, so that a knowl-
edge engineer can choose among several solvers capable of
performing abstract lifecycle steps in a particular domain-
specific fashion.

The lifecycle execution generates alifecycle historyof the
knowledge component. This lifecycle history can later be
used to infer properties of the components, not by inspect-
ing the specification of the component itself — since this
would require the cumbersome task of reasoning with the
axioms that constitute the specification — but by inspecting
the structure of its lifecycle.

5 Barwise, J., Seligman, J.: Information Flow: The Logic of Dis-
tributed Systems. Cambridge University Press (1997).

Distributed Semantic Perspectives

Oliver Hoffmann and Markus Stumptner

University of South Australia
(oliver@hoffmann.org,mst@cs.unisa.edu.au)

1 Introduction

With increased use of domain ontologies arises the task of
combining or linking existing ontologies. But in general, ex-
isting ontologies are based on different semantic contexts and
therefore simple merging of two or more existing ontologies
is not feasible: symbols in one ontology might have little or
no congruency with symbols in another ontology; therefore
semantic context has to be reconstructed from within avail-
able data [1] or via intervention from outside the computer
system. In this paper, a concept for re-construction of con-
text and re-interpretation of knowledge on the basis of exter-
nal user input is presented.

2 Non-Implementables

The semantics of a symbol can be described as a triangular
relationship between the symbol itself, the entity referred to
by the symbol and the concept some individual has of that
entity [2].

individual concept of graduate student

GraduateStudent

Fig. 1. the semantic triangle

Figure 1 shows a semantic triangle for the symbol Grad-
uateStudent: The symbol is set into relation with a graduate
student (real world entity, bottom left) and the concept of
graduate student as conceived by some individual (top). Two
of the three elements required for a semantic relationship
(individual concept and real world entity) cannot be imple-
mented in a computer system: A computer system can hold a
reference to real world entities or concepts of real world en-
tities, but such references would have to be symbols and as
such only have semantic content when itself set in relation to
entities and concepts outside of the computer system. Thus
non-implementables(nimps) are necessary and irreplaceable
preconditions for semantic content.

3 Standardized Interpretation

Although nimps are not directly accessible, knowledge en-
gineering can influence nimps indirectly. For instance, indi-
vidual concepts can be synchronized via the use of shared

symbols. Formal semantics of data contained in ontologies
facilitate compatible interpretation of new symbols on the ba-
sis of symbols already interpreted in a compatible way. Thus
a standardized interpretation of symbols is developed, or a
“world 3” as described by Karl Popper: In addition to the
world of real entities (“world 1”) and the concepts some in-
dividual has about the world (“world 2”), a third world of
shared interpretations is built among some group of indi-
viduals with the help of symbols. But according to Popper,
this standardization process has to be open ended [3] if the
standards used are to serve a purpose like that envisioned in
the semantic web initiative [4]. It has to remain possible to
re-define standards and to re-interpret standards in different
contexts. For example, the term “graduate student” is ill de-
fined in a standard German University context, because of
significant differences in University education structure. If
the symbol GraduateStudent in some ontology is interpreted
as referring to the level of expertise, then the number of
semesters of prior study can be the appropriate translation. If
GraduateStudent is interpreted as referring to the formal de-
gree, then some adequate degree like “Diplom-Informatiker”
might be the corresponding title. Thus implicitly standard-
ized nimps associated with ontologies have to be taken into
consideration when combining different ontologies.

4 Semantic Perspectives

The concept of semantic perspectives is a generalization of
design perspectives [5]. Distributed semantic perspectives
are ontologies loosely linked via plug-and-play translators
and constitute different views on a common content., thus
creating a distributed system of different perspectives on the
common semantic content. In the case of a single seman-
tic perspective without links to other perspectives, the nimp
parts of it’s semantic content can be assumed to be suffi-
ciently standardized: Either the nimp parts of its semantic
content are completely identical among different individu-
als interacting with the perspective or nimp differences are
compatible with the perspective’s intended functionality. If
perspectives are to be combined, however, nimp differences
have to be considered. A specific translator between two
given perspectives operates context-less in the sense that it
only operates on symbols, which can be interpreted as ei-
ther ignoring nimp parts of semantic content or implicitly
assuming a standardized semantic context for the transla-
tion. Therefore any automated choice of translator as in [6]
is equivalent to restricting nimp parts of semantic content to
one specific semantic context. In order to accomodate differ-
ent contexts, translators between semantic perspectives can
be turned on and off at run time and two given perspectives
can be linked by any of a set of alternative translators, with
each translator implicitly determining semantic context for
both the source and target perspective.

Distributed Semantic Perspectives 113

Fig. 2.external choice of translator

This dynamic re-combination of translators and per-
spectives (Figure 2), allows for re-interpretation and re-
contextualization of semantic content, thus accomodating
changing contexts. Distributed semantic perspectives can be
linked and thus several ontologies can be combined, edited
and used in parallel. In contrast, one final merging operation
like in [7] would eliminate the option of re-interpreting con-
text for source perspectives and limit interpretation for the
merged result perspective.

Semantic perspectives have been implemented via the in-
tegration of the Java Agent Development Environment JADE
[8] 1, a multi agent system, the Java Expert System Shell
JESS [9]2, a rule based language, Protéǵe-2000 [10]3, an on-
tology editor, the JessTab [11] a plugin for Protéǵe-2000, and
JadeJessProtege4. Two types of features are added to stan-
dard ontology editor features: First, the ability to extract and
integrate ontological information from and into the running
ontology editor; second, the ability to transmit and receive
such ontological information to and from translators into or
from other ontology editors. With these additional features,
the ontology editor is turned into an agent. Perspectives and
translators, which can be hosted on different computers, reg-
ister with a JADE platform. Once a semantic perspective has
established contact with the JADE agent platform and re-
ceived a list of relevant translators, parts of the ontology can

1 http://jade.cselt.it
2 http://herzberg.ca.sandia.gov/jess
3 http://protege.stanford.edu
4 http://JadeJessProtege.net

be extracted and sent to translators via JADE agent messages.
Then translators re-contextualize content as illustrated by the
following JESS code:

(Information (Perspective Ontology1) (Class Student) (Slot
Name) (Value ?name))
(Information (Perspective Ontology1) (Class Matura) (Slot
Name) (Value ?name))
(Information (Perspective Ontology1) (Class Matura) (Slot
Year) (Value ?year))
(test (< ?year 1998))
=>
(assert (Information (Perspective Ontology2) (Class Gradu-
ateStudent) (Slot Name)(Value ?name)))

In this example, information extracted from the source
perspective Ontology1 is translated into information for the
target perspective Ontology2. The source perspective con-
tains information that a student with some name has passed
Matura (high school graduation) before 1998. This is trans-
lated into the information that the student is a graduate stu-
dent. Here the number of years passed since some person
came out of high school is used as an (imperfect) indicator
of whether a student should be regarded as “graduate” stu-
dent in a specific context.

References

1. Stuckenschmidt, H., Visser, U.: Semantic Translation based
on Approximate Re-Classification. In: Proceedings of the
Workshop “Semantic Approximation, Granularity and Vague-
ness”, Proc. KR2000, San Francisco, California, U.S.A., Mor-
gan Kaufmann (2000)

2. Sowa, J.: Knowledge Representation: Logical, Philosophical
and Computational Foundations. Brooks/Cole, Pacific Grove,
California, U.S.A (2000)

3. Popper, K.: Objective Knowledge: An Evolutionary Approach.
Oxford University Press, Oxford, U.K. (1972)

4. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web.
Scientific American (2001)

5. Hoffmann, O., M.Stumptner, Chalabi, T.: Tolerating Incon-
sistencies: The Distributed Perspectives Model. In: Computer
Aided Architectural Design Futures, Dortrecht, N.L., Kluwer
(2001) 375–386

6. Campbell, A.E., Shapiro, S.: Algorithms for Ontological Me-
diation. Technical report, Dep. of CS and Engineering, State
Univ. of New York at Buffalo (1998)

7. McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: An Envi-
ronment for Merging and Testing Large Ontologies. In: Proc.
KR2000, Breckenridge, Colorado, U.S.A. (2000)

8. Bellifemine, F., Poggi, A., Rimassa, G.: JADE – a FIPA-
compliant agent framework. In: Fourth International Confer-
ence on the Practical Application of Intelligent Agents and
Multi-Agent Technology(ATCS). (1999) 97–108

9. Friedmann-Hill, E.: Jess, the java expert system shell. Tech-
nical report, Sandia National Laboratories, Livermore, CA,
U.S.A. (1998)

10. Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson,
R.W., Musen, M.A.: Creating Semantic Web Contents with
Prot́eǵe-2000. IEEE Intelligent Systems2 (2001)

11. Eriksson, H.: The JessTab Approach to Protéǵe and JESS Inte-
gration. In: Intelligent Information Processing IIP-2002, Mon-
treal, Canada (2002)

A framework to solve the ontology translation problem

Oscar Corcho

Facultad de Inforḿatica. Universidad Politécnica de Madrid
Campus de Montegancedo, s/n. 28660 Boadilla del Monte. Madrid. Spain

ocorcho@fi.upm.es

Abstract. Ontologies are developed with different
tools and languages. Reusing an ontology usually
requires transforming it from its original format
to a target format. However, many problems usu-
ally arise in these transformations, related to the
compatibility among tools/languages. We propose
an ontology reengineering methodology (with its
technological support) as a solution to the ontology
translation problem.

1 Introduction

Nowadays, different tools exist for developing ontologies:
OILEd, OntoEdit, Ontolingua, OntoSaurus, Protéǵe2000,
WebODE, WebOnto, etc. Each tool has their own knowledge
model, and usually allows exporting/importing ontologies in
their own textual representation.

Several languages are also used for the implementation
of ontologies, such as Ontolingua, LOOM, OCML, FLogic,
XOL, SHOE, RDF(S), OIL, DAML+OIL, etc. Apart from
their lexical and syntactical differences, there are also more
significant ones due to the knowledge representation (KR)
formalism in which they are based (frames, semantic nets,
description logic, etc.) and the semantics of their represen-
tation primitives and constructs, which fully determine both
their expressiveness and reasoning capabilities.

The ontology translation problem appears when we decide
to reuse an ontology (or part of an ontology) using a tool
or language that is different from those ones in which the
ontology is available. If we force each ontology developer,
individually, to commit to the task of translating and incor-
porating the necessary ontologies to their systems, they will
need both a lot of effort and a lot of time to achieve their ob-
jectives. Therefore, ontology reuse in different contexts will
be highly boosted as long as we provide automatic ontology
translation services among those languages and/or tools.

2 Characterisation of the ontology translation
problem

The first reference to this problem was presented by Gruber
in [2]. He proposed, as a solution, to follow a set ofonto-
logical commitmentswhen an ontology was created. From
all these ontological commitments, the ”minimal encoding
bias” deserves special attention: Gruber proposed to concep-
tualise ontologies in the knowledge level, instead of doing
it in the symbolic level, and to implement them using auto-
matic translators. However, this criterion has not been com-
monly followed in ontology development, forcing ontology
developers to translate existing ontologies manually or create
ad-hoc translators between languages or knowledge models,
which is a time consuming task.

Translation problems can be classified as follows:
Lexical problems. They appear when the terms used for

language identifiers, texts and constructs (names of compo-
nents, sizes of their textual descriptions, etc.) follow different
conventions in the different languages and/or tools. For in-
stance, concept National Park in Ontolingua is usually writ-
ten asNational-Park, while in FLogic hyphens are not al-
lowed inside identifiers (hence, it is written asNationalPark).

Syntax problems. Different languages/tools use differ-
ent grammars to represent their components. Some lan-
guages/tools also allow defining the same component in dif-
ferent ways. When performing translations, both situations
must be taken into account.

Expressiveness problems. These problems are caused be-
cause different languages/tools are based on different KR
paradigms. First, not all the languages allow expressing the
same knowledge: we must analyse what components can be
translated directly from a language to another one, what com-
ponents can be expressed using other components from the
target language, what components cannot be expressed in the
target language, and what components can be expressed, al-
though with losses of expressiveness.

Reasoning problems. The existence or not of an inference
engine for a language, and the characteristics of this infer-
ence engine, usually bias the implementation of an ontology.

3 The framework: WebODE and OntoDialect

We propose to solve the translation problem in the context of
a methodology for ontological reengineering. We distinguish
three main phases:reverse engineering(we transform auto-
matically an ontology that has been coded in a language to
a knowledge model that is independent from the implemen-
tation); reestructuration(performed in the knowledge level,
in accordance to the future uses of the ontology in an appli-
cation); andimplementation(we transform automatically the
reestructured ontology into the target language).

This methodology is technologically supported by the We-
bODE ontology-engineering workbench [1]. Reestructura-
tion is currently performed manually, with the WebODE on-
tology editor. Translators from WebODE to ontology lan-
guages/tools and vice versa can be created with the Onto-
Dialect system, integrated in the workbench.

References

1. Arpı́rez JC, Corcho O, Fernández-Ĺopez M, Ǵomez-Ṕerez
A. WebODE: a scalable workbench for ontological engineer-
ing. First International Conference on Knowledge Capture
(KCAP2001). Victoria. Canada. October, 2001.

2. Gruber R. A translation approach to portable ontology specifica-
tion Knowledge Acquisition. #5: 199-220. 1993

Author Index

Bowers, Shawn 19

Casati, Fabio 1
Castano, Silvana 51
Chu, Wesley W. 3
Corcho, Oscar 114

Delcambre, Lois 19
Dell’Erba, Mirella 69

Euzenat, J́erôme 93

Fan, Hao 36
Felfernig, Alexander 11
Ferrara, Alfio 51
Fodor, Oliver 69
Friedrich, Gerhard 11

Hasida, K̂oiti 110
Hoffmann, Oliver 112

Jannach, Dietmar 11

Kiryakov, Atanas 27

Lee, Dongwon 3

Maedche, Alexander 60
Mani, Murali 3

Mitra, Prasenjit 43
Miyata, Takashi 110
Motik, Boris 60

Ognyanov, Damyan 27
Omelayenko, Borys 77

Peer, Joachim 101
Potter, Stephen 85, 111
Poulovassilis, Alexandra 36

Ricci, Francesco 69
Robertson, Dave 85
Robertson, David 111

Schorlemmer, W. Marco 85, 111
Silva, Nuno 60
Sleeman, Derek 85, 111
Spada, Antonella 69
Stuckenschmidt, Heiner 93
Stumptner, Markus 11, 112

Volz, Raphael 60

Werthner, Hannes 69
Wiederhold, Gio 43

Zanker, Markus 11

