
966 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 3, MARCH 2009

Efficient Design of Cosine-Modulated Filter
Banks via Convex Optimization

Ha Hoang Kha, Hoang Duong Tuan, and Truong Q. Nguyen

Abstract—This paper presents efficient approaches for designing
cosine-modulated filter banks with linear phase prototype filter.
First, we show that the design problem of the prototype filter being
a spectral factor of � th-band filter is a nonconvex optimization
problem with low degree of nonconvexity. As a result, the non-
convex optimization problem can be cast into a semi-definite pro-
gramming (SDP) problem by a convex relaxation technique. Then
the reconstruction error is further minimized by an efficient itera-
tive algorithm in which the closed-form expression is given in each
iteration. Several examples are given to illustrate the effectiveness
of the proposed method over the existing ones.

Index Terms—Convex optimization, cosine-modulated filter
bank, prototype filter, semidefinite programming.

I. INTRODUCTION

C OSINE-MODULATED finite-impulse-response (FIR)
filter banks are used extensively in applications that

include data compression (speech, audio, image, and video),
denoising, feature detection and extraction [1], [5], [14],
[19]. They are a special subclass of the general M-channel
filter banks shown in Fig. 1, where analysis filters and
synthesis filters can be obtained by modulating the
coefficient values of a prototype filter. As a result, the design of
the cosine-modulated filter bank (CMFB) reduces to that of the
prototype filter. Moreover, there are efficient structures with a
fast transform for modulation, so the cost of the analysis bank is
equal to that of one filter plus modulation overhead [14], [19].

The CMFB design problem has been extensively studied (see
e.g., [12]–[14], [19] and references therein). For pseudo-QMF
banks, the analysis and synthesis filters must be carefully chosen
so that significant aliasing terms are cancelled, and the distor-
tion function is linear phase. At the end, the CMFB
design problem is reduced to finding a linear phase prototype
filter with high stopband attenuation that provides a flat overall
magnitude response . As analyzed in details in [12],
the design effectiveness is gauged by the stopband attenuation
performance because the latter poses the most challenge. An-
other criterion that is often ignored in most designs [2], [10],
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Fig. 1. M-channel maximally decimated filter bank.

[12], [13], [19] is narrow transition bandwidth. There are two
approaches to address the prototype filter design and both of
them are based on optimization. The first approach aims at de-
signing a good linear phase lowpass filter (by Parks–McClellan
algorithm [2] or the Kaiser window method [10]) and then tunes
the transition bandwidth (the only free parameter in these de-
signs) to meet the th band condition approximately. As the
transition bandwidth is not controlled, the small reconstruction
error is not easily achieved although the high stopband atten-
uation is attained. The still good performance of these designs
indicates that the th band condition might not be really hard
in the class of lowpass linear phase filters. A design method of
lowpass filters approximately being a spectral factor of a th
band filter has been also developed in [8], where the transi-
tion bandwidth can be effectively controlled. In contrast, the
second approach aims at meeting the perfect th band con-
dition first and then the stopband attenuation is optimized [12],
[13], [19]. The lattice factorization based formulation [19] leads
to a highly nonlinear and nonconvex optimization problem that
is not easily computed. Therefore, it is difficult to obtain a filter
bank with high stopband attenuation. Much more direct for-
mulations given in [5], [12], and [13] lead to the minimiza-
tion of a convex quadratic objective function over nonconvex
quadratic constraints by the th band condition. The non-
convex quadratic optimization is still a very difficult class of
optimization and there is no practical algorithm for locating
its global optimal solution [18]. However, still very good so-
lutions have been found in [12] and [13] by local optimiza-
tion algorithms in reasonable computational time. This again
indicates that the th band condition might appear not so
challenging and there is a hidden partial convex structure in its
quadratic constraint formulation. Recently, there are many iter-
ative methods developed for solving the cosine-modulated filter
bank design problem. In [3], [20], quadratic constraints are lin-
earized, whereas in [11], the perfect reconstruction condition,
which is expressed as an fourth-order objective function, is lin-
earized. In [6], the iterative modified Newton method is applied
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to find lattice coefficients and prototype filter coefficients such
that the stopband energy of the prototype filter is minimized.

In this paper, we explore partial convex structures of the op-
timization formulation for effective computation and design. In
contrast with [2] and [10]–[13], we formulate the CMFB de-
sign based on the product filter. The problem is then recast as
SDP that can be effectively computed. The conventional spectral
factorization to recover a filter from its product is computation-
ally expensive and numerically unstable, especially for filters
with high stopband attenuation [19]. Moreover, it is not guaran-
teed to obtain the linear phase spectral factor. However, due to
our formulation, the optimal linear phase prototype filter can be
easily obtained by singular value decomposition of a positive
semi-definite matrix. Additionally, to improve the reconstruc-
tion error for filters with high order, we propose an efficient iter-
ative algorithm, in which the closed-form expression is obtained
in iterations. We also provide numerical examples to verify the
viability of our approach.

This paper is organized as follows. In Section II, we review
the derivation of quadratically constrained quadratic optimiza-
tion formulation of CMFB designs. In Section III, the degree
of nonconvexity of the optimization problem is analyzed, and
then the SDP relaxation technique is introduced. The improve-
ment solution by a cheap iterative algorithm is described in
Section IV. Several example designs are given in Section V. Fi-
nally, concluding remarks are made in Section VI.

Notations: Bold-faced characters denote matrices and
column vectors, with upper case used for the former and lower
case for the latter. The notation denotes a (symmetric)
positive semi-definite matrix. The inner product be-
tween the matrices and is defined as , i.e.,

. The inner product between vectors
and is defined as . For a given set its
convex hull (conic hull), denoted by , is the
smallest convex set (cone) in that contains . The polar set
of is the cone . Furthermore,
the value of the function, , is the largest integer less than or
equal to .

An earlier version of part of this work has been reported in
a conference paper [7]. This paper presents a more complete
version of the work.

II. COSINE-MODULATED FILTER BANKS

In cosine-modulated QMF banks, all the analysis and syn-
thesis filters can be generated by modulating a lowpass linear
phase prototype filter. Let denote the transfer function of
the prototype filter as given by

(1)

Then the analysis and synthesis filters are given by

where and rep-
resent the impulse responses of the th channel analysis and
synthesis filters, respectively. In the -channel maximally dec-
imated filter bank shown in Fig. 1, the reconstructed signal
can be written in terms of these filters in the -domain as

(2)

where

Here, is the overall distortion transfer function and
is the aliasing transfer function. To cancel aliasing

and achieve perfect reconstruction, it is required that

for

is positive integer (3)

As the analysis and synthesis filters have narrow transition
bands and high stopband attenuation, the overlap between
nonadjacent filters is negligible. Moreover, it was shown in [12]
that significant aliasing terms from the overlap of the adjacent
filters are cancelled by choosing . Under these
circumstances, the overall distortion function is given by

(4)

To eliminate amplitude distortion, must be constant
for all frequencies. It is equivalent to

(5)

The above condition means that the magnitude squared response
is a th band filter [14], [19]. Therefore, by intro-

ducing the product filter , is then a
zero phase filter with the frequency response

(6)

For the sake of simplicity, we will focus on the prototype filter
order is even, i.e., , then the frequency response
is of the form , where is the
amplitude response of . Here, is given by

(7)

where
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Then, (6) can be rewritten in vector form

(8)

where . In the terms of the product
filter coefficients, the constraint (5) can be written as

(9)

Let denote the set of all possible product filters such that there
exist linear phase spectral factors. In other words, if
and only if satisfies (8) for some . The set is
mathematically expressed as

for some

or, equivalently

for some (10)

where the th-order trigonometric moment matrix is de-
fined as the positive-semidefinite matrix [see
(11), shown at the bottom of the page]. Alternatively, matrix

can be expressed as an affine combination of symmetric
matrices

(12)

where the symmetric matrix has th
element

Substituting into (10) and equating the terms with the
same , we obtain the relationship between and in time
domain

(13)

Consequently, the th band condition (9) can be written as

(14)

Hence, the CMFB design problem is to find the prototype filter
which has high stopband attenuation and satisfies the

(14). The weighted stopband energy can be defined as

(15)

where is the number of frequency bands in the stopband, and
are the band edges of the stopband with and

. The relative weights can be chosen to emphasize the
certain regions of the stopband energy spectrum. We can rewrite

where is a real, symmetric, positive-definite matrix given by

Finally, in terms of the prototype filter, the filter bank design
problem can be expressed as

(17a)

subject to:

(17b)

The above optimization problem minimizes a quadratic ob-
jective function subject to quadratic equality constraints. Note
that is a positive definite matrix, so the objective function
is convex. However, the matrices are symmetric, but
indefinite. Therefore, the problem (17) is a nonconvex quadrat-
ically constrained optimization problem. It is very hard to
find the globally optimal solution due to the existence of local
minima [17], [18].

Alternatively, in the terms of the product filter, the filter bank
design problem (17) can be given by

(18a)

subject to:

(18b)

(18c)

where . It should be noted
that the product filter based methods [9], [14], [19] only require

(11)
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to guarantee the existence of the prototype filter,
but not ensure the existence of the linear phase prototype filter.
In our formulation (18), the more restrictive condition, ,
is imposed on the product filter to ensure that the linear phase
prototype filter can be recovered from the optimal product filter.

In conventional spectral factorization based methods, the
product filter is designed to satisfy the th-band
condition (14). Then, the linear phase prototype filter can be
approximately found by the iterative algorithm [14]. However,
these methods have a disadvantage that the optimized product
filter may not ensure the existence of a linear phase spectral
factor . As a result, the optimized product filter may not
lead to the optimal prototype filter. By our formulation (18),
the relation between the product filter and its linear phase
spectral factor is incorporated in the optimization problem.
Unfortunately, the constraint results in nonconvexity of
the optimization problem. In the next section, we introduce a
relaxation technique to transform the nonconvex problem (18)
into an SDP problem.

III. NONCONVEXITY ANALYSIS AND SEMIDEFINITE

PROGRAMMING RELAXATION

It is observed that the optimization problem (18) is to mini-
mize a (convex) linear objective function subject to the (convex)
linear equality constraints and the nonconvex set constraint

. Therefore, the nonconvexity of the problem (18) mainly de-
pends on the structure of the set . In this section, we will math-
ematically analyze the nonconvexity of the set . In particular,
we analyze the rank of nonconvexity, i.e., the number of non-
convex variables, and the degree of nonconvexity, i.e., the extent
to which the variables are nonconvex [18].

We introduce the matrix with
obtained from by making the change of variables

(19)

that is,

. . .
(20)

Applying the variable change (19) into the set in (10) yields

for some (21)

Equivalently

(22)

It can be easily verified that the set in (22) is not convex due
to the rank-one constraint. However, it becomes convex if this
constraint is relaxed to rank-two. One of the main results of the
paper is the following theorem.

Theorem 1: The polar cone of is

(23)

and convex hull of the nonconvex set is defined by

(24)

(25)

(26)

Proof: The proof is given in the Appendix.
The significance of Theorem 1 is that the set is nonconvex

because of the nonconvex rank-one constraint. However, it
becomes convex if the rank-one constraint is replaced by a
rank-two constraint. Theorem 1 serves a base for tight convex
relaxation for optimization over the nonconvex set .

Instead of the nonconvex problem (18) we consider the con-
vexified problem

(27a)

subject to:

(27b)

(27c)

which is explicitly expressed as an SDP problem

(28a)

subject to: (28b)

(28c)

where the matrix variable of dimension
is equivalent to scalar variables. Deriving
from the equality constraints in (28c) and substituting into (28a)
and (28b), we obtain1

(29a)

subject to:

(29b)

(29c)

Note that (29) minimizes a linear function subject to linear
equality constraints of a positive semi-definite matrix, therefore
it is a standard SDP of equality form. It is well known that the
SDP problem can be efficiently solved by modern primal-dual
interior-point methods. To find the dual problem associated
to the primal problem (28) [or, equivalently, (29)], we use
Lagrangian duality. The dual problem of (28) is

(30)

1The authors thank Reviewer 3 for providing the derivation of (29).
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where is a dual variable and are Lagrange multipliers
associated with equality constraints. It then reduces to

subject to:

(31)

Equivalently

(32)

The dual optimization problem (32) is also an SDP problem, but
its number of scalar variables, , is much less than
that of the primal optimization problem (28). The gap between
feasible solutions and of the primal SDP problem (28) and
the dual problem (32) is easily derived

(33)

and then the optimal value of the dual problem (32) and
of the primal problem (28) must satisfy the following com-

plementary condition:

for (34)

The above equation implies that belong to the null space
of matrix . Therefore, if matrix is of rank

, then matrix is rank-one, i.e., . It
follows that is a globally optimal solution of problem
(28), and is also a globally optimal solution of problem (18).
However, the numerical solution in general is not
guaranteed to be rank , i.e., matrix is not rank one,
then an optimal rank-one approximation of is given
by , where is the eigenvector
corresponding to the largest eigenvalue of . Con-
sequently, the optimal prototype filter is approximated by

. Our simulation results show that in
the most cases the rank of is very low so this approxima-
tion is highly accurate.

Notice that the feasible region of the original nonconvex
problem (18) is a subset of that of the relaxation problem (28),
so the stopband energy of the prototype filter obtained form
relaxation problem is less than that of the nonconvex problem.
However, since the perfect condition is relaxed, the reconstruc-
tion error is not well satisfied in some cases. We note, however,
that the nonconvex problem has a low rank of nonconvexity, so
the solution of the convex relaxation problem is close to being
optimal. Therefore, the reconstruction error can be efficiently
improved by the following algorithm in next section.

IV. CHEAP ITERATIVE ALGORITHM

The SDP problem (32) is efficiently solved. It can solve large
scale problems in which filter order can be of the order of thou-
sands. However, its globally optimal solution results in the glob-
ally optimal solution of the nonconvex optimization problem
(18) if and only if the optimal positive semi-definite matrix

is of rank so the optimal matrix of (28) is
of rank 1. When the filter order is low, the simulation results
show that this optimal matrix can be precisely approximated by
rank-one matrix, as shown in the following design examples.
However, when the filter order is high (about hundreds), the op-
timal solution is not guaranteed to be rank-one. The reason is
that the number of linear constraints imposed on the symmetric
matrix is while the number of scalar vari-
ables of matrix is . Therefore, when the filter
order is high, the number of linear constraints increases less than
the free parameters. As a result, the approximation of rank-one
matrix gives the filter with high stopband attenuation, but the

th band condition is not well satisfied. Then, the simple it-
erative algorithm can be applied to improve the reconstruction
error [3], [20]. Let denote the optimal prototype filter found
by the SDP relaxation problem in Section III, then an iterative
algorithm can be given by

subject to:

(35)

By defining

we can rewrite the optimization problem (35) as

subject to: (36)

where . Then its dual optimiza-
tion problem is given by

(37)

Consequently, it can be shown that its optimal solution is

(38)

The iterative algorithm can now be described in terms of the
following steps.

Step 1) Chose the prototype filter designed by the method
in Section III as the initial filter , and set iteration
number .

Step 2) Compute using (38).
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TABLE I
PERFORMANCE COMPARISON OF THE DESIGN IN EXAMPLE 1

Step 3) Update , where the
weight . Then, normalize the DC gain
by , where vector

.
Step 4) If

, where is a prescribed toler-
ance, then the iteration algorithm is terminated, and

. Otherwise set and go to
Step 2).

It is noted that the proposed iterative algorithm is very compu-
tationally efficient since the closed-form solution is obtained in
each iteration. Moreover, the matrix does
not change in the iteration, so is computed only once out-
side the iteration. In addition, the optimal solution of convex
relaxation is used as the initial point for the iterative algorithm,
and as a result the proposed algorithm converges very fast to
an optimal solution. Simulation results show that the algorithm
converges in fewer than ten iterations.

V. DESIGN EXAMPLES

In this section, we provide several examples to illustrate the
performance of the methods described in the previous sections.
Discussion on their effectiveness is also given. The performance
of the filter banks is evaluated in the terms of the stopband at-
tenuation of filters, reconstruction error, and aliasing error. The
performance criteria are as follows:

• stopband attenuation , where
;

• the maximum peak to peak reconstruction error

• the peak aliasing distortion

where

It should be noted that for cosine-modulated pseudo-QMF
banks the high stopband attenuation results in the small aliasing
error. However, high stopband attenuation characteristic and
small reconstruction error ripples are conflicting objectives.
The following examples will show the performance tradeoff of
the proposed methods.

A. Designs Using the SDP Relaxation Method

The SDP relaxation problem presented in Section III is used
to design cosine-modulated QMF banks in this subsection. All

Fig. 2. Example 1. (a) Magnitude response of the optimized prototype��� �;
(b) magnitude responses of the analysis filters� �� �; (c) magnitude response
plot for the overall distortion � �� �� ��; (d) magnitude response plot for the
aliasing error ��� �.

SDP optimization problems presented here are solved using an
available SDP solver, SeDuMi [15]. All designs are carried out
by using Matlab version 6.5 on a Pentium IV 3-GHz PC.

Example 1: An eight-channel cosine-modulated
pseudo-QMF bank is designed. The prototype filter has the
specifications:
and . It took SeDuMi solver about 0.49 s to find the
optimal prototype filter. The magnitude responses of the
optimized prototype filter , the corresponding analysis
filters , the overall distortion function ,
and the aliasing error function are plotted in Fig. 2,
respectively. Note that the stopband attenuation of
and is about 35.8 dB, the maximum peak-to-peak
reconstruction error is , and the maximum
of the aliasing error is . The comparison of
our result with that of the nonlinear optimization based method
in [19] is shown in Table I. It can seen that our proposed
method can significantly improve the reconstruction error.

Example 2: In this example, a 17-channel cosine modulated
pseudo-QMF bank, which the prototype filter has the specifi-
cations:
and , is designed. It took SeDuMi solver about 2.16 s
to find the optimal prototype filter. Fig. 3(a) and (b) shows the
magnitude responses of the optimized prototype filter
and, the corresponding analysis filters , respectively.
Fig. 3(c) and (d), respectively, shows the magnitude responses
of the overall distortion function , and the aliasing
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TABLE II
PERFORMANCE COMPARISON OF THE DESIGN IN EXAMPLE 2

TABLE III
PERFORMANCE COMPARISON DESIGN IN EXAMPLE 3

Fig. 3. Example 2. (a) magnitude response of the optimized prototype
��� �; (b) magnitude responses of the analysis filters � �� �; (c) mag-
nitude response plot for the overall distortion � �� �� ��; (d) magnitude
response plot for aliasing error ��� �.

error function . Table II provides a performance compar-
ison between the proposed method and the method in [19]. In
this design, our resulting filter has much higher stopband atten-
uation than the resulting filter in [19] while other performances
are almost identical.

Remarks: The simulation results show that the SDP relax-
ation can provide the filter banks with higher performance as
compared to nonlinear nonconvex optimization methods for
low-order filters. Moreover, it is also noted that the proposed
method is based on SDP, so the optimal solution is efficiently
found without depending on any initial points. Conversely, the
resulting filter in [19] is found from highly nonlinear nonconvex
optimization, so its solution is very sensitive to initialization.

B. Designs Using the Cheap Iterative Algorithm

As mentioned earlier, in the cases where the filter order is
high, the approximation of matrix rank-one is not precise. As
a result, the resulting filter has still high stopband attenuation,

but the reconstruction error needs to be further improved. In
following designs, the cheap iterative algorithm in Section IV is
applied with an initial point obtained from the SDP relaxation
method.

Example 3: This example considers the design of a
32-channel cosine-modulated filter bank. The specifica-
tions for the design of the prototype filter are

and . It took SeDuMi solver
about 32.70 s to design the initial filter. With ,
the algorithm converges to the optimal filter only in four it-
erations with an average CPU time of 0.0107 s per iteration.
The performance of the resulting filter bank is shown in Fig. 4.
It is observed that the stopband attenuation is about 102 dB,
the peak-to-peak reconstruction error is , and the
maximum aliasing error is . Table III provides
a performance comparison between the proposed method and
the methods in [10], [11]. It can be seen that our proposed
method offers much better performance than the method in
[10]. As compared to the method [11], our performance can be
comparable, but our algorithm is significantly faster.

Example 4: In order to illustrate the tradeoff between the
stopband attenuation and the reconstruction error, we consider
the design of a 32-channel cosine-modulated filter bank with
specifications:

, and . It took SeDuMi solver about 49.98 s to
find the initial filter. First, we choose the tolerance .
The algorithm converges to the optimal filter only in two itera-
tions with an average CPU time of 0.0315 s per iteration. The
magnitude responses of the optimized prototype filter ,
the corresponding analysis filters , the overall distortion
function , and the aliasing error function
are depicted in Fig. 5. It can be seen that the stopband atten-
uation of and is about 114 dB, the maximum
peak-to-peak reconstruction error is , and
the maximum of the aliasing error is . This
performance is comparable to that of Example 1 in [4]. How-
ever, our proposed method here is significantly faster since the
closed-form expression is obtained in iteration procedure. In an-
other design, we further restrict the th band constraint by
choosing the tolerance , then the algorithm converges
in five iterations. The design performance is shown in Fig. 6.
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Fig. 4. Example 3. (a) magnitude response of the optimized prototype��� �;
(b) magnitude responses of the analysis filters� �� �; (c) magnitude response
plot for the overall distortion� �� �� �� on ��� ��� �; (d) magnitude response
plot of the aliasing error ��� �.

Fig. 5. Example 4. (a) magnitude response of the optimized prototype��� �;
(b) magnitude response plots for the analysis filters � �� �; (c) magnitude
response plot for the overall distortion� �� �� �� on ��� ��� �; (d) magnitude
response plot of aliasing error ��� �.
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Fig. 6. Example 4. (a) magnitude response of the optimized prototype��� �;
(b) magnitude response plots for the analysis filters � �� �; (c) magnitude
response plot for the overall distortion� �� �� �� on ��� ����; (d) magnitude
response plot of aliasing error ��� �.

We can see that the stopband attenuation of the prototype filter
is now about 96 dB, the maximum peak to peak reconstruction

error is , and the maximum of the aliasing
error is . This design offers better stop-
band attenuation than the design using method in [3]. On the
other hand, these two designs illustrate that the reconstruction
error can be improved at the expense of the stopband attenua-
tion reduction.

VI. CONCLUDING REMARKS

Efficient designs for optimizing the prototype filter of
CMFBs have been presented. First, we have shown that the
CMFB design problem can be cast into a convex SDP problem
by using the convex relaxation technique. Compared to the
nonconvex nonlinear optimization based designs in [19], which
the resulting prototype filter is sensitive to the initial filter, our
method can be effectively solved by SDP techniques. More-
over, the linear phase optimal prototype filter can be efficiently
obtained by the singular value decomposition of the optimal
matrix instead of the conventional spectral factorization. For
filters with large order, the reconstruction error can be fur-
ther improved by the cheap iterative algorithm in which the
closed-form expression is provided in each iteration.

APPENDIX

THE PROOF OF THEOREM 1

For the proof, we need the following result
Lemma 1: Define

Any th-order nonnegative real polynomial is not necessarily
a square but always a sum of two squares:

(39)

(40)

Proof of Lemma 12:As , every its real root
must have even multiplicity, so the factor of corresponding
to the real roots is a square. On the other hand the factors cor-
responding to complex roots of conjugate pairs are sums of two
squares because for any root

Now, is a sum of two squares because if
, then their product is still a sum of two squares:

2This short proof is by Dr. Hung Q. Ngo.
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Proof of Theorem 1: Using the definition (21) of the set ,
one has

showing (23).
Next, suppose and are the set defined by

the right-hand side of (24)/(25) and (26), respectively.
Notice that any admits the SVD , so

implying that . This together with the
relation by the definition of
gives .
To complete the proof of the Theorem, it remains to
show . As it is obvious that

it is sufficient to show the inverse
inclusion .

Let be the nonsingular matrix such that
(for the existence of see [16]). Let .

From the definition (26), there are such that

For , by Lemma 1 there are and such that

so

showing that . The proof of the Theorem is
complete.
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