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Abstract

One of the original motivations for the use of temporallyesded ac-
tions, or options, in reinforcement learning was to enablke transfer of
learned value functions or policies to new problems. Manyeexnenters
have used options to speed learning on single problems, dtitns have
not been studied in depth as a tool for transfer.

In this paper we introduce a formal model of a learning probles a
distribution of Markov Decision Problems (MDPs). Each MEpresents a
task the agent will have to solve. Our model can also be vieagedpartially
observable Markov decision problem (POMDP), with a spestiaicture that
we describe. We study two learning algorithms, one whiclpkes single
value function that generalizes across tasks, and an imcr&inPOMDP-
inspired method maintaining separate value functions dchdask.

We evaluate the learning algorithms on an extension of theritn
Car domain, in terms of both learning speed and asymptotiompeance.
Empirically, we find that temporally extended options cacilfate trans-
fer for both algorithms. In our domain, the single value fiimie algorithm
has much better learning speed because it generalizespisiexce more
broadly across tasks. We also observe that different setgptidns can
achieve tradeoffs of learning speed versus asymptotiopaence.



1 Introduction

Temporally extended actions have been extensively studieecent work as a
powerful tool for generalization in reinforcement leamife.g. Singh, 1992a,b;
Kaelbling, 1993a; Lin, 1993; Dayan & Hinton, 1993; Thrun &artz, 1995;
Dietterich, 1998; Parr & Russell, 1998; Hauskrecht et.888 Mahadevan et.al,
1997; McGovern et.al, 1997; Sutton, 1995; Precup & Sutt®88). They provide
a well-defined mathematical framework for reasoning abogtpsulated behav-
iors, allow us to incorporate prior knowledge into learnexgents and construct
control hierarchies. They have proven useful in speediamiag by biasing state
space exploration and accelerating temporal credit assgh

One of the original motivations for studying temporally extled actions was
as a tool for transferring knowledge between tasks (Kaaiplil993b; Singh,
1992a; Moore et.al, 1998; Sutton, Precup & Singh, 1998; Dnamd, 1998). The
idea is that an agent would be asked to solve a number of eliffebut related,
problems. This could mean achieving different goals in agrafing environment
or perhaps acting in different environments. By recallirgicol policies, ac-
tion values, or environment models from previous learnixgegiences, new tasks
ought to be solvable with less effort than by an agent witlo peror knowledge.
Using options to transfer knowledge has been studied (irabm/e-mentioned
research) mostly in the case of an environment that is fixedep for a goal
state that changes location in different tasks. In our fdation, the dynamics of
the tasks may differ in any way — transition probabilitiesyards, and absorbing
states.

In our model, an agent is faced with a probability distribatiover a finite
set of MDPs. The agent solves one task after another, with eew task drawn
according to the task distribution after an absorbing stétidne previous task is
reached. The tasks are defined on a common state-action detn We agent
starts a new task, it does not know what task it is solving beedhe states look
the same in all tasks. However, as it experiences the taslagant may come to
identify the problem it is solving. We believe this is a vetaysible model for
the problems facing intelligent agents. A person is rarsked to solve the exact
same task again, but it is common to have to solve similarstaskr and over,
without knowing exactly what task one is solving when onetstaor instance,
in driving to work every day, weather, road conditions, etake for a somewhat
different task each time. Such examples are ubiquitousiiy tie, at different
time scales and different complexities. Very similar madehve recently been
proposed for the same purpose of studying knowledge trangtie different sets
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of temporally extended actions by Kalmar and Szepesvaf8q)Land Bernstein
(1999).

With this as a model for our agent’s environment, we can sthéytransfer
value of a set of options — that is, which options best helpaipent to transfer
learned knowledge to new tasks. Asymptotic performance leeing sytem
is always an issue, but when studying transfer, we are péatly interested in
learning speed. The main purpose of transfer, after al, &telerate learning on
new tasks as a result of previous experience.

The rest of the paper is organized as follows. In section 2efime our model
of the learning problem formally and introduce the Frictiblountain-Car do-
main that we use in the learning experiments. Section 3 pteseo learning
algorithms that suit the problem definition. Sections 4 amqudsent a series of
experiments analyzing knowledge transfer in this domain.

2 Problem Definition

A task distributionconsists of a finite set of MDP§ = {T;},i = 1,...,n and
a probability distributionP over 7. Each MDPT; is finite and episodic. All
MDPs share the same state set and actions, but they mayidiffegir transition
probabilities, rewards and absorbing states. The true sfahe environment can
thus be described as a péir s) specifying the task the agent is currently trying
to solve, and the state of that task. However, the agent ipescenly thes part
of that pair; it is not informed directly of which task it islsing. Note that this
formulation fits the definition of a Partially Observable Mav Decision Process
(POMDP), where the state of the task is observed but not #iigt of the task
itself.

The agent beginsiits life in some task drawn randomly acogrtti Pr-. When-
ever an absorbing state of the current task is reached, trg &ginformed that it
solved the task and is given a new task drawn according-toThe agent’s goal
is to maximize expected return within each episode.

The definition of a task distribution allows the MDPs to beitagpy. In prac-
tice, one would probably be concerned with cases where #rereommonalities
among the tasks, so that knowledge transfer makes senseighfeimagine that
there is some relatively small set of parameters that djstghes the tasks from
each other, and that the tasks’ transition probabilitie$ i@uwards are dependent
only on these few parameter values. Or it might be that thesiti@n probabili-
ties and rewards fall within certain bounds. In the Frictdauntain Car domain,



GOAL

Figure 1: Friction Mountain Car

which we describe next, each task is uniquely determinedisiytyvo parameters
— the mean and variance of a friction coefficent random végiab

2.1 Friction Mountain Car

To illustrate this framework, we consider an extension efMountain Car prob-
lem, a standard illustration used for reinforcement leagniln the original prob-
lem, a car begins in a valley and must drive to the top of thiednilthe right as
quickly as possible (see figure 1). The speed of the car wheadhes the goal
does not matter, only the time it takes to get there. The qaacaelerate forward
or backwards (right and left in the figure), or just coast. Thes engine is not
strong enough to drive straight up the right hill, so it tygdlg has to back up part
way on the left hill and then accelerate forward to gain etoogmentum to get
up the right hill. In fact, depending on the strength of thgiar, the car may have
to go back and forth several times before building up enoyxged to reach the
top. The rewards are -1 on every time step (no discountingl) tine car reaches
the goal, which ends the task.

We add a friction term to the physics of the mountain car. kopsicity, we
model sliding friction. EvensingletaskT; has an associated friction coefficient
distribution F;. On each time step an instantaneous friction coefficientasd,
independent of state and friction history, to determinedéeeleration of the car
due to friction during the time step. A friction distributid’; with low mean might
represent a task where the road is clear, andanith high mean a case where



the road is rough or there is debris.

A friction distribution, along with the standard paramstef the Mountain
Car problem, fully specifies the transition probabilitieflsaoFriction Mountain
Car task. Though it is not required by our algorithms, in oxperiments we
always use a uniform distributioRr over tasks. Thus, when we specify a set
{F;} of friction distributions, we implicitly define an entiregf distribution for
the Friction Mountain Car.

3 Algorithms

We use theoptionsframework to describe temporally abstract actions (Sytton
Precup & Singh, 1998). An option consists of a policy S x A — [0,1], a
termination conditiors : S ~ [0, 1], and an initiation sef C S . Given an MDP
and set of option® , the optimal option-value functio@, is given by:

Qb (s,0) = B{r + 7" maxQp (s',0) | £(0, 9)}, (1)

whereé (o, s) denotes the event afbeing initiated ins, r is the total discounted
reward received during the execution®@fy is the discount factor for future re-
wards,k is the time at which the option terminates, atiés the termination state
of the option. If the agent can compute the cor@g¢t, then it can just pick op-
tions greedily according to this value function, and itsdoebr in the given MDP

would be optimal with respect to that set of options.

We use two different algorithms for computing option-valuections that can
be used for behaving, given our problem definition. The Agerdalue Function
(AVF) algorithm is the simpler one and it requires virtuatig prior knowledge.
AVF completely ignores the fact that multiple tasks are gednlved and keeps a
single state-option value functidp over the state space. We use standard SMDP
Q-learning backups (Bradtke & Duff, 1995; Parr, 1998) tahetihe value func-
tion. If the agent observes statechooses option, and as a result ends up in state
s and receives return along the way, the value of the state-option gairo) is
updated by:

Q(5,0) « Q(s5,0) + o(r +7* max Q(s',0) ~ Q(s,0)) @

whereq is the learning rate.
In general, there is no theoretical guarantee for the perdmice of the AVF
algorithm. In the worst case, for instance, we can imaginaiagf linear MDPs
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with diametrically opposed rewards. AVF would learn a valuection with no
useful information. Of course, in this case no value functiansfer is possible.

Our second algorithm is nearer the other end of the spectnuerins of prior
knowledge required and theoretical guarantees. We hawalrbat our task dis-
tribution model can also be thought of as a POMDP, where thte sif the task
is observed but not the identity of the task itself. Althowggiiving POMDPs is
very difficult, we incorporate ideas from POMDP theory in algorithm. In par-
ticular, the agent keeps beliefs about the state it is in @ed these in its action
selection.

The Separate Value Functions algorithm (SVF) maintainguioo-value func-
tion Q; foreach task;,i = 1...n. The agent also maintains a set of beliefs about
which task it is currently executing. L&t; be the belief of the agent that it is solv-
ing task7; € 7. On starting a trial, the beliefs are initialized to the dimition
over the tasks’; for all i:

B; = Pr(T;)

After each action, the transition to the new observed statesghe agent infor-
mation about which task it is in, and the belief about beinganh task is updated
according to the probability of the observed transitionhe task. Updating is
done in the standard Bayesian way. Specifically, on seeiadrémsition from
states to s’ by actiona, the beliefs change by:
B; %, (3)
Z? 1 ps ,8'

wherep . IS the probability of the observed transition in tagk For temporally
extended options the beliefs are updated by the same equdteach step while
the option is running. This update rule assumes that therdsado not convey
specific information regarding the current task. If the redgacome from a dis-
crete distribution that is different for each task, they b@naccounted for in the
same way in which we account for the transition probabditie

If the agent is in state and has a set of belief8;,; = 1...n, it assigns
value to its options by computing a belief-weighted averaihe option values
for each task. In other words, the option it considers beshtmwse givers and
the beliefsB; solves the problem:

arg max > B;Q,(s,0)
j=1



The SVF algorithm incrementally learns the value functiémrseach of the
separate tasks. Each time an option is executed, SVF ugtatastion values for
every task, whether the agent is actually in that task or motdo so, it uses the
SMDP Q-Learning backup, where now th¥s, o) are replaced by th€);(s, o)
specific for the task. However, the learning rates additionally multiplied by the
posterior belief that the agent is in the tgski.e. B; after the option has finished.

This correction accounts for the fact that Q-values are deipdated even
when the agent is solving a different task. All the value tiorts ; converge
with probability 1 to the correct Q-valueg); for each task, under the assumption
that the value function is represented in tabular form, aahestate-action pair is
experienced infinitely often in each task.

Proof: Under these assumptions, the convergence proof is an appficof
Theorem 1 from Jaakola, Jordan & Singh (1994). The only @stiéng part of the
proof is showing that the update operator yields a contracti

The main idea is that we are allowing the learning rate to waity time,
according to the beliefB;. The beliefsB; also account for the difference between
the sampling distribution for the next stateand the distribution o' in taska.

For simplicity, we present here the case of primitive addi@he case of tem-
porally extended options is similar). Let us denotefy the agent’s belief that
it is in taski at timet during the trajectory (i.ebeforeseeing the transition from
s¢ 10 84,1 under actioru,. It is straightforward to show by induction that for any
trajectory experienced by the system, the current belietifat trajectory is:

Dit
Zj Djt ’

B; =
where
t—1 )
pie = Prii} I] Pyt
t'=0
We can re-write the update rule f@; as follows:

Qi(s1,a¢) < Qilsy,a) + aByyi(re + VmaXQ (st41,a) — Qi(s1,a))
= (St; at)(l - a) (1 - Bi,t+1>Qi(5t; at)
+ aBjga(rg +7 max Qi(5¢41,0))

We have to show that the expected value of the update operator

(1-— th+1)Qz(5taat)+th+l( ’YmaXQz(StHa a))
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yields a contraction in the max norm. By subtracting theroptivalue function
Qi (s1, ar), we obtain:

(1 - Bi,t+1)(Qi(5ta at) - Q;‘(St, at)) + Bz‘,t+1(7"?f + maaX Qi(5t+1, (1) - Q;‘(St, at))

Note first that if the belief of being in tagks 0, then the agent will not update
the value function for taskat all. If the agent has perfectly identified a task, then
the update becomes identical to a Q-learning update fortéis&t Therefore, we
are only concerned here with the case in which the coeffisiehboth terms are
between 0 and 1.

The first term does not contribute to the decrease in the,érjast maintains
the previous value function, to the extent that the agens ¢ believe that it
is in the given task. Therefore, is suffices to show that tloese term yields a
contraction.

For the second term, we can re-wifdg(s;, a;) = 73t +v >y pSt  maxy QF (s, a).
Therefore, the second term becomes:

B; t+1’y(max Qi(5¢41,0 szstatsf maXQ 3 @ ))

When taking the expected value over all possible partigdtariesr and over
all tasksk, we obtain:

Di,
ny{iZ'szfﬂ (mg%xQz Si41, 0 Zpitai, maXQ (s a))} =
i Pj,

fyZZPr{k}Pr{T\k:} Pi+1 (max Qi(s¢+1,a szsf;,maxQ (s, a)) =

J Jt+1

72p2t+1 maxQ St+1, 0@ Zps s,maXQ s a)) =
2P 2 P (max Qs @ Zps 4 max Q) (s', ') =

St+1

Wszt > Pty (max Qi(sen,a) — (X2 P4, Zps v max Qi (s',a))

St+1 St+1

Wszt > pek,,, (max Qi(si, a Zps o maXQ (s',a")) <

St+1

<z szt Z pitatstH max ‘Qi(5t+1a a) - Qi (3t+17 Cl)| < ’Y|Qz’(«9t+1a a) - Q:(Swla a)\

St41

g.e.d
The SVF algorithm offers the strong guarantee of convergéacorrect op-
tion values for individual tasks. In task distributions wte small number of
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transitions quickly identifies which task the agent is sodviwe can hope for per-
formance near the optimal POMDP behavior. However, SVF alakes strong
assumptions. The agent must know the transition probisifior all of the MDPs,
as well as the task distributiaf. By contrast, AVF has very weak assumptions,
so it can potentially be useful in a broader range of appboat

4 Experiment Details

In order to study the empirical properties of the AVF and S\fodathms, as well
as the merit of options for facilitating transfer, we perfaad several experiments
on different Friction Mountain-Car task distributions. ideve complete the de-
scription of the environments we use, and give details ongaming methodol-
ogy and performance metrics.

4.1 Friction Mountain Car Task Distributions

The shape of the valley the car is trying to escape from isgiyesin (3 p) where

p € [—m/2,0.5] is the position of the car. The car’s tangential veloeifg limited

to the rangg—0.07,4+0.07]. The primitive actions are three tangential accelera-
tionsa € {—1.0,0.0,1.0}. In friction mountain car we also have an instantaneous
friction term f(¢) drawn independently from the task’s friction distributiohhe
dynamics of the system is given by:

v(t+1) = w(t)+0.001a — 0.0025 cos(3p(t))
+ sign(v(t)) *|0.0025sin(3p(t)) f(¢)]
p(t+1) = p(t)+o(t+1)

If the deceleration due to friction exceeds the other tethesyelocityv(t+1) = 0.
Both the position and the velocity are clipped to the rangestioned above.
Additionally, if the car “hits” the lower end of the positialange, its tangential
velocity is set to zero.

In this paper we use clipped, discretized normal distrdmaifor the friction
coefficients. The friction coefficient is allowed to take aiues from 0.0t0 0.6 in
increments of 0.0005. For a given meamnd standard deviation we evaluate
the corresponding Gaussian density function at each dizaten point, and then
scale the probabilities to ensure they sum to one.

In our experiments, we consider two task distributions.rf&@mtains 50 tasks,
with friction distributions having means running in equatervals fromy = 0.2
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to u = 0.396. The task gets increasingly difficult as friction increasesards
0.4; in fact, if f(¢) = 0.4 always, the task is not solvable from some states — the
car cannot even start moving. The task distributions difiely by the standard
deviation of their friction distributions. We call the taslstributions T0.2 and
T0.02 indicating sets of friction distributions with staard deviations 0.2 and
0.02 respectively.

4.2 Options

Our experiments use three main sets of options, which wele8lep, 20-Step
and 100-Step. The 1-Step options are just the primitiveoastof accelerating
forward or backward and coasting. The 20-Step set also icentaree options,
one that accelerates forward for 20 time steps in a row bdfmainating, one
accelerating backwards for 20 time steps, and one coastirpftime steps. The
three options of the 100-Step set are defined similarly.

At one point we compare some of those options sets with aesoyion which
we call the Pumping option. The option, once started, doéstop until the car
reaches the goal. When the car is moving backwards, theropbatinues to
accelerate backwards until the velocity falls to zero oerses to moving forward
—i.e. until the car hits the left wall or has reached the hgglitecan on the left hill.
Then the pumping option accelerates forward until the goeg¢ached or velocity
flips again. The option does the utmost to keep pumping thegaigher on the
opposing hills. If a particular task can be solved at allntbee Pumping option
will find a solution, but not necessarily in the most efficiemnner.

4.3 Learning Methodology

The previous section defined the algorithms used in thisystlitie learning al-
gorithms all used trial-based learning. In each trial, thescinitial position and
velocity are chosen uniformly randomly from the state spddee agent chooses
its most preferred option 99% of the time and a random optianat the time.
The trial ends when the car reaches the goal, and is alsoesiaaply if 3000 pass
without the car reaching the goal.

For the Friction Mountain Car, the laws of physics plus tretamtaneous fric-
tion coefficient uniquely determine the next state. In maages, an agent ob-
serving a transition could reason backwards, using the tdysysics, to deduce
the instantaneous friction that caused the transition. \@kenthe simplification
that the agent observes the friction coefficient directlgveing us to express the
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belief update diretly in terms of the friction distributioen The rewards give no
information that helps identify the task.

Let taskT; have friction distributionF;, and suppose the agent experiences
a sequence of state transitions as a result of instantarigotisn coefficients
fi, f2,-- -, fx- The belief update can be expressed as:

B 111 Fi(fi)
?:1 Bj Hf:l Fj(fl)

Since the state of the system is described by two continuaniehles (position
and velocity), we have to use a function approximator to e@sent the option-
value function. We use a sparse coarse coding technique,GMAus, 1981),
which discretizes the state space, using several grids naitdom offsets. We
use ten tilings, each having ten position and ten velocitg birilings have small
random offsets, and the approximator is initialized to meta value of -100 for
any input. This setting is considered standard for this.tdskch option-value
function is represented by a separate CMAC. The SVF alguarithhich keeps a
separate value function for each task, simply uses an afratyobh CMACSs; there
is no generalization across tasks due to the function ajppedrr, but only as a
result of the learning rule and action selection rule.

B;

4.4 Performance Measures

Both transient and asymptotic measures of performancefamnéeoest. We report
on-line time per trial as learning progresses. Since tiraks during learning
reflect the random starts and the 1% exploration rate, werafsart two off-line
performance metrics.

In off-line performance, the action with the highest valleea@ding to the
value function is always selected and there is no learninlii® average time
per trial is taken over all tasks and random starting poiriteiweach task. Off-
line bottom time is the time per trial, averaged over the sasken the car starts
at rest at the bottom of the hill. This is the most difficultrtay position, and
hence constitutes a worst-case performance measure ftagkeistribution.

In all the experiments, we optimized the learning rate camisparametet
for each set of options and each learning algorithm. Thelteseported below
are for the best parameter settings in each case.
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Figure 3: Online time per trial for the AVF algorithm, for tifent sets of options,
with optimized learning rate for each set

5 Experiments

In our first set of experiments we compare the option setsep;S20-Step and
100-Step under the Average Value Function algorithm on déstkibution T0.02.
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Figure 4: Time per trial for the AVF algorithm computed offievery 50 trials,
for a random sample of tasks and starting states, for diftesets of options
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Figure 5: Time per trial for the AVF algorithm starting at thettom of the hill at
rest, averaged over all the tasks, for different sets ofomsti

Figure 2 shows the time for each learning trial averaged 80endependent runs.
As expected, longer options provide better early perfortearThe 100-Step op-
tion set, though beginning quite well, unfortunately fadsimprove very much
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during learning. 1-Step and 20-Step quickly surpass 1@@,%ind after only fifty
trials are performing almost as well as they do asymptdticdlote that this is
after an average of only one training trial per task in theJR@listribution. Figure
3 displays the on-line average reward over a longer periddrad. Learning for
each of the option sets seems to have settled down to asympébiavior after
approximately 400 trials.

Figure 4 shows the off-line performance with the option setsr the same
time period, sampled every 50 trials. Because of increasetpke sizes, the
curves are smoother than in the previous graph, but thek tree means of the
on-line performance curves quite well. Off-line perforroaris a better measure
of what the car has learned to do to date. Since the off-likamnline curves
match well, the agent is behaving close to its greedy pedoca during learn-
ing. This simplifies tracking the learning because it meaaglw not really need
to take time out for performance evaluation; rather, we casdtisfied simply to
record the on-line results.

The average time from the bottom of the valley measures tbeess of learn-
ing in the hardest area of the state space. Figure 5 showsnti@saveraged over
runs and a sample of tasks in the distribution, as learniognesses. Under the
100-Step options, the car never reaches the goal from therbaif the valley —
it always times out. 1-Step is solving some of the easy taskie 20-Step is
solving all but a few of the hardest tasks.

These results are also supported by the cumulative timeabrgeasured over
5000 trials for all sets of options, averaged over the 30.r@0sStep options aver-
age0.0455x10" steps, compared 0929107 for 1-Step options an@l4326x107
for 100-Step options. the differences between these nusrarerstatistically sig-
nificant at the 0.05 level.

Over all these graphs, the 20-step options seem not onlylpothe speed of
learning, but also asymptote at a better performance and loser variance in
performance during learning. Theoretical results show tia primitive actions
should always do at least as well on any single MDP when theevalnction
is represented by a lookup table(Precup, Sutton & Singh819% our case,
we are dealing with multiple MDPs as well as function appneiion, so it is
not clear what to expect. One particular difficulty with th&tep options is that
differences in option values are small, making it hard toaotta good policy. 20-
Step options lead to larger differences in option valuekinggthe value function
easier to learn. This aspect of temporally extended actizang be important for
practical purposes.

We have mentioned that as the mean of the friction distilouéipproaches
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0.4, the task gets increasingly difficult. For any value libss1 0.4, however, the
Pumping option can reach the goal, even from the bottom ohilheln figure 6
we plot the expected times to goal for the best AVF configara{R0-Step, 5000
trials of learning) and for the Pumping option, for each o 80 tasks. The hori-
zontal axis shows tasks with friction distribution of inasgng mean and standard
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deviation 0.02. AVF is more efficient on most of the tasks ahelquivalent value
on the harder tasks. In starting from the bottom of the hilyfe 7), though, AVF
fails completely on the hardest tasks. The Pumping optismentioned before,
solves any task that is solvable in principle. This shows time option set can
win on one of the metrics but lose on another, or may be good particular

subset of the task distribution, but not as good overall.
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Figure 8: Comparison of AVF and learning on the hardest tam dor different
sets of options

Figure 8 analyses transfer in a somewhat different way. htavioted that
learning is very difficult on the high mean tasks, we compak¥é solutions
learned across a whole task distribution with an SMDP Q-hiegrsolution trained
only on the hardest task for an equal number of trials. The figurepaoes the
off-line performance from random starts of these two alionis with 1-Step and
20-Step options.

The winner by far on solving the hard tasks is AVF with 20-Stggions.
The experience in solving easier tasks in the set alloweal pierform better on
the hardest task than direct Q-Learning with 20-Step optiam that task. The
training procedure in this case is akin to shaping, in whideaaning agent is
presented with a sequence of increasingly difficult taskt the aim of getting it
to perform well on a hard task.

Surprisingly, the Q-Learning 20-step line is quite closeAwF 20 for the
first three-fifths of the tasks, indicating considerablasfar from the hardest task
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back to the easier tasks. Also important is the relatiorssbfghe AVF 1-step and
AVF 20-step lines. The AVF 1-step performs not too much wdhssn AVF 20-
step on the easy tasks, but almost three times as badly oratedt tasks. One
interpretation is that the 20-Step set of options trandfamsvledge between the
tasks better than 1-Step options. Finally, although theefi-eptions do transfer
knowledge from the hard task to the easiest tasks as weit, gegormance is
much worse than the other cases.

Figures 9 and 10 study the transfer of knowledge from a sitag& to the
whole set in greater detail. In each case, a value functianlearned by SMDP
Q-learning on a single task, and then the performance of tbedy policy with
respect to that value function was tested from random stextihe whole set of
tasks. In each case there were 5000 training trials.

In figure 9, we observe that 1-Step and 20-Step options alfoegaally good
solution to the task trained on. However, the 1-Step pdipgrformance degrades
for the more difficult tasks, whereas the 20-Step policy isenmobust. This may
be because 20-Step options changes the visitation distnibover the state space,
and encourages learning in areas that 1-Step options oratiesetask ignore. It
may also be that the optimal 20-Step policies are more siradeoss tasks than
the optimal 1-Step policies. Training on a middling diffictdsk shows a similar
result 10. Performance on task 29, the target of learning,ssanewhat worse for
1-Step than 20-Step and the performance across tasks afrtherfnotably worse
than under 20-Step.

Finally, we turn our attention to the SVF algorithm. Figureshows the per-
formance of SVF with different sets of options. Performasicews the same gen-
eral relationship and trends as in the case of the AVF algoritvith the 20-step
options being the best in terms of both learning speed anah@tsyic behavior.
The 20-Step options remain significantly faster that 1-Stefons according to
the cumulative time to goal metric.

Of interest is how the performance of SVF changes on taskalisions with
low or high variance in the friction distribution. Low variae means tasks can be
identified quickly, and hence a value function specific fatttask guides behav-
ior. However, during the learning process, rapid identifigbmeans that many
tasks will receive very little updating and learning is exiael to be slower.

Figures 12 and 13 show the performance of AVF and SVF with@@-8n task
distributions T0.02 and T0.2 respectively. In the lowemitigability case, T0.2,
SVF’s learning is more rapid because many different valuetions are updated
as a result of a single experience. Note also, however, ¥M&tsSerformance
is never faster than AVF, in any of these cases. This resuallsis supported by
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Figure 9: Performance from random staatsosstasks of SMDP Q-Learned pol-
icy for task 0.
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Figure 10: Performance from random statsosstasks of SMDP Q-learned pol-
icy for task 29.

the cumulative time to goal for SVF and AVF. For 20-Step opsioin the T0.02
task distribution, SVF’s cumulative time to goal(s803 * 107 steps, compared
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Figure 11: Online time per trial for the SVF algorithm, forfférent sets of op-
tions, with optimized learning rate for each set

to 0.0455 * 107 for AVF with the same set of options. In the T0.2 distribution
the results ar®.1439 x 107 steps, vs.0.0429 x 107 steps. These learning speed
relationships are similar for the other sets of options.

In terms of asymptotic behavior, the specificity of SVF isitild help with
the 20-Step option set. With the 1-Step option set, we diéesSVF eventually
overtaking AVF, particularly on the time-to-goal from thettbom of the valley
metric. Thus, especially in the hard cases, being able tttiigehe task and use
a specific value function does improve behavior.

6 Conclusion

We have introduced a framework for studying knowledge tiemi reinforce-
ment learning in which the learning agent has to solve difietasks drawn from a
given distribution. This model allows us to compare tranpfeperties for differ-
ent options and learning algorithms. We believe that out-thstribution model
of an agent’s environment is realistic. Rarely is one askeresolve the exact
same problem one has solved before, but repeatedly havieglte very simi-
lar tasks is commonplace. Further, the tasks we need to aslypeople usually
have a limited time span, so considering only episodic tdsks not seem overly
restrictive.
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Figure 12: Comparison of the AVF and SVF algorithms with 26psoptions on
the T0.02 task distribution (tasks are easy to identify)
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Figure 13: Comparison of the AVF and SVF algorithms with 26psoptions on
the T0.2 task distribution (tasks are hard to identify)

We introduced two learning algorithms, AVF and SVF, which aery differ-
ent in their assumptions and properties. AVF assumes no kniowledge and
learns a single value function for all the tasks. SVF has sé&gng prior knowl-
edge assumptions, but is guaranteed to converge to coraka functions for
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each task. In our experiments we found AVF to be more effeabm most of
the performance measures. However, more experimentatidifferent domains
would be needed to ascertain its practical value.

Our experiments illustrated knowledge transfer betwesksander a variety
of circumstances. In particular, training on a distribuatiof hard and easy tasks
yielded better performance than training specifically tveadard tasks.

Finally, we compared different sets of options in terms eifitability to trans-
fer knowledge. We found that temporally extended optiomstep in this respect
(which is an expected result). Also, different sets of opgiexhibit different trade-
offs in terms of computation speed vs. the quality of theymagtotic behavior.

We are currently working on algorithms that require lesopknowledge,
while still providing theoretical guarantees. More redivie definitions of the
task distributions could also allow the development of dpealgorithms with
little or no prior knowledge.

Another future direction for this work is in the automatedabvery of op-
tions. Although options allow us, as the agent’s desigreintorporate prior
knowledge, we may also want the agent to discover optiongdelf. Measures
of transfer are important criteria for agents trying to depetheir own set of
options. Although we did not study algorithms for option aisition here, our
experiments compare different sets of options with regartheir transferability.
Such comparisons may be an important part of option disgoagorithms.
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