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Abstract

The concave-convex procedure (CCCP) is a majorization-minimization algorithm
that solves d.c. (difference of convex functions) programs as a sequence of convex
programs. In machine learning, CCCP is extensively used in many learning algo-
rithms like sparse support vector machines (SVMs), transductive SVMs, sparse
principal component analysis, etc. Though widely used in many applications, the
convergence behavior of CCCP has not gotten a lot of specific attention. Yuille and
Rangarajan analyzed its convergence in their original paper, however, we believe
the analysis is not complete. Although the convergence of CCCP can be derived
from the convergence of the d.c. algorithm (DCA), its proof is more specialized
and technical than actually required for the specific case of CCCP. In this paper,
we follow a different reasoning and show how Zangwill’s global convergence the-
ory of iterative algorithms provides a natural framework to prove the convergence
of CCCP, allowing a more elegant and simple proof. This underlines Zangwill’s
theory as a powerful and general framework to deal with the convergence issues of
iterative algorithms, after also being used to prove the convergence of algorithms
like expectation-maximization, generalized alternating minimization, etc. In this
paper, we provide a rigorous analysis of the convergence of CCCP by addressing
these questions: (i) When does CCCP find a local minimum or a stationary point
of the d.c. program under consideration? (ii) When does the sequence gener-
ated by CCCP converge? We also present an open problem on the issue of local
convergence of CCCP.

1 Introduction

The concave-convex procedure (CCCP) [30] is a majorization-minimization algorithm [15] that is
popularly used to solve d.c. (difference of convex functions) programs of the form,

min
x

f(x)

s.t. ci(x) ≤ 0, i ∈ [m],
dj(x) = 0, j ∈ [p], (1)

where f(x) = u(x)− v(x) with u, v and ci being real-valued convex functions, dj being an affine
function, all defined on Rn. Here, [m] := {1, . . . , m}. Suppose v is differentiable. The CCCP

1



algorithm is an iterative procedure that solves the following sequence of convex programs,

x(l+1) ∈ arg min
x

u(x)− xT∇v(x(l))

s.t. ci(x) ≤ 0, i ∈ [m],
dj(x) = 0, j ∈ [p]. (2)

As can be seen from (2), the idea of CCCP is to linearize the concave part of f , which is −v,
around a solution obtained in the current iterate so that u(x) − xT∇v(x(l)) is convex in x, and
therefore the non-convex program in (1) is solved as a sequence of convex programs as shown in
(2). The original formulation of CCCP by Yuille and Rangarajan [30] deals with unconstrained
and linearly constrained problems. However, the same formulation can be extended to handle any
constraints (both convex and non-convex). CCCP has been extensively used in solving many non-
convex programs (of the form in (1)) that appear in machine learning. For example, [3] proposed a
successive linear approximation (SLA) algorithm for feature selection in support vector machines,
which can be seen as a special case of CCCP. Other applications where CCCP has been used include
sparse principal component analysis [27], transductive SVMs [11, 5, 28], feature selection in SVMs
[22], structured estimation [10], missing data problems in Gaussian processes and SVMs [26], etc.

The algorithm in (2) starts at some random point x(0) ∈ {x : ci(x) ≤ 0, i ∈ [m]; dj(x) = 0, j ∈
[p]}, solves the program in (2) and therefore generates a sequence {x(l)}∞l=0. The goal of this paper
is to study the convergence of {x(l)}∞l=0: (i) When does CCCP find a local minimum or a stationary
point1 of the program in (1)? (ii) Does {x(l)}∞l=0 converge? If so, to what and under what conditions?
From a practical perspective, these questions are highly relevant, given that CCCP is widely applied
in machine learning.

In their original CCCP paper, Yuille and Rangarajan [30, Theorem 2] analyzed its convergence, but
we believe the analysis is not complete. They showed that {x(l)}∞l=0 satisfies the monotonic descent
property, i.e., f(x(l+1)) ≤ f(x(l)) and argued that this descent property ensures the convergence
of {x(l)}∞l=0 to a minimum or saddle point of the program in (1). However, a rigorous proof is
not provided, to ensure that their claim holds for all u, v, {ci} and {dj}. Answering the previous
questions, however, requires a rigorous proof of the convergence of CCCP that explicitly mentions
the conditions under which it can happen.

In the d.c. programming literature, Pham Dinh and Hoai An [8] proposed a primal-dual subd-
ifferential method called DCA (d.c. algorithm) for solving a general d.c. program of the form
min{u(x) − v(x) : x ∈ Rn}, where it is assumed that u and v are proper lower semi-continuous
convex functions, which form a larger class of functions than the class of differentiable functions.
It can be shown that if v is differentiable, then DCA exactly reduces to CCCP. Unlike in CCCP,
DCA involves constructing two sets of convex programs (called the primal and dual programs) and
solving them iteratively in succession such that the solution of the primal is the initialization to the
dual and vice-versa. See [8] for details. [8, Theorem 3] proves the convergence of DCA for gen-
eral d.c. programs. The proof is specialized and technical. It fundamentally relies on d.c. duality,
however, outlining the proof in any more detail requires a substantial discussion which would lead
us too far here. In this work, we follow a fundamentally different approach and show that the con-
vergence of CCCP, specifically, can be analyzed in a more simple and elegant way, by relying on
Zangwill’s global convergence theory of iterative algorithms. We make some simple assumptions on
the functions involved in (1), which are not too restrictive and therefore applicable to many practical
situations. The tools employed in our proof are of completely different flavor than the ones used in
the proof of DCA convergence: DCA convergence analysis exploits d.c. duality while we use the
notion of point-to-set maps as introduced by Zangwill. Zangwill’s theory is a powerful and general
framework to deal with the convergence issues of iterative algorithms. It has also been used to prove
the convergence of the expectation-maximation (EM) algorithm [29], generalized alternating mini-
mization algorithms [12], multiplicative updates in non-negative quadratic programming [25], etc.
and is therefore a natural framework to analyze the convergence of CCCP in a more direct way.

The paper is organized as follows. In Section 2, we provide a brief introduction to majorization-
minimization (MM) algorithms and show that CCCP is obtained as a particular form of majorization-

1x∗ is said to be a stationary point of a constrained optimization problem if it satisfies the corresponding
Karush-Kuhn-Tucker (KKT) conditions. Assuming constraint qualification, KKT conditions are necessary for
the local optimality of x∗. See [2, Section 11.3] for details.
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minimization. The goal of this section is also to establish the literature on MM algorithms and show
where CCCP fits in it. In Section 3, we present Zangwill’s theory of global convergence, which is a
general framework to analyze the convergence behavior of iterative algorithms. This theory is used
to address the global convergence of CCCP in Section 4. This involves analyzing the fixed points
of the CCCP algorithm in (2) and then showing that the fixed points are the stationary points of the
program in (1). The results in Section 4 are extended in Section 4.1 to analyze the convergence of
the constrained concave-convex procedure that was proposed by [26] to deal with d.c. programs
with d.c. constraints. We briefly discuss the local convergence issues of CCCP in Section 5 and
conclude the section with an open question.

2 Majorization-minimization

MM algorithms can be thought of as a generalization of the well-known EM algorithm [7]. The
general principle behind MM algorithms was first enunciated by the numerical analysts, Ortega
and Rheinboldt [23] in the context of line search methods. The MM principle appears in many
places in statistical computation, including multidimensional scaling [6], robust regression [14],
correspondence analysis [13], variable selection [16], sparse signal recovery [4], etc. We refer the
interested reader to a tutorial on MM algorithms [15] and the references therein.

The general idea of MM algorithms is as follows. Suppose we want to minimize f over Ω ⊂ Rn.
The idea is to construct a majorization function g over Ω× Ω such that{

f(x) ≤ g(x, y), ∀x, y ∈ Ω
f(x) = g(x, x), ∀x ∈ Ω . (3)

Thus, g as a function of x is an upper bound on f and coincides with f at y. The majorization
algorithm corresponding with this majorization function g updates x at iteration l by

x(l+1) ∈ arg min
x∈Ω

g(x, x(l)), (4)

unless we already have x(l) ∈ arg minx∈Ω g(x, x(l)), in which case the algorithm stops. The ma-
jorization function, g is usually constructed by using Jensen’s inequality for convex functions, the
first-order Taylor approximation or the quadratic upper bound principle [1]. However, any other
method can also be used to construct g as long as it satisfies (3). It is easy to show that the above
iterative scheme decreases the value of f monotonically in each iteration, i.e.,

f(x(l+1)) ≤ g(x(l+1), x(l)) ≤ g(x(l), x(l)) = f(x(l)), (5)
where the first inequality and the last equality follow from (3) while the sandwiched inequality
follows from (4).

Note that MM algorithms can be applied equally well to the maximization of f by simply reversing
the inequality sign in (3) and changing the “min” to “max” in (4). In this case, the word MM refers to
minorization-maximization, where the function g is called the minorization function. To put things
in perspective, the EM algorithm can be obtained by constructing the minorization function g using
Jensen’s inequality for concave functions. The construction of such a g is referred to as the E-step,
while (4) with the “min” replaced by “max” is referred to as the M-step. The algorithm in (3) and
(4) is also referred to as the auxiliary function method, e.g., for non-negative matrix factorization
[18]. [17] studied this algorithm under the name optimization transfer while [19] referred to it as
the SM algorithm, where “S” stands for the surrogate step (same as the majorization/minorization
step) and “M” stands for the minimization/maximization step depending on the problem at hand. g
is called the surrogate function. In the following example, we show that CCCP is an MM algorithm
for a particular choice of the majorization function, g.
Example 1 (Linear Majorization). Let us consider the optimization problem, minx∈Ω f(x) where
f = u − v, with u and v both real-valued, convex, defined on Rn and v differentiable. Since v is
convex, we have v(x) ≥ v(y) + (x− y)T∇v(y), ∀x, y ∈ Ω. Therefore,

f(x) ≤ u(x)− v(y)− (x− y)T∇v(y) =: g(x, y). (6)
It is easy to verify that g is a majorization function of f . Therefore, we have

x(l+1) ∈ arg min
x∈Ω

g(x, x(l))

= arg min
x∈Ω

u(x)− xT∇v(x(l)). (7)
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If Ω is a convex set, then the above procedure reduces to CCCP, which solves a sequence of convex
programs. As mentioned before, CCCP is proposed for unconstrained and linearly constrained
non-convex programs. This example shows that the same idea can be extended to any constraint set.

Suppose u and v are strictly convex, then a strict descent can be achieved in (5) unless x(l+1) = x(l),
i.e., if x(l+1) 6= x(l), then

f(x(l+1)) < g(x(l+1), x(l)) < g(x(l), x(l)) = f(x(l)). (8)

The first strict inequality follows from (6). The strict convexity of u leads to the strict convexity of g
and therefore g(x(l+1), x(l)) < g(x(l), x(l)) unless x(l+1) = x(l).

3 Global convergence theory of iterative algorithms

For an iterative procedure like CCCP to be useful, it must converge to a local optimum or a stationary
point from all or at least a significant number of initialization states and not exhibit other nonlinear
system behaviors, such as divergence or oscillation. This behavior can be analyzed by using the
global convergence theory of iterative algorithms developed by Zangwill [31]. Note that the word
“global convergence” is a misnomer. We will clarify it below and also introduce some notation and
terminology.

To understand the convergence of an iterative procedure like CCCP, we need to understand the
notion of a set-valued mapping, or point-to-set mapping, which is central to the theory of global
convergence.2 A point-to-set map Ψ from a set X into a set Y is defined as Ψ : X → P(Y ), which
assigns a subset of Y to each point of X , where P(Y ) denotes the power set of Y . We introduce
few definitions related to the properties of point-to-set maps that will be used later. Suppose X and
Y are two topological spaces. A point-to-set map Ψ is said to be closed at x0 ∈ X if xk → x0

as k → ∞, xk ∈ X and yk → y0 as k → ∞, yk ∈ Ψ(xk), imply y0 ∈ Ψ(x0). This concept of
closure generalizes the concept of continuity for ordinary point-to-point mappings. A point-to-set
map Ψ is said to be closed on S ⊂ X if it is closed at every point of S. A fixed point of the map
Ψ : X → P(X) is a point x for which {x} = Ψ(x), whereas a generalized fixed point of Ψ is a
point for which x ∈ Ψ(x). Ψ is said to be uniformly compact on X if there exists a compact set H
independent of x such that Ψ(x) ⊂ H for all x ∈ X . Note that if X is compact, then Ψ is uniformly
compact on X . Let φ : X → R be a continuous function. Ψ is said to be monotonic with respect to
φ whenever y ∈ Ψ(x) implies that φ(y) ≤ φ(x). If, in addition, y ∈ Ψ(x) and φ(y) = φ(x) imply
that y = x, then we say that Ψ is strictly monotonic.

Many iterative algorithms in mathematical programming can be described using the notion of point-
to-set maps. Let X be a set and x0 ∈ X a given point. Then an algorithm, A, with initial point x0

is a point-to-set map A : X → P(X) which generates a sequence {xk}∞k=1 via the rule xk+1 ∈
A(xk), k = 0, 1, . . .. A is said to be globally convergent if for any chosen initial point x0, the
sequence {xk}∞k=0 generated by xk+1 ∈ A(xk) (or a subsequence) converges to a point for which a
necessary condition of optimality holds. The property of global convergence expresses, in a sense,
the certainty that the algorithm works. It is very important to stress the fact that it does not imply
(contrary to what the term might suggest) convergence to a global optimum for all initial points x0.

With the above mentioned concepts, we now state Zangwill’s global convergence theorem [31, Con-
vergence theorem A, page 91].

Theorem 2 ([31]). Let A : X → P(X) be a point-to-set map (an algorithm) that given a point
x0 ∈ X generates a sequence {xk}∞k=0 through the iteration xk+1 ∈ A(xk). Also let a solution set
Γ ⊂ X be given. Suppose

(1) All points xk are in a compact set S ⊂ X .

(2) There is a continuous function φ : X → R such that:

(a) x /∈ Γ ⇒ φ(y) < φ(x), ∀ y ∈ A(x),

2Note that depending on the objective and constraints, the minimizer of the CCCP algorithm in (2) need
not be unique. Therefore, the algorithm takes x(l) as its input and returns a set of minimizers from which an
element, x(l+1) is chosen. Hence the notion of point-to-set maps appear naturally in such iterative algorithms.
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(b) x ∈ Γ ⇒ φ(y) ≤ φ(x), ∀ y ∈ A(x).

(3) A is closed at x if x /∈ Γ.

Then the limit of any convergent subsequence of {xk}∞k=0 is in Γ. Furthermore, limk→∞ φ(xk) =
φ(x∗) for all limit points x∗.

The general idea in showing the global convergence of an algorithm, A is to invoke Theorem 2
by appropriately defining φ and Γ. For an algorithm A that solves the minimization problem,
min{f(x) : x ∈ Ω}, the solution set, Γ is usually chosen to be the set of corresponding station-
ary points and φ can be chosen to be the objective function itself, i.e., f , if f is continuous. In
Theorem 2, the convergence of φ(xk) to φ(x∗) does not automatically imply the convergence of xk

to x∗. However, if A is strictly monotone with respect to φ, then Theorem 2 can be strengthened by
using the following result due to Meyer [20, Theorem 3.1, Corollary 3.2].
Theorem 3 ([20]). Let A : X → P(X) be a point-to-set map such that A is uniformly compact,
closed and strictly monotone on X , where X is a closed subset of Rn. If {xk}∞k=0 is any sequence
generated by A, then all limit points will be fixed points of A, φ(xk) → φ(x∗) =: φ∗ as k → ∞,
where x∗ is a fixed point, ‖xk+1−xk‖ → 0, and either {xk}∞k=0 converges or the set of limit points
of {xk}∞k=0 is connected. Define F (a) := {x ∈ F : φ(x) = a} where F is the set of fixed points of
A. If F (φ∗) is finite, then any sequence {xk}∞k=0 generated by A converges to some x∗ in F (φ∗).

Both these results just use basic facts of analysis and are simple to prove and understand. Using
these results on the global convergence of algorithms, [29] has studied the convergence properties
of the EM algorithm, while [12] analyzed the convergence of generalized alternating minimization
procedures. In the following section, we use these results to analyze the convergence of CCCP.

4 Convergence theorems for CCCP

Let us consider the CCCP algorithm in (2) pertaining to the d.c. program in (1). Let Acccp be the
point-to-set map, x(l+1) ∈ Acccp(x(l)) such that

Acccp(y) = arg min{u(x)− xT∇v(y) : x ∈ Ω}, (9)

where Ω := {x : ci(x) ≤ 0, i ∈ [m], dj(x) = 0, j ∈ [p]}. Let us assume that {ci} are dif-
ferentiable convex functions defined on Rn. We now present the global convergence theorem for
CCCP.
Theorem 4 (Global convergence of CCCP−I). Let u and v be real-valued differentiable convex
functions defined on Rn. Suppose ∇v is continuous. Let {x(l)}∞l=0 be any sequence generated by
Acccp defined by (9). Suppose Acccp is uniformly compact3 on Ω and Acccp(x) is nonempty for
any x ∈ Ω. Then, assuming suitable constraint qualification, all the limit points of {x(l)}∞l=0 are
stationary points of the d.c. program in (1). In addition liml→∞(u(x(l))−v(x(l))) = u(x∗)−v(x∗),
where x∗ is some stationary point of Acccp.

Before we proceed with the proof of Theorem 4, we need a few additional results. The idea of the
proof is to show that any generalized fixed point of Acccp is a stationary point of (1), which is shown
below in Lemma 5, and then use Theorem 2 to analyze the generalized fixed points.
Lemma 5. Suppose x∗ is a generalized fixed point of Acccp and assume that constraints in (9) are
qualified at x∗. Then, x∗ is a stationary point of the program in (1).

Proof. We have x∗ ∈ Acccp(x∗) and the constraints in (9) are qualified at x∗. Then, there exists
Lagrange multipliers {η∗i }m

i=1 ⊂ R+ and {µ∗j}p
j=1 ⊂ R such that the following KKT conditions

hold: 


∇u(x∗)−∇v(x∗) +

∑m
i=1 η∗i∇ci(x∗) +

∑p
j=1 µ∗j∇dj(x∗) = 0,

ci(x∗) ≤ 0, η∗i ≥ 0, ci(x∗)η∗i = 0, ∀ i ∈ [m]
dj(x∗) = 0, µ∗j ∈ R, ∀ j ∈ [p].

(10)

(10) is exactly the KKT conditions of (1) which are satisfied by (x∗, {η∗i }, {µ∗j}) and therefore, x∗
is a stationary point of (1).

3Assuming that for every x ∈ Ω, the set H(x) := {y : u(y) − u(x) ≤ v(y) − v(x), y ∈ Acccp(Ω)} is
bounded is also sufficient for the result to hold.
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Before proving Theorem 4, we need a result to test the closure of Acccp. The following result from
[12, Proposition 7] shows that the minimization of a continuous function forms a closed point-to-set
map. A similar sufficient condition is also provided in [29, Equation 10].
Lemma 6 ([12]). Given a real-valued continuous function h on X × Y , define the point-to-set map
Ψ : X → P(Y ) by

Ψ(x) = arg min
y′∈Y

h(x, y′)

= {y : h(x, y) ≤ h(x, y′), ∀ y′ ∈ Y }. (11)

Then, Ψ is closed at x if Ψ(x) is nonempty.
We are now ready to prove Theorem 4.

Proof of Theorem 4. The assumption of Acccp being uniformly compact on Ω ensures that condition
(1) in Theorem 2 is satisfied. Let Γ be the set of all generalized fixed points of Acccp and let
φ = f = u− v. Because of the descent property in (5), condition (2) in Theorem 2 is satisfied. By
our assumption on u and v, we have g(x, y) = u(x) − v(y) − (x − y)T∇v(y) is continuous in x
and y. Therefore, by Lemma 6, the assumption of non-emptiness of Acccp(x) for any x ∈ Ω ensures
that Acccp is closed on Ω and so satisfies condition (3) in Theorem 2. Therefore, by Theorem 2,
all the limit points of {x(l)}∞l=0 are the generalized fixed points of Acccp and liml→∞(u(x(l)) −
v(x(l))) = u(x∗) − v(x∗), where x∗ is some generalized fixed point of Acccp. By Lemma 5, since
the generalized fixed points of Acccp are stationary points of (1), the result follows.

Remark 7. If Ω is compact, then Acccp is uniformly compact on Ω. In addition, since u is continuous
on Ω, by the Weierstrass theorem4 [21], it is clear that Acccp(x) is nonempty for any x ∈ Ω and
therefore is also closed on Ω. This means, when Ω is compact, the result in Theorem 4 follows
trivially from Theorem 2.

In Theorem 4, we considered the generalized fixed points of Acccp. The disadvantage with this
case is that it does not rule out “oscillatory” behavior [20]. To elaborate, we considered {x∗} ⊂
Acccp(x∗). For example, let Ω0 = {x1, x2} and let Acccp(x1) = Acccp(x2) = Ω0 and u(x1) −
v(x1) = u(x2)− v(x2) = 0. Then the sequence {x1, x2, x1, x2, . . .} could be generated by Acccp,
with the convergent subsequences converging to the generalized fixed points x1 and x2. Such an
oscillatory behavior can be avoided if we allow Acccp to have fixed points instead of generalized
fixed points. With appropriate assumptions on u and v, the following stronger result can be obtained
on the convergence of CCCP through Theorem 3.
Theorem 8 (Global convergence of CCCP−II). Let u and v be strictly convex, differentiable func-
tions defined on Rn. Also assume ∇v be continuous. Let {x(l)}∞l=0 be any sequence generated by
Acccp defined by (9). Suppose Acccp is uniformly compact on Ω and Acccp(x) is nonempty for
any x ∈ Ω. Then, assuming suitable constraint qualification, all the limit points of {x(l)}∞l=0

are stationary points of the d.c. program in (1), u(x(l)) − v(x(l)) → u(x∗) − v(x∗) =: f∗

as l → ∞, for some stationary point x∗, ‖x(l+1) − x(l)‖ → 0, and either {x(l)}∞l=0 con-
verges or the set of limit points of {x(l)}∞l=0 is a connected and compact subset of S (f∗), where
S (a) := {x ∈ S : u(x) − v(x) = a} and S is the set of stationary points of (1). If S (f∗) is
finite, then any sequence {x(l)}∞l=0 generated by Acccp converges to some x∗ in S (f∗).

Proof. Since u and v are strictly convex, the strict descent property in (8) holds and therefore Acccp

is strictly monotonic with respect to f . Under the assumptions made about Acccp, Theorem 3 can
be invoked, which says that all the limit points of {x(l)}∞l=0 are fixed points of Acccp, which either
converge or form a connected compact set. From Lemma 5, the set of fixed points of Acccp are
already in the set of stationary points of (1) and the desired result follows from Theorem 3.

Theorems 4 and 8 answer the questions that we raised in Section 1. These results explicitly provide
sufficient conditions on u, v, {ci} and {dj} under which the CCCP algorithm finds a stationary point
of (1) along with the convergence of the sequence generated by the algorithm. From Theorem 8, it
should be clear that convergence of f(x(l)) to f∗ does not automatically imply the convergence of
x(l) to x∗. The convergence in the latter sense requires more stringent conditions like the finiteness
of the set of stationary points of (1) that assume the value of f∗.

4Weierstrass theorem states: If f is a real continuous function on a compact set K ⊂ Rn, then the problem
min{f(x) : x ∈ K} has an optimal solution x∗ ∈ K.

6



4.1 Extensions

So far, we have considered d.c. programs where the constraint set is convex. Let us consider a
general d.c. program given by

min
x

u0(x)− v0(x)

s.t. ui(x)− vi(x) ≤ 0, i ∈ [m], (12)

where {ui}, {vi} are real-valued convex and differentiable functions defined on Rn. While dealing
with kernel methods for missing variables, [26] encountered a problem of the form in (12) for which
they proposed a constrained concave-convex procedure given by

x(l+1) ∈ arg min
x

u0(x)− v̂0(x; x(l))

s.t. ui(x)− v̂i(x;x(l)) ≤ 0, i ∈ [m], (13)

where v̂i(x; x(l)) := vi(x(l)) + (x − x(l))T∇vi(x(l)). Note that, similar to CCCP, the algorithm
in (13) is a sequence of convex programs. Though [26, Theorem 1] have provided a convergence
analysis for the algorithm in (13), it is however not complete due to the fact that the convergence
of {x(l)}∞l=0 is assumed. In this subsection, we provide its convergence analysis, following an
approach similar to what we did for CCCP by considering a point-to-set map, Bccp associated with
the iterative algorithm in (13), where x(l+1) ∈ Bccp(x(l)). In Theorem 10, we provide the global
convergence result for the constrained concave-convex procedure, which is an equivalent version of
Theorem 4 for CCCP. We do not provide the stronger version of the result as in Theorem 8 as it can
be obtained by assuming strict convexity of u0 and v0. Before proving Theorem 10, we need an
equivalent version of Lemma 5 which we provide below.
Lemma 9. Suppose x∗ is a generalized fixed point of Bccp and assume that constraints in (13) are
qualified at x∗. Then, x∗ is a stationary point of the program in (12).

Proof. Based on the assumptions x∗ ∈ Bccp(x∗) and the constraint qualification at x∗ in (13),
there exist Lagrange multipliers {η∗i }m

i=1 ⊂ R+ (for simplicity, we assume all the constraints to be
inequality constraints) such that the following KKT conditions hold:




∇u0(x∗) +

∑m
i=1 η∗i (∇ui(x∗)−∇vi(x∗)) = ∇v0(x∗),

ui(x∗)− vi(x∗) ≤ 0, η∗i ≥ 0, i ∈ [m],
(ui(x∗)− vi(x∗))η∗i = 0, i ∈ [m].

(14)

which is exactly the KKT conditions for (12) satisfied by (x∗, {η∗i }) and therefore, x∗ is a stationary
point of (12).

Theorem 10 (Global convergence of constrained CCP). Let {ui}, {vi} be real-valued differentiable
convex functions on Rn. Assume ∇v0 to be continuous. Let {x(l)}∞l=0 be any sequence generated
by Bccp defined in (13). Suppose Bccp is uniformly compact on Ω := {x : ui(x)− vi(x) ≤ 0, i ∈
[m]} and Bccp(x) is nonempty for any x ∈ Ω. Then, assuming suitable constraint qualification,
all the limit points of {x(l)}∞l=0 are stationary points of the d.c. program in (12). In addition
liml→∞(u0(x(l))− v0(x(l))) = u0(x∗)− v0(x∗), where x∗ is some stationary point of Bccp.

Proof. The proof is very similar to that of Theorem 4 wherein we check whether Bccp satisfies the
conditions of Theorem 2 and then invoke Lemma 9. The assumptions mentioned in the statement
of the theorem ensure that conditions (1) and (3) in Theorem 2 are satisfied. [26, Theorem 1] has
proved the descent property, similar to that of (5), which simply follows from the linear majorization
idea and therefore the descent property in condition (2) of Theorem 2 holds. Therefore, the result
follows from Theorem 2 and Lemma 9.

5 On the local convergence of CCCP: An open problem

The study so far has been devoted to the global convergence analysis of CCCP and the constrained
concave-convex procedure. As mentioned before, we say an algorithm is globally convergent if for
any chosen starting point, x0, the sequence {xk}∞k=0 generated by xk+1 ∈ A(xk) converges to a
point for which a necessary condition of optimality holds. In the results so far, we have shown
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that all the limit points of any sequence generated by CCCP (resp. its constrained version) are the
stationary points (local extrema or saddle points) of the program in (1) (resp. (12)). Suppose, if
x0 is chosen such that it lies in an ε-neighborhood around a local minima, x∗, then will the CCCP
sequence converge to x∗? If so, what is the rate of convergence? This is the question of local
convergence that needs to be addressed.

[24] has studied the local convergence of bound optimization algorithms (of which CCCP is an
example) to compare the rate of convergence of such methods to that of gradient and second-order
methods. In their work, they considered the unconstrained version of CCCP with Acccp to be a point-
to-point map that is differentiable. They showed that depending on the curvature of u and v, CCCP
will exhibit either quasi-Newton behavior with fast, typically superlinear convergence or extremely
slow, first-order convergence behavior. However, extending these results to the constrained setup as
in (2) is not obvious. The following result due to Ostrowski which can be found in [23, Theorem
10.1.3] provides a way to study the local convergence of iterative algorithms.

Proposition 11 (Ostrowski). Suppose that Ψ : U ⊂ Rn → Rn has a fixed point x∗ ∈ int(U) and
Ψ is Fréchet-differentiable at x∗. If the spectral radius of Ψ′(x∗) satisfies ρ(Ψ′(x∗)) < 1, and if x0

is sufficiently close to x∗, then the iterates {xk} defined by xk+1 = Ψ(xk) all lie in U and converge
to x∗.

Few remarks are in place regarding the usage of Proposition 11 to study the local convergence of
CCCP. Note that Proposition 11 treats Ψ as a point-to-point map which can be obtained by choosing
u and v to be strictly convex so that x(l+1) is the unique minimizer of (2). x∗ in Proposition 11
can be chosen to be a local minimum. Therefore, the desired result of local convergence with at
least linear rate of convergence is obtained if we show that ρ(Ψ′(x∗)) < 1. However, currently we
are not aware of a way to compute the differential of Ψ and, moreover, to impose conditions on the
functions in (2) so that Ψ is a differentiable map. This is an open question coming out of this work.

On the other hand, the local convergence behavior of DCA has been proved for two important classes
of d.c. programs: (i) the trust region subproblem [9] (minimization of a quadratic function over a
Euclidean ball) and (ii) nonconvex quadratic programs [8]. We are not aware of local optimality
results for general d.c. programs using DCA.

6 Conclusion & Discussion

The concave-convex procedure (CCCP) is widely used in machine learning. In this work, we analyze
its global convergence behavior by using results from the global convergence theory of iterative
algorithms. We explicitly mention the conditions under which any sequence generated by CCCP
converges to a stationary point of a d.c. program with convex constraints. The proposed approach
allows an elegant and direct proof and is fundamentally different from the highly technical proof
for the convergence of DCA, which implies convergence for CCCP. It illustrates the power and
generality of Zangwill’s global convergence theory as a framework for proving the convergence of
iterative algorithms. We also briefly discuss the local convergence of CCCP and present an open
question, the settlement of which would address the local convergence behavior of CCCP.
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