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Abstract

We present a novel Quadratic Program (QP) formulation
for robust multi-model fitting of geometric structures in vi-
sion data. Our objective function enforces both the fidelity
of a model to the data and the similarity between its asso-
ciated inliers. Departing from most previous optimization-
based approaches, the outcome of our method is a ranking
of a given set of putative models, instead of a pre-specified
number of “good” candidates (or an attempt to decide the
right number of models). This is particularly useful when
the number of structures in the data is a priori unascer-
tainable due to unknown intent and purposes. Another key
advantage of our approach is that it operates in a uni-
fied optimization framework, and the standard QP form of
our problem formulation permits globally convergent opti-
mization techniques. We tested our method on several ge-
ometric multi-model fitting problems on both synthetic and
real data. Experiments show that our method consistently
achieves state-of-the-art results.

1. Introduction
The task of fitting mathematical models to data, i.e.

model fitting, underlies numerous applications in computer
vision. In practice, model fitting is often non-trivial because
real-life vision data typically contain multiple geometric
structures, and are almost always contaminated by noise
including measurement noise, gross outliers, and pseudo-
outliers that are in fact inliers to other structures coexisting
in the data. In order to be robust to noise, many model fitting
methods, e.g. the popular RANSAC approach [1] and its
many extensions [5, 10, 19], adopt a hypothesize-and-verify
procedure, which works by repeatedly generating putative
models (or hypotheses) from random subsets of the data,
and then evaluating these models according to some qual-
ity measure. To cope with multiple structures, a sequential
fit-and-remove approach is commonly used, which excludes
inliers of detected structures from further consideration. A
major limitation of this approach is that it can not guarantee
the optimality of the solution.

A recent trend in multi-model fitting [6, 8, 9, 14] is to
pose the selection of multiple models as an optimization
problem in such a form that enables the application of stan-
dard optimization techniques. These approaches operate in
a unified optimization framework, which in theory offers a
guarantee on solution optimality (although many previous
methods deviate from this goal due to computational in-
tractability). To deal with multi-structure data, these meth-
ods employ a model selection criterion, e.g. the Akaike in-
formation criterion [2], to determine the number of models
to select. Unfortunately, this typically involves elaborate
(and often unintuitive) tuning of regularization parameters.

The proposed approach belongs to this class of meth-
ods. However, in contrast to previous approaches, it does
not attempt to decide the correct number of models during
the optimization. Instead, it allows users to perform a more
informed post-processing model selection by providing a
ranked list of putative models. The ranking is obtained by
globally optimizing a convex and quadratic objective func-
tion of model weights that balances model quality and di-
versity. Fig. 1 depicts an example ranking of putative 4D
linear subspaces for the application of motion segmentation
[17]. As shown in the figure, the subspaces ranked top 3 by
our method clearly separate the two moving objects (circles
and triangles) from the background scene (stars).

Another major challenge faced by optimization ap-
proaches to multi-model fitting lies in the computational
tractability of their problem formulations. The majority of
current approaches must resort to approximate solutions to
remain computationally feasible. For instance, the Unca-
pacitated Facility Location (UFL) formulation proposed in
[9] is, in general, NP-hard. Although a Linear Program
(LP) relaxation of UFL exists, due to its large problem
size, only relatively few putative models can be handled.
A message-passing inference algorithm was later proposed
in [8] to solve the original UFL problem, but only approx-
imate solutions are available. Thakoor and Gao [14] intro-
duced a combinatorial optimization formulation for model
selection, and tailored a Branch-and-Bound-based approach
to solve the resulting problem. Their approach, however,
faces a worst case exponential complexity in the number
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(a) Tracked Keypoints (b) Top-1 Model (c) Top-2 Models (d) Top-3 Models

Figure 1. (a): Tracked keypoints on a static background (stars) as well as two moving objects of different motions (circles and triangles).
They are clearly separated by the 4D linear subspaces (b-d) ranked top 3 by our method among 103 putative motion subspace models.
Putative models were generated from the “1R2RCT A” keypoint trajectories in the Hopkins155 benchmark [17]. We assigned keypoints to
their most consistent subspace (c.f . (13) for our consistency measure).

of putative models and thus is intractable for practical use.
More recently, an energy-based approach was proposed in
[6], which emphasized a spatial consistency in the cluster-
ing results given by the selected models. Since the energy
function is NP-hard to minimize, the authors resort to ap-
proximate solutions. Departing from previous formulations,
our optimization problem is a standard Quadratic Program
(QP). The size of our QP is linear in the number of puta-
tive models. Large-scale QP solvers such as the MOSEK
solver1 can solve a QP with several thousands of variables
in just a few seconds.

The rest of the paper is organized as follows: We first
provide a general description of our problem formulation,
and list key steps for solving the problem. Those key steps
are detailed subsequently in Secs. 3 and 4, where we show
how to measure the quality of a model and how to regularize
overlapping models, respectively. Experimental results on
synthetic and real data are reported in Sec. 5. We conclude
the paper with a discussion in Sec. 6.

2. Model Fitting as a Quadratic Program
Our work is inspired by the QP formulation of the clas-

sical mean-variance-based portfolio optimization [12, Ch.1]
in financial applications, where a set of assets are selected
with optimal weights to form an investment portfolio. The
optimization problem there reflects a trade-off between ex-
pected return and risk, with risk measured as covariance be-
tween (returns of) assets. Following this concept, we design
a generic optimization framework for the simultaneous se-
lection of multiple geometric models in computer vision.
Our method optimizes the ranking (or importance weights)
of putative models based on both the qualities of the given
models and their correlation (overlap) with each other.

We first give a general description of our problem for-
mulation. Let X := {xi}Ni=1 be a set of N input data,
and M := {θm}Mm=1 a series of M putative models that
are generated from minimal subsets of X , e.g. a set of 4

1Available from http://www.mosek.com.

Algorithm 1 Model Fitting by Quadratic Programming (QP-MF)
1: input residuals (5) of all data as measured to the M

putative models and parameters T, α, β > 0 as in (2).
2: output a ranking of the M putative models
3: compute similarities between all data via (9)
4: use data similarities to form inlier sets Im, for m =

1, · · · ,M (Sec. 3.2)
5: compute the model fidelity and inlier similarity terms

in (2) via (1) and (12), respectively
6: compute similarities between all models (Sec. 4)
7: plug results from previous two steps to (2), and solve

it to obtain the optimal weight vector t∗ via Quadratic
Programming

8: return π = argsort(−t∗) (i.e. indices sorted by
non-ascending values of t∗m, m = 1, · · · ,M )

keypoint correspondences for homography estimation. Our
goal is to optimally rank putative models in M such that
each of the top-ranked models represents a different struc-
ture in the data. Toward this end, we associate with each
model a weight variable tm ∈ [0, 1],m = 1, · · ·M . The op-
timization is then performed over these variables to obtain
the optimal weights t∗ := [t∗1, · · · , t∗M ]. The permutation
that sorts t∗ in non-ascending order provides the ranking.

Our objective function J : RM → R makes use of a
domain-specific loss function l(xi,θm), e.g. the Sampson
distance [7] if the application is homography or fundamen-
tal matrix estimation. It computes the residual of xi as mea-
sured to a model θm. The discrepancy between a model and
the data, i.e. model fidelity, is then quantified as

L(Im,θm) :=
1
| Im |

∑
i∈Im

l(xi,θm), (1)

where Im contains the indices of data that support θm, i.e.
Im is a set of inliers for θm (Sec. 3.2).

Recent work in multi-model fitting [3, 4, 15] discov-
ers that data from a coherent structure share similar prefer-
ences (given by residual sorting) towards putative models.
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Exploiting this novel feature, we include an inlier similar-
ity term f(Im) (defined in Sec. 3.2) in our objective func-
tion so as to enforce consistent preferences of data in Im
to putative models. Moreover, to handle overlapped mod-
els (Sec. 4), we incorporate a regularizer into our objective
function to encourage diversity in the top-ranked models.

The resulting optimization problem takes the form:

min J(t) :=
M∑
m=1

tm L(Im,θm)︸ ︷︷ ︸
Model Fidelity

− α
M∑
m=1

tm f(Im)︸ ︷︷ ︸
Inlier Similarity

+ β

M∑
m,n=1

tm tn s(θm,θn)︸ ︷︷ ︸
Regularizer

(2)

s.t. t ∈ [0, 1]M ,
M∑
m=1

tm ≥ T, (3)

where L(·, ·) is the model fidelity measure defined in (1),
f(Im) quantifies the similarity between data in Im, and the
parameter T ∈ [1,M ] is a positive integer that guarantees
a minimum number of non-zero weights. Free parameters
α, β > 0 trade off various terms in J(t), both being au-
tomatically set in the experiments of Sec. 5. The function
s : A×A → R in the quadratic regularizer evaluates the
degree of overlap between two putative models, where A
is the domain of model parameters. The regularizer is de-
signed to penalize simultaneously assigning high weights
to overlapped models, and hence effectively encourages the
top-ranked models to represent diverse structures in data.
The model similarity measure s(·, ·) is defined in Sec. 4. We
will also prove that s(·, ·) is a positive-definite kernel func-
tion. This means that the regularizer in (2) is non-negative
for any values of tm and tn [13]:

(∀tm, tn)
M∑

m,n=1

tm tn s(θm,θn) ≥ 0, (4)

implying that the Hessian matrix∇2J ∈ RM×M of the ob-
jective function is positive-semidefinite. Therefore, J(t) is
a convex function. Moreover, since J(t) is quadratic and
the constrains in (3) are all linear in t, our optimization
problem is a standard QP, thus can be minimized to opti-
mality by various constrained optimization techniques, e.g.
interior-point methods [11].

Our approach is detailed in Alg. 1, which involves the
following three key steps of operations:

1. forming the inlier sets Im for all putative models,
2. measuring the degree of overlap between putative

models, i.e. computing s(θm,θn) in (2), and
3. solving the QP (Eqns. 2 and 3) to obtain the optimal

weights, sorting which in non-ascending order gives
the optimal ranking of putative models.

In what follows we discuss the first two key steps. The
standard QP form of our problem enables the use of off-
the-shelf QP solvers to complete the final step.

3. Quantifying Model Quality

We introduce a novel data similarity measure, and show
how to utilise it to form the inlier set Im for the computation
of the model fidelity and inlier similarity terms in (2).

3.1. A Similarity Measure Based on Permutations

As demonstrated in recent work [3, 4, 15], inliers from
the same structure share very similar preferences to putative
models, while cross-structure inliers and gross outliers do
not exhibit this property. Building on this observation, we
design a robust data similarity measure that is capable of
differentiating inliers of the same structure from other data.

To obtain the preference of each datum xi to putative
models, we first compute its absolute residuals as measured
to the M putative models to form a residual vector

r(i) := [ r(i)1 r
(i)
2 · · · r(i)M ]. (5)

The elements in r(i) are then sorted in non-descending or-
der to obtain the permutation

π(i) := [ π(i)
1 π

(i)
2 · · · π(i)

M ] (6)

such that p < q ⇒ r
(i)

π
(i)
p

≤ r(i)
π

(i)
q

.

The permutation π(i) essentially encodes the preference
of xi to the putative models. To compare preferences of two
data, we compute the intersection between leading elements
in their corresponding permutations:

st(xi,xj) := |π(i)[h(i)
t ] ∩ π(j)[h(j)

t ]|/(h(i)
t × h

(j)
t )

1
2 , (7)

where | · | denotes the cardinality of a set (or a vector), the
notation a[b] refers to a set that consists of the first b ele-
ments of a vector a. The bandwidth h(i)

t is given by

h
(i)
t := min(|π(i)|, t× h(i)), (8)

where t is a positive integer, |π(i)| is the full length of the
permutation (M here), and h(i) ∈ N+ is a basis bandwidth,
controlling the discriminative power of the similarity mea-
sure (7) for a given t. Since a datum is most well character-
ized by its preferred models, a natural choice for h(i) is an
estimated number of models that xi strongly agrees with,
e.g. it was determined by (15) in our experiments. For mod-
els that are less preferred by xi (hence their rankings are
less informative), their contributions are discounted. The
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Figure 2. Left: synthetic three-structure line-fitting data with 45%
gross outliers (top) and two-structure keypoints on the first im-
age of the “kanatani1” data (bottom) [17] with 15% gross outliers
(marked as “+”) for 2-view fundamental matrix estimation (Key-
points on the second image are not shown here.). Right: the struc-
tures in the data are revealed as high similarity blocks in the data
similarity matrix S with Sij := s(xi, xj) (9). To aid presenta-
tion, we arranged data in S based on their structure membership.

resulting data similarity measure is then given by an expo-
nentially decayed sum of (7) for increasing values of t:

s(xi,xj) :=
1
Λ

tmax∑
t=1

λt−1 st(xi,xj), where (9)

tmax := d |π(i)|/min(h(i), h(j)) e and λ ∈ (0, 1).

The decay factor λ governs the contributions of intersection
measurements (7) taken within different bandwidths; and
Λ =

∑tmax
t=1 λ

t−1 is a normalization constant. It is easy to
verify that s(·, ·) takes on values from (0, 1], and is sym-
metric in its input variables. Moreover, in Appendix A we
prove that (9) is in fact a valid kernel function.

Fig. 2 (right) gives sample outputs of (9) using 103 pu-
tative models for line fitting (top) and 2-view fundamen-
tal matrix estimation (bottom). The evident high similarity
blocks in the data similarity matrix correspond to coherent
structures in the unbalanced and noisy data (Fig. 2, left).

3.2. Identification of Inliers for Each Model

Having measured pairwise similarities between all data,
we use a two-step procedure to identify inliers for each pu-
tative model, i.e. forming the set Im as in (2):

1. First, for each model θm, initialize Im with indices of
k data that give the k-smallest residuals as measured to
θm, we call these data top-k data; k is an estimate of
the minimum number of inliers of all putative models.
We conservatively set k = 5%×N in all experiments;
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Figure 3. Identified inliers of sample putative lines (top) and fun-
damental matrices (bottom), each model representing a coherent
structure in the data depicted in the top and respectively, bottom
left panels of Fig. 2. The inliers found for a model include: (1) a
limited number of data that strongly support that model, i.e. top-k
data (stars) and (2) those detected by (11) (circles) that represent a
larger population of data that are also consistent with that model.

2. then, expand Im with data that are “similar” to the top-
k data. Denote the average similarity between a datum
xi and the top-k data of θm by s(i)m ; and let stop

m be the
average similarity among the top-k data, i.e.

s(i)m :=
∑

j∈I top
m \{i}

s(xi,xj)
z

and stop
m :=

∑
i∈I top

m

s
(i)
m

k
, (10)

where I top
m contains the indices of the top-k data of θm,

and z is a normalization constant: z = k if i /∈ I top
m and

(k − 1) otherwise. A datum xi with i /∈ I top
m is then

regarded similar to the top-k data if

s(i)m /stop
m ≥ ε, (11)

where ε ∈ (0, 1] is a tolerance parameter. The higher
the value of ε, the stricter the similarity requirement is
for a non-top-k datum to be included into Im. In all
experiments we found it sufficient to set ε = 0.8.

Fig. 3 shows the inliers identified by the above procedure
(with default k and ε) on the data shown in Fig. 2 (left). It
can be seen that despite the presence of multiple structures
of different sizes, heteroscedastic inlier noise and gross out-
liers in data, our procedure still effectively identifies the in-
liers that well characterize a given putative model.

Having obtained the inliers of a model θm, we assess its
quality by jointly taking into account the fidelity of θm to
the identified inliers as well as the similarity among these
inliers. It is straightforward to quantify the model fidelity
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via (1); using (9), we compute the inlier similarity as the
average median similarities between inliers in Im:

f(Im) :=
1
| Im |

∑
i∈Im

medianj∈Im
s(xi,xj). (12)

The higher the value of f(Im), the more likely the data in
Im are from a genuine structure, and thus the more promis-
ing θm is to be a “good” model. Note that unlike the stan-
dard RANSAC, our method does not consider the number
of inliers as a measure of model quality. Therefore, it is not
contingent on the identification of all inliers.

4. Regularization of Overlapped Models
It is very common in practice to have several similar pu-

tative models that essentially represent the same structure in
data, but differ slightly in their parameters. To resolve such
an ambiguity, we include a model overlapping regularizer
in (2) to penalize overlaps between top-ranked models.

Our regularization makes use of a model similarity mea-
sure which is designed by the same principle as introduced
in Sec. 3.1 for the computation of data similarity: model
similarities are quantified by their preferences to the data.
Such preferences are collectively determined by residuals
of the data as measured to a given model as well as their
similarities to the top-k data of that model:

c
(m)
i := r(i)m − αs(i)m , (13)

where all the quantities defining the consistency c(m)
i of xi

with a model m are readily available from the operations
discussed in previous sections: α > 0 is a trade-off param-
eter used in (2), all the other quantities are from Sec. 3.
Since the smaller the value of c(m)

i , the more consistent
xi is with a model m, we sort c(m)

i , for i = 1, · · · , N ,
in non-descending order to obtain the preference of θm
to the N input data to obtain the permutation τ (m) :=

[τ (m)
1 , · · · , τ (m)

N ] such that p < q ⇒ r
(τ(m)

p )
m ≤ r

(τ(m)
q )

m ,

where the residuals r
(τ(m)

p )
m are indexed as in (5). Com-

paring the similarity between two models, i.e. computing
s(θm,θn) in (2), then involves applying the similarity mea-
sure (9) on permutations given by τ (m) and τ (n). Since
each θm is best represented by the data in its associated in-
lier set Im, we set its basis bandwidth h(m) to | Im |, i.e.
the estimated number of its inliers.

Let S ∈ (0, 1]M×M be the model similarity matrix with

Smn := s(θm,θn). (14)

By Theorem A.1, S � 0. This ensures that the objective (2)
is convex, hence allowing for global optimization. Note that
each diagonal element of S takes on the maximal value of

one. The form of the regularizer in (2), however, suggests
that an S with zeros on its diagonal would further encour-
age the concentration of weights on distinct models. Un-
fortunately, this makes the objective non-convex. Without
losing the convexity, we added to S a non-negative diago-
nal penalty matrix D to discourage over 50% overlaps be-
tween top-ranked models, thus further ensuring model di-
versity. Alg. 2 gives a simple tree-traversal-based scheme
that generates such aD. Note that S � 0 andD � 0 imply
(S +D) � 0, hence the convexity of (2) remains.

5. Experiments
We evaluated the performance of the proposed method

(QP-MF, Alg. 1) on various model fitting problems on both
synthetic and real data. Our method was compared against
two recent optimization approaches2 to multi-model fitting:
the energy-based approach [6] (denoted Energy) and the ap-
proximate UFL approach FLoSS [8]. For all experiments,
we generated 103 putative models by using a guided sam-
pling method [4] that is recently developed for efficient hy-
pothesis generation on multi-structure data.

We tuned the free parameters of Energy and FLoSS to
ensure their good performance; specifically, we use the
ground-truth knowledge about the number of structures in
data to guide the tuning of their regularization parameters.
As suggested in [6], we also introduced an outlier model
into the optimization of our competing methods for the ex-
periments that involve gross outliers (Secs. 5.1 and 5.2).
The residuals associated with this pseudo-model were tuned
to 0.01. Such a scheme was designed to handle outliers.

For QP-MF, we fixed all its parameters throughout as fol-
lows: The decay factor λ in (9) was set to 0.5; the basis
bandwidth h(i) (8) for our model and data similarity mea-
sures was set to | Im | and respectively, the number of mod-
els that a datum is consistent with. The consistency is de-
termined by the following check

r(i)m ≤ rinlier, (15)

where rinlier ≥ 0 is an estimate of inlier residual, we set it to
the maximum residual among the residuals that are ranked
not lower than 2p by each model (i.e. the 2p smallest resid-
uals of each model), p being the size of a minimum subset
of data required to estimate a particular geometric model,
e.g. p = 4 for homography estimation. Using more so-
phisticated methods for estimating rinlier (e.g. [16, 18]) may
improve the performance of QP-MF. Both α and β in (2)
were set to the average residual of all data as measured to
all putative models. This ensures that the three terms in (2):
model fidelity, inlier similarity, and regularizer, are on the
same scale. The lower bound T on the number of active
models was set to 2, meaning that at least 2 putative models

2Code available from the respective authors’ webpages.
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Algorithm 2 Generate a Diagonal Overlapping Penalty Matrix

1: input L(Im,θm) and f(Im), ∀m and α as in (2), the
model similarity matrix S (14), and a penalty γ > 0

2: output a diagonal penalty matrixD ∈ RM×M
3: compute model quality scores: qm = L(Im,θm) −
αf(Im) for all m

4: for m = 1, · · · ,M do
5: if exist θn 6= θm with qn ≥ qm and Smn ≥ 0.5

then
6: link θm to θn: θm → θn
7: else
8: link θm to itself: θm → θm
9: end if

10: end for
11: perform tree traversals to associate each θm with its

corresponding root node θrm

12: setDmm = γSmrm
if rm 6= m;Dmm = 0 otherwise

will be assigned non-zero weights. To impose a penalty on
over 50% model overlap, we generated a diagonal penalty
matrix D via Alg. 2 with the penalty constant γ > 0 set to
M (Such a choice of γ is not essential.). The matrixD was
then added to the similarity matrix (14) at Step 6 of Alg. 1.
For the optimization, we used the QP solver in MOSEK.

In terms of speed, Energy requires the least CPU time,
costing less than 0.5 second in most of our experiments on a
machine with 2.6GHz Intel quad core processors with 4GB
of RAM. Our method takes about 2 seconds to solve its QP,
while its overall running time is typically between 10 to 25
seconds, most of which were spent in computing the data
and model similarity matrices (Steps 3 and 6 in Alg. 1).
Such a speed is comparable to FLoSS, but is slower than
Energy. However, in return, QP-MF provides globally opti-
mal solutions (compared to the approximate solutions given
by the other two methods), which eliminates potential prob-
lems caused by the inaccuracy of approximation optimiza-
tion. Moreover, since the elements of the data (resp. model)
similarity matrix (9) can be computed independently, it is
easy to devise a parallel implementation to accelerate QP-
MF for large-scale problems.

5.1. Homography Estimation

Our first set of experiments were conducted on synthetic
keypoint correspondences for planar homography estima-
tion. We used the “spinning wheels” data obtained from
the web.3 The data contain 5 frames of tracked keypoints
on 4 rotating planar objects, each having 50 inliers (Fig. 4,
left). We obtained keypoint correspondences by matching
the keypoints on the first and the last frames. Each putative
homography was computed from 4 correspondences via Di-

3http://www.iu.tu-darmstadt.de/datasets.
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Figure 4. Average classification error under the influence of vari-
ous outliers ratios (right) on the “spinning wheels” data (left).
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Figure 5. Sample classification results on the corrupted “spinning
wheels” data (top left) with 50% gross outliers (marked as “+”).

rect Linear Transformation [DLT, 7]. Residuals were mea-
sured as the Sampson distances.

We investigated the perfomance of each method under
the influence of various gross outlier ratios (0-75%); false
correspondences were established by matching keypoints
that were randomly generated over the range of inliers. We
recorded the average classification error of each method on
the inliers across 10 random runs, each run used a new batch
of 103 putative models generated by our chosen sampling
method [4]. For Energy and FLoSS, each datum was as-
signed to its most consistent (as measured by residual) non-
outlier model; recall that our parameter tuning ensures that
Energy and FLoSS return exactly 4 non-outlier models for
this task, while for our method, each datum was assigned to
its most consistent model among the returned top-4 models
with the consistency quantified by (13).

Fig. 4 (right) shows the minimum inlier classification er-
ror among all possible outcomes given by different permu-
tations of data labels. We can see that QP-MF tolerates high
percentages of gross outliers, maintaining a less than 10%
classification error for up to 55% outliers (inlier rate of only
11.25% for each spinning wheel), whereas the performance
of Energy and FLoSS deteriorates rapidly as the outlier ratio
surpasses 35%, resulting in noticeably higher classification
errors than our method.

It can be seen from the sample classification results in
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Figure 6. The “cars1”, “cars2”, and “three-cars” data with 10%
gross outliers (marked as “+”) for fundamental matrix estimation.

Figure 7. The classification results of QP-MF (left), Energy (cen-
ter), and FLoSS (right) on the inlying data shown in Fig. 6.

Fig. 5 that even in the presence of a large amount of gross
outliers (top left), our method (top right) still correctly clus-
ters the majority of the inlying data into 4 classes (denoted
by 4 different markers), while under such noise, the per-
formance of the other two methods appears almost random
(bottom row). This set of experiments indicate that model
quality measure by residuals alone, as in FLoSS, is suscep-
tible to outliers; and the spatial smooth constraint enforced
by Energy can be misleading if gross outliers spatially mix
with inliers. In fact, we had to significantly tune down the
contribution of the smooth cost of Energy to ensure its good
performance; however, in this case it essentially reduced to
FLoSS, which explains their similar performance in Fig. 4.
QP-MF’s quality measure, i.e. residual complemented with
inlier similarity, is designed to alleviate these problems.

5.2. Fundamental Matrix Estimation

We also applied our method to 2-view fundamental ma-
trix estimation on images of multiple moving objects from
the Hopkins155 benchmark [17]. We used the first and the
last frames of the tested video sequences to form image
pairs. Keypoint correspondences were obtained by match-
ing keypoints on each image pair. The standard 8-point es-
timation method [7] was used to generate putative funda-

Table 1. Average and median classification error (%) on the Hop-
kins155 sequences of 2 objects.

#Seq. Error FLoSS Energy QP-MF

Checker. 78
Avg. 7.70 5.28 9.98
Med. 1.23 1.83 1.38

Traffic 31
Avg. 0.14 1.15 0.12
Med. 0.00 0.00 0.00

Articul. 11
Avg. 4.69 3.30 2.38
Med. 1.30 1.22 0.00

Table 2. Average and median classification error (%) on the Hop-
kins155 sequences of 3 objects.

#Seq. Error FLoSS Energy QP-MF

Checker. 26
Avg. 16.45 21.38 15.61
Med. 16.79 21.14 8.82

Traffic 7
Avg. 0.29 11.19 0.29
Med. 0.00 14.02 0.00

Articul. 2
Avg. 8.51 13.04 5.85
Med. 8.51 13.04 5.85

mental matrices from sets of 8 correspondences. Residuals
were measured as the Sampson distances. We added 10%
gross outliers to the original noise-free Hopkins155 data to
create a more realistic test setting. Fig. 6 shows the data.

As in the previous set of experiments, we evaluated the
classification error of each method on the inliers of each
data. Fig. 7 shows that in all experiments the fundamental
matrices ranked high by QP-MF consistently lead to the best
classification results than that of the other two methods.

5.3. Subspace Segmentation

Our final set of experiments consider the task of identi-
fying multiple moving objects via subspace segmentation.
In this case each datum xi is the trajectory of a keypoint
tracked over several frames. Assuming an affine projec-
tion model, point trajectories of each moving object lie in
a linear subspace of dimensionality at most 4. The task of
subspace segmentation is to cluster point trajectories into
different linear subspaces. We used the entire 155 video
sequences in the Hopkins155 benchmark [17] in our exper-
iments, and followed [17] in first projecting point trajecto-
ries onto a subspace of dimensionality 5; putative 4D sub-
space models were then generated from sets of 4 projected
trajectories. Residuals were calculated as the squared nor-
mal distances between data and subspaces. We evaluated
the classification errors of all methods on three categories
of the Hopkins155 data: “checkerboard”, “traffic”, and “ar-
ticulated objects”, respectively. Again, Energy and FLoSS
require the tuning of their regularization parameters in order
to output the correct number S of subspaces; in addition,
FLoSS invokes a subspace merging scheme if too many
subspace models are selected. As reported in [8], FLoSS
with such a scheme produces competitive results (though
the requirement of ground-truth knowledge about the num-
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ber of motions renders it impractical). Since the code for
the merging scheme of FLoSS is not released, we took the
results in [8] for our comparison. For QP-MF, we simply
used its top-S models for the evaluation.

Tabs. 1 and 2 summarize the performance of the three
methods on the Hopkins155 data of 2 and 3 objects, re-
spectively. We can see that QP-MF outperforms its compet-
ing methods on almost all sequences except for the 2-object
“checkerboard” sequences where Energy performs the best
in terms of the average classification error, while FLoSS
slightly outperforms others in terms of the median error.

6. Conclusions

We proposed a novel QP-based global optimization ap-
proach that directly optimizes the ranking of putative mod-
els such that top-ranked ones represent a possibly unknown
number of structures in data. We also introduced a data
(resp. model) similarity measure that is robust to noise and
effective in its own right in quantifying the correlations be-
tween data (resp. models), which enables its use in other
robust fitting methods. Moreover, the proposed approach
is the first that integrates both data and model similarities
into a unified optimization framework for multi-model fit-
ting, and provides superior results over recent optimization
approaches on a range of computer vision applications.
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A. A Positive-Definite Similarity Measure
Theorem A.1 The similarity measure s : X ×X → R de-
fined as (9) is a positive-definite kernel on X .
Proof Since s(·, ·) is a positive combination of st(·, ·) (7)
for various t, it suffices to show that st(·, ·) is a positive-
definite kernel. For x1, · · · ,xn ∈ X ,∀n ∈ N+, let
S ∈ Rn×n be a square matrix with Sij = st(xi,xj), then
st(·, ·) is a positive-definite kernel if S � 0 [13]. We prove
this by showing that S can be decomposed as S = A>A,
a form of matrix decomposition that guarantees S � 0.

First, for each permutation π(i) (6) of length M , we de-
fine a column vector a(i) ∈ {0, 1}M with its jth element set
to 1 if j is contained in the sub-permutation π(i)[h(i)

t ], i.e.
a(i) is the bitvector representation of π(i)[h(i)

t ]. It follows
from (7) that st(xi,xj) =

〈
a(i),a(j)

〉
/(‖a(i)‖‖a(j)‖).

We prove our claim by constructing the A matrix as
A := [a(1)/‖a(1)‖, · · · ,a(n)/‖a(n)‖] ∈ RM×n.
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