TECHNICAL REPORT

NetFlow: Information loss or win?

Robin Sommer and Anja Feldmann
Saarland University, Saarbriicken, Germany
{rsommer, anja}ecs.uni-sb.de

Abstract— Operating a network without accurate traf-
fic statistics is not desirable. Commonly used data sources
are SNMP [1], flow-level data, e.g., Cisco’s NETFLOwW, or
packet level data. The first data source provides low vol-
ume, coarse-grained, non-application specific data. The lat-
ter one provides high volume, fine-grain data and applica-
tion specific information. NetFlow lies somewhere in be-
tween in terms of both: volume and level of detail. In this
paper we ask the question how and how accurately can one
infer information from NetFlow. More specifically we are
interested in TCP connection summaries and accurately ag-
gregated packet and byte counts. The same techniques apply
to application specific (per port) summaries.

I. INTRODUCTION

Even the engineering of small IP networks involves
solving a number of difficult challenges. Shifts in user be-
havior, introduction of new hardware and technology, new
application and just plain time of day effects cause signif-
icant fluctuations in the volume and the kind of traffic in
the network. A network operator needs an understanding
of the traffic on the network in order to tune his/her net-
work. Common methods at the disposal of the network
operator are either active measurements, using tools such
as ping and traceroute, or passive measurements. Passive
measurements may take advantage of the routers capabil-
ity, e.g., SNMP data [1], NetFlow [2], or IP accounting [3]
or may require an additional dedicated monitoring devices
for sniffing, e.g., [4] or use general purpose hardware to-
gether with tools such as t cpdump [5].

While some of the tools provide very fine-grained data
most operators are more interested in summaries. On the
other hand the easily available coarse-grained data does
not provide enough information for some tasks that they
face, e.g., to determine the traffic mix on their network.
One dataset that lies in between is Cisco’s NetFlow datat.
It produces more fine grained data than SNMP but not as
detailed and high volume as packet sniffers. But how ac-
curate is the information provided by NetFlow and how
can we fit it into the traditional framework of TCP connec-
tions and/or aggregated packet and byte count summaries.
Therefore in this paper we ask the question how much in-

1\We use the term NetFlow for both the concept as well as individual
records.

formation do we loose with NetFlow compared to packet
level traces and how much information do we win with
respect to SNMP like data.

To this end we collect NetFlow and packet level traces
for two 24h time periods in March/April 2002 from the ex-
ternal Internet connection of the Saarland University. We
extract TCP connection information from both the Net-
Flow data and the packet level trace and empirically eval-
uate the strength and weaknesses of using NetFlow data.
For large parts of the traffic we show very good agree-
ments, in terms of byte counts, durations, TCP states, and
originator classification. Some applications such as the
Web perform even better while others such as file sharer,
can be a bit troublesome due to their specific use of TCP
connections.

Often NetFlow is used to extract SNMP like but appli-
cation specific packet and byte counts without considering
the specific constraints of Cisco’s definition of flows and
the NetFlow generation process. To understand their im-
pact, especially the burstiness of the NetFlow export pro-
cess in combination with the varying number of bytes per
flow, we evaluate strategies for aggregating NetFlow data
to packet/byte counts and compare them to those com-
puted from packet data. While it is possible to derive good
counts the simple and most common approach performs
rather poorly for small aggregation periods, e.g., < 8 min-
utes.

The remainder of this paper is organized as follows: In
Section Il we present a short review of the flow concept
and Cisco’s variant NetFlow. Section 111 summarizes our
trace environment and data sets. Our methodology for ex-
tracting TCP connection summaries from NetFlow data
and its evaluation is discussed in Section IV. Our evalu-
ation of different methods for aggregating NetFlow data is
presented in Section V. Finally we give a short summary
in Section VI.

Il. FLOW CONCEPTS

The flow model of Claffy et al. [6] states that “a flow is
active as long as observed packets that are meeting the flow
specification are observed separated in time by less than a
specified timeout value”. The model has proven useful in
quite a few other studies. For example it is used by Thomp-

TECHNICAL REPORT

son et al. [7] for traffic measurement and characterization.
Lin et al. [8] evaluate the effect of different flow classifiers
on switching performance, while Feldmann et al. [9] ex-
amine the impact of application-layer aspects on the flow
characteristics. Newman et al. [10] propose IP switching
based on flows.

Flows have proven to be a very useful tool for measure-
ments and traffic characterization, see for example [11],
[12]. This is reflected in the efforts to standardize flow
data measurement and collection architectures [13], [14],
[15].

Cisco’s flow-level aggregation technique NetFlow [2]
almost fits into the model by Claffy et al.. According
to Cisco’s documentation [2] the NetFlow implementa-
tion identifies a flow by the tuple (srcuddr, STCport, STCif,
destaddr, destport, iPprot; tos). We observed that unde-
fined fields are set to zero. A NetFlow enabled router reg-
ularly exports aggregated flows to some predefined collec-
tor host using UDP. Using Cisco’s terminology we call
these NetFlows. Table | summarizes some of the relevant
fields of NetFlow records. NetFlow is a well-used tool
for visualization [16], accounting [17], and traffic analy-
sis [11], [12]. Two common packages for processing Net-
Flow data are Fullmer’s f1ow-tools [18] and CAIDA’s
cflowd [19].

TABLE |
SUBSET OF NETFLOW FIELDS

Name Description
srcaddr Source address
dstaddr Destination address
input Input interface
output Output interface
dPkts Number of packets
doctets Number of octets
First Start of NetFlow
Last End of NetFlow
srcport Source port
dstport Destination port
tcp-flags TCP flags

tos IP type-of-service

Since the router stores NetFlows in a rather limited
amount of cache memory, it has to use an expiration policy
to remove old NetFlows. A NetFlow is expired [2] if
« it has been idle for a specified timeout value called
inactive_timeout. This is the timeout which is de-
fined by Claffy et al. [6].

« it exceeds a maximum duratior?: active_timeout.
« it contains a FIN or a RST packet.

« the cache is exhausted; then “a number of heuristics
are applied to aggressively age groups of flows simulta-

2Though in reality, we see NetFlows which last a few seconds longer
than configured

neously” [2].

Observe that Cisco’s definition of a flow imposes addi-
tional constraints on NetFlows. In particular, it is possible
that several NetFlow records are exported for one flow as
defined by Claffy et al..

Throughout this paper we use two kinds of data sets:
NetFlows and packet traces gathered from the connec-
tion of the Saarland University, Saarbriicken, Germany,
to the external Internet. SNMP like data is derived from
the packet trace. Figure 1 sketches an overview of the
network infrastructure. The NetFlow data is collected
via the router, a Cisco 7200, which is configured to ex-
port version 5 NetFlows to a collector host inside the
university. The inactive_timeout is 15 seconds,
the active_timeout 30 minutes. The flow switch-
ing cache is 6 MBytes. We have collected NetFlows on
two different days — on March 21th, 2002, and on April
25th, 2002 - using the £low-tools [18] package with
some minor custom modifications. We included all Net-
Flows which start after midnight and end before midnight
of the next day. Using the sequence numbers contained
in NetFlow export packets we confirm that none of the
UDP packets were dropped. The NetFlow traces consist
of 17470K/21697K individual NetFlows or 1.07/1.29
GBytes in flow-tools format.

DATA SETS

Tap

155 MBit/s Internal

networks

Router Switch

Fig. 1. Network infrastructure

The network tap is a PC running FreeBSD which
is connected via a GBit network card to the monitor-
ing port of the switch. It captures all traffic pass-
ing the link between the router and the switch. Using
tcpdump [5] we have captured the first 60 bytes of each
packet within the same two 24 hour time periods as the
NetFlow trace. We have included all packets from mid-
night to midnight. tcpdump has reported negligible (<
0.01%/0.04%) packet losses. The packet traces consist of
2.48 * 10" /4.38¢ * 10'! packets or 37.2/56.9 GBytes if
we consider all packets and 2.64 * 107/2.82 % 107 packets
or 1.87/1.99 GBytes if we only consider SYN/FIN/RST
packets. This implies the average data volume during the
day is 3.53/5.40 Mbit/s. The two clocks involved in the
data collection — that of the router and that of the PC - are
not tightly synchronized. We observe clock skews [20].

TECHNICAL REPORT

For the purpose of correlating the two datasets we apply
a clock correction transformation (a simple shift by 19/59
seconds).

Although the network tap and the router basically mon-
itor the same link there are several differences in the traffic
they report:

« Some of the internal subnets are routed via the router.
Therefore some traffic passes the tap point twice: to the
router and from the router. We excluded such university
internal traffic from all data sets.

o The router implements an access list based firewall
which blocks a subset of the incoming traffic at the
router. In addition some traffic is explicitly directed to
/dev/null. Therefore this traffic cannot be observed at
the tap point and we exclude all corresponding NetFlows.
« In addition we excluded all traffic involving one of the
router’s IP addresses.

Applying these filters yields two kinds of data sets, packet
traces and NetFlows, that should both more or less sum-
marize the same traffic (see Section V). Application spe-
cific traffic is identified based on the source or destination
port number. In addition to £tp (ports 20/21), we con-
sider all applications in the per-application analysis which
contribute at least 1% of the TCP connections.

One significant difference in the network configuration
is that on March 21th an intercepting proxy was imposed
on a large part of the internal network which was disabled
on April 25th. If the proxy is enabled the router inter-
cepts all relevant Web connections and tunnels them to the
proxy, a Cisco CACHEENGINE which may or may not is-
sue a corresponding request. This implies that NetFlows
will record the original and the proxy request but not the
response from the proxy to the original client nor the tun-
neled request. The latter two are considered to be internal
traffic and therefore eliminated from both traces.

If not stated otherwise we will concentrate on the March
data set. The results for the April data set confirm those of
the March data set.

IV. ANALYSIS OF TCP CONNECTIONS

In this section we examine how accurately one can infer
TCP connection summary information from NetFlow. We
differentiate three kinds of connections:

1. A TCP connection is the transport layer session be-
tween two endpoints.

2. A packet connection is the reconstruction of a TCP con-
nection based on packets captured at some tap point.

3. A flow connection is the reconstruction of a TCP con-
nection based on NetFlows.

Our goal is to generate and compare TCP connection sum-
maries based on both packet and flow connections. Fig-

ure 2 shows example TCP connection summaries. The first
two fields contain start time and duration. The next two
stem from the port numbers. Next are transfered TCP byte
counts for both directions and the IP addresses of origina-
tor and responder. The last field summarizes the state of
the TCP connection (see Table I11).

5354.386 0.110 6346 1283 ? ? A.B.C.D E.F.G.H REJ
5354 .957 0.116 6346 1283 ? ? A.B.C.D E.F.G.H REJ
5355.558 0.346 6346 1283 152 222 A.B.C.D E.F.G.H SF

Fig. 2. Example: TCP connection summaries

Therefore we first discuss how to construct packet con-
nection summaries and compare their characteristics to
NetFlows. Motivated by the unsatisfactory outcome we
discuss our post-processing methodology which combines
NetFlows into flow connections. We end this section with
an evaluation of our methodology.

A. Generating packet connections from traces

TCP connection summaries are typically computed
from packet traces using tools such as TCP-REDUCE [21]
or BRo [22]. In an ideal world it should be possible to
extract all information contained in the TCP connection
summaries by using the packet trace to simulate the TCP
state machine at the two endpoints. For this it suffices to
consider TCP control packets (SYN/FIN/RST). In reality
there are two main reasons why tools are sometimes fooled
into producing erroneous TCP summaries. First the packet
traces themself may miss packets due to the high network
traffic volume. Second interpreting the packet stream to
infer the behavior of the end-systems is a difficult prob-
lem in itself due to ambiguities and “crud” in network traf-
fic [20], [23]. Nevertheless, packet connections yield the
best known approximations for TCP connections.

Due to memory problems we found the commonly used
simple tool TCP-ReDUCE insufficient for our purposes.
TCP-REDUCE accumulates the necessary connection state
information in main memory while processing the trace.
This implies that TCP-REDUCE cannot be used for real
time generation of connection summaries and on large
traces from high-volume network links as is necessary in
our case. Therefore, we use an alternative tool for gen-
erating TCP-REDUCE-compatible connection summaries:
BRo [22]. BRO is an intrusion detection system, build on
top of a robust implementation of the TCP/IP stack, de-
signed to operate in real time relying on timeouts rather
than memory use. Since we only need a small part of BRO
we use default values and a stripped down configuration
script. We substitute some of BRO’s standard timeouts
with a bro_inact_tout to purge connections that are idle for
more than 5 minutes. This implies that BRo needs to con-

TECHNICAL REPORT

sider all packets and not just control packets. We modified
BRo to defer emitting summaries until the connection state
is removed from BRO’s memory®. We furthermore mod-
ified BRO’s connection summaries slightly to include all
fields summarized in Table I1.

TABLE 1l
BRO’S (MODIFIED) CONNECTIONS SUMMARIES

Field Description

Timestamp of first packet
Duration

Port of originator (client)

Port of responder (server)
Bytes transfered by originator
Bytes transfered by responder
IP address of originator

IP address of responder

IP protocol

Connection’s final state
(TCP-REDUCE-compatible, see Table I11)

o

O©CoO~NOO U WNPRF

TABLE 111
SUBSET OF OF BRO’S STATE SUMMARIES

Name Meaning

S0 Connection attempt, no reply seen

S1 Connection established, not terminated
SF Normal establishment and termination
REJ Connection attempt rejected

RSTO Connection established, originator aborted
RSTR Connection established, responder aborted

B. Raw NetFlows vs. packet connections

While one needs a dedicated box for capturing network
packets, NetFlows are generated by the router itself and
offer several advantages. In particular, we do not need to
address the administrative, security and privacy issues of
installing a packet sniffer. Therefore collecting NetFlows
is much simpler and needs little additional setup. Also
the data sizes are comparably small. While still sizable
our NetFlow traces are about a factor of 1.75 smaller than
packet traces of SYN/FIN/RST packets and a factor of 33.3
smaller than the full packet traces. In addition NetFlows
include additional data not available in packet traces, e.g.,
interfaces, and autonomous systems.

Yet, NetFlows in themself have three severe limitations.
First they are uni-directional whereas packet connections
are bi-directional and distinguish originator and responder.
Second their definition is tricky and intricate. The exact

3BRrO uses TCP sequence number to calculates byte counts of con-
nections; this can in rare cases, mainly due to RST packet handling, re-
sult in unrealistically high transfer volumes (even the unmodified BRO
reports some of them). We removed 1711/1036 packet connections
whose throughput exceeds the available bandwidth.

output depends on the specific configuration of each Net-
Flow router. Indeed we will show that the characteristics
of NetFlows differ significantly from those of packet con-
nections. Third NetFlows do not contain TCP state infor-
mation (see Table Il1). They only contain the cumulative
OR of all TCP flags observed in any of the packets associ-
ated with a NetFlow.

C. Generating flow connections from NetFlows

We now present a post-processor, FLOw-REDUCE, for
NetFlows that allows us to overcome these three limita-
tions. The main idea is to combine all NetFlows, which
contribute to a TCP connection, to a flow connection.
The result is a well defined bi-directional flow connection
whose summaries are remarkably close to those generated
by BRO from packet connections.

We first introduce some terminology. A TCP connection
is uniquely identified by the 3-tuple (connsiart, conneng,
conn;q) Where conn;q is a 4-tuple (origip, origport,
respip, respport). We say that a NetFlow matches a
conn,g if its IP protocol is TCP and if it contains the tu-
ple (origip, origpert) as source and (respip, respport) as
destination, or vice versa. We say a NetFlow matches a
TCP connection if it matches the connection’s conn;, and
if the interval defined by its start time and its end time is
a subset of [connsiqere, connenq]. Finally, we say that two
NetFlows match if they match the same TCP connection.
FLow-REDUCE’s task is to identify matching NetFlows
and combine them into flow connections.

Identifying matching NetFlow: Since the same conn;qg
may be used more than once during a trace the main diffi-
culty is that it is impossible to decide when two NetFlows
match. Therefore we match using a heuristic based on the
lifetime of TCP connections. Our heuristic relies on two
assumptions:

1. TCP endpoints will usually not reuse a socket within a
short time period. TCP’s TIME_WAIT state even enforces
this after a regular connection tear-down. Typically TCP
uses a different originator port for the next connection.

2. An active TCP connection will typically generate Net-
Flows on a regular basis. This assumption is based on the
observation that long-living but inactive TCP connections
are usually associated with human activity, e.g., telnet or
ssh connections rather than bulk data transfers, and do not
contribute a large fraction of the TCP connections any-
more.

The idea of our heuristic is simple but effective (see
Figure 3). For each conn;, we identify all NetFlows that
match this conn;s and then combine them to a flow con-
nection. To this end we sort all NetFlows matching a
conn;q according to their start time. The first connection

TECHNICAL REPORT

Connection 1

Connection 2

| e.f.g.h:80 > a.b.c.d:4242

ab.c.d:4242 > e £.9.h:80 |

a.b.c.d:4242 > e.£.g.h:80 |
|
|
|

roW_inactivity_timéout

roW_inactivity_timéout

Fig. 3. Example for combining NetFlows to flow connection.

starts with the first NetFlow. The next NetFlow is asso-
ciate with this connection if the gap between the end of
the previous NetFlow and the start of this NetFlow is less
than flow_inact_tout. Otherwise this NetFlow starts
a new connection. The first assumption should ensure
that there is a reasonable value for flow inact tout
while the second assumption ensures that all flows from
a TCP connection are associate with the same flow con-
nection. Choosing flow_inact_tout is not straight-
forward since the first assumption recommends using a
small value while the second assumption suggests a larger
value. We solve this by modifying the heuristic to take
advantage of TCP FIN flags. After observing connec-
tion close packets from both endpoints we can decrease
flow_inact_tout to flow_inact_tout_f, approxi-
mately the duration of the TIME_WATIT state.

After combining NetFlows to flow connections we can
generate most fields of the flow connection summaries, see
Table 11, quite easily: the start time is the start of the earli-
est NetFlow; the duration is the difference between end of
the last NetFlow and the start time; the transmitted bytes
are the sum of the NetFlows’ bytes. Two fields however,
the originator and the state of the connection, are more
complicated.

Flow connection originator: Often the originator of
a connection is the one that starts the communication.
Therefore the originator of the flow connection is the
source of the first NetFlow associate with the connection.
Unfortunately the timestamps of NetFlow’s have a limited
resolution (milliseconds) which often leaves us with two
possible first NetFlows. We determine the originator based
on the heuristics outlined in Figure 4. The first two checks
help with misclassified NetFlows. The next two rely on an
augmented list of well-known ports to identify the servers.
The next check uses our original idea and the last one is
the fallback.

Flow connection state: Due to the aggregated nature
of NetFlows we cannot follow the endpoints’ TCP state-
machine transitions to infer the state of the connection. In-
stead we derive the state from the roles of the end-points
(originator/responder) and the total TCP flag information

If SYNs from both hosts and
SYNs in earliest NFs of both hosts and
start of hosts’ earliest packets differ:
Host with earliest NF is originator
If SYN only from one host and
SYN is in connection’s earliest NF:
Host 1is originator
If one host uses port 20
Host is originator
If only one host uses a well-known port:
Host 1is responder
If start of hosts’ first packets differ:
Host with earliest NF is originator
Arbitrarily choose originator

Fig. 4. Pseudo-code implementation of originator identification

(ftp-data) :

of each direction. The total flag information is accumu-
lated from the individual NetFlows. Based on this infor-
mation we determine the state via the decision procedure
outlined in Figure IV. A 0 corresponds to an absent TCP
flag, a 1 to a present one, and a * to a wildcard. The list
is traversed from top to bottom and we choose the state of
the first match.

TABLE IV
DECISION PROCEDURE FOR DETERMINING STATE (TOP TO
BOTTOM; FIRST MATCH IS TAKEN)

Originator State

FIN

Responder

SYN RST S FIN

2
o

> O O OO O O O % % P KF RN
H

REJ
RSTRH
RSTR
RSTOSO
RSTO
SF
S2
SH
S3
SHR
SO
S1
OTH

*
*

* PR ORRERYXRE ¥ OR
* O % % O R B B X % % %

> O O OO O O O K B % % %
* B ORP P ORR} O% % Ol
X O % B X OB % X % %

Implementation: Our prototype implementation of
FLow-REDUCE, a Python [24] script, operates on raw
NetFlows as provided by the f1ow-tools package [16].
FLow-REDUCE expects them to be sorted by export time.
This at least in principle allows us to generate flow con-
nection summaries in real time. The drawback is that it
requires us to buffer flow connections for a certain amount

TECHNICAL REPORT

of time (the router’s active_timeout).

One problem we encountered is that NetFlows, as actu-
ally exported by the router, differ from Cisco’s documenta-
tion. It appears that the output interface or next hop fields
are included in the definition of a NetFlow. As a conse-
guence two NetFlows from the same TCP connection may
span overlapping time periods. We have not yet extended
FLow-REDUCE to handle this aspect. The TOS field poses
another problem. It is not symmetric. Flows in one direc-
tion may have a different TOS field value than those of the
other direction. Therefore we currently ignore this field.

FLOW-REDUCE uses two parameters. We determined
a reasonable value for flow_inact_tout experimen-
tally: we started with a large value of 10 minutes and then
examined the distribution of the flow connections’ maxi-
mum inactivity time. Manual inspection lead us to choose
a value of 215 seconds for both traces. Our choice of
flow_inact_tout_f, 30 seconds, is motivated by com-
mon values of maximum segment lifetimes and BRO’s de-
fault behavior.

D. Quality assessment of flow connections

In order to evaluate our flow connection algorithm, we
compare the summaries produced by BRO and FLOw-
REDUCE first in general and then on a per connection ba-
sis. ldeally, for each connection found in one of the data
sets there should be exactly one in the other. There are
four reasons why this may not be the case, assuming that a
packet connection correctly represents a TCP connection:
1. Two TCP connections violate assumption one of Sec-
tion 1V-C and are aggregated into the same NetFlow. This
results in two packet connections but only one flow con-
nection.

2. Two TCP connections violate assumption one and
FLow-REDUCE aggregates them into the same flow con-
nection, due to a too large value for f1ow inact tout.
Again, this results in two packet connections but only one
flow connection.

3. A TCP connection violates assumption two and FLOW-
REDUCE splits it into two flow connections due to a too
small value for £low inact_tout. This results in one
packet connection vs. two flow connections.

4. Two NetFlows violate FLOwW-REDUCE’s assumption
about concurrency of NetFlows due to Cisco’s undocu-
mented flow definition features. This results in one packet
connection vs. two flow connections.

The first is a general NetFlow problem while the others
point out possible limitations of our heuristic. In the re-
minder of this section we show that the first limitation is
the most bothersome. But overall the results are rather
promising.

D.1 General characteristics of flow connections

We start with some overall characteristics of flow con-
nections. On average FLOW-REDUCE combines 2.188
NetFlows into one flow connection. While the maximum
is 5499 the median is 2. This implies that most (65.9%)
flow connections consist of only two NetFlows. This can
be easily explained by the large number of short-lived TCP
connections (84.1% of the packet connections are shorter
than 15 seconds). These will, most of the time, result in ex-
actly one NetFlow for each direction. Only 21.9% consist
of one* NetFlow and 12.2% of more than two NetFlows.

Figure 5 (a) shows the duration of all NetFlows, packet
connections and flow connections’ in a plot of the com-
plementary cumulative distribution (CCDF) on a log-log
scale for the March data set. We observe similar results for
the April data set. The timeouts of the router are marked
by vertical lines. We clearly see their effect on the dura-
tion of the NetFlows: the inactive_timeout allows
the router to expire a significant number of NetFlows, and
the active_t imeout bounds their durations to an upper
limit. On the other hand, we do not see any influence of the
timeouts on the flow connections. Instead, flow and packet
connections show very similar durations in this plot.

To further investigate the differences between flow and
packet connections, we plot (Figure 5 (b)) the density of
the logarithmP of their durations. For durations larger
than the router’s inactive_t imeout we still see a very
good match: While flow connections and packet con-
nections show the same characteristics, the probability of
NetFlows decreases rapidly until active timeout is
reached. But for smaller durations flow and packet con-
nections differ considerably. Although the flow connec-
tions resemble the packet connections more closely than
the NetFlows, there are quite a few incorrectly identified
connections. There are two issues to consider. On the
one hand the log scale forces us to exclude connections
of zero duration and therefore changes the relative propor-
tions. On the other hand there are the four reasons out-
lined above. We find that only one of them can lead to
these inaccuracies. Since roughly 86% of the flow con-
nections which are shorter than inactive timeout
seconds contain at most one NetFlow for each direction
the seconds reason is eliminated. The third reason can-
not cause the inaccuracies either since only 0.7% of all

470.7% of this is Web traffic and probably due to the intercepting
proxy

5In order to compare uni-directional NetFlows with bi-directional
connections we have included each connection twice.

Coupled with a logarithmic scale on the z-axis, plotting the den-
sity of the logarithm of the data facilitates direct comparisons between
different parts of the graphs based on the area under the curve.

TECHNICAL REPORT

(@)

packet connections last longer than flow_inact_tout
seconds. The fourth reason contributes extra flow connec-
tions, but only a small fraction (1.4%). We therefore con-
clude that the vast majority of the differences are due to
multiple TCP connections aggregated into the same Net-
Flow.

D.2 Per-connection comparison

To enable a pair-wise comparison of flow and packet
connections we identify pairs of connections which corre-
spond to the same TCP connection. Each TCP connection
is identified by the combination of conn;; and lifetime.
Accordingly, we associate a flow and packet connection
with each other if they use the same conn;q and start si-
multaneously’. The result of the correlation step is a set
of connection pairs, both flow and packet connection, a set
of flow-only connections and a set of packet-only connec-
tions. The total number of connections is the sum of the
sizes of all sets.

Table VV summarizes the result of the correlation step.
The correlated connection set contains 90.5% of all con-
nections. Given that the total number of packet connec-
tions is 6.2% larger than the number of flow connections
it is not surprising that the set of packet-only connections
is bigger than the set of flow-only connections. Closer ex-
amination of the unmatched packet-only connections re-
veals that most are in the state REJ which indicates that
no connection ever got established. One explanation for
why there is no matching flow connection for these packet
connections is the first observation of Section IV-D. Net-
Flow tends to combine packets of several TCP connections
together if they use the same conn;y. Packet-only con-
nections with state REJ are especially subject to this, if,
as, e.g., seen for some file-sharing applications, the client
uses the same socket for multiple connection attempts to

"Due to the issue of clock skews we add a generous tolerance window
of 3 minutes.

Flow connections

()

Fig. 5. Distribution of durations for packet and flow connections and NetFlows (March data)

another client. Closer inspection of the set of unmatched
flow-only connections reveals that it contains a substan-
tial fraction of long connections: Over 20.1%/11.2% last
more than 30/100 seconds. This suggests that due to inac-
tivity periods long TCP connections may have been split
into several flow connections.

The various applications contribute to the sets in differ-
ent ways. For example the success rate for Web traffic is
very high with 97.8%. On the other hand the three file-
sharing tools — Gnutella, Kaaza and E-Donkey —are
contributing a lot of unmatched packet-only connections.
In Section IV-E we examine which application protocol
artifacts contribute to these unmatched connections.

Another reason for why we observe some packet-only
and flow-only connections is our choice of data sets. The
packet trace starts and ends exactly at midnight. This im-
plies that quite a few packet connections start/end shortly
after/before midnight even though their TCP connection
started/ended much earlier/later. For these there will be no
matching flow connection. Similar artifacts apply to the
NetFlow trace explaining some flow-only connections.

TABLE V
SUMMARY OF CORRELATED CONNECTIONS (% OF
APPLICATION’S TOTAL)

Application Total Correlated Flow-only Packet-only
All 100.0 90.5 14 8.1
HTTP 67.9 97.8 0.5 1.8
Gnutella 12.3 64.7 3.7 316
eDonkey2000 4.3 86.0 4.5 9.5
FTP 0.1 86.9 14 11.6
FTP data 0.2 98.9 0.8 0.3
HTTPS 1.0 97.6 0.3 2.1
POP3 13 93.1 0.4 6.6
Kazaa 1.7 61.6 6.7 317
IRC 11 99.0 0.9 0.1
SMTP 1.4 93.1 2.0 6.6

The next step is to analyze the quality of the fit within
the set of correlated connections. We choose to consider
the packet connections as our basis since they presum-

TECHNICAL REPORT

able represent TCP connections better than flow connec-
tions. Accordingly we look for explanations of why the
values of the flow connections differ from the values of
their matching packet connection. Note that errors from
FLow-REDUCE will percolate into this comparison. We
compare the matched NetFlows along the following fields:
byte counts, duration, originator, and state.

Byte count: Figure 6 (a) plots the density of the logarithm
of the total number of bytes® transfered by packet and flow
connections. The comparison of the curves indicates that
overall both connection types match well. But there are
some mismatches: notable for small byte counts. In gen-
eral byte count mismatches can be due to:

« NetFlows aggregates all packets not just those which are
eventually delivered to an applications. In particular, it
counts unacknowledged and retransmitted packets [25].

« While BrRoO counts payload bytes NetFlow counts full
IP packets. To compensate for this we adjust the Net-
Flow counts by subtracting a minimum size TCP header,
40 bytes, for each packet from NetFlow. To account for
TCP options in SYN packets we subtract eight bytes for
each direction. Should this yield a payload less than zero
we set the payload to zero for this direction. While imper-
fect (it does not account for other options) this heuristic
does quite well.

« An imperfect flow connection, one that does not include
all NetFlows or one that includes more NetFlows than it
should, is likely to have a significantly different, smaller
or larger, byte count than the TCP connection.

One notable disagreement in the densities of the two
connection types are connections with a very small transfer
volume (five to thirty bytes). The first impression from the
plot is that FLOwW-REDUCE sometimes underestimates the
volume considerable. This is indeed the case for roughly
1% of the flow connections with byte counts in the range
of 5 — 30 bytes. Examining these flow connections more
closely reveals that around 85.6% of them have been as-
sociated with packet connections in states REJ, RSTR,
or so and without payload. We assume that the router
aggregates several connection attempts together. Corre-
lating a flow connection containing such a NetFlow to
a packet connection summarizing a single connection at-
tempt leads, among other mismatches, to byte count mis-
matches. Our second impression is that FLOW-REDUCE
sometimes overestimates the volume due to obmitting con-
nections with zero byte counts. Since our plot uses a
log scale these are obmitted. There are 13.6% correlated
packet connections and 4.5% correlated flow connections
with a byte count of zero. This further supports the con-

8The total number of bytes is the sum of the number of bytes trans-
fered in each direction.

jecture that many connection attempts are aggregated into
common NetFlows. The fourth reason of Section 1V-D,
time overlapping NetFlows using the same sockets, can
lead to underestimating the bytes in a flow connection.
One of the parallel NetFlows usually (72%) consists of
a single packet while the other consists of several pack-
ets. Therefore “incorrectly” choosing the single packet
NetFlow during the associating phase will lead to the mis-
match.

Plotting the density of the logarithm is an excellent tool
for understanding differences in the body of the distribu-
tion, but it does not allow us a closer inspection of the tail.
Plotting the CCDF on a log-log scale of the byte counts,
Figure 6 (b), lets us confirm that the curves match rather
well. Notable differences only occur for connections trans-
ferring more than 10° MBytes. Note that there are a “grand
total” of 13 connections of this type. Therefore it is ques-
tionable to conclude general statements about these. We
presume that some of these outliers are due to the sequence
number effects discussed in Section IV-A.

So far we have only compared the overall distributions
of byte counts from flow and packet connections. But how
good are the individual matches. Figure 6 (c) plots the
density of the relative errors of the byte counts. The rel-
ative error is the percentage difference between the larger
value and the smaller value. If the byte count of the packet
connection is bigger we force the value to be negative oth-
erwise the value is positive? The advantage of using the
relative error is that is captures both bigger and smaller
deviations in a similar way centered at zero. If either the
packet or the flow connection has zero bytes the relative
error is infinite and we excluded it from the plot. This
means that we exclude 1000K connections which corre-
sponds to 15% of the connection pairs. For these we find
that 30% of the connection pairs where both connections
have a payload of zero. In 99% of the cases the packet
connections have a payload of zero. The later are most
likely rejected connection attempts that may have been
incorrectly mapped to a NetFlow summarizing multiple
such connection attempts. Furthermore we find that only
a very small percentage, 0.08%/0.75%/11.2% which cor-
responds to 5.4K/51.4K /764K connection pairs, have an
relative error smaller/bigger than £1000/100/10 percent.
Since the number of connection pairs with large errors is
so small Figure 6 (c) plots the density of the relative er-
rors only for the range of £100. We see that most of er-

For example a relative error of 100% means that the bytes derived
of the flow connection is twice the bytes of the packet connection. A
relative error of —50% means that the bytes of the flow connection is a
factor of 1.5 bigger than the bytes of the packet connection. A relative
error of 0 means that the byte counts are equal.

TECHNICAL REPORT

Bytes (Correlated connections, all ports, density, March)

Flow connections

S
9
8
s
o
S

T T T T T T T T T T
1000 10 102 1083 10M 10% 10% 10°7 10°8 109

Bytes

(@)

rors are small and centered around zero. But there is a
notable number of flow connections which contain consid-
erably more bytes than their packet counter part. This is
to be expected since flow connections include unacknowl-
edged and retransmitted packets. Another reason is that
our heuristic for removing header bytes from flow connec-
tions is imprecise.

Duration: In we Figure 5 we have shown the proba-
bility distributions of the durations of the uncorrelated
packet and flow connections. The probability distribu-
tion for the correlated connection pairs (not shown) are
similar in spirit. We observe an excellent match be-
tween the two curves for connections that last longer than
the inactive_timeout. The relative percentage of
very short packet connections has been reduced indicat-
ing that we cannot find matching flow connections for
all of them since the packets of these connections have
been aggregated into longer NetFlows. All in all there
is a sizable disagreement in the range up to the value of
inactive_timeout.

To compare the durations of the individual matches, Fig-
ure 7 plots the relative errors as percentage differences be-
tween larger duration and smaller duration. Connection
pairs containing a connection of zero duration are removed
(2%). In addition, we have omitted connections pairs with
an absolute relative error larger than 100 (4.6%). From the
plot we see, that most of the pairs match well. However,
for 74.4% of the pairs the flow connection has a duration
longer than the packet connection.

As already noted a NetFlow can contain packets from
several TCP connections. This extends the duration of the
NetFlow and of the corresponding flow connection. The
resolution of the time stamps are different: while time
stamps of the packet traces have microsecond resolution,
the NetFlows’ time stamps have a only millisecond reso-
lution. Independent of the question about accuracy, these
different resolutions will lead to differences for very short
connections. In addition FLOwW-REDUCE may incorrectly

()

Fig. 6. Distribution of byte counts for packet and flow connections (March data)

Bytes (Relative errors, all ports, density, March)

probability density
002 004 006 008 0.0

0.0

combine NetFlows which do not correspond to the same
TCP connections, or may fail to combine some, which
does create mismatches in the connection durations. The
most important reason is the first one: For 89.0% of the
connection pairs with a relative error larger than zero, the
flow connection only contains at most one NetFlows for
each direction. This implies that the NetFlows themselves
already last longer than the corresponding packet connec-
tion.

Durations (Relative errors, all ports, density, March)

0.04 0.06 0.08

probability density

0.02

0.0

Fig. 7. Relative errors of durations for packet and flow connec-
tions (March data)

Connection originator: The comparison of the originator
fields of the flow connections and the packet connections
confirms that our simple heuristic works well for 99.5% of
the cases. It appears that the reasons from Section IV-D
do not impact the accuracy of FLOW-REDUCE’S connec-
tion originator heuristic in any substantial fashion. This
is confirmed if we examine the distribution of the errors
across the various applications, see Table VI (a). All of
them show values in the same order of magnitude.

Connection state: We find that in 98.4% the correspond-
ing connections have matching states. Overall considering
that FLOow-REDUCE only uses aggregated information this
percentage is remarkable high. Table VI (a) shows how
the percentages differ across the various applications. For
some applications the agreement is better than for others.
Its again the file-sharing applications for which we observe

TECHNICAL REPORT

the “highest” error rates but still less than 3%.

To answer the question of the origin of the mismatches
we examine which of the BRO states are most commonly
misclassified by FLow-REDUCE, see Table VI (b). We
find that REJ account for 29.3% of the errors and also the
largest absolute number of errors we explore which states
FLow-REDUCE generated instead. We find that 70.07%
of the mismatching REJ packet connections are classified
by FLOwW-REDUCE as responder resets (RSTR). Accord-
ing to Figure 1V this implies that the flow connections con-
tain a responder-side RST packet and one SYN packet from
each side (note that we match from top to bottom). On the
other hand the packet connection contained at least one
RST packet but no sYN from the responder. Therefore we
have to assume that the flow connections combined several
rejected TCP connection requests and a successful TCP
connection establishment (all involving the same conn,g).
We observed this kind of behavior with file-sharing ap-
plications. Indeed 70.0% of the (REJ,RSTR) pairs are
Gnutella connections. Similar explanations hold for the
other state mismatches.

E. Quality assessment of application specific flow connec-
tions

So far, the outcome of the comparison of flow con-

nections and packet connections has been rather positive.
FLow-REDUCE performs very well. Nevertheless we have
noticed that there are application characteristics that cre-
ate certain kinds of TCP connection patterns that com-
plicate the reconstruction from NetFlows. Now we con-
sider two applications in more detail: Web traffic and
Gnutella which contribute 67.9%/12.3% of the connec-
tions in March, see Table V.
Web traffic: Figure 9 plots the densities of the logarithms
of the durations of HTTP connections in March and April.
First note the different distributions of Web traffic within
the two data sets. The intercepting proxy was imposed on
a sizable fraction of the local subnets in March (see Sec-
tion 111). This creates a large number of half-open connec-
tions for the client requests. Accordingly 16.0%/15.96%
of packet/flow connections are in state SH. For April the
values are negligible (0.2%/0.4%).

Comparing the plots of the durations of all connections
(Figure 5 (a)) with those for only Web traffic we observe
a much better match for the latter. In particular, FLOw-
REDUCE performs very well on the April data. Figure 8
plots the relative errors of correlated Web connections.
Therefore it might be surprising to observe that the rela-
tive errors of the durations are larger for Web traffic (Fig-
ure 8 (a)) than for all traffic (Figure 7). But consider the
large number of very short Web connections. We find that

10

81.9% of all correlated Web connections have a relative
error between 0 and 50. For 61.0% of these the duration
of the packet connection is less than 0.5 seconds. Since all
the other fields including connection states (98.7% agree-
ment) match rather well we believe that the differences
are due to clock inaccuracies and not due to NetFlow or
FLow-REDUCE combining multiple HTTP connections to
one flow connection. This is supported by the observation
that the number of flow-only and packet-only connections,
Table VI (c), is rather small. Figure 8 (b) shows the rela-
tive errors of byte counts. In this case the byte counts are
closely centered around zero and the overall relative errors
are comparable to the case where all connections are in-
cluded. This supports the clock inaccuracy explanation for
the duration differences. Overall we conclude that FLow-
ReDuUcCE performs very well for Web traffic.

5354.386 A.B.C.D.1283 > E.F.G.H.6346: S 7:7(0)
5354.496 E.F.G.H.6346 > A.B.C.D.1283: R 0:0(0) ack 8
5354.957 A.B.C.D.1283 > E.F.G.H.6346: S 7:7(0)
5355.074 E.F.G.H.6346 > A.B.C.D.1283: R 0:0(0) ack 8
5355.558 A.B.C.D.1283 > E.F.G.H.6346: S 7:7(0)
5355.711 E.F.G.H.6346 > A.B.C.D.1283: S 148:148(0)

[...]
Fig. 11. Example tcpdump output of Gnutella connections
attempts (shortened)

Gnutella: For Gnutella[26] connections!® Figure 10
plots (a) the density of the logarithms of the durations,
(b) the density of the relative errors of the durations, and
(c) of the byte counts while Table VI (c) summarizes the
other performance criteria. On the one hand we observe
better than overall results for the relative errors of the con-
nection durations (Figure 10 (b)). On the other hand, the
same cannot be said for byte counts and the other crite-
ria. Rather these indicate that FLOw-REDUCE performs
quite poorly for Gnutella. Over 30% of the packet con-
nections have not been associated with a flow connection.
The duration distributions of all flow and packet connec-
tions (not shown) show rather different characteristics and
even those in the correlated set still show quite some dif-
ferences both for durations as well as for byte counts (latter
plot omitted). The density of the relative errors of the byte
counts show spikes at approximately 44 and 100.

We assume that the specific characteristics of the peer-
to-peer application Gnutella are the main contributing
factor. Gnutella clients maintain a sizable list of peers
to whom they had at some point established a connection.
Upon start-up they try to establish connections to a sub-
set of these. If a connection request is rejected there may
be several reattempts. There are some clients that, reusing

10While Gnutella may be used on different ports we only consider
port 6346 which is the most common one.

TECHNICAL REPORT

11

TABLE VI
COMPARISON OF CORRELATED PACKET AND FLOW CONNECTIONS

State Percent
. L REJ 70.7
Application Direction States
SF 76.3
All 99.5 98.4 RSTR 833
HTTP 99.7 98.7 ' Name Web Gnutella
RSTO 89.3
Gnutella 99.5 97.0 SH 91.3
eDonkey2000 99.0 97.3 <0 95'4 Correlated 97.8% 64.7%
FTP 99.8 98.4 SHR 96.8 Flow-only 0.5% 3.7%
FTP data 99.6 98.5 RSTOSO 98.6 Packet-only 1.8% 31.6%
HTTPS 99.8 99.2 RSTRH 99‘4 Direction match 99.7% 95.5%
POP3 99.5 99.1 ’ State match 98.7% 97.0%
S3 99.6
Kazaa 99.6 97.5
IRC 99.7 99.7 Si 9.7
- . S2 99.8
OTH 99.9

(a) Matching directions/states (% of application’s

total) (% of state’s total)

Durations (Relative errors, Port 80, density, March)

(b) Matching per BRo state

(c) Comparison of Web and Gnutella (March
data) % of total per application

Bytes (Relative errors, Port 80, density, March)

o
S

probability density

004 006 008 010

0.02

0.0

T T
-100 100

Relative error

(@)

T T T
-100 0 50

Relative error

(b)

Fig. 8. Port 80: Relative errors of packet and flow connections (March data)

Durations, March (Correlated connections, Port 80, density, March)

Durations, April (Correlated connections, Port 80, density, April)

Flow connections

probability density of logarithm

Flow connecticns

\

.

0.10 0.15 0.20

0.05

0.0

T T T T T
1003 102 10M1 1000 10M 10°2

Seconds

(@)

T T T T T T T T T
1003 10M2 1081 1000 10M 1072 108 10M 10%

Seconds

()

Fig. 9. Port 80: Distribution of durations of packet and flow connections

the old socket, repeatedly try to reconnect within a very
short time (a few seconds). Figure 11 shows a typical ex-
ample from our traces. (Figure 2 is generated from this
trace). From a clients viewpoint this is a sensible behav-
ior: Gnutella clients allow connections to only a small
number of peers and close old connections occasionally.
Therefore, even if the first connection attempt does not,
a retry might succeed. This connection setup phase vio-
lates assumption one of Section IV-C. Accordingly Net-
Flow will summarize all packets of the retried TCP con-

nection attempts into the same NetFlows. The process of
correlating packet and flow connections will pair the first
packet connection with the flow connection. This may
be the rejected connection which can cause extreme mis-
matches. 38.9% of all non-correlated packet connections
are rejected Gnutella connections.

We conclude that Gnutella’s setup phase mislead
both FLow-REDUCE and the correlation. Other file-
sharers, e.g., Kazaa[27] and eDonkey2000[28], fare a
bit but not that much better. We assume for similar rea-

TECHNICAL REPORT

Durations (Correlated connections, Port 6346, density, March)

Durations (Relative errors, Port 6346, density, March)

12

Bytes (Relative errors, Port 6346, density, March)

Flow connections

0.06 0.08

probability density

probability density of logarithm
005 010 015 020 025
0.04

0.02

0.0
0.0

probability density
002 004 006 008

0.0

T T T T T T T T T
1003 10%2 1081 1000 10 102 10%3 10M 10%5 -100 50

Seconds Relative error

()

(@)

(©)

Fig. 10. Port 6346: Distribution of durations and byte counts for packet and flow connections (March data)

sons.

V. ANALYSIS OF BYTE/PACKET COUNTS

One common use of Cisco’s NetFlows is to extract
the application specific byte counts'? of the traffic passing
through a router. These values may, for example, be used
for accounting, e.g., [18], [17] or visualization, e.g., [16].
While SNMP [1] data provides byte counts only on a per
router and per interface basis, NetFlow contains additional
information, see Table I. For accounting purposes the fol-
lowing NetFlow are particular interesting: the src/dst IP
address and network masks, the src/dst autonomous sys-
tem numbers and the next hop, the transport layer protocol
and the src/dst port numbers, and the input/output inter-
faces.

Given this information tools like FlowScan [16] can
be used to, e.g., aggregate byte counts per subnet, per ap-
plication or per destination autonomous system. There is
just one problem with this approach as compared to SNMP,
granularity. This translates into a possible lack of accu-
racy. The data that is sampled via SNMP is a cumula-
tive counter that counts every packet/byte. Querying the
counter we can determine the exact number of bytes that
have passed a certain interface since the last query. The
granularity of NetFlows is much coarser: NetFlows al-
ready are packet/byte aggregates. If we want to derive
counts at regular intervals from NetFlows, we have to dis-
tribute the bytes/packets from the NetFlows over time.

More formally, we define a NetFlow flow; to have a
start time start;, end time end;, export time export;, and
byte count bytes;. We have a time window [0, 7'] divided
into n [T/I] time slots T} of size 1. With each time
slot 7 we associate two values: an actual count B; of all
bytes encountered within this slot; and a flow byte count
F; which is derived from all processed NetFlows. The
goal is to approximate B; by Fj for all time slots. To de-

1 The following discussion applies to packet counts as well.

rive the set F; of flow byte counts, we define a function
f: flow; — P({0,...,n — 1}) which distributes bytes;
to a subset of {B;}. P(U) is the power set of U.

We consider four choices for f: given a NetFlow flow;

add bytes; to the time slot which contains export;.

add bytes; to the time slot which contains start;.

add bytes; to the time slot which contains end;.

. prorate bytes; across all time slots intersecting the in-
terval [start;, end;].

HPwnh e

The first choice is commonly used for accounting and
visualizing (for example by FlowScan[16]). Its main
advantage is that it is well-suited for real-time process-
ing: only one time slot is adjusted with every new flow
and its number is monotonically increasing. This im-
plies that counts of earlier time slots are preserved. On
the other hand, remember Cisco’s definition of NetFlow
(see Section Il). A devils advocate might consider the
export time “independent” of the time when the packets
actually passed the router. In the worst case an active
NetFlow starting at time start; will be exported at time
start; + active_timeout. In our case this will be 30
minutes later.

Similar observations apply to the second and third ag-
gregation strategy. Therefore, we expect that the first
three aggregation strategies might perform rather badly
if applied to a time slots of small size (say < 2 x
active_timeout). For intervals that are sufficiently
large we expect that the law of large numbers will hold
and the errors will average out. Note that even with
arbitrary large intervals there can be significant errors
if one NetFlow contains the majority of the bytes and
starts/ends/is_exported just before/after/after a time slot
boundary.

The fourth aggregation strategy is build upon the as-
sumption that bytes within a NetFlow are evenly dis-
tributed over the duration of the NetFlow. Given that most
NetFlows are aggregating TCP this is likely to be the case

TECHNICAL REPORT

Aggregated byte counts (all ports, 8min, March)

13

Aggregated byte counts (Port 6346, 8min, March)

T Packet bytes
NetFlows (Export time)
NetFlows (Averaged)

a

54109

Bytes
341079
Bytes

1079

1.4%10°9

o Packet bytes
NetFlows (Export time)
| NetFlows (Averaged)

1079

64108

0 2:10%8

T T T T T T T
Thu/o Thu/a Thu/g Thu/12 Thu/16 Thu/20 Fril0

Time.

(@)

T T T T
Thu/o Thu/a Thu/g Thu12 Thu/16 Thu/20 Fril0

Time

()

Fig. 12. Byte counts aggregated into time slots of length I = 8 minutes for all and Gnutel1la traffic

By start time: Relative aggegration error (all ports, March)

By export time: Relative aggegration error (all ports, March)

Averaged: Relative aggegration error (all ports, March)

10

I=4min

1.0

1=16min —------

08
08

0.4

I=4min

1=4min

10

I=16min ------- 1=16min

08

1=64min

o o . &
S ’_‘j—‘: s ‘" — i S
- = P i —
o | Db o R - B === o =
3 3 3
T T T T T T T T T T T T T T
-100 -50 0 50 100 -100 -50 0 50 100 -100 -50 0 50 100
Relative error Relative Relative error

Fig. 13

but there is no guarantee either'?.

We have applied all four aggregation methods to our
NetFlow data sets from March and April. For the eval-
uation we derive SNMP-like data from the packet traces,
counting bytes per time slot (excluding link level headers).
Figure 12 plots the distribution of packet bytes for an ag-
gregation interval of I = 8 minutes (using the March data)
for (a) all traffic and (b) Gnutella only traffic. In ad-
dition, it shows the corresponding values of NetFlow ag-
gregation by export time as well as by averaging. We see
that averaged NetFlows match the actual byte counts from
packet traces very well. On the other hand aggregation by
export time shows distinct deviations which indicate rather
large errors. This plot also highlights that the cleaning of
the two data sets (see Section Ill), packet traces and net-
flow data, is successful. While Gnutel1la created a major
challenge for us in the analysis of TCP connection sum-
maries here it does behave just as well as all the other ap-
plications. This highlights that NetFlow is an appropriate

12 Just presume a TCP connection lasting for 30 minutes and sending
a packet every 15 seconds to keep the corresponding NetFlow active.
If this flow sends at the maximum rate within the first z minutes it
may transmit significantly more data during those minutes than during
the rest of its duration, thereby fooling this aggregation strategy, e.g.,
consider a BGP session reset.

. Aggregations: Densities of relative errors

tool to derive application level summaries.

To see what effect the choice of aggregation interval has
Figure 13 plots the relative errors for different intervals
starting from 4 minutes to 64 minutes. Note that 4 min-
utes is a typical frequency for SNMP queries. Figure 13
plots aggregations based on (a) start time, (b) export time
and (c) averaging (the plot for end time resembles the plot
for export time). Note the different scales on the y-axis.
In calculating the densities we have excluded all time slots
within the first/last 30 minutes of the trace to avoid edge
effects. For plotting, we excluded intervals with an rel-
ative error smaller/larger than £100 (0% — 1.4% for (a),
0%—1.2% for (b) and 0%—0.3% for (c)). Averaging yields
the best results for all time intervals. The error rates for ag-
gregation by export time are maybe a bit better than those
by start time. While both perform poorly for the first three
intervals both improve considerably at I = 64 minutes.
Additional tests with larger intervals indicate that they ap-
proach the quality of the averaging aggregation. Due to
our limit data sets we cannot generalize this.

V1. SUMMARY

In this paper we set out to gain insights into the capabil-
ities of NetFlow. In what sense can we gain the same or
additional information from NetFlow as compared to finer

TECHNICAL REPORT

grained or coarser grained measurement techniques.

Obviously NetFlow cannot provide the packet level de-
tail of packet traces. On the other hand we somewhat sur-
prisingly do not have to abandon TCP connection sum-
mary information. We propose a methodology and present
an implementation, FLow-REDUCE, that is able to com-
bine NetFlows into flow connections. Our evaluation
shows that the derived flow connection summaries com-
pare rather favorable to TCP connection summaries. This
is the case even for such none-obvious fields as TCP con-
nection state and end-point role. Therefore one can say
that FLow-REDUCE overcomes the limitations of Cisco’s
unspecific and resource dependent definition of NetFlows.
Our detailed analysis of the mismatches reveals several
problems: NetFlow may aggregate packets from several
TCP connections into one NetFlow, e.g., if the same socket
is used for several connection attempts as done by file-
sharing applications, NetFlow does not allow us to dif-
ferentiate between transmitted data and goodput, and Net-
Flow’s time resolution is limited to milliseconds.

While NetFlows provide more detail than SNMP statis-
tics it is unclear with what accuracy one can derive statis-
tics similar to SNMP statistics from them. Comparing Net-
Flow derived byte/packet counts against SNMP like counts
we find that using a certain aggregation technique the rela-
tive errors are surprisingly small even for short aggregation
periods. Otherwise we find it necessary to use larger ag-
gregation periods in order to achieve similar quality. But
using the most common aggregation technique based on
export time together with small aggregation time periods
can be misleading due to sizable deviations. Therefore
while NetFlow looses some accuracy compared to SNMP
the loss is not significant if weighted against the informa-
tion gain. NetFlow enables us to compute a more differ-
entiated view of the traffic, e.g., application specific traffic
counts. We find that the same observations about quality
are applicable. NetFlow does a good job if the right aggre-
gation technique or/and sufficiently large aggregation time
periods are used.

REFERENCES

[1] William Stallings, SNMP, SNMPv2, SNMPv3 and RMON 1 and
2, 1999.

[2] Cisco Systems Inc., “NetFlow Services and Applications -
White paper,” http://www.cisco.com/warp/public/
cc/pd/iosw/ioft/neflct/tech/napps wp.h%tm

[3] Cisco IP accounting, ,” http://www.cisco.com/warp/
public/477/SNMP/mac_ip_ snmp.shtml.

[4] CAIDA NGI Project: OC48mon, ,” http://www.caida.
org/projects/ngi/content/.

[5] “tcpdump,” http://www.tcpdump.org.

[6] Kimberly C. Claffy, Hans-Werner Braun, and George C. Polyzos,
“A parameterizable methodology for internet traffic flow profil-

14

ing,” |EEE Journal on Selected Areas in Communications, vol.
13, no. 8, pp. 1481-1494, 1995.

[71 Kevin Thompson, Gregory J. Miller, and Rick Wilder, “Wide-
area internet traffic patterns and characteristics,” 1EEE Network
Magazine, vol. 11, no. 6, pp. 10-23, November/December 1997.

[8] Steven Linand Nick McKeown, “A simulation study of IP switch-
ing,” in Proceedings of ACM SGCOMM 1997, Sept. 1997, pp.
15-24.

[9] Anja Feldmann, Jennifer Rexford, and Ramon Caceres, “Ef-

ficient policies for carrying Web traffic over flow-switched net

works,” IEEE/ACM Transactions on Networking, pp. 673-685,

Dec. 1998.

Peter Newman, Greg Minshall, and Tom Lyon, “IP switching:

ATM under IP,” |IEEE/ACM Transactions on Networking, vol. 6,

no. 2, pp. 117-129, Apr. 1998.

Paul Barford and Dave Plonka, “Characteristics of Network Traf-

fic Flow Anomalies,” in Proceedings of ACM SGCOMM Internet

Measurement Workshop (IMW) 2001, 2001.

Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold,

Jennifer Rexford, , and Fred True, “Deriving traffic demands

for operational ip networks: Methodology and experience,” Oct.

2000, pp. 257-2500.

S. Handelman, S. Stibler, N. Brownlee, and G. Ruth, “RTFM:

New attributes for traffic flow measurement,” Request for Com-

ments 2724, Oct. 1999.

N. Brownlee, “Traffic flow measurement: Meter MIB,” Request

for Comments 2720, Oct. 1999.

“Internet Protocol Flow Information eXport (IPFIX),” http://

ipfix.doit.wisc.edu.

Dave Plonka, “FlowScan: A network traffic flow reporting and

visualization tool,” in Proceedings of the 14th Conference on

Systems Administration (LISA) 2000, Berkeley, CA, Dec. 2000,

pp. 305-318, USENIX Association.

Simon Leinen, “Flow-based Traffic Analysis at SWITCH,” Poster

at PAM2001.

Mark Fullmer and Steve Romig, “The OSU flow-tools package

and CISCO netflow logs,” in Proceedings of the 14th Confer-

ence on Systems Administration (LISA) 2000, Berkeley, CA, Dec.

2000, pp. 291-304, USENIX Association.

“cflowd: Traffic Flow Analysis Tool,” http://www.caida.

org/tools/measurement/cflowd.

Vern Paxson, “On Calibrating Measurements of Packet Transit

Times,” in Proceedings of ACM SSGMETRICS 1998, jun 1998.

“tcp-reduce,” http://ita.ee.lbl.gov/html/

contrib/tcp-reduce.html.

Vern Paxson, “Bro: A system for detecting network intruders in

real-time,” Computer Networks, vol. 31, no. 23-24, pp. 2435-

2463, 1999.

Thomas H. Ptacek and Timothy N. Newsham, “Insertion, evasion,

and denial of service: Eluding network intrusion detection,” Tech.

Rep., Secure Networks, Inc., jan 1998.

“Python,” http://www.python.org.

Paul Barford and Dave Plonka, “Inferring Client Experience

From Flow-based Measurements,” http://www.cs.wisc.

edu/ " pb/pbdpl imw 01.ps.

[26] “Gnutella,” http://www.gnutelliums.com.

[27] “Kazaa,” http://www.kazaa.com.

[28] “eDonkey2000,” http://www.edonkey2000.o0rg.

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]
[20]
[21]

[22]

[23]

[24]
[25]

