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Malformations of cerebral cortical development include a wide range of developmental disorders that are common causes of

neurodevelopmental delay and epilepsy. In addition, study of these disorders contributes greatly to the understanding of normal

brain development and its perturbations. The rapid recent evolution of molecular biology, genetics and imaging has resulted in

an explosive increase in our knowledge of cerebral cortex development and in the number and types of malformations of cortical

development that have been reported. These advances continue to modify our perception of these malformations. This review

addresses recent changes in our perception of these disorders and proposes a modified classification based upon updates in our

knowledge of cerebral cortical development.
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Introduction
Malformations of cortical development have been of interest to

clinicians and neuroscientists for many decades (Friede, 1989;

Sarnat, 1992; Norman et al., 1995). In 1996, the term malforma-

tion of cortical development was introduced to designate a col-

lectively common group of disorders in children with

developmental delay and young people with epilepsy; a classifica-

tion scheme was introduced, based upon the earliest developmen-

tal step at which the developmental process was disturbed
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(Barkovich et al., 1996). Updates of the classification relied more

heavily on genetics, and noted that the classification likely would

never be finalized because of ongoing discoveries (Barkovich et al.,

2001, 2005). Since the last revision, many new syndromes have

been described, and many new genes and mutations of known

genes have been identified. A new classification has been pro-

posed for focal cortical dysplasias (FCDs), and our knowledge of

the molecular biology of both normal and abnormal cortical de-

velopment has evolved.

This abundance of new information has largely fit well into the

existing framework, but a few structural changes and the addition

of new syndromes and genes were needed to remain consistent

with current literature. Here we present an updated version

of the classification. Many disorders listed in Appendix 1 and

Supplementary Table 2 are not mentioned in the text because

discussing all of them would make the article prohibitively long.

The discussions, therefore, focus on those disorders that have con-

ceptual importance whereas the tables attempt to include as many

disorders as possible, recognizing that some will inevitably be

missed. Hopefully, this update will prove useful for clinicians eval-

uating and treating affected patients, as well as for researchers

investigating these important disorders.

Recent advances in
embryology of cerebral
cortical development
The cerebral cortex is a modular structure (Cholfin and

Rubenstein, 2007; Cholfin and Rubenstein, 2008; Hoch et al.,

2009): modules of neurons are induced in a neuroepithelial

sheet and subsequently differentiate, migrate and organize into

a functioning cerebral cortex. Neuronal induction results from a

combination of graded extracellular signals and transcription factor

gradients that operate across several fields of neocortical progeni-

tor cells (Sansom and Livesey, 2009). This process is regulated by

interplay between intrinsic genetic mechanisms and extrinsic infor-

mation relayed to cortex by thalamocortical input and other, lar-

gely unknown, factors (O’Leary et al., 2007; Rakic et al., 2009;

Supplementary material).

Although details of the neural cell proliferation differ among

mammalian species, GABAergic cortical interneurons are produced

in the medial and caudal ganglionic eminences, and the subven-

tricular zone of the pallial (dorsal) germinal epithelium (Petanjek

et al., 2009; Miyoshi et al., 2010; Lui et al., 2011) and migrate

tangentially (from the medial ganglionic eminences) or radially

(from the dorsal subventricular zone) to the developing cortex.

The precise details in humans are not yet known (Lui et al.,

2011). In the dorsal subventricular zone, neuroepithelial cells dif-

ferentiate into radial glial cells, in part promoted by fibroblast

growth factor (Sahara and O’Leary, 2009). Whereas neuroepithe-

lial cells divide symmetrically to expand their numbers, radial glial

cells divide asymmetrically to both self-renew and generate

restricted intermediate progenitor cells, which divide symmetrically

to produce two or more neurons but no progenitors. Both radial

glial and intermediate progenitor cells produce glutamatergic

neurons (Merkle and Alvarez-Buylla, 2006; Kang et al., 2009).

Another class of precursor cells in the dorsal ventricular zone,

the short neural precursors, appear to be committed to symmet-

rical neurogenic divisions (Howard et al., 2006; Stancik et al.,

2010).

Based upon interspecies comparisons, the generation of

increased numbers of intermediate progenitor cells underlies

increased cortical complexity and size (Kriegstein et al., 2006).

Thus, the balance between self-renewal and progression to a

more restricted state is a critical factor in regulating the number

of intermediate progenitor cells, and ultimately, cortical size. The

mechanisms that regulate this progression are poorly understood

(Elias et al., 2008; Mérot et al., 2009; Subramanian and Tole,

2009; Lui et al., 2011). However, mutations have been found in

genes regulating the progenitor cell mitotic cycle in several types

of severe congenital microcephaly (Thornton and Woods, 2009;

Yu et al., 2010; Castiel et al., 2011; Kalay et al., 2011). Further,

human microcephaly syndromes can be classified, to some degree,

by the affected cell cycle phase (Supplementary Table 1).

Understanding of cell proliferation has been aided by the dis-

covery that the primate subventricular zone is complex, composed

of an outer subventricular zone, a layer of radially oriented neu-

rons that is divided from the underlying subventricular zone by an

‘inner fibre layer’ that is presumably composed of corticocortical,

corticothalamic and thalamocortical axons (Smart et al., 2002;

Zecevic et al., 2005). Large numbers of radial glial-like cells and

intermediate progenitor cells populate the human outer subventri-

cular zone. The radial glial-like cells are non-epithelial, as they lack

contact with the neuroependyma of the ventricular surface

(Hansen et al., 2010), but still undergo both symmetric and

self-renewing asymmetric divisions that allow further proliferation

(Hansen et al., 2010). The expansive proliferation of progenitor

cells in the outer subventricular zone helps to explain the evolu-

tionary expansion of the number of radial glial units, surface area

and gyrification in the primate cortex, as these later-born cells are

presumed to occupy the outer cortical layers (Zecevic et al., 2005;

Lui et al., 2011).

Recent advances in the
genetics of cortical
development
Progress has been made in understanding neuronal migration at

the intracellular level (Heng et al., 2008; Nóbrega-Pereira et al.,

2008; Stanco et al., 2009; Marin et al., 2010). As the importance

of microtubule transport, centrosomal positioning, nuclear trans-

port (associated with LIS1), microtubule stabilization (associated

with DCX), vesicle trafficking and fusion (ARFGEF2 and FLNA),

and neuroependymal integrity (MEKK4 and FLNA) in neuronal

migration are well known (Wynshaw-Boris, 2007; Ferland et al.,

2009; Pramparo et al., 2010), it was not surprising that mutations

affecting microtubule proteins TUBA1A, TUBA8, TUBB2B and

TUBB3 are associated with abnormal neuronal migration (lissence-

phaly) and postmigrational development (polymicrogyria or

polymicrogyria-like dysplasias) (Poirier et al., 2007; Abdollahi
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et al., 2009; Jaglin and Chelly, 2009; Kumar et al., 2010;

Poirier et al., 2010). Many genes linked to several pathways are

known to regulate neuronal migration, but the mechanisms are

poorly understood. Knockdown of some genes (such as Rnd2)

result in migration defects that are identical to those observed

with deletions of others (such as Neurog2) (Heng et al., 2008).

Proteins that function in anchoring of the radial glial cells to the

ventricular epithelium (such as BIG2; Ferland et al., 2009) or to

the pial limiting membrane (such as GPR56; Luo et al., 2011)

affect migration in a manner similar to those that directly affect

migration. Clearly, any classification based upon these genes will

require changes as the mechanisms of action of their protein prod-

ucts are elucidated.

The processes that direct postmitotic neurons in the ventricular

and subventricular zones are being elucidated. In mice, neurons

in the medial ganglionic eminences migrate to the striatum be-

cause Nkx2-1 (human NKX2.1 or TITF1) regulates expression of

neuropilin-2, a guidance receptor that enables interneurons to

enter the developing striatum. When Nkx2-1 is downregulated,

interneurons are repulsed by class 3 semaphorins and bypass the

striatum, migrating instead to the cortex (Nóbrega-Pereira et al.,

2008; Hernández-Miranda et al., 2011). The laminar fate of

neurons is determined in progenitor cells prior to their final mi-

tosis. Early cortical progenitors are competent to generate

late-born neurons after transplantation into older hosts, indicat-

ing that they can respond to later environmental cues, but pro-

genitors become progressively restricted in their ability to

populate different lamina as neurogenesis proceeds (Lui et al.,

2011). Neuronal genes that correlate with their layer-specific

neuronal identity are selectively expressed by cortical progenitors.

Many continue to be expressed in their progeny (Chen et al.,

2008; Lai et al., 2008), and some exhibit very high laminar

specificity in the cortex in both animals and humans. Examples

include Ror-beta (in 50% of layer IV neurons), Er81 (in 31% of

layer V neurons) and Nurr1 in layer VI (Hevner, 2007; Garbelli

et al., 2009).

Newborn projection neurons pause in the subventricular zone

for up to 24 h before initiating radial migration, suggesting that

the subventricular zone constitutes a unique ‘permissive’ environ-

ment for synchronizing migration by projection neurons and inter-

neurons generated at the same time, thereby giving them their

appropriate laminar identity (Mérot et al., 2009; Lui et al., 2011).

In contrast, late cortical progenitors generate only upper layer

neurons, even when transplanted into the more permissive envir-

onment of younger embryos (Lui et al., 2011). Thus, the expres-

sion of many early neural genes appears to be ‘turned off’ as

neurogenesis proceeds. These factors may provide clues to genes

and pathways underlying malformations of abnormal postmigra-

tional development (formerly malformations of cortical organiza-

tion) such as polymicrogyria. Misspecification of projection,

commissural and association neurons could potentially underlie

disorders of sensorimotor or visual function, commissuration or

cognition, respectively.

The developing leptomeninges affect multiple stages of cortical

development. For example, retinoic acid produced in the lepto-

meninges regulates the generation of cortical neurons

(Siegenthaler et al., 2009). Tangential migration of cortical

hem-derived Cajal–Retzius cells, which play an important role in

termination of neuronal migration to the cortex, is controlled by

the leptomeninges via CXCL12/CXCR4 signalling (Borrell and

Marin, 2006). The leptomeninges are also essential for the survival

of radial glial cells, which undergo apoptotic cell death if the men-

inges are removed (Radokovits et al., 2009). Finally, the lepto-

meninges play an important role in maintaining the cerebral

basement membrane. Loss of Zic activity reduces proliferation of

meningeal cells, resulting in a thin and disrupted pial basement

membrane in mouse models (Inoue et al., 2008). Reduction of

Foxc1 activity in the leptomeninges impairs the ability of the base-

ment membrane to expand in conjunction with brain growth, re-

sulting in lamination defects, neuronal overmigration and subpial

heterotopia formation (Hecht et al., 2010). Thus, abnormal lepto-

meningeal development may result in cortical dysgenesis via mul-

tiple mechanisms.

Discussion and rationale for
changes in new classification
Mutations of many genes have been newly described in patients

with malformations of cortical development and these, along with

the new advances concerning normal development discussed in

the previous section, form the basis for this update. The overall

framework of the classification remains largely the same

(Appendix 1 and Supplementary Table 2) making it useful in

everyday practice, while providing a theoretical basis for posing

of academic questions. Group I remains ‘Malformations secondary

to abnormal neuronal and glial proliferation or apoptosis’ and

Group II remains ‘Malformations Secondary to Abnormal

Neuronal Migration’. The name of Group III has been changed

from ‘Malformations secondary to abnormal cortical organization’

to ‘Malformations secondary to Abnormal Postmigrational

Development’, as the process of cortical organization begins

before the termination of neuronal migration. Another structural

change is that Group IV, ‘Malformations of cortical development,

Not otherwise classified’, has been eliminated and the disorders

previously listed there have been moved. A third change is that

disorders are classified according to their mode of inheritance

(autosomal recessive, autosomal dominant, X-linked, polygenic in

rare cases, etc.) and whether the disorder is clinically or genetically

defined. This change should help clinicians classify their patients

more easily, particularly in complicated disorders such as microce-

phalies. One concern is that the division into genetically defined

and clinically defined disorders moves the classification, at least

partially, from one based upon underlying mechanisms to one

based upon current understanding. With the proliferation of

gene discovery, it has become clear that different mutations of

the same gene can result in completely different syndromes;

thus, disorders defined by gene alone quickly become excessive

and confusing. The optimal classification will not be based on

genes but pathways and mechanism of protein action, with vari-

ations based on how the specific gene mutation alters protein

function in the affected pathway. Clinically defined disorders

may rapidly become obsolete. However, our current
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understanding of pathways and mechanisms of protein action is

not adequate to classify disorders on that basis, while genetic

knowledge has advanced to the point where the old classification

was becoming less useful. This revision can be viewed as an inter-

mediate system that should prove useful while the foundations of

the pathway-based classification are constructed. Genes, genetic

loci and references for each disorder are in Appendix 1. The ref-

erences should make Appendix 1 more useful to clinicians trying to

make a diagnosis. Some disorders in Appendix 1 have no asso-

ciated reference, either because they are well known and can be

accessed in any textbook (such as ganglioglioma or isolated peri-

ventricular nodular heterotopia), or because the specific entities

are not published, but have been identified as specific entities by

the authors.

Group I: malformations
secondary to abnormal
neuronal and glial proliferation
or apoptosis
This group continues to be separated into three categories:

reduced proliferation or accelerated apoptosis (congenital micro-

cephalies); increased proliferation or decreased apoptosis (mega-

lencephalies); and abnormal proliferation (focal and diffuse

dysgenesis and dysplasia).

Groups I.A and III.D: microcephaly
Most genes known to cause primary microcephaly (Appendix 1)

affect pathways involving neurogenesis: transcription regulation

(MCPH1, CENPJ, CDK5RAP2; Thornton and Woods, 2009), cell

cycle progression and checkpoint regulation (MCPH1, CENPJ,

CDK5RAP2; Thornton and Woods, 2009), centrosome maturation

(CDK5RAP2 and CENPJ; Thornton and Woods, 2009), dynein

binding and centrosome duplication (NDE1; Alkuraya et al.,

2011; Bakircioglu et al., 2011), DNA repair (MCPH1; Thornton

and Woods, 2009), progenitor proliferative capacity (ASPM and

STIL; Desir et al., 2008; Kumar et al., 2009; Passemard et al.,

2009), interference with mitotic spindle formation [WDR62

(Bilgüvar et al., 2010; Yu et al., 2010) and NDE1 (Feng and

Walsh, 2004)] and DNA repair deficit [PNKP (Shen et al., 2010)

and PCNT (Griffith et al., 2008)]. These pathways affect

processes—alterations of cell cycle length, spindle positioning or

DNA repair efficiency—that affect neurogenesis and, in particular,

the cell cycle phases of mitosis (Supplementary Table 1). WDR62,

ASPM and STIL are spindle pole proteins, suggesting that focused

spindle poles are of great significance in neural progenitor cell

division. Spindle poles attach to mature centrosomes; they control

the position of the central spindle and, hence, the direction of the

last stage of the cytokinesis cleavage furrow (Nicholas et al.,

2010). If cell division is perfectly symmetric, it produces two

daughter cell neural precursors. If not, the daughter cell may fail

to inherit a part of the cadherin hole; as a result, it differentiates

into a neuron, becomes postmitotic, and migrates out of the

neuroepithelium (Nicholas et al., 2010). Microcephaly secondary

to mutations of WDR62 has associated cortical malformations (Yu

et al., 2010). Mutations of ARFGEF2 have associated periventricu-

lar nodular heterotopia (de Wit et al., 2009) and some individuals

with microcephalic osteodysplastic primordial dwarfism have cor-

tical dysgenesis (Juric-Sekhar et al., 2011). Mutations of other

primary microcephaly genes described so far do not have obvious

brain anomalies other than simplification of the gyral pattern and

hypoplasia of the corpus callosum (Passemard et al., 2009; Rimol

et al., 2010; Shen et al., 2010), although few have had patho-

logical analyses. No definable clinico-radiological characteristics

have been identified that separate microcephalies caused by mu-

tations affecting different parts of the mitotic cycle. Although no

human microcephaly syndromes have yet been described in asso-

ciation with excessive developmental neuron apoptosis,

AMSH-deficient mice have been shown to have postmigrational

microcephaly due to increased developmental neuronal death (Ishii

et al., 2001). Overall, a great deal of progress has been made in

the understanding of genetic causes of microcephaly but not

enough to justify a purely genetic- or pathway-based classifica-

tion. Therefore, for the current classification, microcephalies are

classified based upon inheritance, associated clinical features, and

causative gene.

Patients born with normal to slightly small head size (2 standard

deviations or less below mean) and developing severe microceph-

aly in the first 1–2 years after birth form a separate group desig-

nated postmigrational microcephaly (now listed in Group III),

because brain growth seems to slow during late gestation or the

early postnatal period after normal early development. X-linked

postmigrational microcephaly associated with mutations of CASK

is placed in this group; this disorder is seen in girls with mental

retardation, short stature, and disproportionate cerebellar and

brainstem hypoplasia (Najm et al., 2008; Takanashi et al.,

2010). Also in this group are pontocerebellar hypoplasias due to

mutations in transfer RNA splicing endonuclease subunit genes

(TSEN54, TSEN2, TSEN34), prenatal onset neurodegenerative dis-

orders in which significant microcephaly develops after birth (Barth

et al., 2007; Namavar et al., 2011). Also in this group is micro-

cephaly due to mutations or genomic deletions of FOXG1, some-

times described as a congenital variant of Rett syndrome (Kortüm

et al., 2011). The processes that interfere with normal brain de-

velopment in late gestation or the early postnatal period are not

understood. With the disruption of normal brain development

occurring late, these disorders may be good candidates for inter-

vention once the molecular cause of the disorder is understood.

Group I.B: megalencephalies
As reasons for megalencephaly are not established in many dis-

orders in this group, many are clinically defined, even if the

mutated gene is known. Megalencephaly is seen in 6% of patients

with polymicrogyria (Leventer et al., 2010). These megalencepha-

lic polymicrogyria syndromes have been named macrocephaly,

polymicrogyria, polydactyly, hydrocephalus (MPPH) (Mirzaa

et al., 2004), Macrocephaly–Cutis Marmorata Telangiectata

Congenita (M-CMTC) and the Macrocephaly Capillary
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Malformation (MCAP) syndromes (Conway et al., 2007; Tore

et al., 2009). Nearly all of these patients have some sort of cortical

malformation; most have perisylvian polymicrogyria, but the poly-

microgyria may be more widely scattered and is sometimes

more severe over the convexities. Progressive tonsillar ectopia

(herniation) is characteristic. Until the different entities are sorted

out, we have chosen to list all patients with polymicrogyria and

macrocephaly within a single group, called MCAP (mega-

lencephaly capillary malformation-polymicrogyria). Further subca-

tegories will likely be established based upon genetic findings and

associated anomalies.

Hemimegalencephaly is not included in this group because of

the presence of abnormal (dysmorphic) cells in that disorder

(Flores-Sarnat et al., 2003).

Group I.C: cortical dysgeneses with
abnormal cell proliferation
An important advance in understanding cell proliferation has been

the elucidation of specific molecular pathways that control prolif-

eration, in particular the mammalian target of rapamycin (mTOR)

pathway, which is important in abnormal cerebral cortical devel-

opment (as well as renal, cardiac and pulmonary development) of

the tuberous sclerosis complex (Crino et al., 2006). The tuberous

sclerosis complex1–tuberous sclerosis complex2 protein complex

integrates cues from growth factors, the cell cycle and nutrients

to regulate the activity of mTOR, p70S6 kinase (S6K), 4E-BP1 and

ribosomal S6 proteins. A number of groups have contributed to

work showing that mutations leading to loss of function of the

tuberous sclerosis complex1 or tuberous sclerosis complex2 genes

result in enhanced Rheb-GTP signalling and consequent mTOR

activation, causing increased cell growth, ribosome biogenesis

and messenger RNA translation; ultimately, the result is over-

growth of normal cells and production of abnormal cells in

many organs (Crino et al., 2006). This discovery has had signifi-

cant therapeutic implications in managing cerebral, visceral and

cognitive disorders associated with tuberous sclerosis (de Vries,

2010).

A major change in this group has been the proposal of a new

classification of FCDs, a heterogeneous group of disorders that

commonly cause medically refractory epilepsy in children (Taylor

et al., 1971; Blümcke et al., 2011). FCDs are very likely to have

many aetiologies (Krsek et al., 2010; Orlova et al., 2010; Blümcke

et al., 2011). The new classification and several other works sup-

port the classification of FCD type II (FCDII) as a malformation

due to abnormal proliferation. Histological characteristics of FCDII

are fairly consistent across affected patients and it is likely to be

a much more homogeneous disorder than FCDI or the new

FCDIII (both discussed in the ‘Group III: Malformations secondary

to abnormal postmigrational development’ section). Several

groups have demonstrated that FCDI and FCDII cells (neurons

and balloon cells) express different proteins at different cortical

layers (Hadjivassiliou et al., 2010; Orlova et al., 2010). The protein

phenotype of cells found in FCDII is similar to that seen

in tubers of the tuberous sclerosis complex, justifying their classi-

fication together; both have progenitor proteins that appear

early in development, are present in deep cell layers, and are

similar to those found in multipotent or pluripotent stem cells.

In contrast, cells from FCDI express few early proteins

(Hadjivassiliou et al., 2010; Orlova et al., 2010) and those

expressed are found in more superficial layers (junction of layers

I and II) (Hadjivassiliou et al., 2010). Other studies (Yasin et al.,

2010; Han et al., 2011) suggest that balloon cells in patients with

FCDII originate from glioneuronal progenitor cells, strongly sug-

gesting that defects of neuronal and glial specifications are import-

ant in the histogenesis of FCDII. These findings support the

concept that cells of FCDII derive from radial glial progenitors

(Lamparello et al., 2007) and may support the ‘dysmature cerebral

developmental hypothesis’ that seizures in some forms of FCD

may be the result of interactions of dysmature cells with normal

postnatal ones (Cepeda et al., 2006). Focal transmantle dysplasia

(Barkovich et al., 1997) and bottom of sulcus dysplasia (Hofman

et al., 2011), described as specific types of cortical dysplasia based

on imaging features, have histological features of FCDIIb and are

likely different names for the same entity (Krsek et al., 2010).

They have excellent outcomes after surgical resection, probably

because their presence and location are easily identified by ima-

ging (Krsek et al., 2010).

Several authors have made the observation that hemimegalen-

cephaly has increased cell densities in the outer cortical layers and

white matter of the affected hemisphere, but decreased cell den-

sities in the inner cortical layers (Salamon et al., 2006; Mathern

et al., 2007). MRI studies showed that the non-affected hemi-

sphere was smaller than hemispheres of age-matched normal sub-

jects, resulting in the suggestion that somatic mutations affect

each developing cerebral hemisphere differently (Salamon et al.,

2006), possibly due to incomplete apoptosis (Mathern et al.,

2007). The abnormal contralateral hemisphere may explain the

poorer than expected post-surgery seizure control and cognitive

outcomes (Salamon et al., 2006; Mathern et al., 2007).

Hemimegalencephaly is divided into three categories because the

appearance of hemimegalencephaly associated with tuberous

sclerosis is one of multiple tubers in a single hemisphere

(Griffiths et al., 1998; Galluzzi et al., 2002; Parmar et al.,

2003), rather than the more diffuse process involving a variable

portion of a hemisphere, seen in other neurocutaneous disorders

and in isolated hemimegalencephaly. This classification will need to

be re-evaluated as more cases are carefully analysed.

Group II: malformations due to
abnormal neuronal migration
Several studies have shown that abnormalities of the neuroepen-

dyma (ventricular epithelium) are associated with periventricular

nodular heterotopia (Ferland et al., 2009). Group II has, therefore,

been divided into four subcategories: malformations resulting from

abnormalities of the neuroependymal (initiation of migration),

mainly including periventricular heterotopia; generalized abnorm-

alities of transmantle migration, mainly including lissencephalies;

localized abnormalities of transmantle migration, mainly subcor-

tical heterotopia; and abnormalities due to abnormal terminal
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migration/defects in pial limiting membrane. The latter group now

consists mostly of cobblestone malformations, although less severe

forms of these have been defined in foetal alcohol syndrome and

in mice with mutations of some transcription factors such as Foxc1

(Zarbalis et al., 2007).

Group II.A: heterotopia
Macroscopic collections of heterotopic neurons come in many

forms and sizes, ranging from periventricular nodular heterotopia,

the most common form, to periventricular linear heterotopia, con-

sisting of a smooth layer of grey matter lining the ventricular wall,

to columnar heterotopia, a linearly arranged collection of neurons

that span the cerebral mantle from the pia to the ependyma, to

large subcortical heterotopia that consist of curvilinear swirls of

grey matter originating from deep sulci, which wind their way

through the cerebral mantle to the ependyma. Little is known

about the genetic and embryological causes of the more complex

heterotopia. As the neurons are deposited everywhere between

the ventricle and the pia in these disorders, they remain classified

as malformations due to abnormal neuron migration. However, as

periventricular nodular heterotopia appears to have a different

embryogenesis than other heterotopia, and many have known

genetic causes, they have been separated from the others and

placed in the subcategory of malformations with neuroependymal

abnormalities (Group II.A).

Ferland et al. (2009) showed that injury to, or denudation of,

the neuroependyma (ventricular zone epithelium) is likely an im-

portant factor in the formation of periventricular nodular hetero-

topia (rather than a cell-intrinsic motility defect. This observation

clarifies why periventricular nodular heterotopia is caused by

ARFGEF1 mutations even though its protein product (BIG2) is

not involved in neuronal migration (Ferland et al., 2009). Similar

to subpial heterotopia in cobblestone malformations, which result

from a loss of structural integrity of the pial limiting membrane

(Yamamoto et al., 2004; Luo et al., 2011), the denuded ventricu-

lar epithelium in periventricular nodular heterotopia may cause

disengagement of radial glia, resulting in an inability of young

neurons to migrate away (Ferland et al., 2009). Neurons in peri-

ventricular nodular heterotopia seem to be arranged in a layered

pattern (Garbelli et al., 2009); analysis of layer-specific genes sug-

gests that the outer layer of neurons in the nodule is composed of

layer 6 neurons (expressing Ror�), with the next layer being com-

posed of layer 5 (expressing Er81) and the next for layer 4 (ex-

pressing Nurr1) (Garbelli et al., 2009). Compared with controls,

fewer cells in the overlying cortex expressed these three genes in

the appropriate layers, suggesting that late migrating neurons are

less affected (Garbelli et al., 2009).

Group II.B: lissencephaly
Malformations due to widespread abnormal transmantle migration

including agyria, pachygyria and subcortical band heterotopia, are

all part of the lissencephaly spectrum. A major change in this

group has come from the discovery that mutations of TUBA1A

are responsible for 1–4% of classic (four-layered, with a cell-sparse

zone) lissencephalies (Morris-Rosendahl et al., 2008; Kumar et al.,

2010) and 30% of lissencephalies with cerebellar hypoplasia

(Kumar et al., 2010). The TUBA1A-associated classic lissencepha-

lies can have a wide range of dysgenesis involving the cortex,

corpus callosum, basal ganglia/white matter and mid/hindbrain

(Kumar et al., 2010). Patients with TUBA1A-associated classic

lissencephaly have either p.R402C mutations, resulting in frontal

pachygyria and posterior agyria with a cell-sparse zone, or

p.R402H mutations, resulting in nearly complete agyria; both of

these phenotypes are essentially identical to those associated with

LIS1 mutations (Kumar et al., 2010), suggesting involvement of

the same molecular pathways. Other groups with TUBA1A-asso-

ciated lissencephaly had variant lissencephaly with heterogeneous

missense mutations throughout the gene resulting in cortical dys-

genesis varying from diffuse, often asymmetric, pachygyria with

moderately thick cortex to a smooth, relatively thin cortex asso-

ciated with diminution of cerebral white matter (Kumar et al.,

2010). These phenotypes had absent or nearly absent corpus cal-

losum, thin brainstem and severe cerebellar hypoplasia; callosal

and mid-hindbrain malformations were most severe in the patients

with thinner cerebral cortex (Kumar et al., 2010). Some patients

have upward rotation of the cerebellar vermis with a dilated fourth

ventricle and enlarged posterior fossa, fulfilling the criteria for

Dandy–Walker malformation (Kumar et al., 2010). In our prior

classification, these phenotypes were listed as variant lissencephaly

with extreme microcephaly, absent (or nearly absent) corpus cal-

losum, moderate to severe cerebellar hypoplasia and brainstem

hypoplasia; they are likely the malformation that Forman et al.

(2005) called ‘two layer lissencephaly’. The clinical phenotypes

caused by mutations of TUBA1A also vary considerably; however,

most affected patients have congenital microcephaly, mental re-

tardation and severe neurodevelopmental delay with di/tetraplegia

(Bahi-Buisson et al., 2008).

Group II.C: subcortical heterotopia
and sublobar dysplasia
Subcortical heterotopia are poorly understood malformations in

which large collections of neurons are found regionally in the

deep cerebral white matter (Barkovich, 2000). Some are transman-

tle, composed of linear (columnar heterotopia) or curvilinear, swir-

ling nodules of neurons continuous from the ependyma to the

cortex. Others are composed of multiple nodules of neurons loca-

lized to the deep cerebral white matter. In all, the involved portion

of the affected hemisphere is abnormally small and the overlying

cortex appears thin, and sometimes, microgyric. The histology and

embryogenesis of these disorders is unknown, but they are pre-

sumably due to localized abnormal late migration.

Also included in this category is sublobar dysplasia, a very rare

malformation characterized by a region of dysmorphic brain within

an otherwise normal-appearing hemisphere (Barkovich and

Peacock, 1998). Histopathology, recently reported in a single pa-

tient, showed leptomeningeal and subcortical heterotopia, disturb-

ance of cortical lamination, and marked cortical and subcortical

astrocytosis, but no dysmorphic cells (Tuxhorn et al., 2009).
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As the early of these features correspond to abnormal cell migra-

tion, this disorder was moved to Group II.C.

Group II.D: cobblestone malformations
It has become clear that mutations of any genes involved in

O-glycosylation of �-dystroglycan can cause a wide range of dis-

orders ranging from Walker–Warburg syndrome to muscle–eye–

brain disease to Fukuyama congenital muscular dystrophy to con-

genital muscular dystrophy types 1C and 1D to limb-girdle

(LGMD2I, LGMD2K, LGMD2M) muscular dystrophies (Barresi

and Campbell, 2006; Godfrey et al., 2007; Clement et al.,

2008; Hewitt, 2009; van Reeuwijk et al., 2010). The precise mo-

lecular mechanisms underlying these phenotypic variations are

slowly being elucidated (Hewitt, 2009; Ackroyd et al., 2011;

Luo et al., 2011). The cause of the muscular, ocular or brain dis-

orders in these patients is defective formation of basement mem-

branes (of skeletal muscle, retina and cerebrum/cerebellum,

respectively), which is related to impaired linkage of radial glia

to the pial basement membrane, which is, in turn, dependent

upon O-mannosylation of �-dystroglycan (Barresi and Campbell,

2006; Hewitt, 2009), laminin �1 deposition (Ackroyd et al., 2011)

and GPR56-collagen III interactions (Luo et al., 2011). Resulting

deficiencies in the cerebral basement membranes result in impaired

anchorage of radial glial cells to the basement membranes, causing

abnormal cortical lamination and overmigration of neurons

through the incomplete basement membrane into the pial layer

(Li et al., 2008; Luo et al., 2011). Less severe mutations may

partially allow development of basement membranes and result

in a less severe phenotype (Barresi and Campbell, 2006; van

Reeuwijk et al., 2010; Luo et al., 2011; Yis et al., 2011). No

direct correlation has been found between the severity of clinical

disease and the particular gene mutation; however, null mutations

of nearly all causative glycosylation genes result in severe (Walker–

Warburg syndrome) phenotypes (except for POMGnT1) (van

Reeuwijk et al., 2010). Much recent work has focused on cobble-

stone malformations due to Gpr56 and Col4a1 mutations (Li

et al., 2008; Luo et al., 2011) and malformations associated

with several genes affecting glycosylation within the endoplasmic

reticulum or Golgi apparatus (classified as congenital disorders of

glycosylation). Concerning the latter, the two best documented

disorders to date are SRD5A3 (Al-Gazali et al., 2008; Cantagrel

et al., 2010) and ATP6V0A2 (Kornak et al., 2008; Van Maldergem

et al., 2008). GPR56 mutations appear to cause a ‘cobblestone

cortex’ and not true polymicrogyria (Piao et al., 2005;

Bahi-Buisson et al., 2010); therefore, the term ‘frontoparietal poly-

microgyria’, which was the original name given to the cortical

malformations seen in patients with GPR56 mutations, would be

better replaced with a more appropriate one, such as ‘frontal-

predominant cobblestone malformation’. The cortical malforma-

tion associated with TUBB2B mutations also has cobblestone-like

features including overmigration of neurons through gaps in the

leptomeninges (Jaglin et al., 2009). Its proper classification awaits

further study, but it is currently classified in Group III.A.3,

syndromes with polymicrogyria, the neuropathology of which

may differ from classic polymicrogyria.

Group III: malformations
secondary to abnormal
postmigrational development

Group III.A: polymicrogyria and
schizencephaly
Polymicrogyria has been known for many years to be a spectrum

of disorders classified under a single name and many discussions of

‘true’ polymicrogyria and variants of microgyria have appeared in

the literature (Volpe and Adams, 1972; Evrard et al., 1989;

Barkovich, 2010a). However, the term is still widely used to de-

scribe disorders that have different causes, somewhat different

gross appearance, association with different accompanying malfor-

mations or disruptions, and different microscopic appearance,

making it difficult to understand and properly classify the disorders

(Judkins et al., 2011). Polymicrogyria has been described in con-

junction with many genetic disorders (listed in Appendix 1,

Group III.A.3). Unfortunately, little is understood of the range of

histopathology seen in polymicrogyria, partly because few large

scale pathological studies have been performed. The paucity of

pathological data stems from polymicrogyria often being located

in eloquent cortical areas; thus, it is rarely resected when causing

intractable epilepsy (Leventer et al., 2010). Recent studies suggest

a great deal of heterogeneity in the gross (Barkovich, 2010b;

Leventer et al., 2010) and microscopic (Judkins et al., 2011)

appearance of polymicrogyria, supporting the concept that poly-

microgyria is heterogeneous in cause, embryogenesis and gross

characteristics. In addition, it has been speculated that the under-

lying mechanisms by which polymicrogyria develops in patients

with mutations and infections may be vascular (Robin et al.,

2006). Many authors describe malformations resulting from dis-

ruption of the radial glial fibre attachment to the pial limiting

membrane and the consequent gaps in that membrane as poly-

microgyria (Jaglin and Chelly, 2009), but (as discussed in the pre-

vious section) others believe that cortical malformations associated

with pial membrane defects are distinct from polymicrogyria and

are better classified as cobblestone malformations (Jansen and

Andermann, 2005; Leventer et al., 2010; Judkins et al., 2011).

To determine the mechanisms leading to polymicrogyria, a first

step will be to perform histological and molecular studies on re-

sected tissue or autopsy specimens, in addition to developing ap-

propriate animal models, before the differences among the many

patterns can be understood.

In this classification, we have put polymicrogyria into four

groups: Group III.A. with schizencephalic clefts or calcifications,

presumably due to infection or vascular causes; Group III.B. with-

out clefts or calcifications, which may be genetic or disruptive;

Group III.C. as part of genetically defined multiple congenital

anomaly syndromes (some of these have atypical histology); and

Group III.D. in conjunction with inborn errors of metabolism (these

also have atypical histology). These groups should be refined as

new studies of the pathology and pathogenesis of polymicrogyria

are performed.
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Although past work suggested that mutations of EMX2 are a

common cause of schizencephaly (Granata et al., 1997), recent

work has shown that EMX2 mutations are highly unlikely to be a

cause of schizencephaly (Tietjen et al., 2007; Merello et al., 2008);

the authors recommend against testing for this gene, as the results

would be uninterpretable. Furthermore, a large population study

of 54 million births in California from 1984 to 2001 found an

association with young maternal age and with monozygotic twin

pregnancies (Curry et al., 2005). One-third of cases had a

non-CNS abnormality, over half of which could be classified as

secondary to vascular disruption (including gastroschisis, bowel

atresias and amniotic band syndrome) (Curry et al., 2005). The

authors concluded that schizencephaly is a disorder with hetero-

geneous causes, many of which are vascular disruptive in origin

(Curry et al., 2005). It is unquestionably associated with polymi-

crogyria of disruptive aetiology. Accordingly, it is classified in

Group III.A and by clinical characteristics.

Group III.C: focal cortical dysplasias
Certain FCDs are classified as ‘Malformations secondary to abnor-

mal postmigrational development’ because evidence supports pro-

posals that they can result from injury to the cortex during later

stages of cortical development. Evidence has been published that

prenatal and perinatal insults including severe prematurity, as-

phyxia, shaking injury, bleeding, hydrocephalus and stroke, occur

in children with mild malformation of cortical development or

FCDI (Marin-Padilla et al., 2002; Krsek et al., 2010). Patients

with significant prenatal and perinatal risk factors had more ab-

normal neurological findings, lower IQ scores, and slower back-

ground EEG activity than subjects with mild malformation of

cortical development/FCD without prenatal or perinatal brain

injury (Krsek et al., 2010). As FCDIII are, by definition, associated

with injury, vascular malformation or epileptogenic tumour, it is

very possible that FCDIII are caused by seizures or by the lesion

causing the seizures. A subtype of FCDI has increased neuronal

densities and decreased cortical thickness, with an abundance of

cortical microcolumns (Blümcke et al., 2010); the affected hemi-

sphere is significantly smaller than the non-epileptogenic contra-

lateral side. These observations support the concept that FCDI is a

heterogeneous group of disorders that may result from late insult/

injury to the developing cortex.

Group III.D: postmigrational
microcephaly
Postmigrational microcephaly and the rationale for placing it in this

section was discussed in the earlier ‘Microcephaly’ section.

Conclusion
In order to retain its utility for the clinician and physician scientist,

both the framework and the content of this classification of

Malformations of Cortical Development have been updated

based upon recent scientific and clinical advances. Although com-

plexity of this classification has increased, making it more

cumbersome, accurate diagnoses are essential for both clinical

and genetic counselling; thus, the authors believe that this level

of complexity is currently necessary. Further updates (and, hope-

fully, simplification) will be required as information accumulates

about the clinical, embryological, genetic and molecular biological

aspects of these disorders. Unfortunately despite the many discov-

eries in genetics, advances in this field have been slowed by the

limited access to human brain specimens for developmental neuro-

pathology studies, such as cell lineage, gene expression and

searches for somatic mosaicism, upon rare malformation of cortical

developments. FCD is the exception, and this can be attributed to

the flourishing of epilepsy surgery programmes. However, limited

resources appear to be available for classical developmental neuro-

pathology, with inadequate networks to facilitate access to

post-mortem brain tissue containing malformations of cortical de-

velopment. Hopefully, such an organization can be developed,

and our knowledge will quickly increase to the point where

these disorders are grouped according to the affected pathways;

the tasks of both future authors and their readers will thereby be

simplified.
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Fish JL, Kosodo Y, Enard W, Pääbo S, Huttner WB. Aspm specifically

maintains symmetric proliferative divisions of neuroepithelial cells. Proc

Nat Acad Sci USA 2006; 103: 10438–43.

Flores-Sarnat L. Hemimegalencephaly. I. Genetic, clinical, and imaging

aspects. J Child Neurol 2002; 17: 373–84.

Flores-Sarnat L, Sarnat H, Davila-Gutierrez G, Alvarez A.

Hemimegalencephaly: part 2. Neuropathology suggests a disorder of

cellular lineage. J Child Neurol 2003; 18: 776–85.

Forman MS, Squier W, Dobyns WB, Golden JA. Genotypically defined

lissencephalies show distinct pathologies. J Neuropathol Exp Neurol

2005; 64: 847–57.

Friede RL. Developmental neuropathology. 2nd edn. Berlin: Springer;

1989.

Galluzzi P, Cerase A, Strambi M, Buoni S, Fois A, Venturi C.

Hemimegalencephaly in tuberous sclerosis complex. J Child Neurol

2002; 17: 677–80.
Garbelli R, Rossini L, Moroni RF, Watakabe A, Yamamori T, Tassi L, et al.

Layer-specific genes reveal a rudimentary laminar pattern in human

nodular heterotopia. Neurology 2009; 73: 746–53.

Gawlik-Kuklinska K, Wierzba J, Wozniak A, Iliszko M, Debiec-Rychter M,

Dubaniewicz-Wybieralska M, et al. Periventricular heterotopia in a boy

Malformations of cortical development Brain 2012: 135; 1348–1369 | 1357

by guest on F
ebruary 13, 2015

D
ow

nloaded from
 



with interstitial deletion of chromosome 4p. Eur J Med Genet 2008;

51: 165–71.

Giannandrea M, Bianchi V, Mignogna ML, Sirri A, Carrabino S, D’Elia E,

et al. Mutations in the small GTPase gene RAB39B are responsible for

X-linked mental retardation associated with autism, epilepsy, and

macrocephaly. Am J Hum Genet 2010; 86: 185–95.

Gilfillan GD, Selmer KK, Roxrud I, Smith R, Kyllerman M, Eiklid K, et al.

SLC9A6 mutations cause X-linked mental retardation, microcephaly,

epilepsy, and ataxia, a phenotype mimicking angelman syndrome.

Am J Hum Genet 2008; 82: 1003–10.
Ginocchio VM, De Brasi D, Genesio R, Ciccone R, Gimelli S, Fimiani F,

et al. Sonic Hedgehog deletion and distal trisomy 3p in a patient with

microphthalmia and microcephaly, lacking cerebral anomalies typical of

holoprosencephaly. Eur J Med Genet 2008; 51: 658–65.

Gleeson JG, Keeler LC, Parisi MA, Marsh SE, Chance PF, Glass IA, et al.

Molar tooth sign of the midbrain–hindbrain junction: occurrence

in multiple distinct syndromes. Am J Med Genet A 2004; 125A:

125–34.
Glickstein SB, Monaghan JA, Koeller HB, Jones TK, Ross ME. Cyclin D2 is

critical for intermediate progenitor cell proliferation in the embryonic

cortex. J Neurosci 2009; 29: 9614–24.
Godfrey C, Clement E, Mein R, Brockington M, Smith J, Talim B, et al.

Refining genotype phenotype correlations in muscular dystrophies with

defective glycosylation of dystroglycan. Brain 2007; 130: 2725–35.

Govaert P, Swarte R, De Vos A, Lequin M. Sonographic appearance of

the normal and abnormal insula of Reil. Dev Med Child Neurol 2004;

46: 610–6.

Granata T, Farina L, Faiella A, Cardini R, D’Incerti L, Boncinelli E, et al.

Familial schizencephaly associated with EMX2 mutation. Neurology

1997; 48: 1403–6.

Graziano C, D’Elia AV, Mazzanti L, Moscano F, Guidelli Guidi S,

Scarano E, et al. A de novo nonsense mutation of PAX6 gene in a

patient with aniridia, ataxia, and mental retardation. Am J Med Genet

A 2007; 143A: 1802–5.
Griffith E, Walker S, Martin C-A, Vagnarelli P, Stiff T, Vernay B, et al.

Mutations in pericentrin cause Seckel syndrome with defective

ATR-dependent DNA damage signaling. Nat Genet 2008; 40: 232–6.

Griffiths PD, Gardner S-A, Smith M, Rittey C, Powell T.

Hemimegalencephaly and focal megalencephaly in tuberous sclerosis

complex. AJNR Am J Neuroradiol 1998; 19: 1935–8.

Griveau A, Borello U, Causeret F, Tissir F, Boggetto N, Karaz S, et al. A

novel role for Dbx1-derived Cajal-Retzius cells in early regionalization

of the cerebral cortical neuroepithelium. PLoS Bio 2010; 8: e1000440.

Grønborg S, Krätzner R, Spiegler J, Ferdinandusse S, Wanders RJA,

Waterham HR, et al. Typical cMRI pattern as diagnostic clue for

D-bifunctional protein deficiency without apparent biochemical

abnormalities in plasma. Am J Med Genet A 2010; 152A: 2845–9.
Guernsey DL, Matsuoka M, Jiang H, Evans S, Macgillivray C,

Nightingale M, et al. Mutations in origin recognition complex gene

ORC4 cause Meier-Gorlin syndrome. Nat Genet 2011; 43: 360–4.

Guerrini R, Barkovich A, Sztriha L, Dobyns W. Bilateral frontal polymi-

crogyria. Neurology 2000; 54: 909–13.

Guerrini R, Dobyns W. Bilateral periventricular nodular heterotopia with

mental retardation and frontonasal malformation. Neurology 1998; 51:

499–503.

Guerrini R, Dubeau F, Dulac O, Barkovich AJ, Kuzniecky R, Fett C, et al.

Bilateral parasagittal parietooccipital polymicrogyria and epilepsy. Ann

Neurol 1997; 41: 65–73.

Hadjivassiliou G, Martinian L, Squier W, Blumcke I, Aronica E, Sisodiya S,

et al. The application of cortical layer markers in the evaluation of

cortical dysplasias in epilepsy. Acta Neuropathol 2010; 120: 517–28.

Haltia M, Leivo I, Somer H, Pihko H, Paetau A, Kivelä T, et al.
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Appendix 1 Full classification scheme

(I) MALFORMATIONS SECONDARY TO ABNORMAL NEURONAL AND GLIAL PROLIFERATION OR APOPTOSIS

(A) SEVERE CONGENITAL MICROCEPHALY (MIC), pre-migrational reduced proliferation or excess apoptosis

(1) MIC with severe IUGR deficiency and short stature
Clinically defined with AR inheritance

(a) Seckel syndrome with unknown cause (Shanske et al., 1997)

(b) MOPD syndromes with unknown cause

(c) Other MIC-IUGR syndromes

(d) Seckel syndrome with mutations in ATR at 3q22–q24 (O’Driscoll et al., 2003)

(e) MOPD type 2 with mutations in PCNT at 21q22.3 (Rauch et al., 2008)

(f) MOPD type 1 with mutations in ORC1 at 1p32 (Bicknell et al., 2011)

(g) MOPD type 1 with mutations in ORC4 at 2q22-q23 (Guernsey et al., 2011)

(h) MOPD type 1 with mutations in ORC6 at 16q12 (Bernal and Venkitaraman, 2011)

(i) MOPD type 1 with mutations in CDT1 at 16q24.3 (Bicknell et al., 2011b)

(j) MOPD type 1 with mutations in CDC6 at 17q21.2 (Bicknell et al., 2011a)

(2) MIC with variable short stature (severe IUGR to mildly short), moderate to severe DD/ID, normal to thin cortex, SIMP,

with/without callosal hypogenesis
Genetically defined with AR inheritance

(a) Seckel syndrome or AR primary microcephaly (MCPH) with mutations in CENPJ at 13q12.12 (Al-Dosari et al., 2010)

(b) Seckel syndrome or MCPH with mutations in CEP152 at 15q21.1 (Kalay et al., 2011)

(3) MIC with mildly short stature or normal growth, mild-moderate DD/ID, normal to thin cortex, with/without SIMP, with/

without callosal hypogenesis and with/without focal PNH
Clinically defined with AR inheritance

(a) AR primary microcephaly (MCPH) (Woods et al., 2005)

Genetically defined with AR inheritance

(b) MCPH with mutations in ASPM at 1q31.3 (Bond et al., 2003; Shen et al., 2005; Desir et al., 2008)

(c) MCPH with mutations in MCPH1 at 8p23.1 (Trimborn et al., 2004; Darvish et al., 2010)

(d) MCPH with mutations in CDKRAP5 (Bond et al., 2005; W.B.D., in preparation)

(e) MCPH with mutations in STIL at 1p33 (Kumar et al., 2009)

(4) MIC with mildly short stature or normal growth, severe DD/ID, variable cortical development with SIMP or cortical

dysgenesis and with/without ACC (includes genes with spectrum from SIMP to dysgenetic cortex or PMG)
Clinically defined with AR or XL inheritance

(a) MIC with diffuse PMG

(b) MIC with asymmetric PMG

(c) MIC with atypical cortical dysgenesis
Genetically defined with AR inheritance

(d) MCPH with mutations in PNKP at 19q13.33 (Shen et al., 2010)

(e) MCPH, MIC with diffuse PMG (MDP) or MIC with asymmetric PMG (MAP) with mutations in WDR62 at 19q13.12

(Bilgüvar et al., 2010; Yu et al., 2010)

(f) MCPH, MDP (other cortical malformation) with mutations in NDE1 at 16p13.11 (Alkuraya et al., 2011; Bakircioglu

et al., 2011)

(g) MDP–MAP and ACC with mutations of TBR2 (EOMES) at 3p24.1 (Baala et al., 2007)

(5) MIC with variable anomalies and less well characterized syndromes; with/without SIMP; with/without PNH, with/without

CBLH
Clinically defined with probable AR inheritance

(a) MIC with diffuse periventricular nodular heterotopia

(b) MIC with disproportionate cerebellar hypoplasia

(c) MIC (extreme) with jejunal atresia (Stromme et al., 1993)
Genetically defined with AR inheritance

(d) MIC–PNH associated with mutations in ARFGEF2 at 20q13.13 (Sheen et al., 2004; de Wit et al., 2009)

(6) MIC with severe DD/ID and evidence of degeneration, with/without mildly short stature, with/without enlarged extra-

axial spaces, with/without ACC, with/without atypical cortical dysgenesis
Clinically defined with AR inheritance

(a) MIC with enlarged extra-axial space

(b) MIC with enlarged extra-axial spaces and disproportionate cerebellar hypoplasia

(c) MIC due to foetal brain disruption with unknown cause

(continued)
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Appendix 1 Continued

Genetically defined with AR inheritance

(d) Amish lethal microcephaly associated with mutations in SLC25A19 at 17q25.1 (Rosenberg et al., 2002)

(e) MIC-capillary malformation syndrome (mutations in pending report)

(7) MIC with LIS (MLIS)—cortex thick or relatively thick, smooth white–grey border
Clinically defined with AR inheritance

(a) Barth MLIS syndrome

(b) Norman–Roberts MLIS syndrome

(c) MOPD1 variant with three-layer lissencephaly (Juric-Sekhar et al., 2011)

(d) MIC with lissencephaly, CBLH and Hirschsprung disease

(8) MIC with tissue loss and enlarged ventricles (hydrocephalus ex vacuo or hydranencephaly), with/without cortical dysplasia

and with/without ACC
Clinically defined with presumed extrinsic (non-genetic) cause

(a) Foetal brain disruption sequence (Corona-Rivera et al., 2001)
Clinically defined with AR inheritance

(b) Familial foetal brain disruption-like syndrome with unknown cause

(c) Familial ‘microhydranencephaly’ with unknown cause (Behunova et al., 2010)
Genetically defined with AR inheritance

(d) Familial ‘microhydranencephaly’ associated with mutations of MHAC at 16p13.13–p12.2 (Kavaslar et al., 2000)

(B) MEGALENCEPHALY (MEG) including both congenital and early postnatal

(1) MEG with normal cortex (or presumably normal cortex)
Clinically defined with polygenic or AD inheritance

(a) Familial MEG
Genetically defined with AD inheritance

(b) Bannayan–Riley–Ruvalcaba syndrome, Cowden disease and MEG–autism with mutations in PTEN at 10q23.31 (Marsh

et al., 1997; Marsh et al., 1999; Pilarski et al., 2011)

(c) Sotos syndrome with mutations in NSD1 at 5q35.2–q35.3 (Türkmen et al., 2003)

(d) DD/ID, autism with HEPACAM mutations at 11q24.2 (AD, homozygous mutations cause AR megalencephaly with

leukoencephalopathy and cysts) (López-Hernández et al., 2011)

(e) MEG, thumb anomalies and Weaver-like dysmorphism with dup 2p24.3 (includes MYCN)
Genetically defined with AR inheritance

(f) MACS syndrome with mutations in RIN2 at 20p11.23 (Basel-Vanagaite et al., 2009)
Genetically defined with XL inheritance

(g) Simpson–Golabi–Behmel syndrome 1 with mutations in GPC3 at Xq26.2 (Pilia et al., 1996)

(h) Simpson–Golabi–Behmel syndrome 2 with mutations in OFD1 at Xp22.2 (Budny et al., 2006)

(i) MEG with DD/ID and seizures with mutations in RAB39B at Xq28 (Giannandrea et al., 2010)
Genetically defined with somatic mosaicism

(j) Proteus syndrome caused by somatic activating mutation in AKT1 at 14q32.33 (Lindhurst et al., 2011)

(2) MEG with PNH—plus other anomalies
Clinically defined with AD or unknown inheritance

(a) MEG–PNH phenotype (Jan, 1999)

(3) MEG with PMG and other cortical dysgenesis
Clinically defined with unknown cause

(a) MCAP syndrome, includes MPPH (Mirzaa et al., 2004; Conway et al., 2007)

(b) Thanatophoric dysplasia or Apert syndrome with mutation of FGFR3 at 4p16.3 (six-layered PMG-like cortex) (Hevner,

2005)

(C) CORTICAL DYSGENESIS WITH ABNORMAL CELL PROLIFERATION BUT WITHOUT NEOPLASIA

(1) Diffuse cortical dysgenesis
Genetically defined with AR inheritance

(a) PMSE syndrome with MEG, cortical dysgenesis including leptomeningeal glioneuronal heterotopia and cortical dysla-

mination with mutations in STRADA (LYK5) (Puffenberger et al., 2007)

(2) Focal and multifocal cortical and subcortical dysgenesis
Clinically defined with putative postzygotic mosaicism

(a) HMEG isolated (Flores-Sarnat, 2002; Salamon et al., 2006; Mathern et al., 2007)

(b) HMEG with neurocutaneous syndromes (Flores-Sarnat, 2002)

(c) FCD Type II with large, dysmorphic neurons (FCDIIa) (Blümcke et al., 2011)

(d) FCD Type II with large, dysmorphic neurons and balloon cells (FCDIIb), including transmantle dysplasia and bottom of

sulcus dysplasia (Blümcke et al., 2011)

(continued)
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Appendix 1 Continued

Genetically defined with AD inheritance

(e) Tuberous sclerosis with cortical hamartomas and mutations of TSC1 at 9q34.13 (Jones et al., 1999; Crino et al., 2006)

(f) Tuberous sclerosis with cortical hamartomas and mutations of TSC2 at 16p13.3 (Jones et al., 1999; Crino et al., 2006)

(g) Tuberous sclerosis with HMEG (Galluzzi et al., 2002)

(D) CORTICAL DYSPLASIAS WITH ABNORMAL CELL PROLIFERATION AND NEOPLASIA

(1) Neoplastic dysgenesis with primitive cells

(a) DNET

(2) Neoplastic dysgenesis with mature cells

(a) Ganglioglioma

(b) Gangliocytoma

(II) MALFORMATIONS DUE TO ABNORMAL NEURONAL MIGRATION

(A) MALFORMATIONS WITH NEUROEPENDYMAL ABNORMALITIES: PERIVENTRICULAR HETEROTOPIA

(1) Anterior predominate and diffuse PNH
Clinically defined with unknown cause

(a) Diffuse PNH with/without sparing of temporal horns

(b) Diffuse PNH composed of micronodules

(c) Diffuse PNH with frontonasal dysplasia (Guerrini and Dobyns, 1998)

(d) Anterior predominant PNH

(e) Anterior predominant PNH with fronto-perisylvian PMG (Wieck et al., 2005)

(f) Unilateral or bilateral isolated PNH
Genetically defined with AD inheritance (new mutations)

(g) Anterior PNH with duplication 5p15.1 (Sheen et al., 2003)

(h) Anterior or diffuse PNH with duplication 5p15.33 (Sheen et al., 2003)

(i) Diffuse (but variable) PNH with del 6q27 (W.B.D, in preparation)

(j) PNH and Williams syndrome with del 7q11.23, including HIP1 and YWHAG (Ferland et al., 2006; Ramocki et al.,

2010)

(k) PNH with del 4p15 (gene not identified) (Gawlik-Kuklinska et al., 2008)

(l) PNH with deletion 5q14.3–q15 (Cardoso et al., 2009)

(m) PNH and agenesis of the corpus callosum with del 1p36.22-pter (Neal et al., 2006)
Genetically defined with XL inheritance

(n) Bilateral PNH due to mutations of FLNA, with/without Ehlers–Danlos (Sheen et al., 2001; Parrini et al., 2006)

(o) PNH and Fragile X syndrome (Moro et al., 2006)

(2) Posterior predominant (temporal-trigonal) PNH
Clinically defined with unknown cause

(a) Posterior PNH only

(b) Posterior PNH with hippocampal dysgenesis, colpocephaly, anomalies of midbrain tectum or cerebellar hypoplasia

(c) Posterior PNH with posterior PMG (Wieck et al., 2005)

(3) Periventricular heterotopia, not nodular (unilateral or bilateral)
Clinically defined with unknown cause

(a) Diffuse PLH

(b) Frontal predominant PLH

(c) Posterior predominant PLH

(4) Ribbon-like heterotopia, bilateral undulating heterotopic band
Clinically defined with unknown cause

(a) Posterior predominant ribbon-like heterotopia

(b) Diffuse ribbon-like heterotopia

(B) MALFORMATIONS DUE TO GENERALIZED ABNORMAL TRANSMANTLE MIGRATION (radial and non-radial)

(1) Anterior predominant or diffuse classic (four-layered) LIS and SBH
Clinically defined with unknown cause

(a) Anterior predominant LIS with abrupt transition and cerebellar hypoplasia (previously LCHe)

(b) Anterior predominant or diffuse LIS (ILS)
Clinically defined with AR inheritance

(c) Anterior predominant LIS (ILS) with AR inheritance

(d) Winter–Tsukahara syndrome (Levin et al., 1993)
Clinically defined with AD (new mutation) inheritance

(e) Baraitser–Winter syndrome with anterior or diffuse LIS–SBH (Rossi et al., 2003)

(f) Anterior predominant LIS (ILS) or SBH with DCX mutation at Xq22.3–q23 (Dobyns et al., 1999)

(continued)
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Appendix 1 Continued

(2) Posterior predominant or diffuse classic (four-layered) and two-layered (without cell-sparse zone) LIS and SBH
Clinically defined with unknown cause

(a) Posterior predominant or diffuse LIS with brainstem and cerebellar hypoplasia, with/without ACC (includes former

LCHa, LCHc, LCHd, LCHf (Ross et al., 2001))

(b) Posterior predominant or diffuse LIS (ILS) (Pilz et al., 1998, Dobyns et al., 1999)

(c) Diffuse LIS with hair and nail anomalies (Celentano et al., 2006)

(d) Perisylvian (central) pachygyria (ILS)

(e) Ribbon like deep white matter heterotopia with/without ACC, thin overlying cortex
Clinically defined with AD inheritance

(f) Posterior predominant SBH (Deconinck et al., 2003)
Genetically defined with AD inheritance (new mutation)

(g) Posterior or diffuse LIS with cerebellar hypoplasia or LIS (ILS) with TUBA1A mutations at 12q12-q14 (Poirier et al.,

2007; Kumar et al., 2010)

(h) Miller-Dieker syndrome (four-layered) with deletion 17p13.3 (YWHAE to LIS1) (Dobyns et al., 1991)

(i) Posterior or diffuse LIS (ILS, four-layered) or posterior SBH with LIS1 deletions or mutations at 17p13.3 (Dobyns et al.,

1993; Pilz et al., 1999)

(3) X-linked lissencephaly (three-layered, without cell-sparse zone) with callosal agenesis, ambiguous genitalia (XLAG)
Clinically defined with unknown cause

(a) XLAG-like syndrome with temporal-posterior predominant LIS, ACC, microphthalmia and midline cleft lip and palate

(b) XLAG with temporal-posterior predominant LIS and ACC with mutations in ARX at Xp22.13 (Bonneau et al., 2002)

(4) Reelin-type LIS (inverted cortical lamination, without cell-sparse zone)
Clinically defined with AR inheritance

(a) Frontal predominant mild LIS with severe hippocampal and CBLH (Kato et al., 1999)
Genetically defined with AR inheritance

(b) Frontal predominant mild LIS with severe hippocampal and CBLH with RELN mutation at 7q22 (Hong et al., 2000)

(c) Frontal predominant mild LIS with severe hippocampal and CBLH with VLDLR mutation at 9p24 (Boycott et al., 2005)

(5) Variant LIS (other rare types exist but are poorly characterized)

(C) MALFORMATIONS PRESUMABLY DUE TO LOCALIZED ABNORMAL LATE RADIAL OR TANGENTIAL TRANSMANTLE

MIGRATION

(1) Subcortical heterotopia (other than band heterotopia or cortical infolding), all clinically defined with unknown cause

(a) Curvilinear transmantle heterotopia, with thinning of overlying cortex, decreased volume of affected hemisphere, with/

without ACC, with/without basal ganglia anomalies (Barkovich, 1996)

(b) Multinodular subcortical heterotopia with thin overlying cortex, with/without PMG (Barkovich, 2000)

(c) Transmantle columnar heterotopia with/without PNH

(2) Sublobar Dysplasia, clinically defined with unknown cause (Tuxhorn et al., 2009)

(D) MALFORMATIONS DUE TO ABNORMAL TERMINAL MIGRATION AND DEFECTS IN PIAL LIMITING MEMBRANE

(1) Dystroglycan–laminin complex abnormalities with cobblestone malformation complex (COB), with or without congenital

muscular dystrophy
Clinically defined with AR inheritance but causative gene unknown

(a) Walker–Warburg syndrome (Dobyns et al., 1985, 1997)

(b) Muscle–eye–brain syndrome (Santavuori et al., 1989; Haltia et al., 1997)

(c) Congenital muscular dystrophy with CBLH (Italian MEB)
Genetically defined with frontal predominant COB and AR inheritance

(d) WWS or MEB with POMT1 mutation at 9q34.1 (Beltran-Valero de Bernabe et al., 2002; van Reeuwijk et al., 2006)

(e) WWS or MEB with POMT2 mutation at 14q24.3 (van Reeuwijk et al., 2005; Mercuri et al., 2006)

(f) MEB with POMGnT1 mutation at 1p34–p33 (Manya et al., 2003)

(g) WWS, FCMD or FCMD with retinal abnormality (MEB-like) with FKTN mutation at 9q31 (Beltran-Valero de Bernabe

et al., 2003, Manzini et al., 2008, Yoshioka, 2009, Yis et al., 2011)

(h) WWS or MEB with FKRP mutation at 19q13.3 (Beltran-Valero de Bernabe et al., 2004)

(i) WWS or MEB with LARGE mutation at 22q12.3-q13.1 (van Reeuwijk et al., 2007)
Genetically defined with posterior predominate COB and AR inheritance

(j) Posterior predominant COB and CMD with LAMA1A mutation at 18p11.31

(k) Posterior predominant COB with LAMC3 mutation at 9q33–q34 (lacks CMD) (Barak et al., 2011)

(2) Cobblestone malformations in CDG
Genetically defined with AR inheritance

(a) CHIME-like syndrome with frontal predominant COB with SRD5A3 mutation at 4q12 (Al-Gazali et al., 2008; Cantagrel

et al., 2010)

(continued)
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Appendix 1 Continued

(b) Debré-type cutis laxa with frontal predominant COB and ATP6V0A2 mutation at 12q24.3 (Kornak et al., 2008; Van

Maldergem et al., 2008)

(3) Cobblestone malformation with no known glycosylation defect

(a) Frontal predominant COB with GPR56 mutations at 16q13 (‘bilateral frontoparietal polymicrogyria’) (Piao et al., 2002,

2005)

(b) Walker-Warburg syndrome secondary to COL4A1 mutations at 13q34 (Labelle-Dumais et al., 2011)

(4) Other syndromes with cortical dysgenesis and marginal glioneuronal heterotopia, but with normal cell types
Clinically defined with extrinsic or unknown cause

(a) Foetal alcohol syndrome
Clinically defined with AR inheritance

(b) Galloway–Mowat syndrome

(III) MALFORMATIONS DUE TO ABNORMAL POSTMIGRATIONAL DEVELOPMENT

(A) MALFORMATIONS WITH PMG OR CORTICAL MALFORMATIONS RESEMBLING PMG

(1) PMG (classic) with transmantle clefts (schizencephaly) or calcification
Clinically defined with clefts suggesting vascular pathogenesis or unknown cause

(a) Schizencephaly (Barkovich and Kjos, 1992)

(b) Septo-optic dysplasia with schizencephaly (Barkovich et al., 1989)
Clinically defined with prenatal viral exposure (especially CMV)

(c) Schizencephaly with positive neonatal CMV testing (Iannetti et al., 1998)

(d) Diffuse or patchy PMG with periventricular calcifications and positive neonatal CMV testing

(e) Diffuse, patchy or perisylvian PMG with hearing loss and positive neonatal CMV testing
Clinically defined with AR inheritance

(f) Familial schizencephaly with single unilateral or bilateral clefts (Haverkamp et al., 1995)

(g) Familial schizencephaly with multiple bilateral clefts

(h) Band-like calcifications with PMG (pseudo-TORCH) (Briggs et al., 2008)
Genetically defined with AR inheritance

(i) Band-like calcifications with PMG (pseudo-TORCH) with mutations of OCLN1 at 5q13.2 (O’Driscoll et al., 2010)

(2) Polymicrogyria without clefts or calcifications classified by location
Clinically defined bilateral PMG without clefts of unknown cause

(a) Generalized PMG (Chang et al., 2004)

(b) Frontal PMG (Guerrini et al., 2000)

(c) Perisylvian PMG (Kuzniecky et al., 1993)

(d) Posterior PMG (lateral parieto-occipital) (Barkovich et al., 1999)

(e) Parasagittal PMG

(f) Parasagittal mesial occipital PMG (Guerrini et al., 1997)
Clinically defined unilateral PMG without clefts of unknown cause

(g) Hemispheric PMG (Chang et al., 2006)

(h) Perisylvian PMG (Chang et al., 2006)

(i) Focal PMG (Barkovich, 2010a)

(3) Syndromes with PMG (neuropathology may differ from classic PMG)
Clinically defined syndromes with AD inheritance

(a) Adams–Oliver syndrome AD form (Snape et al., 2009)
Clinically defined syndromes with AR inheritance

(b) Adams–Oliver syndrome AR form (Snape et al., 2009)

(c) Joubert syndrome and related disorders with PMG, includes Meckel–Gruber, Arima (cerebro-oculo-renal) and Joubert

syndromes with causative genes unknown (Gleeson et al., 2004)
Clinically defined syndromes with XL inheritance (probable)

(d) Aicardi syndrome (Aicardi, 2005)

(e) Oculocerebrocutaneous (Delleman) syndrome (Moog et al., 2005)
Genetically defined with AD inheritance (new mutations)

(f) Fronto-parietal PMG, variable ACC and delayed myelination of anterior limb internal capsule with TUBB2B mutations

at 6p25.2 (Jaglin et al., 2009)

(g) Fronto-parietal PMG, variable with TUBB3 mutations at 16q24.3 (Poirier et al., 2010)

(h) Knobloch syndrome with high myopia, vitreoretinal degeneration, retinal detachment, occipital cephalocele and vari-

able PMG with COL18A1 mutations at 21q22.3 (Sertié et al., 2000)

(i) Aniridia, variable temporal PMG, absent anterior commissure and pineal gland, and variable CBLH with PAX6 muta-

tions at 11p13 (Mitchell et al., 2003; Graziano et al., 2007)

(j) Perisylvian PMG with deletion 1p36.3 (gene not identified) (Dobyns et al., 2008)

(k) Perisylvian PMG with deletion 22q11.2 (gene not identified) (Cramer et al., 1996)

(continued)
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Appendix 1 Continued

Genetically defined with AR inheritance

(l) Goldberg–Shprintzen (megacolon) syndrome with mutations of KIAA1279 at 10q22.1 (Brooks et al., 2005)

(m) Joubert syndrome with variable (low penetrance) PMG and AHI1 mutations at 6q23.3 (Dixon-Salazar et al., 2004;

Valente et al., 2006)

(n) Meckel–Gruber syndrome with variable (low penetrance) PMG and TMEM216 mutations at 11q12.2 (Valente et al.,

2010)

(o) Generalized (versus perisylvian) PMG, ACC and optic nerve hypoplasia with TUBA8 mutations at 22q11.21 (Abdollahi

et al., 2009)

(p) Perisylvian PMG, ACC, delayed myelination of anterior limb internal capsule and cerebellar vermian hypoplasia with

mutation of TBR2 (EOMES) at 3p24.1 (Baala et al., 2007)

(q) Warburg Micro syndrome with mutations of RAB3GAP1 at 2q21.3 (Morris-Rosendahl et al., 2010)

(r) Warburg Micro syndrome with mutations of RAB3GAP2 at 1q41 (Borck et al., 2011)

(s) Warburg Micro syndrome with mutations of RAB18 at 10p12.1 (Bem et al., 2011)
Genetically defined with XL inheritance

(t) Perisylvian PMG, rolandic seizures and speech-language dyspraxia with SRPX2 at Xq22.1 mutations (Roll et al., 2006,

2010)

(u) Perisylvian PMG, mild MIC and thin body habitus with NSDHL mutation at Xq28 (McLarren et al., 2010)

(v) Perisylvian PMG with Xq27 locus (gene not identified) (Santos et al., 2008)

(w) Perisylvian PMG with Xq28 locus (gene not identified) (Villard et al., 2002)

(B) CORTICAL DYSGENESIS SECONDARY TO INBORN ERRORS OF METABOLISM (neuropathology differs from classic PMG)
Genetically and biochemically defined with AR inheritance

(1) Mitochondrial and pyruvate metabolic disorders

(a) Non-ketotic hyperglycinaemia with mutations of GLDC at 9p24.1, GCSH at 16q23.2 or AMT at 3p21.31

(b) Multiple Acyl-CoA dehydrogenase deficiency (Glutaric aciduria type II) with mutations of ETFA at 15q24.2-q24.3,

ETFB at 19q13.41 or ETFDH at 4q32.1 (Govaert et al., 2004)

(2) Peroxisomal disorders

(a) Zellweger syndrome with mutation of many genes involved in peroxisomal biogenesis (Volpe and Adams, 1972;

Steinberg et al., 2006)

(b) Neonatal adrenoleukodystrophy with mutation of many genes involved in peroxisomal biogenesis (Kamei et al., 1993)

(c) D-Bifunctional protein deficiency with HSD17B4 mutation at 5q2 (Grønborg et al., 2010)

(C) FOCAL CORTICAL DYSPLASIAS (WITHOUT DYSMORPHIC NEURONS) DUE TO LATE DEVELOPMENTAL DISTURBANCES
Clinically/histologically defined and sporadic

(1) Minor malformations of Cortical Development (mMCD)

(2) Type I FCD

(a) Abnormal radial cortical lamination (Blümcke et al., 2011)

(b) Abnormal tangential cortical lamination (Blümcke et al., 2011)

(c) Abnormal radial and tangential lamination (Blümcke et al., 2011)

(3) Type III FCD

(a) Associated with hippocampal sclerosis (Blümcke et al., 2011)

(b) Associated with tumors (Blümcke et al., 2011)

(c) Associated with vascular malformations (Blümcke et al., 2011)

(d) Associated with other principal lesions during early life (Blümcke et al., 2011)

(D) POSTMIGRATIONAL DEVELOPMENTAL MICROCEPHALY (PREVIOUSLY POSTNATAL MIC) WITH BIRTH OFC –3 SD OR

LARGER, LATER OFC BELOW –4 SD AND NO EVIDENCE OF BRAIN INJURY

(1) Postmigrational MIC with limited functional deficits
Clinically defined

(a) Postmigrational MIC with no cause or syndrome identified
Genetically defined with AD inheritance (sporadic new mutations)

(b) MIC and mild ID with SHH mutation (Ginocchio et al., 2008)

(c) MIC and variable ACC with deletion 1q43q44 (includes AKT3) (Hill et al., 2007)

(2) Postmigrational MIC with broad functional deficits consistent with a ‘developmental encephalopathy’ (Angelman-like, Rett-

like class of disorders)
Clinically defined with AR inheritance

(a) PEHO syndrome (Salonen et al., 1991; Vanhatalo et al., 2002)
Genetically defined with AD inheritance (sporadic new mutations)

(b) Pitt–Hopkins syndrome with mutations of TCF4 at 18q21.1 (Zweier et al., 2007)

(c) FOXG1 syndrome with deletions or mutations of FOXG1 at 14q13 (Kortüm et al., 2011)

(d) Duplication of FOXG1 at 14q13 (Brunetti-Pierri et al., 2011)

(continued)
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Appendix 1 Continued

Genetically defined with AD inheritance (or pathogenic de novo copy number variant) and imprinting effects

(e) Maternal duplication 15q11.2 (Kitsiou-Tzeli et al., 2010)

(f) Angelman syndrome with maternally deletion 15q11.2 or mutation of UBE3A at 15q11.2 (Matsuura et al., 1997)
Genetically defined with AR inheritance

(g) Pitt–Hopkins like syndrome with mutations of NRXN1 at 2p16.3 (Zweier et al., 2009)

(h) Pitt–Hopkins-like syndrome with mutations of CNTNAP2 at 7q35-q36 (Zweier et al., 2009)

(i) Pontocerebellar hypoplasia with mutations of TSEN54 at 17q25.1, TSEN2 at 3p25.1, TSEN34 at 19q13.4, RARS2 at

6q16.1 (Namavar et al., 2011)
Genetically defined with XL inheritance

(j) Rett syndrome with mutations of MECP2 at Xq28 (Amir et al., 1999)

(k) Angelman-like syndrome with mutations of SLC9A6 at Xq26.3 (Gilfillan et al., 2008)

(l) X-linked mental retardation and autistic features with mutations of JARID1C at xp11.22–p11.21 (Jensen et al., 2005;

Abidi et al., 2008)

(m) X-linked MIC with disproportionate cerebellar hypoplasia with mutations of CASK at Xp11.4 (in females) (Najm et al.,

2008)

ACC = agenesis of corpus callosum; AD = autosomal dominant inheritance; AR = autosomal recessive inheritance; CBLH = cerebellar hypoplasia; CDG = congenital dis-
orders of glycosylation; CHIME = coloboma, heart defect, ichthyosiform dermatosis, mental retardation, ear anomalies; CMD = congential muscular dystrophy;
CMV = cytomegalovirus; COB = cobblestone complex; DD/ID = developmental delay/intellectual disability; DNET = dysembryoplastic neuroepithelial tumour;
FCMD = Fukuyama congenital muscular dystrophy; HMEG = hemimegalencephaly; ILS = isolated lissencephaly syndrome; IUGR = intrauterine growth retardation;
LCH = lissencephaly with cerebellar hypoplasia; LIS = lissencephaly; MACS = macrocephaly, alopecia, cutis laxa, scoliosis; MAP = microcephaly with asymmetric polymi-
crogyria; MCPH = autosomal recessive primary microcephaly; MDP = microcephaly with diffuse polymicrogyria; MEB = muscle–eye–brain syndrome;
MEG = megalencephaly; MIC = microcephaly; MLIS = microcephaly with lissencephaly; MOPD = microcephalic osteodysplastic primordial dwarfism syndrome;

MPPH = megalencephaly with polymicrogyria, polydactyly and hydrocephalus; PEHO = progressive encephalopathy with oedema, hypsarrhythmia and optic atrophy;
PLH = periventricular laminar heterotopia; PMG = polymicrogyria; PMSE = polyhydramnios, megalencephaly and symptomatic epilepsy; PNH = periventricular nodular
heterotopia; SBH = subcortical band heterotopia; SIMP = simplified gyral pattern; WWS = Walker–Warburg syndrome; XL = X-linked inheritance; XLAG = X-linked lissen-
cephaly with agenesis of corpus callosum and ambiguous genitalia.
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