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Abstract

This paper is concerned with the problem of determining the e!ect of a categorical
treatment variable on a response given that the treatment is non-randomly assigned and
the response (on any given subject) is observed for one setting of the treatment. We
consider classes of models that are designed for such problems. These models are
subjected to a fully Bayesian analysis based on Markov chain Monte Carlo methods.
The analysis of the treatment e!ect is then based on, amongst other things, the
posterior distribution of the potential outcomes (counter-factuals) at the subject level,
which is obtained as a by-product of the MCMC simulation procedure. The analysis is
extended to models with categorical treatments and binary and clustered outcomes. The
problem of model comparisons is also considered. Di!erent aspects of the methodology
are illustrated through two data examples. ( 2000 Elsevier Science S.A. All rights
reserved.

JEL classixcation: C1; C4

Keywords: Causal inference; Categorical treatments; Finite mixture distribution; Gibbs
sampling; Marginal likelihood; Markov chain Monte Carlo; Non-experimental data;
Potential outcomes; Randomly assigned covariate; Sample selection; Treatment e!ect

Econom*2106*Durai*Venkatachala*BG

0304-4076/00/$ - see front matter ( 2000 Elsevier Science S.A. All rights reserved.
PII: S 0 3 0 4 - 4 0 7 6 ( 9 9 ) 0 0 0 6 5 - 2



1. Introduction

This paper is concerned with the problem of causal inference in models
with non-randomly assigned treatments. Models with this feature have been
widely analyzed in the econometrics and statistics literatures, often with di!er-
ent nomenclatures to re#ect the setting of the problem (Copas and Li,
1997; Efron and Feldman, 1991; Imbens and Rubin, 1997; Heckman, 1978;
Heckman and Robb, 1985; Holland, 1986; Lee, 1979; Maddala, 1983; Rubin,
1974,1978). For example, models of sample selection and selectivity arise
frequently in economics while the problem of compliance (and dropouts) is
crucial in connection with interpreting the results of a clinical trial. Both
settings deal with the non-random assignment of &treatments'. In the selection
problem, the receipt of the treatment and the observed outcome are corre-
lated due to some unmodeled subject-speci"c factors. As a result, the true
treatment e!ect is confounded, unless some attempt is made to mitigate
the selection problem. In the biostatistics context, the true e!ect of the drug
on the outcome, relative to the placebo, is generally confounded if unobser-
ved factors that in#uence compliance, or dropouts, are correlated with the
outcome.

One purpose of this paper is to o!er a #exible Bayesian analysis of these
problems in settings that are more general than the ones that have been
considered in the literature. For example, Wooldridge (1995) and Kyriazidou
(1997) consider panel data models in which selection is binary and the single
outcome is continuous. By contrast, in one of our problems, the treatment
variable is ordinal and the outcomes are binary and clustered. Another purpose
of the paper is to extract subject-speci"c treatment e!ects, as opposed to the
mean (population averaged) treatment e!ect. The importance of treatment e!ect
heterogeneity has been emphasized by Heckman (1997). That this can be done is
a consequence of both our estimation framework (which relies on Markov chain
Monte Carlo methods) and on our use of models that explicitly involve potential
outcomes (counter-factuals). As far as we are aware, the computation of subject-
speci"c posterior treatment distributions is new. Finally, the paper develops
a procedure for comparing alternative treatment models. This comparison is
done on the basis of marginal likelihoods that are computed by the method of
Chib (1995).

The rest of the paper is organized as follows. In Section 2 we present the
prior}posterior analysis of models in which the treatment is binary and the
outcomes are continuous. Section 3 extends the basic methodology to random
e!ects clustered data models with ordinal treatments and binary outcomes.
Section 4 discusses the computation of the subject-level treatment e!ect distri-
butions and shows how the marginal likelihood of competing models can be
obtained from the simulation output. Sections 5 and 6 are concerned with the
details of the data analysis while Section 7 concludes.
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2. Binary treatment and continuous outcomes

To "x ideas, we begin with the textbook problem consisting of a binary
treatment s3M0,1N and a Gaussian outcome y3R. On the ith subject in the
sample (i)n), we observe the data (x

i
, w

i
, s

i
"k, y

i
), where x

i
and w

i
are

covariates, k is either zero or one and y
i
denotes the response given that s

i
is

equal to k.
Now let z

i0
and z

i1
denote the potential outcomes for each level of the

covariate s
i
and suppose that
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or compactly as

z
i
&*/$N

3
(X

i
b, R), i"1,2,2, n,

where w
i
: p]1, x

i0
: k

0
]1 and x

i1
: k

1
]1 are subsets of the covariate vector x

i
,

X
i
"diag(w@

i
, x@

i0
,x@

i1
), ind denotes independence, N

k
the k-variate normal dis-

tribution, and b"(c, b
0
, b

1
): k]1 (k"p#k

0
#k

1
). The observed treatment

and observed outcomes are given by

s
i
"I[sH

i
'0]

and

y
i
"G

z
i0

if s
i
"0,

z
i1

if s
i
"1,

respectively. Thus, only one of the outcomes z
i0

and z
i1

is observed, depending
on the value taken by s

i
. In this model, w

i
contains at least one covariate

(instrument) r
i
, not present in x

i0
or x

i1
, that is genuinely randomly assigned.

The presence of a covariate r
i
is crucial to extracting the treatment e!ect, as is

well known. The parameters of this model are b and p"(p
12

, p
22

, p
13

, p
33

),
with p

11
set to one because the scale of sH

i
is not determinate, and p

23
to zero

because p
23

does not appear in the likelihood function (see Koop and Poirier,
1997 on the implications of not imposing the latter restriction).

2.1. Extensions of basic model

This textbook model, which has been widely studied, is known to be sensitive
to the Gaussian assumption. A substantial body of work directed at overcoming
this problem has now appeared, based almost entirely on a semiparametric
viewpoint (Newey et al., 1990; Ahn and Powell, 1993; Kyriazidou, 1997). This
literature, unfortunately, has not had a signi"cant impact on the empirical "tting
of these models.
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In this paper we proceed in a di!erent direction by considering classes of
#exible parametric models that relax the Gaussian assumption but maintain
tractability. Most importantly, this framework, as we show below, can be
extended to panel data and ordinal treatment problems for which, at this time,
no semiparametric methods are available.

One simple elaboration is to let z
i
"(sH

i
, z

i0
, z

i1
) follow a multivariate-t

distribution. Let Mj
i
, i)nN be independently distributed random variables from

a gamma G(l/2, l/2) distribution and let

z
i
Db, h, j

i
&*/$N

3
(X

i
b, j~1

i
R). (2)

Then, unconditionally on j
i
, z

i
follows a multivariate-t distribution with l de-

grees of freedom and density

f (z
i
Db, h)JDRD~1@2A1#

1

l
(z

i
!X

i
b)@R~1(z

i
!X

i
b)B

~(3`l)@2
.

The observed treatments and the responses are given as before.
Another simple extension is to let z

i
"(sH

i
, z

i0
, z

i1
) follow a mixture of multi-

variate Gaussian distributions. Let m denote the number of components in the
mixture and let v

i
be a discrete random variable (taking values in M1, 2,2,mN)

that represents the component from which the ith observation is drawn. In
particular, v

i
"j speci"es that the ith observation is drawn from the jth compon-

ent population. Then, the mixture model is given by

z
i
Db, p, v

i
"j&N

3
(X

i
bj, Rj), (3)

where we have let each component possess its own regression vector
bj"(cj, bj

0
, bj

1
) and covariance matrix Rj. The parameters b and p now denote

the complete set of MbjN and MpjN, respectively. Under the assumption that
Pr(v

i
"j)"q

j
, it follows that the distribution of the z

i
is given by the mixture of

Gaussian distributions

(sH
i
, z

i0
, z

i1
)Db, p&

m
+
j/1

q
j
N

3
(X

i
bj, Rj) (4)

and the model is completed by the speci"cation of the observed data, as before.

2.2. Prior distributions for parameters

The prior on b is multivariate Gaussian and is generically denoted as
N

k
(b

0
,B

0
). In the case of the mixture model in (4), the bj's are modeled as

exchangeable and assumed to be drawn from a common N
k
(b

0
, B

0
) population

distribution. For the covariance parameter p, we need to ensure that the
distribution is truncated to the region SLR4 that leads to a positive-de"nite
matrix R. Following Chib and Greenberg (1998), we let the prior distribution
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be truncated normal pJN
4
(g

0
, G

0
)I

S
(p) where g

0
and G

0
denote the hyper-

parameters and I
S

the indicator function taking the value one if p is in S and the
value zero otherwise. This prior is #exible and convenient and can be used to
incorporate various prior beliefs about the variances and the covariances. For
the mixture model, we assume that independently pjJN

4
(g

0
,G

0
)I

S
(p) where

pj denotes the free parameters of Rj ( j)m).
In general, the hyperparameters (b

0
,B

0
, g

0
, G

0
) of these prior distributions

must be assigned subjectively. In some cases, the hyperparameters may be based
on the estimates from a prior (historical) training sample. The posterior mean of
the parameters (under default priors) from the training sample data can be used
to specify b

0
and g

0
and the associated posterior covariance matrix (in#ated to

account for the di!erences between the training sample and the current data)
may be used to specify B

0
and G

0
.

2.3. Prior}posterior analysis

The posterior distributions of the parameters (b, p) in the models presented
cannot be summarized by analytical means due to the complexity of the
likelihood functions and the restrictions on the parameters. These posterior
distributions are, however, amenable to analysis by simulation-based methods,
in particular those based on Markov chain Monte Carlo (MCMC) methods.
Within this framework, the general idea is to base inferences on a (correlated)
sample of draws from the posterior distribution where the sample is obtained by
simulating a suitably constructed (high-dimensional discrete-time continuous
state space) Markov chain whose invariant distribution is the desired posterior
distribution (see Chib and Greenberg, 1995; Tanner and Wong, 1987; Tierney,
1994 for more details of these methods). As we show below, the simulation steps
are aided by an augmentation of the parameter space to include the latent
potential outcomes (following Tanner and Wong, 1987; Chib, 1992 and Albert
and Chib, 1993). To improve the behavior of the Markov chain, we base the
simulation steps on a reduced blocking scheme in which the free elements of the
covariance structure are simulated from a conditional distribution that is
marginalized over the potential outcomes.

2.3.1. Gaussian model
Consider "rst the textbook model, where the treatment is binary and the

potential outcomes are Gaussian. The likelihood function of this model is

f (y, sDb, p)Jf (yDb, R)Pr(sDy, b, R)

J <
i>si/0

f
N
(z

i0
Dx@

i0
b
0
, p2

22
)UA

!w@
i
c!(p

12
/p

22
)(z

i0
!x@

i0
b
0
)

(1!p2
12

/p
22

)1@2 B
] <

i>si/1

f
N
(z

i1
Dx@

i1
b
1
, p2

33
)UA

w@
i
c#(p

13
/p

33
)(z

i1
!x@

i1
b
1
)

(1!p2
13

/p
33

)1@2 B,
(5)
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where b"(c, b
0
, b

1
)3Rk, p"(p

12
, p

13
, p

22
, p

33
)3S, f

N
denotes the normal

density function and U is the cdf of the standard normal distribution. The
posterior density of (b, p) is given by

n(b, pDy, s)Jn(b)n(p) f (y, sDb, p), (6)

where the prior distributions of b and p are N
k
(b

0
,B

0
) and N

4
(g

0
,G

0
)I

S
(p),

respectively. Under mild assumptions that are similar to those in Chib (1992) for
the Tobit model, one can show that the posterior density is proper. The
arguments, which are straightforward, rely on the fact that the cdf terms are
uniformly bounded for all admissible values of the parameters.

We now describe a strategy for sampling the posterior density in (6). If we let
zH
i
: 2]1 denote the unobserved components of z

i
"(sH

i
, z

i0
, z

i1
), then our

Markov chain Monte Carlo simulations are conducted on the data augmented
posterior density n(zH

1
, 2, zH

n
, b, pDy, s). To improve the e$ciency of the algo-

rithm, we use a reduced (as opposed to full) blocking structure. We summarize
the steps in Algorithm 1 and defer the details to the appendix.

Algorithm 1

1. Initialize b
2. Sample p and Mz

i
N from n(p, Mz

i
NDy, s, b) by sampling

(a) p from n(pDy, s, b) using the Metropolis}Hastings algorithm and
(b) Mz

i
N from n(MzH

i
NDy, s, b, R)

3. Sample b from n(bDy, s, MzH
i
N, R)"n(bDMzH

i
N, R).

4. Repeat Steps 2}3 using the most recent values of the conditioning variables.

The reduced blocking step consists of the joint sampling of p and MzH
i
N from the

conditional posterior density n(p, MzH
i
NDy, s, b). This tactic tends to reduce the

serial correlation in the MCMC output, hence increasing the simulation accu-
racy of the estimates based on the posterior sample.

2.3.2. Student-t model
Now consider the case of the t-model in which the treatment intensity sH

i
and

the potential outcomes follow the multivariate-t distribution. To deal with this
situation, one can adopt the strategy discussed by Albert and Chib (1993) and
augment the parameter space by the Gamma mixing variables j

i
that appear in

(2). Then, conditionally on the values of Mj
i
N, the distribution of z

i
is Gaussian

with covariance matrix j~1
i

R and the parameters (b, p, MzH
i
N) can be simulated

as in Algorithm 1. The MCMC scheme for this model is completed by sampling
j
i
, given (b, p, MzH

i
N) and the data, from the distribution

GA
l#3

2
,
l#(z

i
!X

i
b)@R~1(z

i
!X

i
b)

2 B,
independently for i"1, 2,2, n.
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2.3.3. Mixture model
The basic MCMC scheme outlined for the Gaussian model can also be

adapted to deal with the case in which the potential outcomes follow a "nite
mixture of Gaussian distributions. Following the approach of Diebolt and
Robert (1994) for mixture models, we utilize the representation of the model in
(3) and augment the parameter space by the discrete-valued component indi-
cator variables Mv

i
N. Conditioned on the values of Mv

i
N, the data separate into

m blocks, with each block consisting of the observations that are ascribed to
component j, j"1,2, m. Given these blocks of observations, the parameters of
the jth component, namely (bj, pj, MzHj

i
N), can be updated according to the

MCMC scheme described for the Gaussian model. Next, given the updated
values of the parameters, a new value of v

i
(i"1, 2,2,n) is simulated from the

discrete mass distribution

Pr(v
i
"jDy

i
, s

i
, b, p, zH

i
)Jq

j
DRjD~1@2 expM!0.5(z

i
!X

i
bj)@(Rj)~1

](z
i
!X

i
bj)N j)m.

In this MCMC scheme we do not address the choice of m or the local
non-identi"ability of the mixture distribution to relabeling of the component
indicators. Our view of the former issue is that the choice of m is a problem of
model comparison that is best addressed by the methods in Section 4. As for the
latter, we view the mixture model as providing a semi-parametric modeling of
the potential outcomes and the relabeling problem is of concern if more
components than are necessary are used. Besides, since we focus on the posterior
distributions of the potential outcomes marginalized over the parameters, the
local non-identi"ability of the mixture labels can be ignored.

3. Clustered data with selection

Consider now treatment models that are appropriate for unbalanced clus-
tered data problems. Clustered data may arise from a panel study or, as in our
example in Section 6, from a speci"ed grouping of subjects in a cross-sectional
problem. In such settings, it is likely that subjects in a given cluster are likely to
receive the same treatment and to also have some similarities in the outcomes.
Thus, it becomes necessary to model the cluster-speci"c e!ects in conjunction
with the selection e!ect. To capture the features of the data that we analyze
below, we let the treatment variable be ordinal and the outcome variable be
binary. Previous panel data selection models, e.g., Wooldridge (1995),
Kyriazidou (1997) and Heckman et al. (1998), deal exclusively with the binary
selection, continuous outcome case. In addition, except for the last of these, the
papers do not consider potential outcomes.
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Let l denote the lth cluster, l"1,2,m, which consists of n
l
subjects. In our

example below, a cluster is de"ned by a hospital, and n
l
denotes the number of

sample patients treated in the lth hospital. Suppose that the treatment variable
for the ith subject in the lth cluster s

li
is ordinal taking possible values

M0,1,2, JN. For each value of s
li
, let d

lik
3M0,1N be a binary potential response

random variable. The response d
lik

is observed if s
li
"k and is not observed

otherwise.
The model of interest is now given by

A
sH
li

z
li0

F

z
liJ
B&N

J`2 AA
w@
li
c#a

l
x@
li0

b
0
#b

l0
F

x@
liJ

b
J
#b

lJ
B, A

1 p
12

2 p
1J`2

p
12

1 0 0

F 0 } F

p
1J`2

0 2 1 BB (7)

or compactly as

z
li
Db

l
&*/$N

J`2
(X

li
b#b

l
, R),

where z
li
"(sH

li
, z

li0
,2, z

liJ
), X

li
"diag(w@

li
, x@

li0
,2, x@

liJ
), b"(c@, b@

0
,2,b

J
)@

and b
l
"(a

l
, b

l0
,2, b

lJ
): J#2]1 is the vector of cluster-speci"c random e!ects

with distribution

b
l
&*/$N

J`2
(0,D)

with D a (J#2)](J#2) full positive-de"nite matrix. Note that we have let each
response have its own random e!ect. The observed treatments are generated
according to

s
li
"G

0 if sH
li
(0

j if m
j~1

)sH
li
(m

j
, j"2,2, J!1,

J if m
J~1

)sH
li
,

(8)

which implies that conditionally on the random e!ects, the observed treatment
for the ith subject in the lth cluster is given by the ordinal probit model with
probabilities Pr(s

li
)j)"Pr(sH

li
(m

j
)"U(m

j
!w@

li
c!a

l
). In addition, one ob-

serves the outcome

y
li
"d

lik
if s

li
"k

with

d
lik
"G

1 if z
lik
'0,

0 if z
lik
)0

(9)

and the outcome d
lik

is not observed otherwise.
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If we let h"(b, m, R, D) where m"(m
1
,2,m

J~1
) is a J!1 vector of cut-

points and D is the matrix of variances and covariances of the random e!ects,
then the likelihood contribution of the observations in the lth cluster is given by

f (y
l
, s

l
Dh)"PG

nli
<
i/1

f (y
li
, s

li
Db

l
, h)Hn(b

l
DDH) db

l
. (10)

This integral is complicated and, in general, is best computed by simulation
methods. A particular approach based on importance sampling is described
below.

We mention that the diagonal elements of the covariance matrix R are unity
because (given the binary responses) the scale of z

li
is not determinate. In

addition, the covariance matrix of the latent potential outcomes (z
li0

,2, z
liJ

) is
the identity matrix because none of these parameters enter the data likelihood
function. It should be noted that this restriction (in contrast with the cross-
section case) is less material because of the correlation in potential outcomes
that is induced by the random e!ects. The only unknown parameters in the
R matrix are, therefore, in the "rst row which we denote by p"(p

12
,2,p

1J`2
)

that again must lie in a region S that leads to a positive-de"nite covariance
matrix. Note that we economize on notation by using the same symbols as in
the previous section and the meaning of b, p and S, for example, depends on the
context.

3.1. Prior distributions

We assume that b is N
k
(b

0
,B

0
) and that pJN

J`1
(g

0
,G

0
)I

S
(p). To deal with

the ordered cut-points m, we adopt the approach of Albert and Chib (1997) and
reparameterize the cut-points as

a
1
"log m

1
, a

j
"log(m

j
!m

j~1
), 2)j)J!1, (11)

with inverse map given by

m
j
"

j
+
i/1

exp(a
i
), 1)j)J!1.

We then assign a an unrestricted multivariate Gaussian prior distribution with
mean a

0
and covariance matrix A

0
. Finally, for the variance matrix D we let

D~1 follow a Wishart distribution with parameters l
0

and R
0

(implying that the
prior mean of D~1 is l

0
R

0
). The hyperparameters of these prior distributions

are assigned subjectively. In our application, however, the hyperparameters are
found from a training sample.
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3.2. Posterior sampling

Once again (due to the complexity of the likelihood function) it is necessary to
augment the parameter space with the latent data to e!ectively sample the
posterior distribution. We include both Mz

i
N and Mb

l
N in the sampler and adopt

a reduced blocking scheme in which a and p are sampled in one block condi-
tioned on the cluster-speci"c random e!ects b

l
"(a

l
, b

l0
,2, b

lJ
), but mar-

ginalized over the latent data Mz
i
N. In particular, the sampling of (a, p) is from the

density

n(a, pDy, s, Mb
l
N, b)Jn(a)n(p)

m
<
l/1

f (s
l
, y

l
Da, b, Mb

l
N, R)

Jn(a)n(p)
m
<
l/1

nl
<
i/1

f (s
li
, y

li
Da, b, b

l
, R), (12)

where f (s
l
, y

l
Da, b, R) is the likelihood contribution from the lth cluster and

f (s
li
, y

li
Da, b, b

l
, R) is the density of the ith observation in the lth cluster that

is computed as follows. Suppose that the data on the ith subject in the lth cluster
is (s

li
, y

li
)"(k,1), which implies that sH

li
is between m

k~1
)sH

li
(m

k
and that z

lik
is

positive, since all other potential outcomes can be integrated out and play no
role in the probability calculation. Letting U

2
(t
1
, t

2
; o) denote the cdf of the

standard bivariate Gaussian distribution with mean zero, unit variances and
correlation o, it follows that

f (k, 1Da, b, b
l
, R)"Pr(m

k~1
)sH

li
(m

k
, 0(z

lik
(R)

"U(m
k
!w@

li
c)!U(m

k~1
!w@

li
c)

!U
2
(m

k
!w@

li
c,!x@

lik
b
k
, p

1k`2
)

#U
2
(m

k~1
!w@

li
c,!x@

lik
b
k
, p

1k`2
), (13)

from standard properties of the bivariate normal distribution function. In doing
this calculation one must be careful to ensure that s

li
"k is associated with the

correct potential outcome z
lik

. The posterior density in (12), which appears quite
formidable, can be sampled e!ectively by a tuned Metropolis}Hastings step
along the lines of Chib and Greenberg (1998), as discussed fully in the appendix.

Another important issue in the posterior computations for this model is the
sampling of b and Mb

i
N. It has been emphasized by Chib and Carlin (1999) for

general hierarchical models that, whenever possible, the "xed and random
e!ects should be sampled in one block. Conditioned on the potential outcomes
and the covariance parameters the clustered data model given above reduces to
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a (linear) multivariate model for which the joint sampling of (b, Mb
l
N) can be

conducted easily by the method of composition, by the sampling of b mar-
ginalized over Mb

i
N, followed by the sampling of Mb

i
N given b.

The full MCMC algorithm (containing both reduced sampling steps) is
summarized as follows. Details are furnished in the appendix.

Algorithm 2

1. Initialize Mb
l
N and b

2. Sample (a, p, Mz
li
N) from a, p, Mz

li
NDy, s, Mb

l
N, b by drawing

(a) (a, p) from (a, p)Dy, s,Mb
l
N, b using the Metropolis}Hastings algorithm

and
(b) Mz

li
N from Mz

li
NDs

l
, b, Mb

l
N, a, R;

3. Sample (b, Mb
l
N) from b, Mb

l
NDMz

li
N, R by drawing

(a) b from bDMz
li
N, R and

(b) b
l
from b

l
DMz

li
N, b, D (l)m);

4. Sample D from DDMb
l
N

5. Repeat Steps 2}4 using the most recent values of the conditioning variables.

4. Posterior inferences

4.1. Inferring the treatment ewect

One of the key issues in the prior posterior analysis is the question of inferring
the treatment e!ect given one of the models we have just speci"ed. See also
Heckman and Robb (1985) and Angrist et al. (1996) for discussion of these
matters.

Consider the case in which there is a binary treatment s
i
, an instrumental

variable that in#uences s
i

but not the response, and two potential outcomes
z
i0

and z
i1

that depend on the observed treatment. The causal e!ect of s on the
response y for subject i is the di!erence z

i1
!z

i0
. If subject i receives the

treatment s
i
"0, then z

i0
is observed and the treatment e!ect is the quantity

z
i1
!y

i
. On the other hand, when s

i
"1, z

i1
is observed and the treatment

e!ect is the quantity y
i
!z

i0
. Thus, with binary treatments, the treatment e!ect

¹
i
is

¹
i
"G

z
i1
!y

i
if s

i
"0,

y
i
!z

i0
if s

i
"1.

In either case, the treatment e!ect is a random, subject-speci"c quantity. From
a Bayesian perspective, inference about the treatment e!ect requires the calcu-
lation of the posterior distribution of Mz

i1
!z

i0
N conditioned on the data
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(y
i
, X

i
,w

i
) and the treatment s

i
but marginalized over the posterior distribution

of parameters. This view, which is a consequence of our Bayesian approach, is
a departure from that discussed by Angrist, Imbens and Rubin (1996) who
summarize the treatment e!ect (conditioned on the parameters) by "nding the
mean treatment e!ect for di!erent sub-populations de"ned by values of the
outcomes and the (discrete) instrument.

We focus on the posterior distribution of the ¹
i
although it should be noted

that given ¹
i
the treatment e!ects aggregated over various sub-populations (for

example, the treated) can easily be constructed. The information in the subject-
level posterior distributions of ¹

i
can also be summarized in other ways. One

can, for example, compute the posterior mean of z
i1

and plot the distribution of
these posterior means across the subjects in the sample. This can be compared
with the corresponding distribution computed from the posterior means of
Mz

i0
N. The important point is that the potential outcomes framework, in con-

junction with the Bayesian paradigm, does not lead to a unique numerical
summary of the treatment e!ect.

Another interesting set of questions arise in trying to calculate the treatment
e!ect in the context of the ordinal treatment models and binary treatments. In
these cases, if the treatment takes three levels (say), then there are three possible
treatment e!ects for each subject, corresponding to the di!erences z

i1
!z

i0
,

z
i2
!z

i0
and z

i2
!z

i1
. One can de"ne the treatment e!ects to be the posterior

distribution of these subject-speci"c di!erences in potential outcomes. It should
be noted that even if the response is binary as in the clustered data model, the
modeling approach discussed above leads to a posterior distribution on con-
tinuous-valued potential outcomes. A cautionary remark is that in the latter
case the distribution of these di!erences may be sensitive to the identifying (zero)
covariance restriction on the lower part of the R matrix although note our
earlier comment that this is mitigated by the correlation induced by the random
e!ects. One could instead de"ne the treatment e!ect in terms of the di!erences of
binary potential outcomes but at the cost of a less interpretable quantity.

4.2. Computation of the marginal likelihood

In the "tting of selection models an important question relates to how
alternative models can be compared. Such models may arise from the covariate
speci"cation in the treatment and potential outcomes distributions or from
di!erent distributional assumptions and modeling features (for example, the
presence of clustering versus no clustering). To compare these models, one must
compute the model marginal likelihood which is de"ned as the integral of the
sampling density with respect to the prior density. This quantity can be com-
puted from the MCMC output using a method developed by Chib (1995).

Let h denote the parameters of a given model, with likelihood function f (y, sDh)
and prior density n(h), where (y, s) is the available data. The parameters h, the
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likelihood and the prior are model dependent but that is not emphasized in the
notation. Then, the marginal likelihood can be written as

m(y, s)"
f (y, sDh)n(h)

n(hDy, s)
,

which follows from the formula for the posterior density of h. The important
point is that this expression is an identity in h and may therefore be evaluated at
any appropriately selected point hH (say). If hH denotes a high-density point and
n( (hHDy, s) the estimate of the posterior ordinate at hH, then the marginal likeli-
hood on the log scale is estimated as

lnmL (y, s)"ln f (y, sDhH)#lnn(hH)!n( (hHDy, s), (14)

where the "rst two terms are typically available directly and the third is
estimated from the MCMC output. We now very brie#y explain how the "rst
and third terms are determined for our various models.

There is little di$culty in "nding the likelihood function f (y, sDhH) for the
continuous outcome models. For example, in the textbook Gaussian model, the
likelihood function is given by (5). For the clustered data model, the likelihood
contribution of the lth cluster takes the form

f (y
l
, s

l
DhH)"PG

nli
<
i/1

f (y
li
, s

li
Db

l
, hH)Hn(b

l
DDH) db

l
,

,Pg(b
l
) db

l
,

where each term f (y
li
, s

li
Db

l
, hH), by virtue of being conditioned on b

l
, is found in

the same way as described in the discussion surrounding (13). This multi-
dimensional integral over b

l
"(a

l
, b

l0
,2, b

lJ
) can be estimated by the method of

importance sampling. Let bK
l
denote the mode of ln g(b

l
) and <

bl
the inverse of

minus the Hessian matrix at the mode. Then, if h(b
l
) denotes a multivariate-t

density with mean bK
l
, scale a<

bl
and l degrees of freedom (a'1 and v are tuning

factors), the importance sampling estimate of the likelihood contribution is
given by ¹~1+T

t/1
g(bt

l
)/h(bt

l
), where Mbt

l
N are random draws from the importance

density.
Next consider the estimation of the posterior ordinate n(hHDy, s). The main

ideas can be illustrated in the context of the textbook model where h"(b, p).
Decompose the posterior ordinate according to the marginal/conditional de-
composition as

n(pH, bHDy, s)"n(pHDy, s)n(bHDy, s, pH)
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and note that the "rst ordinate n(pHDs, y) can be estimated by kernel smoothing
using the draws Mp(g)N from the MCMC output, as in Chib and Greenberg (1998).
The second ordinate by de"nition is

n(bHDy, s, RH)"Pn(bHDMz
i
N, RH) dn(Mz

i
NDy, s, RH),

where the integrating measure is the posterior distribution of the latent data
conditioned on RH and the integrand n(bHDMz

i
N, RH) is the ordinate of the

Gaussian density de"ned in Section 3.1. Following Chib (1995), to estimate this
integral one "xes the value of p at pH (equivalently R at RH) and continues the
MCMC iterations with the reduced set of full conditional distributions
bDMz

i
N, RH and Mz

i
NDy, s, b, RH. The draws from this run on Mz

i
N are then used to

average the Gaussian ordinate n(bHDMz
i
N, RH).

The calculation of the posterior ordinate in the other models proceeds in the
same fashion with some straightforward modi"cations.

5. Example 1: Hospice data

This example is concerned with the "tting of the models in Section 2 and their
comparison through marginal likelihoods and Bayes factors, and the estimation
of subject-speci"c treatment e!ects.

5.1. Data construction

A random sample of data for 1987 was collected on 568 United States
hospices (institutions that provide care to the terminally ill patients) to deter-
mine the e!ect of certi"cation under the Medicare Hospice Bene"t (MHB)
program on the number of patients served by the hospice (the outcome). The
treatment variable s

i
is 1 if the hospice is certi"ed and 0 otherwise and z

i0
is the

natural logarithm of the number of patients served by the hospice when s
i
"0.

The other potential outcome z
i1

corresponds to s
i
"1.

Assume that x
i0
"x

i1
, where x

i0
consists of (1) the number of years the

hospice has operated; (2) per-capita income in the county in which the hospice is
located; (3) average length of stay at the hospice and (4) percent of female
patients. Also we let the marginal distribution of s

i
be

Pr(s
i
"1)"U(w

i
c),

where w
i
consists of x

i0
, plus the MHB reimbursement rate, the Medicare Home

Health reimbursement rate, the average salary for hospital employees in that
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Fig. 1. Results on p
13

and p
33

in the t(8) model: Posterior distributions (top panel) and autocorrela-
tions in the MCMC output against lag from full and reduced blocking algorithms (bottom panel).

county, and the Health Care Finance Administration's (HCFA) labor cost
index. This speci"cation is based on Hamilton (1993).

5.2. Model selection and posterior analysis

A number of the di!erent selection models discussed in Section 2 are "t to
these data using Algorithm 1 and its variants* these are the Gaussian model,
the Student-t model with l equal to 4, 8, 16, 32, and 64, and mixture models with
two and three components. Each model was "t using 10,000 MCMC iterations
with an initial burn-in of 1000 iterations.

The MCMC output from the "tting is quite well behaved. In Fig. 1 we report
the posterior histogram and time-series autocorrelation plots based on the
output of p

13
and p

33
from the l"8 model. For contrast we also report the

corresponding acf plots with full blocking (i.e., p is sampled conditioned on Mz
i
N).

The plots show that the serial correlations are cut in half (approximately) by
using the reduced blocking algorithm which implies that the latter algorithm has
higher simulation accuracy (as measured by the numerical standard error) for
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Table 1
Marginal likelihoods of best-"tting models with the Hospice data

Model

Gaussian t(8) 2-Component mixture

Likelihood !1027.21 !991.02 !981.61
Marginal likelihood !1088.53 !1063.32 !1060.23

Fig. 2. Posterior distributions of potential outcomes by treatment status for eight randomly selected
hospices.

a given Monte Carlo sample size. Note that the posterior distribution of p
13

is
concentrated on negative values indicating that the unobservables that in#uence
the certi"cation decision are also correlated with the outcome.

Table 1 presents the marginal likelihoods for some of the best-"tting models.
The marginal likelihoods do not support the Gaussian model. More support is
seen for the Student-t model with eight degrees of freedom, and the two
component mixture model. The latter model suggests that the data can be
clustered into two groups. In one group, the MHB reimbursement covariate has
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Fig. 3. Posterior densities of treatment e!ects for entire hospice population and certi"ed and
uncerti"ed sub-populations.

a strong positive impact on Pr(s
i
"1), but in the smaller second group, hospices

are insensitive to Medicare reimbursement incentives. Note that there is some
preference for the mixture model (the log base ten Bayes factor for the mixture
model over the t(8) model is 1.34).

To evaluate the subject level impact of Medicare certi"cation on the access to
hospice services, we recorded the sampled values of z

i0
and z

i1
from each of the

10,000 iterations of the MCMC sampler for each observation in the sample.
Based on these draws, we calculated the hospice-speci"c distribution of the
treatment e!ect z

i1
!z

i0
(which is measured on the log scale). Because it would

be cumbersome to present this distribution for all 568 hospices, we randomly
selected four uncerti"ed hospices (labeled with ID numbers 1}4) and four
certi"ed hospices (labeled with ID numbers 5}8) and plotted summary measures
of these distributions in Fig. 2. The boxplots for the four uncerti"ed hospices
show that the mean treatment e!ect is positive and that the bulk of the
distribution is supported on positive values. Hospice 4 appears to have the
largest mean treatment e!ect and seems to be the most likely to substantially
increase patient capacity if it were to become certi"ed. The treatment e!ect for
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Fig. 4. Results on p in clustered data model with random e!ects: posterior distributions (top panel)
and autocorrelations in the MCMC output against lag (bottom panel).

hospice 3 appears to be the most uncertain. Among those currently treated (ID
5}8), the treatment e!ects are generally positive but smaller and more varied
than those for hospices 1}4. In the case of hospice 6, the mean treatment e!ect is
negative, while in the case of hospice 7 the mean certi"cation e!ect is large and
the distribution is positively skewed.

As discussed above, the individual hospice treatment e!ects may be aggreg-
ated in a variety of ways or grouped by values of the observed covariates and
instruments. The treatment evaluation literature has focussed on the population
average treatment e!ect and, to a lesser extent, on the average treatment e!ects
for the sub-populations observed to receive and not receive the treatment,
respectively. Fig. 3 plots the distributions of the mean values of z

1
!z

0
for all

568 hospices in the sample (the population average certi"cation e!ect), as well as
for the sub-populations of certi"ed and non-certi"ed hospices. Fig. 4 shows that
the population average treatment e!ect is centered on 1.04 log points, and that
the e!ect of Medicare certi"cation on number of patients served is smaller
(though still positive) for the hospices that have chosen certi"cation than for
those remaining uncerti"ed.
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6. Example 2: Hip fracture data

This example is concerned with the "tting of the ordinal treatment, binary
outcome model with clustering that is discussed in Section 3. The variable s

li
is

pre-surgical delay which is categorized into three levels, corresponding to delays
of 1}2 days, 3}4 days, and 5#days, respectively, for a random sample of 2561
female patients who underwent hip fracture surgery in Quebec in 1991 in the lth
hospital. Cluster l in this problem is the lth hospital. There are 68 hospitals in the
sample. The outcome variable y

i
takes the value one if the patient is discharged

to home and the value 0 otherwise.
In this problem, the binary potential outcomes are Md

li0
,d

li1
, d

li2
N, corre-

sponding to s
li
"M0, 1, 2N. The associated latent Gaussian potential outcomes

are z
lik

. For the covariates, we let x
li0

"x
li1

"x
li2

, where x
li0

includes age and
the number of comorbidities (health conditions such as diabetes or heart
trouble) at the time the patient was admitted to the hospital. The covariate
vector w

li
is all of x

li0
along with an indicator variable representing the day of

the week the patient was admitted to the hospital (see Hamilton et al., 1996).

6.1. Model xtting

The model we "t to these data is

A
sH
li

z
li0

z
li1

z
li2
B&N AA

w@
li
c#a

l
x@
li0

b
0
#b

l0
x@
li1

b
1
#b

l1
x@
li2

b
2
#b

l2
B, A

1 p
12

p
13

p
14

p
12

1 0 0

p
13

0 } F

p
14

0 2 1 BB , (15)

where the random e!ects b
l
"(a

l
, b

l0
, b

l1
, b

l2
) follow a four-dimensional normal

distribution with variance D. The parameters of this model are h"(m
1
, p, b, D),

where m
1

is the single cut-point parameter, b@"(c@, b@
0
, b@

1
, b@

2
), and

p"(p
12

, p
13

, p
14

).
We "rst use the 1990 data with default priors. The results from this training

sample estimation are reported in Table 2 under the heading &training sample
posterior'. The posterior mean of h from this estimation, along with the poste-
rior covariance matrix (suitably in#ated), are now used as the parameters of
the prior distributions for the 1991 data, as described earlier in the paper. The
results from this "t are reported in Table 2 under the heading &Posterior'. The
results are similar across the two sample periods, except for the posterior
distribution on D.

In Figs. 4 and 5, we present the posterior histograms of p and posterior
box-plots of D, respectively, and the associated autocorrelation functions of the
MCMC output. The distributions of p

12
and p

14
are mostly concentrated on
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Table 2
Posterior estimates for hip fracture data using the clustered model with hospital speci"c random
e!ects. The second column gives the posterior means and standard deviations from the training
sample. The corresponding results for the sample of interest are in the last column. Results are based
on 10,000 MCMC draws

Variable Training sample posterior Posterior

Treatment (delay)

Intercept !1.427 (0.285) !0.857 (0.417)
Age/10 0.037 (0.028) 0.024 (0.028)
Comorbidities 0.088 (0.014) 0.077 (0.013)
Monday 0.080 (0.075) 0.127 (0.073)
Thursday !0.106 (0.078) !0.200 (0.079)

Potential outcomes (z
i0

)

Intercept 2.376 (0.639) 2.518 (0.555)
Age/10 !0.284 (0.075) !0.305 (0.057)
Comorbidities !0.100 (0.042) !0.071 (0.030)

Potential outcomes (z
i1

)

Intercept 4.886 (2.145) 3.055 (2.707)
Age/10 !0.502 (0.205) !0.296 (0.236)
Comorbidities !0.109 (0.103) !0.137 (0.086)

Potential outcomes (z
i2

)

Intercept 2.157 (3.675) 4.783 (4.316)
Age/10 !0.285 (0.342) !0.647 (0.395)
Comorbidities !0.188 (0.140) !0.242 (0.128)
Cutpoint c 1.102 (0.055) 1.165 (0.094)
p
12

0.160 (0.123) 0.111 (0.132)
p
13

0.001 (0.148) !0.051 (0.125)
p
14

!0.171 (0.152) !0.180 (0.165)
D

11
2.722 (0.585) 2.350 (0.570)

D
22

2.473 (0.601) 3.533 (1.532)
D

33
16.570 (9.504) 11.397 (6.601)

D
44

15.237 (6.516) 33.616 (27.600)

positive and negative values, respectively, thus indicating that the treatment
variable is correlated with the potential outcomes. The posterior distribution of
D shows that there is considerable heterogeneity across the clusters. Finally, the
mixing of the MCMC output (as measured by the autocorrelations) seems
adequate as may be observed from Figs. 4 and 5.
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Fig. 5. Results on D in clustered data model with random e!ects: posterior boxplots (top panel) and
selected autocorrelations in the MCMC output against lag (bottom panel).

Table 3
Log likelihood and log marginal likelihood of models without random e!ects and with random
e!ects

No random e!ects Random e!ects

ln f (y, s D hH) !4119.77 !3969.35
lnm(y, s) !4101.03 !3962.79

Next, based on the prior distributions constructed from our training sample
we compare the marginal likelihoods of models with and without random
e!ects. Our results, which are based on 10,000 MCMC draws and a burn-in of
1000 iterations, are presented in Table 3. The table gives the log likelihood and
the log marginal likelihood of each model. The marginal likelihoods show that
the data strongly support the inclusion of hospital-speci"c random e!ects in the
model.
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Fig. 6. Posterior distributions of treatment e!ects for four randomly selected patients. Columns
labeled &10' show z

1
!z

0
; &20' shows z

2
!z

0
; &21' shows z

2
!z

1
.

6.2. Evaluating the impact of delay on surgical outcomes

To evaluate the impact of surgical delay on the post-surgical probability of
a home discharge (from the clustered data model), the "rst step is to construct
the treatment e!ects for each patient in the sample. As in example 1, we record
the sampled values of z

li0
, z

li1
, and z

li2
from each of the 10,000 iterations of the

MCMC sampler for each patient in the sample. We then construct the treatment
e!ects associated with a delay of 3}4 days versus 1}2 days, z

li1
!z

li0
; delay of

5#days versus 1}2 days, z
li2

!z
li0

and delay of 5#days versus 3}4 days,
z
li2

!z
li1

. Similar treatment e!ects may be constructed for the binary outcome
measures by mapping the z

lik
into d

lik
according to (9). Subject-speci"c treat-

ment e!ect distributions are plotted in Fig. 6 for four randomly selected patients.
The boxplots labeled &10' show that the treatment e!ect distributions of a delay
of 3}4 days versus 1}2 days are centered on zero for three of the four patients.
The left most distribution suggests that patient 117, who was delayed for 1}2
days, would have been more likely to be discharged home had she been delayed
for 3}4 days. On the other hand, in the case of patient 853 even a delay of
5#days appears to have no adverse impact on outcomes relative to a shorter
delay.
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7. Conclusion

This paper has developed a general Bayesian analysis of selection models that
incorporate potential outcomes and the non-random assignment of the treat-
ment. We have shown how the Bayesian framework, in conjunction with
MCMC methods, can be used to derive the posterior distribution of subject level
treatment e!ects in models that are quite di$cult to analyze by any other means.
For example, our approach was applied to estimate models in which the
potential outcomes follow a mixture of Gaussian distributions. It was also
applied to models in which the treatment is ordinal and the responses are binary
and clustered. We have discussed the computation of the marginal likelihood
with a view to comparing alternative, potentially non-nested selection models
and provided evidence in two real data problems for the models that "t well.

We conclude by mentioning that the approach outlined in this paper can be
extended in many other useful and important directions, for example in the
direction of models with multiple treatments and multivariate (binary, continu-
ous or ordinal) responses, or with more complicated dynamic structures. Work
on such models has been initiated and will be reported elsewhere.

Appendix A

Algorithm 1

1. Sample p from the conditional density n(pDy, s, b) which is proportional to
g(p)"f

N
(pDg

0
, G

0
)I

S
(p) f (y, sDb, R), where f

N
denotes the kernel of the multivari-

ate normal density. To sample g(p), let q(pDk,<) denote a multivariate-t density
with parameters k and < de"ned as the mode and inverse of the negative
Hessian, respectively, of log g(p). Then

(a) Sample a proposal value p@ from the density q(pDk,<)
(b) Move to p@ given the current point p with the Metropolis}Hastings prob-

ability of move (Chib and Greenberg, 1995)

minG
f
N
(p@Dg

0
,G

0
)I

S
(p@) f (y, sDb, R@)

f
N
(pDg

0
, G

0
)I

S
(p) f (y, sDb, R)

q(pDk,<)

q(p@Dk,<)
, 1H,

otherwise stay at p.

2. Sample zH
i

from zH
i
Dy

i
, s

i
, b, R, independently for i"1,2, n. If s

i
"1, in

which case zH
i
"(sH

i
, z

i0
), "rst sample sH

i
from the distribution sH

i
Dy

i
, s

i
, z

i0
, b, R,

a normal distribution truncated to the interval (0,R) and then given this draw
of sH

i
, sample z

i0
from the distribution z

i0
Dy

i
, s

i
, sH

i
, b, R, a normal distribution

without any restriction on its support. If s
i
"0, then sample sH

i
from the
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distribution sH
i
Dy

i
, s

i
, z

i1
, b, R, but now truncated to the interval (!R, 0), and

then sample z
i1

from the untruncated normal distribution z
i1

Dy
i
, s

i
, sH

i
, b, R.

3. Sample b from the distribution N(bK ,B) where bK "B(b
0
B~1
0

#+n
i/1

X
i
R~1z

i
)

and B"(B~1
0

#+n
i/1

X
i
R~1X

i
)~1.

Algorithm 2

1. Sample a and p from a, pDy, s, Mb
l
N, b which is proportional to

g(a, p)"n(a) f
N
(pDg

0
, G

0
)I

S
(p)

m
<
l/1

f (s
l
, y

l
Da, b, Mb

l
N, R).

To sample g(a, p), let q(a, pDk,<) denote a multivariate-t density with para-
meters k and < de"ned as the mode and inverse of the negative Hessian,
respectively, of log g(a, p). Then

(a) Sample a proposal value (a@, p@) from the density q(a, pDk,<)
(b) Move to (a@, p@) given the current point (a, p) with the Metropolis}Hastings

probability of move

minG
n(a@) f

N
(p@Dg

0
, G

0
)I

S
(p@)<m

l/1
f (s

l
, y

l
Da@, b, Mb

l
N, R@)

n(a) f
N
(pDg

0
,G

0
)I

S
(p)<m

l/1
f (s

l
, y

l
Da, b, Mb

l
N, R)

q(a, pDk,<)

q(a@, p@Dk,<)
, 1H,

otherwise stay at (a, p).

2. Sample z
li
"(sH

li
, z

li0
,2, z

liJ
) from z

li
Ds
l
, a, b, Mb

l
N, R, drawing each com-

ponent of z
li
. Suppose that the data on the (l, i)th subject is (s

li
, y

li
)"(k, 1). Then,

sample sH
li

from the normal distribution sH
li
Dz
li0

, z
li1

,2, z
liJ

, a, b, R truncated to
the interval (m

k~1
,m

k
) and then sample z

lik
(the appropriate potential outcome)

from the normal distribution z
li1

DsH
li
, z

li0
, z

li2
,2, z

liJ
, a, b, R truncated to the

interval (0,R); if y
i
is zero, then change the latter interval to (!R, 0). Sample

the remaining potential outcomes from the appropriate conditional normal
distributions but without any restrictions on the support.

3. Sample b"(c, b
0
, b

1
,2,b

J
) from b D Mz

li
N, Mb

l
N, R, where the latter distri-

bution is N(bK , B), with bK "B(b
0
B~1

0
#+m

l/1
+nl

i/1
X

li
R~1(z

li
!b

l
)) and

B"AB~1
0

#

m
+
l/1

n
+
i/1

X
li
R~1X

liB
~1

.

4. Sample b
l
"(a

l
, b

l0
,2, b

lJ
) from b

l
DMz

li
N, b, R, where the latter distribution

is N(bK
l
,C

l
), with bK

l
"C

l
R~1+nl

i/1
(z

li
!X

li
b) and C

l
"(D~1#n

l
R~1).

5. Sample D~1 from D~1DMb
l
N where

D~1DMb
l
N&Wishart Al0#n, AR~1

0
#

n
+
l/1

n
l
(b

l
b@
l
)B

~1

B
under the assumption that the prior on D~1 is Wishart (l

0
,R

0
).
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