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Abstract—In recent years, much attention has been paid to
the analysis of random wireless ad hoc networks (WANETs) that
combine the effect of the physical layer and the medium access
layer. However, most works have concentrated on an outage rate
model which does not accurately describe the performance of
modern communication systems. In this work we consider the
ergodic rate density (ERD) of a random ALOHA WANET with a
homogenous Poisson point process node distribution. We present
two novel lower bounds on the ERD, one for general transmission
and reception strategies and the other for receivers with a spatial
interference cancellation capability. The bounds are simpler than
previously published results for ALOHA WANETs (that have
primarily considered the outage rate density). In addition, the
bounds and the bounding technique are quite general and enable
the derivation of closed form expressions of the ERD for various
network models. The efficiency and simplicity of the bounds
are demonstrated through several applications, and insights are
drawn on the behavior of the network performance as function
of the path-loss factor, transmission strategies and number of
antennas. Simulation results demonstrate that these simple lower
bounds predict the performance of ALOHA WANETs with high
accuracy.

I. INTRODUCTION

Wireless ad-hoc networks (WANETs) offer simplicity and
flexibility, which make them suitable for many practical appli-
cations. These networks do not depend on infrastructure such
as base stations, and are typically coordinated by decentralized
multiple access protocols. The ALOHA protocol, [2], is the
simplest packet-based access mechanism. Together with its
modified versions (e.g., [3], [4]) the ALOHA access protocol
has attracted much attention both in theory and in practice.

While some interesting works on the capacity of WANETs
have considered specific network structures (e.g., [5]), more
general insights have been obtained from the analysis of
random networks. The most popular model for the positions of
active users in random WANETs is the homogeneous Poisson
Point Process (PPP), [3]. In this model, the users’ locations
are assumed to be uniformly distributed over an infinite plane.
The PPP model enables the analysis of WANET performance,
and formulates the performance dependence on user density,
without having to take the specific users’ locations into
account. In this work we use a PPP model to analyze the
WANET performance. We focus on the access protocol and
the physical layer processing, and use simplifying assumptions
on the operation of higher communication layers.

Most previous analyses of WANETs have focused on the
concept of outage capacity. In this approach, the transmitters
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encode each message using an error correction code, and
transmit it (once or several times). The analysis is based on the
calculation of the probability that the receiver will be able to
decode the message correctly. If the receiver cannot decode the
message, it is said to be in ‘outage’. For example in the context
of PPP, the popular Transmission Capacity (TC) measure, [6],
is defined as the maximal area spectral efficiency subject to a
fixed outage probability.

The effect of transmission strategies on the TC of ALOHA
WANETS under fading channels was studied in [7] for fixed
transmission power, channel inversion and threshold schedul-
ing. Using upper and lower bounds on the outage probabilities
they showed that the channel inversion scheme is inferior to
the fixed transmission power scheme.

Upper and lower bounds on the TC of an ad-hoc network
when each node is equipped with multiple antennas were
derived in [8]. Although they considered the transmission
of multiple streams by each transmitter, the optimal number
of transmitting streams was shown to be one. Assuming
channel state information in the transmitter, the best scaling
of the transmission capacity with the number of antennas was
achieved by transmit beamforming combined with interference
cancellation in the receiver. In this case, the TC was shown to
scale linearly with the number of antennas per node.

However, generally speaking, the analysis of the network
TC involves quite complicated expressions. In order to make
the TC analysis tractable, simplifying assumptions are com-
monly used; e.g., small outage [9], specific fading models [3]
or specific path-loss factors [10].

An alternative approach, adopted here, evaluates the ergodic
rate density (ERD) using the maximum mutual information
between the transmitted signal and the received signal given
the interferers activity, [1]. Basic results in information theory
guarantee that such a rate, which is higher than the outage rate,
is indeed achievable although it may incur significant delays
(e.g., [11]).

An example of the use of the ergodic rate as a performance
metric can be found in [5] where the authors developed a
mathematical framework for the ergodic capacity region of
specific topology WANETs under several transmission proto-
cols. Haenggi, [12], introduced a lower bound on the ERD
of users in ALOHA WANET. This bound was developed for
the special case in which both the desired and interference
channels fading follow the Rayleigh distribution. Stamatiou
et al, [13], introduced upper and lower bounds on the per-
formance of WANETs applying frequency hopping scheme.
Their framework included Rayleigh fading channels and the
ERD was evaluated under the assumption of no channel
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state information (CSI) on the interfering transmitters1. The
resulting lower bound was shown to be tight for low user
densities.

An asymptotic upper bound on the ERD of WANETs
equipped with N receive antennas was introduced in [14]. In
their model they assumed that the interferers keep a minimum
distance from receivers. The SINR was shown to grow as
Nα/2 where α is the path-loss factor and N is the number
of antennas.

Although the analysis of the ERD is simpler than the
analysis of the Outage-Rate Density (ORD), to date there is
no simple expression for ERD in the general case.

In this paper we analyze a random PPP WANET utilizing
the ALOHA protocol, and present novel lower bounds on
its ERD. The first bound holds for any reception strategy,
while the second bound holds for receivers that apply spatial
interference cancellation. Both bounds are much simpler than
equivalent results obtained for the outage rate metric (e.g.,
TC). Nevertheless, these bounds are very close to the actual
ERD, and can even predict the behavior of ORD as function of
the network parameters; e.g.,path-loss factor, network density
and number of antennas per node. The usefulness of the
bounds is illustrated by several common applications: For
the single antenna case, the applications include fixed trans-
mission power, channel inversion and threshold scheduling.
For multiple antenna WANETs, we present cases of transmit
beamforming with or without interference cancellation in the
receiver. The tightness of the derived bounds is also evaluated
and shown by simulation.

The ERD analysis have three distinct advantages, which
will be emphasized in what follows. First, the ergodic rate
is achievable and higher than the outage rate. Second, this
analysis results in a much simpler performance bounds, and
third, its behavior is very similar to the outage rate, so that the
derived results can also predict the general behavior in outage
models.

The rest of this paper is organized as follows: The following
subsection discusses presents various schemes that can achieve
the ERD. Section II describes the system model. Section III
introduces the novel lower bounds on the ERD. Section IV
demonstrates the application of these bounds to five different
scenarios and introduce further insights on the bounds. Section
V presents our concluding remarks.

A. Achieving the Ergodic capacity

As mentioned above, most analyses of PPP WANETs have
been based on outage rates. This approach is suitable for
more traditional systems where a message is encoded and
transmitted, and then either received successfully or discarded
(retransmissions are also possible, but are decoded in the same
way as new transmissions). However, modern communication
schemes allow networks to approach the achievable ergodic
rate. In this subsection we briefly describe some of these
schemes to demonstrate the achievability of the ERD.

1This CSI assumption describes well system that use fast frequency hop-
ping. In this paper we consider the complete CSI case, which can characterize
slow/medium frequency hopping systems.

The most straightforward schemes which approach the
ergodic rate utilizes time diversity. In this scheme, the data
is encoded into code words which are spread over multiple
ALOHA packets. If the number of packets per code word is
large enough, the achievable rate will approach the ergodic
rate. Note, however, that this method requires a significant
delay, and hence it is not suitable for all applications.

A frequency diversity scheme can be implemented for
example by random frequency hopping in which each code
word is spread over different frequency bands [13]. Assuming
that the amount of frequency bands is large, this scheme will
effectively approach the ergodic rate without significant delay.

An alternative scheme is based on feedback from the re-
ceiver to the transmitter and is implemented by an incremental-
redundancy hybrid automatic repeat request (IR-HARQ), [15]–
[17], also known as HARQ type III. In this scheme the
transmitter basically continues to generate new parity bits
from the channel encoder until it receives an acknowledge
(ACK) message from the receiver [18]. The IR-HARQ scheme
is implemented in several wireless standards as UMTS HS-
DPA/HSUPA [19], mobile WiMAX [20], and the 3GPP Long
Term Evolution (LTE) [21]. The optimal HARQ coding rate
for ALOHA WANETs was studied in [22].

The incremental redundancy scheme can be integrated with
the ALOHA access protocol using two possible strategies. In
the first strategy all incremental redundancy bits are trans-
mitted by ALOHA packets of fixed length. The transmitter
continues to send packets until it receives an ACK message,
and then moves on to the next codeword. This strategy will
approach the ergodic rate when the average number of packets
per codeword is large.

The second strategy uses variable packet sizes. The trans-
mitter expands the length of the ALOHA packet and continues
to transmit new parity bits until it receives the ACK message.
In this scheme the mean packet length is the inverse of the
ergodic rate, and using the renewal reward theorem [23] we
conclude that the mean of the achievable rate approaches the
ergodic rate. This strategy requires a much shorter delay than
the previous strategy and is very useful in practical systems.

It is important to note that due to the network homogeneity,
the same ergodic rate is achievable by each of the nodes,
but only if we consider long enough averaging so that nodes
mobility is significant. On the other hand, the HARQ schemes
achieve the network ERD by allowing each user to transmit
data at a different rate (that matches its instantaneous condi-
tions). Thus, the ERD can be achieved in the network with very
short delays, and longer delays are required only to achieve
fairness between users.

II. SYSTEM MODEL

We assume a decentralized wireless ad-hoc network utiliz-
ing an ALOHA protocol (e.g., [3]). Assuming the operation of
a routing mechanism, some of the nodes have data that needs
to be transmitted to specific destinations. For simplicity we
assume that the next destination for each message is located
at fixed distance, d, from the transmission source2. Nodes that

2Note that as the network density increases, this assumption become more
realistic.
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have data to transmit randomly decide on an access time to
the network. The active transmitter distribution is modeled by
a two dimensional PPP with density of λ.

The desired power, received at receiver i from its paired
(i-th) transmitter is given by:

Si = ρ(Yi)d−αYi (1)

where Yi is the effective power fading between the i-th
transmitter and its desired i-th receiver. This effective power
fading represents any random change in the power of the re-
ceived signal, for example due to the transmitter preprocessing,
channel fading and receiver postprocessing.

We assume that the transmission power can be adapted
according to the power gain of the desired channel, following
some predetermined transmission policy. For ease of notation,
we mark the transmitted power by ρ(Yi), where the function
ρ describes the transmission strategy. The path-loss factor is
denoted by α > 2.

The power received at receiver i from transmitter j for i 6= j
is:

Wi,j = ρ(Yj)X
−α
i,j Vi,j (2)

where Vi,j is the effective power fading and Xi,j is the
distance between the i-th transmitter and the j-th receiver
respectively. The fading variables Vi,j are independent and
identically distributed (i.i.d) and statistically independent of all
distance variables. In the following we also use the notation
V and Y when we discuss the statistical nature of one of the
Random Variables (RVs) Vi,j and Yj , bearing in mind that
these are single representatives of families of iid RVs. Note
that in some cases the distribution of Y may be identical to
the distribution of V , whereas in other cases these two RVs
may have different distributions (as will be shown in section
IV).

We use the shift invariant property of the system, [24], to
analyze the performance of the network using user 0 as a probe
receiver. Without loss of generality, we assume that the probe
receiver is located at the origin.

For notational simplicity, in the following we drop the probe
receiver index and define the set Ā as the set of all active pairs,
excluding the probe pair. The aggregate interference, measured
at the probe receiver, can be written as:

I =
∑

j∈Ā

Wj =
∑

j∈Ā

ρ(Yj)X
−α
j Vj (3)

and the power of the desired signal, measured at the probe
receiver, can be written as: S = ρY d−α.

Without loss of generality we assume that d = 1. Denoting
by σ2 the contribution of the thermal-noise, the signal-to-
interference-and-noise-ratio (SINR) measured at the probe

receiver is given by
S

σ2 + I
. The ergodic rate density (ERD)

of a network with an active user density of λ is given by:

R (λ) = λ ∙ E

[

log2

(

1 +
S

σ2 + I

)]

. (4)

III. LOWER BOUNDS ON THE ERD

In this section we present two lower bounds on the ERD of
ALOHA WANETs. Theorem 1 presents a bound that holds in
general, whereas Theorem 2 presents a tighter bound for the
specific case of WANETs with spatial interference cancellation
capabilities.

Theorem 1 (General case): A lower bound on the ERD of
a network with an active user density of λ is:

R (λ) ≥ RLB (λ) (5)

where

RLB (λ) = λe
2
α−1 ∙ E

[

log2

(

1 +
ρ(Y ) ∙ Y

σ2 + Cα ∙ λ
α
2

)]

(6)

and

Cα ,
2

α(α − 2)
α
2

(
παE

[
V

2
α

]
E
[
ρ

2
α (Y )

])α
2

. (7)

The proof of the lower bound is given in appendix A
below and is based on Jensen’s inequality. However, since
the expectation on the aggregate interference in ALOHA
WANETs is infinite, the derivation is split into two cases. The
cases are defined by the power received from the strongest
interferer, which is above or below a predefined threshold
parameter. In the first case, the rate is lower bounded by 0,
and in the second, the rate is lower bounded using Jensen’s
inequality. The power threshold parameter is then optimized
to achieve a tighter bound.

Theorem 2 (Spatial interference cancellation): A lower
bound on the ERD of a network with an active user density
of λ, when each receiver cancels its M closest transmitters
and M >

⌊ α

2

⌋
is:

RM (λ) ≥ RM
LB (λ) (8)

where

RM
LB (λ) = λ ∙ E

[

log2

(

1 +
ρ(Y ) ∙ Y

σ2 + Cα,M ∙ λ
α
2

)]

(9)

and for 2 < α < 4

Cα,M ,
2π

α
2

α − 2
E [V ] E [ρ (Y )]

(
M −

α

4

)1−α
2

(10)

while for 4 ≤ α < 6

Cα,M ,
2π

α
2

α − 2
E [V ] E [ρ (Y )]

(
M − 1

2 − α
4

)2−α
2

M − 1
. (11)

The proof of Theorem 2 is given in appendix B below.
The proof is again based on Jensen’s inequality, but this time
using the fact that in this case the expectation of the aggregate
interference is bounded. The next corollary shows that theorem
2 is tight for large number of antennas (for small number of
antennas, a tighter bound can be obtained by combining the
bounding techniques of Theorem 1 and Theorem 2).

Corollary 1: The lower bound on the ERD from Theorem
2 converges to the network ERD when the number of antennas
grows to infinity:

lim
M→∞

RM
LB (λ)

RM (λ)
= 1. (12)

The proof of Corollary 1 is given in appendix C below.
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IV. APPLICATIONS OF THE LOWER BOUNDS

In this section we apply the theorems of Section III to
various scenarios. The obtained bounds for the different
applications are also discussed, evaluated and compared to
simulation results. At the end of the section we present several
insights on the impact of the system parameters and the
network policies on the ERD.

A. Single Antenna WANETs

In the single antenna case we have no pre/post-processing.
Thus, the distribution of Y is identical to the distribution of
V , and we assume that both follow an exponential distribution
(
√

V and
√

Y have a Rayleigh distribution). Due to power
normalization we set the fading power to E[V ] = E[Y ] = 1
(i.e., V, Y ∼ Exp(1)). In this case, the expectation over V in
(7) is:

E
[
V

2
α

]
= Γ

(

1 +
2
α

)

(13)

where Γ(∙) represents the Gamma function.
1) Single Antenna - Fixed Transmission Power: Consider

a single antenna WANET that applies a fixed transmission
power strategy. The fixed transmission power is applied by
ρ(Y ) = ρ0. Substituting (13) into Theorem 1 results in:

RC
LB (λ) = λe

2
α−1 ∙E

[

log2

(

1+
Y

1
ρ0

(
σ2 + CC

α ∙ λ
α
2

)

)]

=
λ

ln(2)
∙ exp

(
2
α
− 1 +

1
ρ0

(
σ2 + CC

α ∙ λ
α
2
)
)

∙Ei

(
1
ρ0

(
σ2 + CC

α ∙ λ
α
2
)
)

(14)

where

CC
α ,

2

α (α − 2)
α
2

(

παΓ

(

1 +
2
α

)

ρ
2
α
0

)α
2

(15)

and Ei (z) is the exponential integral function, which is the

solution to the integral
∫ ∞

z

e−t

t
dt.

The ERD and the bound of (14) are depicted in Fig. 1 as a
function of the active user density, λ. As can be seen, in this
case the bound is about 30% below the ERD. Note also that
the bound exhibits the same behavior as the ERD; hence it is
useful to draw insights from its behavior. As a reference, Fig.
1 also depicts the lower bound introduced by Stamatiou et al.,
[13, eq. 26]. This bound was derived for the case of partial
CSI. Yet, it is also a lower bound in the complete CSI case
described herein. The Stamatiou bound is even tighter then
the bound presented herein for very low user densities. Yet,
for medium to high user densities, and in particular near the
optimal user density, the bound derived herein is more useful.

Note on simulations:
The results are plotted using Monte-Carlo simulations and

were averaged over 50,000 Network realizations. All simu-
lations were performed in the interference limited regime in
which the contribution of the thermal noise can be neglected.
The channel was characterized by Raleigh fading and for most
of the simulations the path-loss factor was α = 3.
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Fig. 1. Rate density as a function of the active user density for the fixed
transmission power and inverse channel cases.

In most figures we also evaluated (as a reference) the perfor-
mance of an outage scheme, in which each packet contained a
code word of fixed length. In this case the performance metric
was the ORD, given by:

Rout (λ) = max
β

λ ∙ Pout(λ, β) ∙ log2 (1 + β) (16)

where, [25, eq. 5.83],

Pout(λ, β),Pr

(
Ns∑

k=1

log2

(

1+
S

σ2+Ik

)

≥Ns ∙log2(1+β)

)

, (17)

Ns is the number of symbols in a packet, S and σ2 are the
signal and noise powers, and Ik is the interference power,
experienced at the k-th symbol. Several works, [26]–[28],
showed that (17) describes the behavior of modern error-
correction codes3.

Fig. 2 depicts the maximal rate densities (i.e., using the
optimal user density) as function of the path-loss factor, α,
for the fixed transmission power strategy. The figure depicts
the ERD, the lower bound introduced by Haenggi [12], the
lower bound described in (14), the ORD and a lower bound
on the ORD4. As can be seen, both the ERD and its lower
bound ,(14), share a similar slope; i.e., the lower bound can
be used to anticipate the behavior of the ERD as function of
the path-loss factor. The lower bound introduced by Haenggi
[12] is tighter for large α and looser for smaller α. Note that
the bound in [12] is valid only for Rayleigh fading channels
and WANETs applying fixed transmission power.

2) Single antenna - Threshold Scheduling Strategy :
Consider a WANET with single antenna nodes, that apply
threshold scheduling strategy with a channel threshold of Yt.
The transmission strategy is described by:

ρ(Y ) =

{
ρ0 if Y ≥ Yt

0 Otherwise
. (18)

3Unlike the ERD, the ORD is different for slotted and unslotted ALOHA.
In slotted ALOHA the interference is constant within each slot, and the sum
in (17) can refer to slots instead of symbols. In the following simulations we
assume slotted ALOHA with one slot per packet; i.e., we used Ns = 1.

4For the last curve we used the upper bound expression on the outage
probability as function of the SIR threshold (β) given in [7]. Then we
optimized the SIR threshold parameter as described in (16).
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Fig. 2. Maximal rate density as function of the path-loss factor applying
fixed transmission power.

For the Rayleigh fading case, the probability of transmission
is Pr(Y > Yt) = e−Yt and the probability density function
of the desired channel is fY (y|Y > Yt) = e−y+Yt . Using
Theorem 1, the lower bound can be written as:

RT
LB (λ) = λe

2
α−1e−Yt ∙E

[

log2

(

1+
Y

Kα,Yt

)∣∣
∣
∣Y > Yt

]

= λe
2
α−1−Yt

(

log2

(

1 +
Yt

Kα,Yt

)

+
eKα,Yt+Yt

ln(2)
∙Ei(Kα,Yt + Yt)

)

(19)

where

KT
α,Yt
,

1
ρ0

(
σ2 + CT

α,Yt
∙ λ

α
2
)

(20)

and

CT
α,Yt
,

2

α (α − 2)
α
2

(

παΓ

(

1 +
2
α

)(
ρ

2
α
0 e−Yt

))α
2

. (21)

Using Ei(z) >
1
2
e−z ln

(

1 +
2
z

)

, [29], the lower bound in

(19) can be simplified to:

RT
LB (λ) =

1
2
λe

2
α−1−Yt

(
log2

(
KT

α,Yt
+ Yt

)

+ log2

(
KT

α,Yt
+ Yt + 2

)
− 2 log2

(
KT

α,Yt

))
(22)

which is very close to (19) for large values of Yt.
Fig. 3 depicts three rate densities as function of the channel

threshold parameter, Yt, for an active user density of λ = 0.26.
The rate densities are the ERD, the lower bound described in
(22) and the ORD. In this case, the difference between the
ERD and its bound is around 25%, and again both curves
show the same behavior. In particular, both the ERD and its
lower bound have a maxima around Yt = 1, which implies
that (22) can also be used to find the optimum threshold for
WANET when applying threshold scheduling mechanism. The
ORD is somewhat lower from the lower bound (on the ERD).
The ORD of the threshold scheduling scheme was discussed
in [7], but without any closed form expression.
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Fig. 3. Rate density as a function of the channel threshold for threshold
scheduling with λ = 0.26.

3) Single antenna - Channel Inversion Strategy: We next
analyze the case of a single antenna with a channel inversion
power control strategy. Each transmitter adapts the transmis-
sion power to achieve a fixed received power in its destination
receiver; i.e. ρ(Y ) = ρ0Y

−1 where ρ0 is a constant. This
strategy leads to:

E
[
ρ

2
α (Y )

]
= ρ

2
α
0 ∙ E

[
Y − 2

α

]
. (23)

Substituting (23) into Theorem 1 leads to the following lower
bound:

RI
LB (λ) = λe

2
α−1 ∙ log2

(

1 +
1

1
ρ0

(
σ2 + C I

α ∙ λ
α
2

)

)

(24)

where

C I
α ,

2
α




παE

[
Y

2
α

]
E
[
Y − 2

α

]
ρ

2
α
0

(α − 2)





α
2

(25)

and for Rayleigh fading

E
[
Y

2
α

]
= Γ

(

1 +
2
α

)

, E
[
Y − 2

α

]
= Γ

(

1 −
2
α

)

. (26)

In the interference limited regime, in which the thermal noise
can be neglected, we can also write a closed form expression
for the optimal user density:

λI
? , arg max

λ
RLB(λ)

=

(
α−2
πα

) (
α
2

) 2
α
(
exp

(
α
2 +W

(
−α

2 e−
α
2
))
−1
)− 2

α

E
[
Y

2
α

]
E
[
Y − 2

α

] (27)

where W (∙) is the product-log function also known as the
Lambert W function, which is defined as the inverse function
of f(w) = wew. The lower bound in this case can be written
as:

RI
LB

(
λI

?

)
=

e
2
α−1

(
α
2 + W

(
−α

2 e−
α
2
))

ln(2) ∙ E
[
Y

2
α

]
E
[
Y − 2

α

]

∙

(
α−2
πα

) (
α
2

) 2
α

(
exp

(
α
2 + W

(
−α

2 e−
α
2
))

− 1
) 2

α

. (28)
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Note that the equivalent closed form expression for the ORD
metric is unknown, and in [7] only bounds on its outage proba-
bility were derived. Fig. 1 depicts the ERD, the lower bound,
(24), and the ORD for this case. An analytical comparison
between the performance of the fixed transmission power and
the channel inversion strategies is presented in IV-C2.

B. Multi antenna WANETs

1) Transmit Beamforming: In this subsubsection we ana-
lyze the case of transmit beamforming with NT antennas and
a single receive antenna. We also assume the use of the simple
channel inversion power control strategy (i.e., ρ(Y ) = ρ0Y

−1

where ρ0 is a constant). The preprocessing of beamforming
over NT antennas results in a Chi-square desired channel
distribution, with 2NT degrees of freedom, 2Y ∼ χ2

2NT
,

which leads to:

E
[
ρ

2
α (Y )

]
= ρ

2
α
0 ∙ E

[
Y − 2

α

]
= ρ

2
α
0

Γ
(
NT − 2

α

)

Γ(NT )
. (29)

This preprocessing does not change the interference channel
statistics, V . Substituting (29) into Theorem 1 leads to:

RB
LB (λ) = λe

2
α−1 ∙ log2

(

1 +
1

1
ρ0

(
σ2 + CB

α ∙ λ
α
2
)

)

(30)

where

CB
α ,

2
α



παΓ
(
1 + 2

α

)
Γ
(
NT − 2

α

)
ρ

2
α
0

(α − 2)Γ(NT )





α
2

. (31)

In the interference limited regime we can also write a closed
form expression for the optimal user density:

λB
?=

(
α−2
πα

)(
α
2

) 2
α
(
exp
(

α
2+W

(
−α

2 e−
α
2
))
−1
)− 2

αΓ(NT )

Γ
(
1 + 2

α

)
Γ
(
NT − 2

α

) (32)

where W (∙) is the product-log function as defined in subsub-
section IV-A3. The lower bound in this case can be written
as:

RB
LB

(
λB

?

)
=

e
2
α−1

(
α
2 + W

(
−α

2 e−
α
2
))

ln(2) ∙ Γ
(
1 + 2

α

)
Γ
(
NT − 2

α

)

∙

(
α−2
πα

) (
α
2

) 2
α Γ(NT )

(
exp

(
α
2 + W

(
−α

2 e−
α
2

))
− 1
) 2

α

. (33)

Using Kershaw’s inequality, [30], [31],

Γ(NT )

Γ(NT − 2
α )

≥

(

NT −
1
2
−

1
α

) 2
α

(34)

and substituting into (33) simplifies the lower bound to:

RB
LB

(
λB

?

)
≥

e
2
α−1

(
α
2 + W

(
−α

2 e−
α
2
))

ln(2) ∙ Γ
(
1 + 2

α

)

∙

(
α−2
πα

) (
α
2

) 2
α
(
NT − 1

2 − 1
α

) 2
α

(
exp

(
α
2 + W

(
−α

2 e−
α
2

))
− 1
) 2

α

. (35)

Fig. 4 depicts the ERD, the lower bound described in (30)
and the ORD as function of the active user density, λ, for
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Fig. 4. Rate density as a function of the active user density for transmit-
beamforming with 1, 3 and 9 antennas.

the case of transmit beamforming with inverse channel and 1,
3 and 9 transmit antennas. As the figure illustrates, the lower
bounds for these three cases describe the network performance
very well as function of both the density and the number of
transmit antennas. As expected, the optimal density of users
increases with the number of antennas.

Note that Theorem 1 can also be applied to the case of
receive diversity or combined receive and transmit diversity, by
using the relevant probability function of the desired channel
RV, Y (in this cases, the interference fading distribution does
not change). In particular, the case of single transmit antenna
and NR receive antennas, results in the same ERD , (30),
substituting only NT by NR.

2) Transmit Beamforming and Interference Cancellation:
We assume NT ≥ 2 transmit antennas and NR ≥ bα/2c
receive antennas for each node. The transmitter performs
beamforming and channel inversion as described in subsub-
section IV-B1. Each receiver uses its antennas to cancel its
NR − 1 closest interferers.

The transmission power can be written as ρ(Y ) = ρ0Y
−1.

For the Rayleigh fading channel, 2Y again has a chi-square
distribution with 2NT degrees of freedom and

E [ρ (Y )] = ρ0 ∙ E
[
Y −1

]
=

ρ0

NT − 1
. (36)

Defining CS
α,NR,NT

, ρ0 ∙ KS
α,NR,NT

and substituting (36)
into Theorem 2 leads to:

RS
LB (λ) = λ ∙ log2



1 +
1

1
ρ0

(
σ2 + CS

α,NR,NT
∙ λ

α
2

)



 (37)

where for 2 < α ≤ 4 and NR ≥ 2:

KS
α,NR,NT

,
2π

α
2
(
NR − 1 − α

4

)1−α
2

(α − 2)(NT − 1)
(38)

and for 4 ≤ α < 6 and NR ≥ 3 :

KS
α,NR,NT

,
2π

α
2
(
NR − 3

2 − α
4

)2−α
2

(α − 2)(NT − 1)(NR − 2)
. (39)
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In the interference limited regime we can also optimize (37)
and obtain a closed form expression for the optimal user
density:

λS
?=
(
KS

α,NR,NT
∙
(
exp

(α

2
+W

(
−

α

2
e−

α
2

))
−1
))− 2

α

. (40)

Substituting (40) into (37) leads to:

RS
LB

(
λS

?

)
=

(
α
2 + W

(
−α

2 e−
α
2
))

ln(2)

∙
(
KS

α,NR,NT

(
exp
(α

2
+W

(
−

α

2
e−

α
2

))
−1
))− 2

α

. (41)

Fig. 5 depicts the rate densities for transmit beamforming
and interference cancellation at the receiver, as function of
the active user density, λ. For this simulation we used N =
NT = NR. The curves of the ERD, the lower bound, (37),
and the ORD, are plotted for the cases of N = 3, 6 antennas.
As a reference we added the sum-rate curve of the single
antenna inverse channel, (24). Note that the accuracy of the
lower bound, ,(37), is indeed improving with the number of
antennas as shown in Corollary 1.

C. Further Insights from the Lower Bounds

1) Impact of the path-loss factor on the ERD: As shown
below, the lower bound on the maximal ERD for the inverse
channel scheme in the interference limited regime, (28), can
be approximated for large values of α by:

RI
LB

(
λI

?

) ∼=
α
2 + log

(
α
2

)
+ 1

α

(
log
(

α
2

))2

πe2 ∙ ln(2) ∙ E
[
V

2
α

]
E
[
V − 2

α

] . (42)

This approximation shows the dependence of the maximal
ERD in the channel model when the density of active users
is optimized. In particular, it shows that the effect of the
fading is summarized by a single constant (the product of
the expectations in the denominator). The dependence of the
ERD on the path-loss factor is more complicated, but, for large
values of α the maximal ERD grows linearly with α.

The accuracy of (42) is depicted in Fig. 6, where the two up-
per curves depict the exact ERD, (28), and its approximation,
(42), for the case of a single antenna and Rayleigh fading. As
can be observed, this simple approximation captures the effect
of α on the maximal ERD with high accuracy.

The approximated expression, (42), is derived from (28)
through the following steps:

RI
LB

(
λI

?

) (a)
∼=

α
2 e

2
α

(
1 − 2

α

) (
α
2

) 2
α

πe ∙ ln(2) ∙
(
e

α
2 − 1

) 2
α ∙ E

[
V

2
α

]
E
[
V − 2

α

]

(b)
∼=

(
α
2

)1+ 2
α

πe2 ∙ ln(2) ∙ E
[
V

2
α

]
E
[
V − 2

α

] (43)

where we assumed large values of α and (a) used∣
∣W

(
−α/2e−

α
2
)∣∣ � α/2 (and hence we omitted the Lambert

W terms) and (b) used 1−2/α ≈ e−
2
α and e

α
2 −1 ≈ e

α
2 . Using

the three dominant terms of the Maclaurin series of x−x for
x = 2/α results in

(α

2

) 2
α

≈ 1 −
2
α

log

(
2
α

)

+
2
α2

log2

(
2
α

)

(44)

which together with (43) led to (42).
Note that this growth of the ERD in α is guaranteed only

for the maximal ERD, i.e., where the density of active users
is optimized. This conclusion does not hold for an arbitrary
selection of active user density. For some user densities the
ERD even decreases with the rise in α as shown by the
following Proposition:

Proposition 1: For any α > 2 there exists λα such that
∂RLB (λ)

∂α

∣
∣
∣
∣
λ=λα

< 0.

Proof of Proposition 1: The lower bound (6) is the multi-
plication of two terms. The left expression, λe

2
α−1, clearly

decreases with α. The right expression, which can be written
as

E

[

log2

(

1 +
ρ(Y ) ∙ Y
σ2 + x

)]∣∣
∣
∣
x=Cα∙λ

α
2

(45)

decreases in x. Selecting λ that will guarantee that
∂
(
Cα ∙ λ

α
2
)

∂α
≥ 0 will ensure that (45) is decreasing with

α. This can be obtained by selecting the active user density

to be λα ≥ exp

(

−
∂Cα

∂α
∙

2
Cα

)

(which is positive and finite

for any α > 2). �
The lower curve in Fig. 6 depicts the lower bound (24) for

Rayleigh fading and λ = 3 as function of the path-loss factor.
As can be noticed this curve is not monotonic, and actually
decreases for α > 3.1.

2) Fixed transmission Power versus Inverse Channel: In
the following subsubsection we compare the lower bound of
the fixed transmission power, (14), to the lower bound of the
inverse channel strategy, (24), for any active user density.

Lemma 1: For a Rayleigh fading channel, using fixed trans-
mission power gives a higher ERD than channel inversion, for
any active user density:

RC
LB(λ) > RI

LB(λ) (46)
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Fig. 6. Rate density as function of the path-loss factor for the rate density
approximation (42), the lower bound on the maximal ERD (28) and the lower
bound (24) with λ = 3.

Proof of Lemma 1: Define:

g(x) ,
RC

LB((x/Ca
α)2/α) − RI

LB((x/Ca
α)2/α)

λ
ln(2)e

2
α−1

= ex ∙ Ei (x) − ln

(

1 + x−1

(

Γ

(

1 −
2
α

))−α
2

)

. (47)

We next prove that g(x) > 0 for any x > 0. We start by noting
that g(x) decreases monotonically with α, and hence we can
lower bound it by

g(x) ≥ lim
α→∞

g(x)

= lim
ε→0

ex ∙ Ei (x) − ln
(
1 + x−1 (Γ (1 − ε))−

1
ε

)

= ex ∙ Ei (x) − ln
(
1 + x−1e−γ

)
(48)

where the last equality used the power series of Γ(1+z), [32],
and γ is the Euler-Mascheroni constant (γ = 0.57721...). It is
easy to show that g(x) > 0 ∀ x > 0. �

This superiority of the fixed transmission power policy
over the channel inversion policy was also shown in [7] for
the ORD metric. Fig. 1 compares the channel inversion and
fixed power transmission strategies. The lower bounds of the
fixed transmission power scheme is given by (14), and of the
channel inversion scheme is given by (24). As was proven
above, the ERD bound for the fixed power scheme is superior
to the ERD bound for the channel inversion scheme. The figure
shows that this conclusion also holds for the actual ERD and
ORD.

3) The Expected ERD Gain from Utilization of Beamform-
ing: From the ratio between (35) and (28) we can find the
gain from utilization of NT transmit antennas:

RB
LB

(
λB

?

)

RI
LB (λI

?)
= Γ

(

1 −
2
α

)

∙

(

NT −
1
2
−

1
α

) 2
α

. (49)

Note that for NT → ∞, the lower bound (35) scales as N
2
α

T .
The same scaling was also observed for the ORD [9] for large
enough NT .

Equation (49) anticipates that the expected gain of utilizing
3 and 9 antennas compared to a single antenna is 4.5 and 10.9
respectively. The measured ratio between the ERD utilizing
3 and 9 antennas compared to a single antenna in Figure 4
is 4.3 and 10.8 respectively. Hence, equation (49) is useful
for estimating the expected gain as function of the number of
transmit antennas.

4) The ERD Gain of Beamforming and Interference

Cancellation: Defining Jα ,

(
1 − 2

α

e

) 2
α−1

∙

Γ

(

1 +
2
α

)

Γ

(

1 −
2
α

)

and finding the ratio between

(41) and (28), we can obtain the ERD gain from the
utilization of NT × NR antennas.

The gain ratio for 2 < α ≤ 4 and NR ≥ 2 is :

RS
LB

(
λS

?

)

RI
LB (λI

?)
= Jα ∙ (NT − 1)

2
α

(
NR − 1 −

α

4

)1− 2
α

(50)

and for 4 ≤ α < 6 and NR ≥ 3 we get:

RS
LB

(
λS

?

)

RI
LB (λI

?)
=Jα∙(NT −1)

2
α (NR−2)

2
α

(

NR−
3
2
−

α

4

)1− 4
α

. (51)

Note that in the special case where NT = NR = N the ERD
scales linearly with N for large enough N . This scaling was
again observed for the ORD metric [8]. Note, however, that
[8] only presented asymptotic results for an infinite number of
antennas.

Moreover, from (50) and (51) one can observe that for
α < 4 the role of the beamforming and the transmit antennas
is more important than the interference cancellation and the
receive antennas. For α > 4 the roles change and the receive
antennas has more effect than the transmit antennas.

Fig. 7 depicts the maximal rate density as function of the
number of transmit antennas for transmit beamforming with
and without interference cancellation at the receiver. In the
case of interference cancellation, we assumed the same number
of antennas in the receiver and transmitter; i.e., N = NT =
NR. Equations (41) and (35) were used to plot the lower bound
curves for the cases with and without interference cancellation
respectively. As shown in subsubsection IV-C3, the curve of
the ERD scales as N

2
α for without interference cancellation

and linearly with N for the interference cancellation case.
Moreover, as stated in Corollary 1 the lower bound for the
interference cancellation case converges to the ERD for large
N .

V. CONCLUSIONS

In this work we analyzed the ergodic rate density (ERD) of
ALOHA WANETs assuming a homogenous PPP distribution
of nodes. The ERD is achievable in modern communication
systems and was shown to result in a simpler analysis. We
presented two novel lower bounds on the ERD. The first bound
holds for a general reception strategy and the second bound
holds for receivers with spatial interference cancellation.

The usefulness of the two lower bounds was demon-
strated by five applications. The first three are single antenna
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Fig. 7. Rate density as a function of number of antennas for transmit
beamforming with and without interference cancellation in the receiver.

WANETs with different transmission strategies (fixed trans-
mission power, threshold scheduling and inverse channel). The
fourth and fifth applications are multiple antenna WANETs
applying transmit beamforming, with or without interference
cancellation in the receivers. For each application we present
closed from expressions of the bounds as function of the
system parameters.

These closed form expressions are further used to draw
insights on the impact of the system parameters on the ERD.
The maximal ERD is shown to grow linearly with the path-
loss factor for large values of the path-loss factor. However,
for fixed active user density we showed that the ERD is
not necessarily a monotonic function of the path-loss factor.
We also presented accurate and simple expressions for the
maximal-ERD gain as function of the number of antennas with
and without interference cancellation. These expressions can
be used to study the scaling of the ERD for large number of
antennas. In addition, these expressions can also provide the
accurate gain for small number of antennas.

The bounds are shown to be tight although fairly simple.
These bounds are quite general and can be easily applied to
other network models. Future research will adapt these bounds
for the analysis of more complicated networks and the joint
analysis of additional network layers.

APPENDIX A
PROOF OF THEOREM 1

To prove the theorem we distinguish between two different
cases based on the power of the strongest interferer. For this
purpose we define the strongest interferer power:

Wmax = max
j

Wj (52)

and use the law of total expectation to write the ERD, (4), as

R(λ)=λ∙Pr(Wmax > δ)E

[

log2

(

1+
S

σ2 + I

)∣∣
∣
∣Wmax >δ

]

+λ∙Pr(Wmax≤ δ)E

[

log2

(

1+
S

σ2 + I

)∣∣
∣
∣Wmax≤δ

]

. (53)

Note that the impact of δ on the two terms in (53) is different.
For large enough values of δ the first term (the case of Wmax >
δ) is very small and can be neglected. On the other hand, the
second term (Wmax ≤ δ) becomes small for small values of
δ. Thus, it is important to choose a proper value of δ that
balances the two terms. Yet, to simplify the bound, we lower
bound the first term with 0 and the second term using the
Jensen’s inequality, resulting with:

R(λ)≥λ∙Pr(Wmax≤ δ)E

[

log2

(

1+
S

σ2 + I

)∣∣
∣
∣Wmax ≤ δ

]

≥λ∙Pr(Wmax≤ δ)E

[

log2

(

1+
S

σ2+E [I|Wmax≤ δ]

)]

. (54)

In this case, the Jensen inequality implies that given the
average power of a (conditionally) Gaussian interference,
the worst interference is the one with constant power. This
property was already observed and used in various works (see
for example [33], [34]). Note that even though the first term
in (53) was lower bounded by 0, it is still important to choose
δ that will make the bounds as tight as possible.

Let Φδ(s) be the characteristic function that corresponds
to the conditional distribution of I given Wmax ≤ δ. The
characteristic function of an aggregate interference, measured
at the middle of a circular guard zone of radius A within a
2-dimensional PPP with density λ and a fading variable K is
(using [35], [36] and the superposition property, [37], see also
[38]):

Φ(s) = exp

(

−λE

[∫ ∞

A

1 − e−sKr−α

]

2πrdr

)

. (55)

where A,K can be random variables. Therefore, the character-
istic function of the conditional aggregate interference, mea-

sured at a probe receiver with guard zone of

(
δ

V ∙ ρ (Y )

)− 1
α

is:

Φδ(s)=exp

(

−λE

[∫ ∞

( δ
V ∙ρ(Y ))

− 1
α

(
1−e−sV ∙ρ(Y )t−α

)
2πtdt

])

.

(56)

Since the maximum interference contributed by a single
interferer is bounded, the first moment of the conditional
aggregate interference exists and can be calculated by:

E [I|Wmax ≤ δ] = −
d

ds
ln (Φδ(s)) |s=0

= 2πλE

[

V ∙ ρ (Y )
∫ ∞

( δ
V ∙ρ(Y ) )

− 1
α

t−α+1dt

]

= 2πλE

[

V ∙ ρ (Y )
t−α+2

−α + 2

∣
∣
∣
∣

∞

( δ
V ∙ρ(Y ) )

− 1
α

]

=

(
2π

α − 2

)

E
[
V

2
α

]
E
[
ρ

2
α (Y )

]
λδ1− 2

α

=

(
2π

α − 2

)

Lαλδ1− 2
α (57)

where the last equality used the definition:

Lα , E
[
V

2
α

]
E
[
ρ

2
α (Y )

]
. (58)
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The average number of interferers which violate the power
threshold condition is:

N(λ, δ) =
∑

k

Pr (Wk ≥ δ)

=
∑

k

Pr
(
Vkρ(Yk)X−α

k ≥ δ
)

=
∑

k

E
[
Pr
(
Xk ≤

(
Vkρ(Yk)δ−1

) 1
α |Vk, ρ(Yk)

)]

(a)
= E

[
πλ
(
Vkρ(Yk)δ−1

) 2
α

]

(b)
= πλδ−

2
α E

[
V

2
α

]
E
[
ρ

2
α (Y )

]

(c)
= πλδ−

2
α Lα (59)

where equality (a) used the probability of a node to be
inside a circle for a PPP distribution, equality (b) used the
independency between rk, Vk and ρ(Yk) and equality (c) used
(58). For the PPP distribution:

Pr(Wmax ≤ δ) = e−N(λ,δ) = e−πλδ− 2
α Lα . (60)

Substituting (60) and (59) in (54) results in the bound:

R (λ)≥RLB(λ, δ)

=λe−πLαλδ− 2
αE

[

log2

(

1+
ρ (Y ) ∙ Y

σ2+ 2π
α−2Lαλδ1− 2

α

)]

. (61)

The lower bound in (61) holds for any value of δ. The best
bound can be obtained by maximizing (61) with respect to
δ. However, this approach turns out to be too complicated.
Instead we use δ?, given in Lemma 2 below, to produce a
simpler lower bound. The value of δ? is motivated by the
optimization of the bound with respect to both δ and λ. The
resulting bound is RLB(λ) = RLB(λ, δ?) and substituting (63)
into (61) completes the proof. �

Lemma 2: The values δ? and λ? that solve the joint opti-
mization problem:

δ?, λ? = arg max
δ,λ

RLB(λ, δ) (62)

satisfy the relation:

δ? =

((
α

α − 2

)

πLαλ?

)α
2

(63)

Proof of Lemma 2: We write the optimization problem in
two stages by adding an external optimization on the expec-
tation over the interference:

Rmax = max
δ,λ

RLB(λ, δ) = max
c

max
{δ,λ:E[I]=c}

RLB(λ, δ). (64)

The proof of the Lemma only needs to consider the internal
optimization:

δ?, λ? = arg max
δ,λ

λe−πLαλδ− 2
α

∙E

[

log2

(

1 +
ρ (Y ) ∙ Y

σ2 + 2π
α−2Lαλδ1− 2

α

)]

s.t.
2π

α − 2
Lαλδ1− 2

α = c (65)

which can be simplified to:

δ?, λ? =arg max λe−πLαλδ− 2
α s.t.

2π

α−2
Lαλδ1− 2

α = c. (66)

Define the following Lagrange function to be maximized:

Λ(λ, δ) , λe−πLαλδ− 2
α + υλδ1− 2

α (67)

where υ is a Lagrange multiplier. Any local optimum must
satisfy:

∂Λ(λ, δ)
∂λ

=0 → e−πLαλδ− 2
α
(
1−πLαλδ−

2
α

)
+υδ1− 2

α = 0 (68)

and

∂Λ(λ, δ)
∂δ

=0 → λδ−1− 2
α

(
2πLαλ

α
e−πLαλδ− 2

α

+ δ

(

1 −
2
α

)

υ

)

= 0. (69)

Substituting υ from (68) into (69), leads to (63). �

APPENDIX B
PROOF OF THEOREM 2

Each receiver cancels its M nearest transmitters, and basi-
cally creates a geometrical guard-zone with a random radius
around itself. Denoting by r the guard zone radius, its distri-
bution, assuming a density of λ, is given by, [39]:

fr(r) =
2(πλ)M

(M − 1)!
r2M−1e−πλr2

. (70)

We use (55) to write the following characteristic function of
the aggregate interference given a guard zone r:

Φ(s) = exp

(

−λ

∫ ∞

r

E
[
1 − e−sV ∙ρ(Y )t−α

]
2πtdt

)

(71)

and the expectation of the aggregate interference given r will
be:

E [I|r] = −
d

ds
Φ(s)

∣
∣
∣
∣
s=0

= 2πλE

[

V ∙ ρ (Y )
∫ ∞

r

t−α+1dt

]

=
2π

α − 2
E [V ] E [ρ (Y )] λr2−α. (72)

Using (70) leads to:

E
[
r2−α

]
=

2(πλ)M

(M − 1)!

∫ ∞

0

r2M+1−αe−πλr2

dr

= (πλ)
α
2 −1 Γ

(
M + 1 − α

2

)

Γ(M)
(73)

where the second equality used M >
α − 2

2
. Using the chain

rule for expectations and substituting (73) into (72) leads to:

E [I] = Er [E [I|r]]

=
2π

α
2

α − 2
E [V ] E [ρ (Y )] λ

α
2

Γ
(
M + 1 − α

2

)

Γ(M)
. (74)
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From (74), we see that the expectation on the aggregate
interference exists and therefore we can use Jensen’s inequality
to bound the ERD:

RM (λ) = λE

[

log2

(

1 +
ρ(Y ) ∙ Y
σ2 + I

)]

≥ λE

[

log2

(

1 +
ρ(Y ) ∙ Y

σ2 + E [I]

)]

. (75)

For the last step we use Kershaw’s inequality, [30], [31] for
2 < α < 4:

Γ(M + 1 − α
2 )

Γ(M)
≤
(
M −

α

4

)1−α
2

(76)

and for 4 ≤ α < 6:

Γ(M + 1 − α
2 )

Γ(M)
≤

(
M − 1

2 − α
4

)2−α
2

M − 1
. (77)

Substituting (76) or (77) into (74) and using (75) completes
the proof. �

APPENDIX C
PROOF OF COROLLARY 1

In order to prove Corollary 1 we have to show that Jensen’s
inequality, used in (75) and Kershaw’s inequality, used in (76)
and (77), are tight for M → ∞.

For Jensen’s inequality, we find the variance of the aggre-
gate interference measured at a probe receiver guarded by a
geometrical guard-zone of r:

Var (I| r) =
d2

ds2
ln (Φ(s))

∣
∣
∣
∣
s=0

= 2πλE

[

V 2 ∙ ρ2 (Y )
∫ ∞

r

t−2α+1dt

]

=
2π

2α − 2
E
[
V 2
]
E
[
ρ2 (Y )

]
λr2−2α. (78)

Using (70) leads to:

E
[
r2−2α

]
=

2(πλ)M

(M − 1)!

∫ ∞

0

r2M+1−2αe−πλr2

dr

= (πλ)α−1 Γ (M + 1 − α)
Γ(M)

(79)

for M > α − 1. We will also use

E
[
r4−2α

]
= (πλ)α−2 Γ (M + 2 − α)

Γ(M)
(80)

for M > α − 2. Using the low of total variance leads to

Var (I) = Er [Var (I|r)] + Var (E [I|r])

=
2 (πλ)α

2α − 2
E
[
V 2
]
E
[
ρ2 (Y )

] Γ (M + 1 − α)
Γ(M)

+

(
2

α − 2
E [V ] E [ρ (Y )]

)2

(πλ)α

∙



Γ(M+2 − α)
Γ(M)

−

(
Γ
(
M + 1 − α

2

)

Γ(M)

)2


 (81)

where the last equality used (72), (74), (80) and the substitu-
tion of (79) into (78).

Directly from Stirling’s formula, [40], we obtain the follow-
ing Gamma functions asymptotic ratio:

lim
M→∞

Γ(M + a)
Γ(M + b)

∙ M b−a = 1. (82)

Thus, E[I] scales as M1−α
2 and Var(I) is scales as M1−α.

Hence,

lim
M→∞

Var(M
α
2 −1 ∙ I) = 0 (83)

and we can state

lim
M→∞

M
α
2 −1 ∙ I =

2π
α
2

α − 2
E [V ] E [ρ (Y )] λ

α
2 . (84)

Therefore, M
α
2 −1 ∙ I converges to a deterministic constant,

and Jensen’s inequality is tight.
The Gamma functions asymptotic ratio, (82), also implies

that the two sides of Kershaw’s inequality used in (76) and
(77) converges to equality for M → ∞. �
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