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There are two ways of constructing a software design. One
way is to make it so simple that there are obviously no defi-
ciencies. And the other way is to make it so complicated that
there are no obvious deficiencies.

— C.A.R. Hoare
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Preface

Errata, detected in Taylor’s Logarithms. London: 4to, 1792. [sic]
. . .
6 Kk Co-sine of 14.18. 3 — 3398 — 3298
. . . — Nautical Almanac (1832)

In the list of ERRATA detected in Taylor’s Logarithms, for cos. 4� 180300,
read cos. 14�180 200. — Nautical Almanac (1833)

ERRATUM of the ERRATUM of the ERRATA of TAYLOR’S Logarithms. For
cos. 4� 180300, read cos. 14�180 300.

— Nautical Almanac (1836)

In the 1820s, an Englishman named Charles Babbage designed and partly built a
calculating machine originally intended for use in deriving and printing logarithmic
and other tables used in the shipping industry. At that time, such tables were often
inaccurate, copied carelessly, and had been instrumental in causing a number of
maritime disasters.

Babbage’s machine, called a ‘Difference Engine’ because it performed its cal-
culations using the principle of partial differences, was intended to substantially
reduce the number of errors made by humans calculating the tables. Babbage had
also designed (but never built) a forerunner of the modern printer, which would also
reduce the number of errors admitted during the transcription of the results.

Nowadays, a system implemented to perform the function of Babbage’s engine
would be classed as safety-critical. That is, the failure of the system to produce
correct results could result in the loss of human life, mass destruction of property
(in the form of ships and cargo) as well as financial losses and loss of competitive
advantage for the shipping firm.

Computer systems now influence almost every facet of our lives. They wake
us up in the morning, control the cooking of our food, entertain us, help in avoid-
ing traffic congestion and control the vehicles in which we travel, they wash our
clothes, and even give us cash from our bank accounts (sometimes!). Increasingly,
they are being used in systems where they can have a great influence over our very
existence. They control the flow of trains in the subway, signaling on railway lines,
even traffic lights on the street. The failure of any of these systems would cause us
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great inconvenience, and could conceivably result in accidents in which lives may
be lost. As they control the actual flight of an airplane, cooling systems in chemical
plants, feedback loops in nuclear power stations, etc., we can see that they allow the
possibility of great disasters if they fail to operate as expected.

In recent years, the media, in the form of both television news and the popular
science journals, have become very preoccupied with the failures of a number of
safety-critical computer systems. A number of systems, or classes of system, seem
to have particularly caught their attention; chief amongst these are various nuclear
power plants where the cooling systems or shutdown loops have been demonstrated
to be inconsistent, and recent air crashes which cannot be convincingly blamed on
pilot error.

The introduction of computer systems to replace more traditional mechanical
systems (consider, for example, Boeing’s fly-by-wire system in the 777 jet, and the
disastrous baggage-handling system at Denver airport) has made both the system
development community and the general public more aware of the unprecedented
opportunities for the introduction of errors that computers admit.

Many journalists have become self-styled authorities on techniques that will give
greater confidence in the correctness of complex systems, and reduce the number
and frequency of computer errors. High-Integrity Systems, or systems whose code
is relied upon to be of the highest quality and error-free, are often both security- and
safety-critical in that their failure could result in great financial losses for a company,
mass destruction of property and the environment, and loss of human life. Formal
Methods have been widely advocated as one of those techniques which can result in
high-integrity systems, and their usage is being suggested in an increasing number
of standards in the safety-critical domain. Notwithstanding that, formal methods re-
main one of the most controversial areas of modern software engineering practice.
They are the subject of extreme hyperbole by self-styled ‘experts’ who fail to un-
derstand what formal methods actually are, and of deep criticism by proponents of
other techniques who see formal methods as merely an opportunity for academics to
exercise their intellects over whichever notation is the current ‘flavor-of-the-month’.

This book serves as an introduction to the task of specification and design of
high-integrity systems, with particular attention paid to formal methods throughout,
as these (in our opinion) represent the most promising development in this direction.
We do not claim that this book will tell the reader everything he/she needs to know,
but we do hope that it will help to clarify the issues, and give a good grounding for
further investigation.

Each of the major Parts of the book consists of expository material, couched at
levels suitable for use by computer science and software engineering students (both
undergraduate and graduate), giving an overview of the area, pointers to additional
material, and introductions to the excellent papers which are reprinted in this vol-
ume.

For practicing software engineers too, both industrialists and academics, this
book should prove to be of interest. It brings together some of the ‘classic’ works in
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the field, making it an interesting book of readings for self-study, and a convenient,
comprehensive reference.

Part 1 introduces the many problems associated with the development of large-
scale systems, describes the system life-cycle, and suggests potential solutions
which have been demonstrated to be particularly promising.

Traditionally, computer systems have been analyzed, specified and designed
using a number of diagrammatic techniques. Over the years, different techniques
and notations have been combined into various structured methods of development.
These are introduced in Part 2, and a number of the more popular methods are de-
scribed.

Part 3 goes on to describe formal methods, the major focus of this collection. The
components of a formal method are identified; overviews of several representative
formal methods are given, and major misconceptions regarding formal methods are
identified and dispelled.

Object-Orientation has often been cited as a means of aiding in reducing com-
plexity in system development. Part 4 introduces the subject, and discusses issues
related to object-oriented development.

With increased performance requirements, and greater dispersal of processing
power, concurrent and distributed systems have become very prevalent. Their de-
velopment, however, can be exponentially more difficult than the development of
traditional sequential systems. Part 5 discusses such issues, and describes two di-
verse approaches to the development of such systems.

Increasingly, complex concurrent and distributed systems are employed in ar-
eas where their use can be deemed to be safety-critical, and where they are relied
upon to perform within strict timing constraints. Part 6 identifies the relationship
of formal methods to safety-critical standards and the development of safety-critical
systems. The appropriateness of a number of formal methods is discussed, and some
interesting case studies are presented.

While formal methods have much to offer, many fail to address the more
methodological aspects of system development. In addition, there has been consid-
erable effort invested in the development of appropriate structured methods which
it would be foolhardy to ignore. Part 7 presents the motivation for integrating struc-
tured and formal methods, as a means of exploiting the advantages of each.

Clearly the aim of system development is to derive a sensible implementation
of the system that was specified at the outset. Part 8 introduces refinement of for-
mal specifications, rapid prototyping and simulation, and the relative merits of exe-
cutable specifications.

Part 9 addresses the mechanization of system development, and tool support
via Computer-Aided Software Engineering (CASE). The future of CASE, and the
advent of ‘visual formalisms’, exploiting graphical representation with formal un-
derpinnings, is postulated.

Finally, a bibliography with recent references is included for those wishing to
follow up on any of the issues raised in more depth. We hope this collection of papers
and articles, together with the associated commentary, provide food for thought to
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all those actively involved in or contemplating the production of computer-based
high integrity systems.

Information associated with this book will be maintained on-line under the fol-
lowing URL (Uniform Resource Locator):

http://www.fmse.cs.reading.ac.uk/hissd/

Relevant developments subsequent to publication of this collection will be added to
this resource.

J.P.B. M.G.H.
Reading Omaha
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1. Specification and Design

C
omputers do not make mistakes, or so we are told; but computer software is
written by human beings, who certainly do make mistakes. Errors may occur
as a result of misunderstood or contradictory requirements [77, 234, 265],

unfamiliarity with the problem, or simply due to human error during coding. What-
ever the cause of the error, the costs of software maintenance (rectifying errors and
adapting the system to meet changing requirements or changes in the environment)
have risen dramatically over recent years. Alarmingly, these costs now greatly ex-
ceed the original programming costs.

The media have recently shown a great interest in computer error, in particular
where safety-critical systems are involved. These are systems where a failure could
result in the loss of human life, or the catastrophic destruction of property (e.g.,
flight-controllers, protection systems of nuclear reactors). Lately, however, many fi-
nancial systems are being classed as ‘safety-critical’ since a failure, or poor security
arrangements, could result in great financial losses or a breach of privacy, possibly
resulting in the financial ruin of the organization.

Most major newspapers have at some time or other carried articles on Airbus
disasters, or discussing fears regarding the correctness of the software running nu-
clear reactor control systems. The problem with the latter is that since the software
is so complex, consisting of hundreds of thousands, or even millions, of lines of
code, it can never be fully tested. Reading these articles, it appears that a number
of journalists have set themselves up as self-appointed experts on the subject. The
most common claim that they make is that had particular techniques been used at
the outset, these problems could have been avoided completely. These claims are
often completely without justification.

But how then are we to develop computer systems that will operate as expected,
i.e., predictably or ‘correctly’?

1.1 An Analogy

As complex computer systems influence every facet of our lives, controlling the
cars we drive, the airplanes and trains we rely on others to drive for us, and even in
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everyday machinery such as domestic washing machines, the need for reliable and
dependable systems has become apparent.

With systems increasing rapidly both in size and complexity, it is both naı̈ve and
ludicrous to expect a programmer, or a development team, to write a program or
system without stating clearly and unambiguously what is required of the program
or suite of programs.

Surely nobody would hire a builder and just ask him to build a house. On the
contrary, they would first hire an architect, state the features of the house that are
required and those that are desired but not essential. They are likely to have many
conflicting goals in terms of the features that are required and what is actually pos-
sible. There may be environmental constraints (e.g., the ground is too water-logged
for a basement), financial constraints, governmental regulations, etc., all of which
will influence what can actually be built.

Different members of the family are likely to have different requirements, some
of which will be compatible, others which will not be. Before the house can be built,
the family must come to agreement on which features the finished house will have.
The architect will formulate these in the form of a set of blueprints, and construction
can begin.

Often the construction team will discover errors, omissions and anomalies in the
architect’s plans, which have to be resolved in consultation with the architect and
the family. These may be as a result of carelessness, or sometimes due to unexpected
conditions in the environment (e.g., finding solid rock where the foundations should
be laid). The problems will be resolved by changing the plans, which sometimes
will require modifying other requirements and other aspects of the building.

Finally, when the house has been built, the architect will inspect the work, en-
suring that all the relevant building quality standards have been adhered to and that
the finished building corresponds to the plans that were drawn up at the outset. As-
suming that everything is satisfactory, final payments will be made, and the family
can move into their new home.

However, they will often uncover deficiencies in the work of the construction
team: faulty wiring, piping, etc. that needs to be replaced. They may also find that
the house does not actually meet their requirements; for example, it may be too
small for their family meaning that eventually they need to add an extra room.

Even if they find that the house is ideal for their requirements at the outset, over
time they will decide that they want changes made. This may mean new fixtures
and fittings, new furniture, re-decorating, etc., all of which is a natural part of the
existence of a house.

Developing a complex computer system follows a similar development process,
or life-cycle, except that the development is likely to be less well understood, far
more complex, and considerably more costly.
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1.2 The Development Life-Cycle

Just as there is a set ordering of events in the construction of a house, similarly there
is a set ordering of stages in the ‘ideal’ system development. We use the word ‘ideal’
advisedly here, as we will see shortly.

The software development life-cycle is usually structured as a sequence of
phases or stages, each producing more and more detailed tangible descriptions of
the system under consideration. These are often ordered in a ‘waterfall’ style as
identified by Royce [223], and as illustrated in Figure 1.1, with each phase com-
mencing on the completion of the previous phase.

Requirements Elicitation

and Analysis

Implementation

Unit and System

Testing

Maintenance

System Specification

Design

Figure 1.1. Waterfall model of system development (modified)

The first phase, Requirements Elicitation and Analysis involves the determina-
tion of the exact requirements of the system. It involves talking to end-users and
system procurers (those actually contracting the development, and usually incurring
the cost), both informally and in arranged interviews. It is likely than many inconsis-
tencies and contradictions will be identified at this point, and these must be resolved.
Some of these problems will be very obvious, others not so.
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The deliverable at the end of this phase is the requirements specification, a doc-
ument detailing the system requirements, be they functional (i.e., services which
the system is expected to perform) or non-functional (i.e., restrictions or constraints
placed on the system’s provision of services). The specification is usually written
in natural language, augmented as necessary with tables, diagrams, etc., and some-
times with the more precise parts of the requirements expressed in the notation of a
structured development method (see Part 2) or a more rigorous formal specification
language (see Part 3) [210].

The deliverable is the input to the next stage of the development, System Specifi-
cation. At this stage, it is used in deriving an unambiguous specification of what the
system should do, without saying how this is to be achieved [232]. This will almost
certainly be written in the notation of a structured method, such as SA/SD [67, 261],
Yourdon [262], SSADM [56], Mascot [222], or JSD [143], etc., or more commonly
using the specification language of one of the more popular formal methods, such
as VDM [141] or Z [268].

The System Specification, or functional specification is generally written in a
highly abstract manner, constraining the implementation as little as possible. That
is to say, any implementation that satisfies the specification should be acceptable,
with no obligation on the way any particular constructs should be implemented.
The object at this point is rather to develop an explicit model of the system that is
clear, precise and as unambiguous as possible; the final implementation may bear
no obvious resemblance to the model, with the proviso that it satisfies all of the
constraints and all of the functionality of the model.

The intention is that specification and implementation are separated, and im-
plementation issues are only considered at the appropriate juncture. Unfortunately,
such a separation, although logical, is unrealistic. Phases of the life-cycle inevitably
overlap; specification and implementation are the already-fixed and yet-to-be-done
portions of the life-cycle [241], in that every specification, no matter how abstract, is
essentially the implementation of some higher level specification. As such, the func-
tional specification is an implementation of the requirements specification, which is
itself implemented by the design specification.

The reader should understand, as a consequence, the difficulty of producing a
good functional specification – that is, one that is both high-level enough to be read-
able and to avoid excluding reasonable implementations, and yet low-level enough
to completely and precisely define the behavior of the implementation.

At the System Specification phase, the intention is to state what is required.
This generally makes extensive use of implicit (functional) definition, where precise
orderings are not specified. At the Design phase, however, the aim is to reduce the
level of abstraction and to begin addressing how the system is to be implemented.
This involves considering how various data are to be represented (e.g., considering
the efficiency of various data structures), more explicit definition, and how various
constructs may be decomposed and structured.
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Again, the notation of a structured method or a formal specification language
may be used at this point, but using a more operational style, using more realistic
data representations, such as files, arrays and linked-lists, and lower level constructs.

The Design Specification (or simply ‘Design’) is used in deriving the actual
implemented program. A program is itself just a specification, albeit an executable
one. It is also the most accurate description of the system, as the execution of the
system is based on the microcode that corresponds directly to the program. The
program must, however, address many more issues than those dealt with in the more
abstract specifications. It must consider interaction with the underlying hardware
and operating system, as well as making efficient use of resources. In fact, the major
distinction between an executable specification and an actual program is resource
management [266].

At the design phase, the level of abstraction is reduced gradually in a process
known as stepwise refinement, with more and more detail introduced at each step,
the description at each step becoming a more low-level specification of the sys-
tem. This process continues until the design is in a format where it can be almost
transliterated into a programming language by a competent programmer in the Im-
plementation phase.

The Implementation Phase, or what is traditionally described as ‘programming’,
is no longer the major contributor to development costs. While programmers still
make errors, and the program ‘bug’ is something that will always be familiar to
us, the major cost of software development comes after the system has been im-
plemented. It is then that the system is subjected to Unit and System Testing which
aims to trap ‘bugs’. However this increasingly tends to highlight inconsistencies
and errors in the requirements specification, or in mapping these to the functional
specification.

As much as 50% of the costs of system development may be due to the costs
of system maintenance. Of this, only 17% is likely to be corrective (i.e., removing
‘bugs’), just 18% is adaptive (i.e., modifying the software to add extra functionality,
or to deal with changes in the environment), with a phenomenal 65% being due to
perfective maintenance [171], much of which is due to errors at the earlier stages of
development, such as incomplete and contradictory requirements, imprecise func-
tional specification and errors in the design.

As anyone who has had experience of software development will quickly realize,
such a view of the development cycle is very simplistic. As one can even see from
the house-building analogy given in the previous section, the distinction between the
various phases of development is not clear. System development is not a straight-
forward process, progressing from one stage to another in a linear fashion. Rather,
it is an iterative process, whereby various stages may be repeated a number of times
as problems and inconsistencies are uncovered, and as requirements are necessarily
modified.

Royce’s model [223] holds that system requirements and the system specifica-
tion are frozen before implementation. However, at implementation, or during post-
implementation testing, or in an extreme case, at some point during post-implement-
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ation execution, errors in the system specification are often uncovered. Such errors
require corrections to be made to the specification, or sometimes a reappraisal of the
system requirements. One would hope that using (relatively) more recent develop-
ments such as formal specification techniques, such errors would be detected during
system specification; unfortunately, although such techniques are often augmented
with theorem provers and proof-checkers, errors may still be made in proofs, and
system development remains a human activity which is prone to error.

It is not surprising then that Royce’s ‘waterfall’ model has been criticized [93,
175] as being unrepresentative of actual system development. Nowadays, the more
accepted model of the system life-cycle is one akin to Boehm’s ‘spiral’ model [19]
(as illustrated in Figure 1.2), which takes more account of iteration and the non-
linear nature of software development, and allows for the re-evaluation of require-
ments and for alterations to the system specification even after the implementation
phase.

1.3 The Transformational Approach

It should be pointed out that there is no definitive model of the system life-cycle,
and the development process employed is likely to vary for different organizations
and even for different projects within a given organization. An alternative approach
to the life-cycle model is what has come to be known as the transformational or
evolutionary approach to system development. This begins with a very simple, and
inefficient, implementation of the system requirements, which is then transformed
into an efficient program by the application of a sequence of simple transformations.
The intention is that libraries of such transformations, which are known to preserve
semantics and correctness, should be built up.

There are however, a number of flaws in the approach [95]:

– there are tasks for which even the simplest and most inefficient program is com-
plex, whereas a specification of the task could easily be realized;

– to demonstrate the correctness of the transformation, it is necessary to verify that
certain properties hold before the transformation may be applied, and after its
completion; a specification of how the program is to function is required in order
to verify these conditions;

– transformations are applied to parts of programs and not to entire systems; to
ensure that transformations do not have side-effects, specifications of program
parts are required;

– the idea of building up libraries of transformations is attractive, but has not
worked in practice; transformations tend to be too specialized to be applicable
to other systems, the resulting libraries becoming too large to be manageable.

The approach is not incongruous with the more traditional development life-
cycle, but rather specifications are required if transformations are to be used to de-
rive correct programs. In more recent years, the proponents of the transformational
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approach have come to realize the dependency, and transformational programming
has come to refer to the application of correctness-preserving transformations to
formal specifications, in a constructive approach to system development.

1.4 Silver Bullets

With computer systems being applied in more and more ‘safety-critical’ domains,
the need to be assured of the ‘correctness’ of the system has become increasingly
vital. When system failures can result in large-scale destruction of property, great
financial loss, or the loss of human life, nothing can be left to chance. In the devel-
opment of such complex systems, informal inferences are not satisfactory. Firstly,
we require a definite means of proving that the system we are building adequately
reflects all of the requirements specified at the outset. We must validate these re-
quirements and determine that they do not conflict, and ensure that realizing those
requirements would result in a satisfactory system. Secondly we must determine
that these requirements are complete, and be able to demonstrate that all potential
eventualities are covered. Finally, we must be able to prove that a particular imple-
mentation satisfies each of the requirements that we specified.

We have seen that system development is not a one-pass process, but rather in-
volves multiple iterations, subject as it is to the imprecision of natural language and
the indecision and whim of procurers and end-users. Even with increased levels of
automation, Computer-Aided Software Engineering (CASE) workbenches (see Part
9), more precise specifications (see Part 2) and more appropriate design methods
(see Parts 2, 4, 5 and 6), system development will remain an imprecise process, sub-
ject to human input, and human error. As such, the system development process will
always be the subject of further research, and a source of possible improvements.

In his widely-quoted and much-referenced article, No Silver Bullet (reprinted
in this volume), Fred Brooks, also of Mythical Man-Month fame [51], warns of
the dangers of complacency in system development [50]. He stresses that unlike
hardware development, we cannot expect to achieve great advances in productivity
in software development unless we concentrate on more appropriate development
methods. He highlights how software systems can suddenly turn from being well-
behaved to behaving erratically and uncontrollably, with unanticipated delays and
increased costs (e.g., for a spectacular and expensive example, see the ARIANE 5
failure in 1996 [174]). Brooks sees software systems as ‘werewolves’, and rightly
points out that there is no single technique, no ‘Silver Bullet’, capable of slaying
such monsters.

On the contrary, more and more complex systems are run on distributed, hetero-
geneous networks, subject to strict performance, fault tolerance and security con-
straints, all of which may conflict. Many engineering disciplines must contribute to
the development of complex systems in an attempt to satisfy all of these require-
ments. No single technique is adequate to address all issues of complex system de-
velopment; rather, different techniques must be applied at different stages of devel-
opment to ensure unambiguous requirements statements, precise specifications that
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are amenable to analysis and evaluation, implementations that satisfy the require-
ments and various goals such as re-use, re-engineering and reverse engineering of
legacy code, appropriate integration with existing systems, ease of use, predictabil-
ity, dependability, maintainability, fault-tolerance, etc.

Brooks differentiates between the essence (i.e., problems that are necessarily
inherent in the nature of software) and accidents (i.e., problems that are secondary
and caused by current development environments and techniques). He points out the
great need for appropriate means of coming to grips with the conceptual difficulties
of software development – that is, for appropriate emphasis on specification and
design; he writes:

I believe the hard part of building software to be the specification, design,
and testing of this conceptual construct, not the labor of representing it and
testing the fidelity of the representation.

In his article he highlights some successes that have been achieved in gaining im-
provements in productivity, but points out that these address problems in the current
development process, rather than those problems inherent in software itself. In this
category, he includes: the advent of high-level languages (such as Ada [8]), time-
sharing, unified programming environments, object-oriented programming, tech-
niques from artificial intelligence, expert systems, automatic programming, , pro-
gram verification, and the advent of workstations. These he sees as ‘non-bullets’ as
they will not help in slaying the werewolf.

He sees software reuse [88], rapid prototyping (discussed in Part 8), incremental
development (akin to the transformational approach described earlier) and the em-
ployment of top-class designers as potential starting points for the ‘Silver Bullet’,
but warns that none in itself is sufficient.

Brooks’ article has been very influential, and remains one of the ‘classics’ of
software engineering. His viewpoint has been criticized, however, as being overly
pessimistic and for failing to acknowledge some promising developments.

Harel, in his article Biting the Silver Bullet (also reprinted in this Part), points
to developments in CASE and Visual Formalisms (see Part 9) as potential ‘bullets’
[109]. Harel’s view is far more optimistic. He writes five years after Brooks, and has
seen the developments in that period. The last forty years of system development
have been equally difficult, according to Harel, and using a conceptual ‘vanilla’
framework, we devised means of overcoming many difficulties. Now, as we address
more complex systems, we must devise similar frameworks that are applicable to
the classes of systems we are developing.

Concentrating on reactive systems (see Part 6), he describes one such ‘vanilla’
framework, with appropriate techniques for modeling system behavior and analyz-
ing that model. Harel, as many others, believes that appropriate techniques for mod-
eling must have a rigorous mathematical semantics, and appropriate means for rep-
resenting constructs (disagreeing with Brooks, who sees representational issues as
primarily accidental), using visual representations that can be meaningful to engi-
neers and programmers; he says:
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It is our duty to forge ahead to turn system modeling into a predominantly
visual and graphical process.

He goes on to describe his concepts in more detail in his paper On Visual Formalisms
[108], reprinted in Part 9.

Software engineering is a wide-ranging discipline in general requiring expertise
in a number of related areas to ensure success. Software quality is of increasing
importance as the use of software becomes more pervasive. Formal example, the
Software Engineering Institute (SEI, based at Carnegie-Mellon University, Pitts-
burg) and Mitre Corporation have proposed a Capability Maturity Model (CMM)
for assessing an organization’s software process capability [82].

Those interested in exploring the topic of software engineering further are rec-
ommended to read one of the comprehensive reference sources on this subject (e.g.,
see [176, 181, 217]). For the future, software architecture [231] is emerging as an
approach in which typically software components are designed to interface with
each other in a similar way that hardware components are designed to fit together
in other engineering disciplines. This has proved to be a difficult problem, but may
improve the hope for more software reuse in future products [88]. However soft-
ware reuse should be undertaken with caution, since when misapplied, disastrous
consequences can result (e.g., see [174]). In the industrial application of any tech-
nique to aid software development, including for high-integrity systems, adequate
and dependable tool support is vital for success [245].
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2. Structured Methods

I
n the early 1960s, as it became obvious that computer systems would be de-
veloped by teams of professionals rather than by individual programmers, and
that as the functionality required would push available resources to the limit,

more appropriate specification and design methods (as discussed in the previous
Part) were needed.

Various notations and techniques that had evolved for use by programmers, such
as structured text, pseudo-code and flow-charts were useful for individual programs,
but insufficient for use in large scale system development. For this reason, a number
of new notations and techniques evolved during the 1960s and ’70s to aid in the
description, specification and design of computer systems.

These techniques were generally referred to as structured techniques or (when
applied at the analysis phase of system development) structured analysis techniques
because they based the design of the system on structural decomposition and em-
phasized structured programming [142]. As more and more notations evolved, pro-
posals were made to combine them in various ways to provide complete descriptions
of a system, and a structured method of development.

2.1 Structured Notations

Development methods such as Yourdon [262], Structured Design [261] and the
Structured Systems Analysis and Design Methodology (SSADM) [56] are in fact
unifying approaches, drawing together various structured notations, together with
Hierarchy Charts, Decision Tables, Data Dictionaries, Structured English, etc., in
an attempt to devise a coherent methodology.

Such methodologies vary in the notations that they see as essential, and in the
emphasis they place on different techniques; there are also minor syntactic differ-
ences in their representation of various constructs.

Methodology: the Experts Speak (reprinted here) is a unique paper in that it
provides an overview of various methodologies and notations, with the descriptions
being written by the actual originators of the methodologies [199].

Ken Orr differentiates between a method and a methodology, which is strictly
speaking the study of methods. He gives a detailed account of the history of the
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development of what has become known as the Warner-Orr method (more correctly
named Data-Structured Systems Development, or DSSD), and how it relates to vari-
ous other techniques and approaches. The name itself emphasizes the application of
the approach to information systems and the reliance on the description of a system
according to the structure of its data. As such, Entity diagrams describing relation-
ships between entities (objects of concern in the system) play a major rôle, with
Assembly-line diagrams describing logical flows through the system.

Chris Gane describes the approach co-developed with Trish Sarson, which em-
phasizes the use of Entity-Relationship Diagrams (ERDs) and Data-Flow Diagrams
(DFDs). The ERD (described in more detail by Peter Chen) describes the log-
ical relationships between entities and their attributes (data) in a representation-
independent manner, but focusing on the structure of the data to be stored. The DFD,
as the name suggests, focuses on the flow of data through a system, delimiting the
system by considering only the relevant data flows. DFDs are written at various lev-
els of abstraction, with the top level, or context diagram, defining the scope of the
system. More and more detailed levels are derived, with a ‘bubble’ representing a
process, and arrows representing the flow of data. Each process can be broken down
into a more detailed DFD showing its structure and the flow of data within it. This
process continues, in a top-down fashion, until the process is at a level at which it
can be described in pseudo-code or structured text.

Edward Yourdon describes partitioning a system in terms of DFDs, and the rôle
of DFDs in the Yourdon method, while Larry Constantine describes the Structured-
Design Approach, which emphasizes the use of models (design methods), measures
of system cohesion and complexity, and methods of development. He describes the
need for tool support and automation in the application of structured methods, and
overviews the rôle of CASE (Computer-Aided Software Engineering) technology,
which is described in more detail in Part 9.

Most of the structured methods in popular usage have evolved to meet the needs
of information systems (one of the primary applications of computers in the 1960s),
although most have been extended to meet the needs of concurrent and real-time
systems, with the addition of State-Transition Diagrams (STDs) and other notations
to address changes in state, causality, etc. One method however, Jackson System De-
velopment (JSD), was developed with concurrency and the requirements of control
systems specifically in mind.

2.2 The Jackson Approach

With the introduction of JSP (Jackson Structured Programming) [142], Michael
Jackson greatly simplified the task of program design. The success of his approach
lies in its intuitiveness and the simple graphical notation that facilitates the design
of programs which obey the laws of structured programming – that use only the
simple constructs of sequence, selection and iteration, and avoid the ‘harmful’ goto
statement [69] or its equivalent.
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Eight years later, with the evident need to address system design rather than
merely program design, Jackson introduced JSD, or Jackson System Development
(often erroneously, but still appropriately, referred to as Jackson Structured Design),
which has had a major influence on many subsequent development methods, in par-
ticular on both structured and formal methods intended for use in the development
of concurrent systems.

In his paper An Overview of JSD (reprinted here), John Cameron describes the
method, with many examples illustrating its application from analysis through to
implementation [55].

The method incorporates JSP itself, in that JSP descriptions of each program or
process in the system are combined by placing such processes running in parallel
and in communication over various types of buffered communication channels. As
such, the description of a system is at two levels – each process is described in
terms of JSP, while the entire system is described as a network of such processes,
executing independently. A process becomes suspended when it requires a particular
input, and resumes again when that input is available to it.

As the method does not address process scheduling, clearly a certain degree of
non-determinism is inherent [137]. Although it is considered inappropriate in con-
ventional programming languages, non-determinism can be advantageous in system
design. JSD also supports high levels of abstraction in that there are generally more
processes in the network than available processors in the implementation environ-
ment. In the implementation phase of JSD, the number of processes in the network
is reduced, often just to a single process (for execution in a single processor envi-
ronment).
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3. Formal Methods

A
lthough they are widely cited as one of those techniques that can result
in high-integrity systems [31], and are being mandated more and more in
certain applications (see Part 6), formal methods remain one of the most

controversial areas of current software engineering practice [119].
They are unfortunately the subject of extreme hyperbole by self-styled ‘experts’

who fail to understand exactly what formal methods are; and, of deep criticism and
subjective evaluation by proponents of other techniques who see them as merely
an opportunity for academics to exercise their intellects using mathematical hiero-
glyphics. Notwithstanding, the level of application of formal techniques in the spec-
ification and design of complex systems has grown phenomenally, and there have
been a significant number of industrial success stories [125, 106, 160].

Whether one accepts the need for formal methods or not, one must acknowledge
that a certain degree of formality is required as a basis for all system development.
Conventional programming languages are themselves, after all, formal languages.
They have a well-defined formal semantics, but unfortunately as we have already
seen, deal with particular implementations rather than a range of possible imple-
mentations.

The formal nature of programming languages enables analysis of programs, and
offers a means of determining definitively the expected behavior of a program (in
the case of closed systems; with open systems the situation is complicated by en-
vironmental factors). In a similar fashion, formality at earlier stages enables us to
rigorously examine and manipulate requirements specifications and system designs,
to check for errors and miscomprehensions. A formal notation makes omissions
obvious, removes ambiguities, facilitates tool support and automation, and makes
reasoning about specifications and designs an exact procedure (e.g., using a formal
verification environment [13]), rather than ‘hand-waving’. Systems can be formally
verified at various levels of abstraction, and these can be formally linked [36, 155],
but normally the higher levels (e.g., requirements [64] and specification) are the
most cost effective.
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3.1 What are Formal Methods?

The term ‘formal methods’ is rather a misleading one; it originates in formal logic,
but nowadays is used in computing to cover a much broader spectrum of activities
based upon mathematical ideas [133].

So-called formal methods are not so much ‘methods’ as formal systems. While
they also support design principles such as decomposition and stepwise refinement
[187], which are found in the more traditional structured design methods, the two
primary components of formal methods are a notation and some form of deductive
apparatus (or proof system).

3.2 Formal Specification Languages

The notation used in a formal method is called a formal specification language or
‘notation’ to emphasize its potential non-executability. The language is ‘formal’ in
that it has a formal semantics and consequently can be used to express specifications
in a clear and unambiguous manner.

Programming languages are formal languages, but are not considered appropri-
ate for use in formal specifications for a number of reasons:

– Firstly, very few programming languages have been given a complete formal se-
mantics (Ada and Modula-2 are exceptions), which makes it difficult to prove
programs correct and to reason about them.

– Secondly, when programming languages (particularly imperative languages) are
used for specifications, there is a tendency to over-specify the ordering of op-
erations. Too much detail at an early stage in the development can lead to a bias
towards a particular implementation, and can result in a system that does not meet
the original requirements.

– Thirdly, programming languages are inherently executable, even if they are
declarative in nature. This forces executability issues to the fore, which may be
inappropriate at the early stages of development, where the ‘what’ rather than the
‘how’ should be considered.

The key to the success of formal specification is that we abstract away from
details and consider only the essential relationships of the data. We need to move
away from the concrete, which has an indeterminate semantics, and use a formal
language so that we can specify the task at hand in a manner that is clear and concise.
In this way, abstraction both shortens and clarifies the specification.

Mathematics are used as the basis for specification languages, and formal meth-
ods in general. This is because mathematics offer an unchanging notation with
which computer professionals should be familiar; in addition the use of mathemat-
ics allows us to be very precise and to provide convincing arguments to justify our
solutions. This allows us to prove that an implementation satisfies the mathemati-
cal specification. More importantly, however, mathematics allows us to generalize a
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problem so that it can apply to an unlimited number of different cases (in this way,
there is no bias towards a particular implementation), and it is possible to model
even the most complex systems using relatively simple mathematical objects, such
as sets, relations and functions [41, 206].

3.3 Deductive Apparatus

The deductive apparatus is an equally important component of a formal method.
This enables us to propose and verify properties of the specified system, sometimes
leading people to believe erroneously that formal methods will eliminate the need
for testing.

Using the deductive apparatus (proof system) of a formal method, it is possible
to prove the correctness of an implemented system with respect to its specification.
Unfortunately, the media, and many computer science authors too, tend to forget to
mention the specification when writing about proof of correctness; this is a serious
oversight, and is what has led some people to believe that formal methods are some-
thing almost ‘magical’. A proof of correctness demonstrates that a mathematical
model of an implementation ‘refines’, with respect to some improvement ordering,
a mathematical specification, not that the actual real-world implementation meets
the specification.

We cannot speak of absolute correctness when verifying a system, and to suggest
that the proof system enables us to definitively prove the correctness of an imple-
mentation is absurd, but the production of ‘correct’ programs is still a subject of
debate [253]. Mathematical proof has essentially been a social process historically
and accelerating this process using tool support in a software engineering context is
difficult to achieve [178]. What a proof system does do, however, is to let us prove
rigorously that the system we have implemented satisfies the requirements deter-
mined at the outset. If these requirements were not what we really intended, then
the implementation will not function as we intended, but may still be correct with
respect to those particular requirements.

The deductive apparatus does however let us validate these original require-
ments; we may propose properties and using a rigorous mathematical argument
demonstrate that they hold. While natural language is notorious for introducing
contradictory requirements which are often only discovered during implementation,
using formal methods we may demonstrate that requirements are contradictory (or
otherwise) before implementation.

Similarly, natural language requirements tend to result in ambiguity and incom-
plete specifications. Often when reading systems requirements we have to ask our-
selves questions such as ‘But what happens if . . . ?’, and have no way of determining
the answer. With formal methods, however, we can infer the consequences based on
the requirements that have been specified.

Validation of requirements and verification of the matching implementation
against those requirements are both useful complementary techniques in aiding the
reduction of errors and formal methods can help in both this areas [74].
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3.4 Myths of Formal Methods

The computer industry is slow to adopt formal methods in system development.
There is a belief that formal methods are difficult to use and require a great deal of
mathematical ability. Certainly some of the symbols look daunting to the uninitiated,
but it’s really just a matter of learning the notation [47]. For complete formal devel-
opment including proofs and refinement (a process whereby a formal specification
is translated systematically into a lower-level implementation, often in a conven-
tional programming language), a strong mathematical background is required, but
to write and understand specifications requires only a relatively basic knowledge of
mathematics.

There is also a misconception that formal methods are expensive. Experience
has now shown that they do not necessarily increase development costs; while costs
are increased in the initial stages of development, coding and maintenance costs are
reduced significantly, and overall development costs can be lower [123].

It has been suggested that formal methods could result in error-free software
and the end of testing. But will they? In a word, no; but they are certainly a step in
the right direction to reduce the amount of testing necessary. Indeed, the test phase
may become a certification phase, as in the Cleanroom approach [73, 183, 184,
215], if the number of errors are reduced sufficiently. Formal methods and testing
are both complementary and worthwhile techniques that are useful in attempting
to construct ‘correct’ software [62]. Formal methods aim to avoid the inclusion of
errors in the first place whereas testing aims to detect and remove errors if they have
been introduced.

Formal methods enable us to rigorously check for contradictory requirements
and to reason about the effects of those requirements. That unfortunately does not
mean that we will eliminate requirements errors completely. Proofs are still per-
formed by humans, and are thus still prone to error. Many automated proof assis-
tants are now available which check proof justifications and some can even generate
proof obligations as a guide to the construction of a proof. But as we all well know,
computer-based tools may themselves contain errors. As research in this area pro-
gresses, we can anticipate simplified proofs in the future.

Unfortunately refinement and proof techniques are not exploited as much as they
might be [132]. Most developers using formal methods tend to use them at the re-
quirements specification and system specification stages of development [81]. This
is still worthwhile, and is indeed where the greatest pay-offs from the use of for-
mal methods have been highlighted, since most errors are actually introduced at the
requirements stage rather than during coding. But, as specifications are not refined
to executable code, coding is still open to human error. Refinement is difficult, and
certainly does not guarantee error-free code, as mistakes can still be made during
the refinement process. Forthcoming refinement tools should simplify the refine-
ment process and help to eliminate errors. There is disagreement as to how much
refinement can be automated, but in any case these tools should help us to eliminate
the scourge of computer programming – the ubiquitous ‘bug’.
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After over a quarter of a century of use, one would have hoped that misconcep-
tions and ‘myths’ regarding the nature of formal methods, and the benefits that they
can bring, would have been eliminated, or at least diminished. Unfortunately, this
is not the case; many developers still believe that formal methods are very much a
‘toy’ for those with strong mathematical backgrounds, and that formal methods are
expensive and just deal with proving programs correct. We must attempt to learn
lessions from the experience of applying formal methods in practice [68].

In a seminal article Seven Myths of Formal Methods (reprinted in this Part),
Anthony Hall attempts to dispel many ‘myths’ held by developers and the public at
large [105]. By reference to a single case study, he cites seven major ‘myths’ and
provides an argument against these viewpoints.

While Hall deals with myths held by non-specialists, the authors, writing five
years later, identify yet more myths of formal methods. What is disconcerting is
that these myths, described in Seven More Myths of Formal Methods (reprinted here)
are myths accepted to be valid by specialist developers [39]. By reference to sev-
eral highly successful applications of formal methods, all of which are described in
greater detail in [125], we aim to dispel many of these misconceptions and to high-
light the fact that formal methods projects can indeed come in on-time, within bud-
get, produce correct software (and hardware), that is well-structured, maintainable,
and which has involved system procurers and satisfied their requirements. There is
still debate on how formal specification can actually be in practice [163].

3.5 Which Formal Method?

Formal methods are not as new as the media would have us believe. One of the more
commonly-used formal methods, the Vienna Development Method (VDM) [17,
146, 141], first appeared in 1971, Hoare first proposed his language of Commu-
nicating Sequential Processes (CSP) [128, 129, 127] in 1978, and the Z nota-
tion [28, 145, 236, 268] has been under development since the late 1970s. In fact
the first specification language, Backus-Naur Form (BNF), appeared as long ago as
1959. It has been widely accepted that syntax can be formally specified for quite
some time, but there has been more resistance to the formal specification of seman-
tics.

Over the last twenty years, these formal methods and formal languages have
all changed quite considerably, and various extensions have been developed to deal
with, for example, object-orientation and temporal (timing) aspects in real-time sys-
tems. But which is the best one to use?

This is very subjective; in fact, it is not really a question of ‘which is best’ but
‘which is most appropriate’. Each of the commonly used formal methods have their
own advantages, and for particular classes of system some are more appropriate than
others. Another consideration is the audience for which the specification is intended.
Some people argue that VDM is easier to understand than Z because it is more like a
programming language; others argue that this causes novices to introduce too much
detail. Really it is a matter of taste, and often it depends on the ‘variety’ of Z or
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VDM you are using. Both of these methods have been undergoing standardization
by the International Standards Organization (ISO) [141, 268], and VDM is now an
accepted ISO standard. Newer formal methods such as the B-Method (pehaps one
of the more successful tool-supported formal developments methods, with a good
range of supporting books [2, 15, 115, 156, 230, 260]) and RAISE [218] tend to have
increasing tool support, but depend on a critical mass of users to ensure successful
transfer into genuine industrial application [100].

Another consideration is the extent to which the formal specification language
is executable (see Part 8 for a discussion of the relative merits and demerits of ex-
ecutable specification languages). OBJ [94], for example, has an executable func-
tional programming subset, and CSP is almost executable in the parallel program-
ming language Occam [139].

We can divide specification languages into essentially three classes:

– Model-oriented
– Property-oriented
– Process algebras

Model-oriented approaches, as exemplified by Z and VDM, involve the explicit
specification of a state model of the system’s desired behavior in terms of abstract
mathematical objects such as sets, relations, functions, and sequences (lists).

Property-oriented approaches can be further subdivided into axiomatic methods
and algebraic methods. Axiomatic methods (e.g., Larch [103]) use first-order pred-
icate logic to express preconditions and postconditions of operations over abstract
data types, while algebraic methods (e.g., Act One, Clear and varieties of OBJ) are
based on multi- and order-sorted algebras and relate properties of the system to
equations over the entities of the algebra.

While both model-oriented and property-oriented approaches have been devel-
oped to deal with the specification of sequential systems, process algebras have
been developed to meet the needs of concurrent systems. The best known theories
in this class are Hoare’s Communicating Sequential Processes (CSP) [128, 129] and
Milner’s Calculus of Communicating Systems (CCS) [185], both of which describe
the behavior of concurrent systems by describing their algebras of communicating
processes.

It is often difficult to classify specification language, and these categories merely
act as guidelines; they are certainly not definitive – some languages are based on a
combination of different classes of specification language in an attempt to exploit
the advantages of each. The protocol specification language LOTOS [140, 247], for
example, is based on a combination of Act One and CCS; while it can be classed as
an algebraic method, it certainly exhibits many properties of a process algebra also,
and has been successfully used in the specification of concurrent and distributed
systems. Similarly, in some ways CSP may be considered to be a process model
since the algebraic laws of CSP can (and indeed should, for peace of mind) be
proven correct with respect to an explicit model [131].

An advantage of reasoning using formal methods is that unlike software test-
ing in general, they can be used effectively on systems with large or infinite states.
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Sometimes however, a system may have a sufficiently small state space for an alter-
native approach to be used. Model checking [179] (with tool support such as SPIN
[136] allows exhaustive analysis of a finite system, normally with tool support, for
certain types of problem, including requirements [16]. Where this approach can be
applied (e.g., for hardware and protocols), it may be deemed the preferred option
because of the increased confidence provided by the use of a mechanical tool with-
out the necessity of a large amount of intervention and guidance by the engineer that
most more general purpose proof tools require.

In general, model-based formal methods [41] are considered easier to use and
to understand; proofs of correctness and refinement, it has been said, are equally
difficult for each class. But in some cases, algebraic methods are more appropriate
and elegant. In fact, using a library of algebraic laws may help to split the proof
task and make some of the proofs reusable. For the future, it is hoped that greater
unification of the various approaches will be achieved [134].

In her article A Specifier’s Introduction to Formal Methods (reprinted here),
Jeannette Wing gives an excellent overview of formal methods, and more in-depth
detail on the various issues raised above [255]. She describes the differences be-
tween the different classes of formal methods and provides some very simple exam-
ples to illustrate the differences between different formal methods; the article also
includes an excellent classified bibliography.

We saw in Part 1, however, how each specification is in fact a lower level im-
plementation of some other specification. The program itself is also a specification,
again written in a formal language. While formal languages of the sort that have
been described thus far in this Part are concerned with clarity and simplicity, pro-
grams must consider efficiency and the correct implementation of requirements.

As such, while ‘broad-spectrum’ notations such as Z and VDM can be used at
all stages in the development, at the final stages of development, there is a con-
siderable ‘jump’ from neat mathematical notations to the complex details of op-
timizing programs. To overcome this, we often require to use different specifica-
tion languages at different levels of abstraction and at different stages of develop-
ment. C.A.R. Hoare in An Overview of Some Formal Methods for Program Design
(reprinted here) describes how a variety of formal methods and notations may be
used in the design of a single system, and highlights how functional programming
can aid in reducing the size of this ‘jump’ [130]. A goal is to unify the various
programming paradigms [134].

In the article Ten Commandments of Formal Methods (reprinted here), the au-
thors discuss a number of maxims which, if followed, may help to avoid some of
the common pitfalls that could be encountered in the practical application of formal
methods [38]. The future of formal methods is still unsure, but the potential benefits
are large if the techniques are incorporated into the design process in a sensible man-
ner [58, 173]. We will discuss how method integration and executable specifications
can also help in Parts 7 and 8, respectively.
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4. Object-Orientation

A
lthough object-oriented programming languages appeared in the late 1960s
with the advent of Simula-67, it was not until the late 1980s that the object
paradigm became popular. Over the last decade we have seen the emer-

gence of many object-oriented programming languages, and extensions to existing
languages to support object-oriented programming (e.g., C++, Object Pascal).

The object paradigm offers many distinct advantages both at implementation,
and also at earlier phases in the life-cycle. Before we consider these, first let us
consider what we mean by Object-Orientation.

4.1 The Object Paradigm

Object-orientation, or the object paradigm, considers the Universe of Discourse to
be composed of a number of independent entities (or objects). An object provides
a behavior, which is a set of operations that the object can be requested to carry
out on its data. An object’s actions are carried out by internal computation, and
by requesting other objects to carry out operations. Each object is responsible for
its own data (or state), and only the object that owns particular data can modify
it. Objects can only effect changes to data owned by another object by sending a
message requesting the change.

Thus, an object can be defined as the encapsulation of a set of operations or
methods which can be invoked externally, and of a state which remembers the effect
of the methods.

Object-oriented design [60] bases the modular decomposition [203] of a soft-
ware system on the classes of objects that the system manipulates, not on the func-
tion the system performs. Abstract Data Types (ADTs) are essential to the object-
oriented approach, as object-oriented design is essentially the construction of soft-
ware systems as structured collections of ADT implementations. We call the imple-
mentation of an Abstract Data Type a module.
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The object-oriented approach supports the principle of data abstraction, which
encompasses two concepts:

1. Modularization, and
2. Information Hiding.

4.2 Modularization

Modularization is the principle whereby a complex system is sub-divided into a
number of self-contained entities or modules, as described above. All information
relating to a particular entity within the system is then contained within the module.
This means that a module contains all the data structures and algorithms required to
implement that part of the system that it represents.

Clearly then, if errors are detected or changes are required to a system, modular-
ization makes it easy to identify where the changes are required, simply by identify-
ing the entity that will be affected. Similarly for reuse, if we can identify entities in
existing systems that are to be replicated (perhaps with minor alterations) in a new
system, then we can identify potentially reusable code, routines, etc., by finding the
module that implements the particular entity. Since the module is self-contained,
it can be transported in its entirity to the new system, save for checking that any
requests it makes of other modules can be satisfied.

4.3 Information Hiding

The term Information Hiding refers to keeping implementation details ‘hidden’ from
the user. The user only accesses an object through a protected interface. This inter-
face consists of a number of operations which collectively define the behavior of
the entity. By strictly controlling the entry points to a program, it is not possible
for other modules or other programs to perform unexpected operations on data. In
addition, other modules are not dependent on any particular implementation of the
data structure.

This makes it possible to replace one implementation with another equivalent
implementation, and (more importantly) to reuse a module in another system with-
out needing to know how the data structures are actually implemented. We also
know that the state of the data is not dependent on any spurious updates from other
modules.

The generic term for those techniques that realize data abstraction is encapsu-
lation. By encapsulating both the data and the operations on that data in a single,
manageable Module (as in Modula-2 and Modula-3), Package (as in Ada) or Unit
(as in Object Pascal), we facilitate their transportation and reuse in other systems.
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4.4 Classes

Object-oriented systems generally support one or more techniques for the classifica-
tion of objects with similar behaviors. The concept of a class originated in Simula-
67, the purpose being to allow groups of objects which share identical behavior to
be created.

This is done by providing a number of templates (i.e., classes) for the creation
of objects within a system. The class template provides a complete description of a
class in terms of its external interface and internal algorithms and data structures.
The primary advantage of this approach is that the implementation of a class need
only be carried out once. Descriptions of classes may then be reused in other sys-
tems, and with specialization may even be reused in the implementation of new
classes.

Specialization is the process whereby one creates a new class from an existing
class, and is thereby effectively moving a step nearer the requirements of the ap-
plication domain. A new system can take advantage of classes as they have been
defined in other systems, and also specialize these further to suit the requirements.

Specialization can take one of four forms:

1. adding new behavior;
2. changing behavior;
3. deleting behavior;
4. a combination of 1 to 3 above.

Object-oriented languages and systems vary in their support for the different
forms of specialization. Most support the addition and changing of behavior, while
only a few support the deletion of behavior. Those languages and systems that only
allow for the addition of behavior are said to exhibit strict inheritance, while those
that also support the deletion and changing of behavior are said to exhibit non-strict
inheritance. From the point of view of software reuse, while support for any form
of class inheritance is of great use, languages exhibiting non-strict inheritance offer
the greatest possibilities.

4.5 Genericity and Polymorphism

Both Ada and CLU support the use of generic program units ( and ). This means that
instead of writing separate routines to perform the same operation on different types
(e.g., sorting an array of integers, sorting an array of reals), only one ‘template’
routine needs to be written, which can then be instantiated with the required type.
That is, an instance of the generic subprogram or package is created with the actual
type replacing the generic type. The instantiation is achieved by passing the required
type as a parameter to the generic program unit.

While genericity enables the reuse of a generic ‘template’, and avoids having
to write separate routines for each type to be operated on, it does not reduce the
number of routines in the system. That is, a separate instance of the instantiated
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template exists for each type that is to be handled by the system; one routine does
not accommodate more than one type.

One routine accommodating more than one type is termed polymorphism. In
terms of object-oriented computing it may be defined as the ability of behavior to
have an interpretation over more than one class. For example, it is common for the
method print to be defined over most of the classes in an object-oriented system.
Polymorphism can be achieved in two ways – through sub-classing, and through
overloading. As such, it is supported by most object-oriented languages and sys-
tems.

Overloading, with which we can achieve polymorphism, is evident in most pro-
gramming languages. Overloading the meaning of a term occurs when it is possible
to use the same name to mean different things. For example, in almost all program-
ming languages, we would expect to be able to use the plus-sign (+) to mean the
addition of both fixed-point and floating-point numbers. Many programming lan-
guages also interpret the plus-sign as disjunction (logical OR). In this way, we can
reuse the code written to perform the addition of two integers A and B, to mean the
addition of two real numbers A and B, or the disjunction of A and B (i.e., A_B), etc.

4.6 Object-Oriented Design

Object-oriented programming languages clearly offer benefits in that they permit a
more intuitive implementation of a system based on the real-life interaction of enti-
ties, and offer much support for software reuse, avoiding ‘re-inventing the wheel’.

The object paradigm also offers benefits at earlier stages in the life-cycle, how-
ever, facilitating greater savings through the reuse of specification and design com-
ponents as well as code, and a more intuitive approach to modeling the real-world
application.

In his paper Object-Oriented Development (reprinted in this Part), which has
become perhaps the most widely-referenced paper in the field, Grady Booch de-
scribes the motivation for an object-oriented approach to system design, and outlines
his own approach to object-oriented development [22]. This approach has become
known as the ‘Booch approach’ or simply Object-Oriented Design [23]. The devel-
opment process is clearly simplified with the use of an object-oriented programming
language (such as Ada) for the final implementation, although implementation in
languages not supporting the object paradigm is also possible.

Booch is careful to point out that object-oriented design is a partial life-cycle
method, that must be extended with appropriate requirements and specification
methods. To this end, a large number of object-oriented analysis and design method-
ologies (e.g., see [263]) have evolved, many based firmly on the various structured
methods discussed in Part 2.

These approaches differ greatly, some being minor extensions to existing meth-
ods, others being entirely new approaches. In Object-Oriented and Conventional
Analysis and Design Methodologies: Comparison and Critique (reprinted here),
Fichman and Kemerer review approaches to object-oriented analysis and design,
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comparing various approaches and the notations and techniques that they use, and
concluding that the object-oriented approach represents a radical change from more
conventional methods [78].

The formal methods community too have been quick to realize the benefits of
object-orientation, and how it can smooth the transition from requirements, through
specification, design and finally into implementation in an object-oriented program-
ming language [157]. The object paradigm also greatly facilitates the reuse of for-
mal specifications and of system maintenance at the specification level rather than
merely at the level of executable code [30]. A large number of differing approaches
to object-orientation in Z and VDM have emerged, with none as yet being taken as
definitive. Readers are directed to [159] for overviews of the various approaches.

A number of other object-oriented development approaches exist, such as the
Fusion method used at Hewlett-Packard [61]. More recently, Booch et al.’s Unified
Modeling Language (UML) has been very successful [25, 226]. Although it has
been developed by Rational, Inc., it is non-proprietory and is being adopted widely
[76]. This language is formalizable [158] and thus may be used as a formal mod-
elling notation [80] although further work in this area would be worthwhile. There
are possibilities of combining UML with other formal notations [83]. Project man-
agement issues are also very important [24, 224]. Further developments and use of
object-oriented approaches look likely for the future.
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5. Concurrent and Distributed
Systems

I
n a concurrent system, two or more activities (e.g., processes or programs)
progress in some manner in parallel with each other. A distributed system con-
sists of a number of independent computer systems connected together so that

they can cooperate with each other in some manner. Inevitably these two concepts
are intertwined.

The last decade and more has seen a rapid expansion of the field of distributed
computing systems. The two major forces behind the rapid adoption of distributed
systems are technical and social ones, and it seems likely that the pressure from
both will continue for some time yet.

Technical reasons: The two major technical forces are communication and com-
putation. Long haul, relatively slow communication paths between computers
have existed for a long time, but more recently the technology for fast, cheap
and reliable local area networks (LANs) has emerged and dominated the field of
cooperative computing. These LANs allow the connection of large numbers of
computing elements with a high degree of information sharing. They typically
run at 10–100 Mbits per second (for example, the ubiquitous Ethernet) and have
become relatively cheap and plentiful with the advances of microelectronics
and microprocessor technology. In response, the wide area networks (WANs)
are becoming faster and more reliable. Speeds are set to increase dramatically
with the use of fiber optics and the introduction of ATM (Asynchronous Trans-
fer Mode) networks.

Social reasons: Many enterprises are cooperative in nature – e.g., offices, multi-
national companies, university campuses etc. – requiring sharing of resources
and information. Distributed systems can provide this either by integrating pre-
existing systems, or building new systems which inherently reflect sharing pat-
terns in their structure. A further, and somewhat contrary, motivation is the
desire for autonomy of resources seen by individuals in an enterprise. The great
popularity and ease of use of distributed information systems such as the World
Wide Web (WWW) distributed hypermedia system on the Internet [14] are
transforming the way in which information is made available for the future.
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Distributed systems can offer greater adaptability than localized ones. Their na-
ture forces them to be designed in a modular way and this can be used to advantage
to allow incremental (and possibly dynamic) changes in performance and function-
ality by the addition or removal of elements.

The performance of distributed systems can be made much better than that of
centralized systems and with the fall in the price of microprocessors can also be very
much cheaper. However, this performance gain is usually manifested in the form of
greater capacity rather than response. Increasing the latter is limited by the ability to
make use of parallelism, which is mainly a software problem, and will probably see
most progress in the area of tightly coupled systems. These are multiprocessor sys-
tems with very fast communications, such as is provided by shared memory systems
and Transputer systems. This is in contrast to the loosely coupled systems, typified
by asynchronous, autonomous computers on a LAN.

Availability can be increased because the adaptability of distributed systems al-
lows for the easy addition of redundant elements. This is a potential benefit which
has only been realized in a few systems. In many, the system as a whole becomes
less available because it is made dependent on the availability of all of (the large
number of) its components. This again is largely a software problem.

5.1 Concurrent Systems

The advent of concurrent systems has complicated the task of system specification
and design somewhat. Concurrent systems are inherently more complex, offering
the possibility of parallel and distributed computation, and the increased processing
power that this obviously facilitates.

Standard methods of specifying and reasoning about computer systems are not
sufficient for use with concurrent systems. They do not allow for side-effects, the
occurrence of multiple events simultaneously, nor for the synchronization required
between processes to ensure data integrity, etc. A specialized environment will nor-
mally be required for effective design [188].

A major approach to the handling of concurrency in a formal manner has been
the use of process algebras and models. Hoare’s CSP (Communicating Sequen-
tial Processes) [129, 220] and Milner’s CCS (Calculus of Communicating Sys-
tems) [185] are perhaps the two foremost and widely accepted examples of such an
approach. C.A.R. Hoare’s original paper on CSP [128], Communicating Sequential
Processes is reprinted in this Part since it was seminal to this field. Subsequently the
approach has been given a more formal footing [52], and also expanded in several
directions to handle real-time, probability, etc. [127, 220].

A more recent paper by Leslie Lamport, A Simple Approach to Specifying Con-
current Systems, is also reprinted here, and provides a more current view of the field
[152]. Lamport provides an approach to the specification of concurrent systems with
a formal underpinning, using a number of examples. The transition axiom method
described provides a logical and conceptual foundation for the description of con-
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currency. Safety and liveness properties are separated for methodological rather than
formal reasons.

The method described in this paper has been refined using the formal logic TLA
(the Temporal Logic of Actions) [153]. The major advance has been to write this
style of specification as a TLA formula, providing a more elegant framework that
permits a simple formalization of all the reasoning.

Since the two included papers with this Part are mainly on concurrent issues,
the rest of this Part redresses the balance by discussing distributed systems in more
depth. [4] is a major survey which, while quite old, gives a good and authoritative
grounding in the concepts behind the programming of concurrent systems for those
who wish to follow this area up further.

The future for concurrent systems looks very active [59]. In particular the bound-
aries of hardware and software are becoming blurred as programmable hardware
such as Field Programmable Gate Arrays (FPGA) becomes more prevalent. Hard-
ware is parallel by its very nature, and dramatic speed-ups in naturally parallel al-
gorithms can be achieved by using a hardware/software co-design approach [196].

5.2 Distributed Systems

To consider the issues and problems in designing distributed systems we need to
define their fundamental properties. For this we can use the analysis of LeLann [164]
who lists the following characteristics:

1. They contain an arbitrary number of processes.
2. They have a modular architecture and possibly dynamic composition.
3. The basic method of communication is message passing between processes.
4. There is some system-wide control.
5. There are variable (non-zero) message delays.

The existence of the last item means that centralized control techniques cannot
be used, because there may never be a globally consistent state to observe and from
which decisions can be made. Distributed systems carry over most of the problems
of centralized systems, but it is this last problem which gives them their unique
characteristics.

5.3 Models of Computation

Two popular models for distributed systems are the ‘object–action’ model and the
‘process–message’ model. In the former, a system consists of a set of objects (e.g.
files) on which a number of operations (e.g. read and write) are defined; these oper-
ations can be invoked by users to change the state of the objects to get work done. In
the latter model, a system is a set of processes (e.g. clients and file severs) prepared
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to exchange messages (e.g. read file request, write file request); receipt of messages
causes processes to change state and thus get work done.

The terminology in this area can be confusing, but ‘object–action’ systems
roughly correspond to ‘monitor-based’ and ‘abstract data type’ systems while
‘process–message’ systems correspond to ‘client–server’ systems. Lauer and Need-
ham [161] have shown these models to be duals of each other. Most systems can be
placed in one of these categories.

This characterization should not be applied too zealously. Both models essen-
tially provide a way of performing computations and it is relatively straightforward
to transform one type of system to the other. As already mentioned, because of the
nature of the hardware, the basic method of communication in distributed systems is
message passing between processes but in many cases the two models can be found
at different layers within a system.

5.4 Naming Considerations

Objects and processes have to be named so that they can be accessed and manipu-
lated. Since there are many sorts of objects in a system it is tempting to adopt many
sorts of names. This must be tempered by a desire for conceptual simplicity. An
important property of names is their scope of applicability; e.g., some may only be
unique within a particular machine. Examples of such contexts are names of dif-
ferent sorts of objects which reside in a WAN, on a single LAN, in a service, on a
server or somewhere in the memory of a particular machine.

Transforming names from one form to another is a very important function, even
in centralized systems. One example is transforming a string name for a UNIX file
to an inode number. Because distributed systems are so much more dynamic it is
even more important to delay the binding of ‘logical’ and ‘physical’ names. Some
sort of mapping or name service is required. Since this is such an important func-
tion, availability and reliability are vital. The domains and ranges of the mapping
are often wide but sparse so in many systems names are structured to allow more
efficient searches for entries.

5.5 Inter-Process Communication

The exchange of messages between processes – Inter-Process Communication (IPC)
– is the basic form of communication in distributed systems, but note that it is easy
to build the actions of object–action systems on top of this mechanism. For these,
the idea of remote procedure call (RPC) forms a useful extension from the world of
single machine local procedure calls. How transparent these should be from issues
of location and errors is a matter of some debate. Whether RPCs or messages are
used, the destination has to be located, using the mapping facilities already sketched.
The use of RPCs has become popular because they represent an easy to use, familiar
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communication concept. They do not, however, solve all problems, as discussed in
[242].

The structure of units of activity is very important. Work in recent years (in cen-
tralized as well as distributed systems) has led to the realization that a single kind
of activity is inadequate in system design. Many have adopted a two level structur-
ing. The outer level, called heavy-weight processes (HWPs), representing complete
address spaces, are relatively well protected and accounted for, but switching be-
tween them is slow because of the large amount of state involved. Distribution is
performed at the level of HWPs. They are typified by UNIX processes.

Within an HWP, a number of light-weight processes (LWPs) operate; these have
much less state associated with them, are unprotected, share the address space of
the containing HWP but it is possible to switch between these relatively rapidly. For
example, there may be a number of HWPs on each node. One of these may represent
a server. The server may be structured as a number of LWPs, one dedicated to the
service of each client request.

5.6 Consistency Issues

The abnormal (e.g., crashes) and normal (e.g., concurrent sharing) activity of a sys-
tem may threaten its consistency. The problem of concurrency control is well-known
in multiprocessing systems. This problem and its solutions becomes harder when the
degree of sharing and the amount of concurrency increase in distributed systems. In
particular, the lack of global state first of all makes the solutions more difficult and
also introduces the need for replication which causes more consistency problems.

Maintaining consistency requires the imposition of some ordering of the events
within a system. The substantial insight of Lamport [151] is that the events in a
distributed system only define a partial order rather than a total order. Required
orderings can be achieved by extending existing centralized mechanisms, such as
locking, or using time-stamp based algorithms.

Making systems resilient to faults in order to increase their reliability is an of-
ten quoted, rarely achieved feature of distributed systems. Both of these issues have
been tackled with the notion of atomic actions. Their semantics are a conceptu-
ally simple ‘all or nothing’, but their implementation is rather harder, requiring es-
sentially images of ‘before’ states should things prove sufficiently difficult that the
only option is to roll back. This gets much harder when many objects are involved.
Much work from the database world, particularly the notions of transactions and
two-phase commit protocols have been adapted and extended to a distributed world.
Atomic actions match quite well to RPC systems that provide ‘at-most-once’ se-
mantics.

Another source of problems for consistency is dynamic reconfiguration of the
system itself, adding or perhaps removing elements for maintenance while the sys-
tem is still running.
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5.7 Heterogeneity and Transparency

Heterogeneity must often be handled by operating systems (OSs) and particularly by
distributed operating systems. Examples of possible heterogeneity occur in network
hardware, communication mechanisms, processor architectures (including multi-
processors), data representations, location etc. In order that such disparate resources
should not increase system complexity too much, they need to be accommodated
in a coherent way. The key issue of such systems is transparency. How much of
the heterogeneity is made visible to the user and how much is hidden depends very
much on the nature of the heterogeneity. Other factors apart from heterogeneity can
be made transparent to users, such as plurality of homogeneous processors in, for
example, a processor pool.

The choice to be made is generally one of providing users with conceptually sim-
pler interfaces, or more complicated ones which allow for the possibility of higher
performance. For example, if location of processes is not transparent and can be
manipulated, users can co-locate frequently communicating elements of their appli-
cations. If location is transparent the system will have to infer patterns of communi-
cation before it can consider migrating processes.

Issues of transparency cut across many other issues (e.g. naming, IPC and secu-
rity) and need to be considered along with them.

5.8 Security and Protection

A security policy governs who may obtain, and how they may modify, information.
A protection mechanism is used to reliably enforce a chosen security policy. The
need to identify users and resources thus arises.

The distribution of a system into disjoint components increases the indepen-
dence of those components and eases some security problems. On the other hand,
a network connecting these components is open to attack, allowing information to
be tapped or altered (whether maliciously or accidentally), thus subverting the pri-
vacy and integrity of their communication. In such a situation each component must
assume much more responsibility for its own security.

Claims about identity must be authenticated, either using a local mechanism or
with some external agency, to prevent impersonation. The total security of a system
cannot rely on all the kernels being secure since there may be many types of these
(for all the different processors) and a variable number of instances of them. It would
be easy to subvert an existing instance or to insert a new one. Thus authentication
functions should be moved out of kernels.

Access control is a particular security model. There exists a conceptual matrix
which identifies the rights that subjects (e.g. users, processes, process groups) have
over all objects (e.g. data, peripherals, processes). Two popular realizations of this
are access control lists (ACLs) and capabilities. In the former, an ACL is associated
with each object, listing the subjects and their rights over it. In the latter, each sub-
ject possesses a set of capabilities each of which identifies an object and the rights
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that the subject has over it. Each realization has its own merits and drawbacks, but
capability based distributed systems seem to be more numerous.

Capabilities must identify objects and rights, so it is natural to extend a naming
scheme to incorporate this mechanism. They must also be difficult to forge, which
is harder to achieve without a trusted kernel. Drawing them from a sparse space and
validating them before use allows them to be employed in distributed systems.

Cryptographic techniques can be used to tackle a number of these problems in-
cluding ensuring privacy and integrity of communications, authentication of parties
and digital signatures as proof of origins [190]. VLSI technology is likely to make
their use, at least at network interfaces, standard, though they can be used at different
levels in the communications hierarchy for different purposes.

Many of these techniques depend on the knowledge that parties have about en-
cryption keys and thus key distribution becomes a new problem which needs to be
solved. Use of public key systems can ease this, but many systems rely on some
(more or less) trusted registry of keys, or an authentication server. The parallels
with name servers again show the interdependence of naming and security.

5.9 Language Support

The trend has been for generally useful concepts to find themselves expressed in
programming languages, and the features of distributed systems are no exception.
There are many languages that incorporate the notions of processes and messages,
or light-weight processes and RPCs.

Other languages are object-oriented and can be used for dealing with objects in a
distributed environment and in others still the notion of atomic actions is supported.
A choice must be made between the shared variable paradigm and the use of com-
munication channels, as adopted by Occam [139] for example. The latter seems to
be more tractable for formal reasoning and thus may be the safest and most tractable
approach in the long run.

The problem of separately compiled, linked and executed cooperating programs
are to some extent a superset of those already found in programs with separately
compiled modules in centralized systems. The notion of a server managing a set of
objects of a particular abstract data type and its implementation as a module allows
module interfaces to be used as the unit of binding before services are used.

5.10 Distributed Operating Systems

Distributed Operating Systems (DOSs) have been the subject of much research ac-
tivity in the field of distributed systems. Operating systems (OSs) control the bare
resources of a computing system to provide users with a more convenient abstrac-
tion for computation. Thus the user’s view of a system is mostly determined by the
OS. A DOS is an OS built on distributed resources. There is much argument over
what abstraction for computation a DOS should provide for its users.
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The term network operating system (NOS) has faded in its usage, but requires
some mention in the history of the development of distributed systems. Like many
terms it means different things to different people. For many, a NOS is a ‘guest level
extension’ applied to a number of existing centralized operating systems which are
then interconnected via a network. These systems are characterized by the high
degree of autonomy of the nodes, the lack of system-wide control and the non-
transparency of the network.

On the other hand, DOSs are normally systems designed from scratch to be in-
tegrated and exercise much system-wide control. Others distinguish the two not on
the lines of implementation but on the lines of the view of computation provided to
users: in a DOS it is generally transparent while in a NOS it is not; special utilities
are needed to use network facilities. See [34] for some examples of distributed oper-
ating systems. Further information on distributed systems in general may be found
in [189], and [267] contains large bibliographies on the subject.
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6. Real-Time and
Safety-Critical Systems

A
system is one in which the timing of the output is significant [195]. Such a

system accepts inputs from the ‘real world’ and must respond with outputs
in a timely manner (typically within milliseconds – a response time of the

same order of magnitude as the time of computation – otherwise, for example, a
payroll system could be considered ‘real-time’ since employees expect to be paid at
the end of each month). Many real-time systems are embedded systems, where the
fact that a computer is involved may not be immediately obvious (e.g., a washing
machine). Real-time software often needs to be of high integrity [10].

The term safety-critical system has been coined more recently as a result of the
increase in concern and awareness about the use of computers in situations where
human lives could be at risk if an error occurs. Such systems are normally real-time
embedded systems. The use of software in safety-critical systems has increased by
around an order of magnitude in the last decade and the trend sees no sign of abating,
despite continuing worries about the reliability of software [172, 92].

The software used in computers has become progressively more complex as
the size and performance of computers has increased and their price has decreased
[216]. Unfortunately software development techniques have not kept pace with the
rate of software production and improvements in hardware. Errors in software are
renowned and software manufacturers have in general issued their products with
outrageous disclaimers that would not be acceptable in any other more established
industrial engineering sector. Some have attempted to use a ‘safe’ subset of lan-
guages known to have problematic features [8, 113]. In any case, when developing
safety-critical systems, a safety case should be made to help ensure the avoidance
of dangerous failures [254].

6.1 Real-Time Systems

Real-time systems may be classified into two broad types. Hard real-time systems
are required to meet explicit timing constraints, such as responding to an input
within a certain number of milliseconds. The temporal requirements are an essential
part of the required behavior, not just a desirable property. Soft real-time systems
relax this requirement somewhat in that, while they have to run and respond in
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real-time, missing a real-time deadline occasionally only causes degradation of the
system, not catastrophic failure.

In the first paper in this Part [200], Jonathan Ostroff considers the specification,
design and verification of real-time systems, particularly with regard to formal meth-
ods, with mathematical foundation. He addresses the application of various formal
methods that are suitable for use in the development of such systems, including the
difficulties encountered in adopting a formal approach.

As well as the formal correctness of a real-time system [120, 147], there are
other issues to consider. Predicting the behavior of a real-time system can be prob-
lematic, especially if interrupts are involved. The best approach is to ensure pre-
dictability by constructing such systems in a disciplined manner [104]. Often real-
time systems incorporate more than one computer and thus all the difficulties of a
parallel system must also be considered as well, while still trying to ensure system
safety, etc. [238].

Hybrid systems [102] generalize on the concept of real-time systems. In the
latter, real-time is a special continuous variable that must be considered by the con-
trolling computer. In a hybrid system, other continuous variables are modeled in
a similar manner, introducing the possibility of differential equations, etc. Control
engineers may need to interact effectively with software engineers to produce a
satisfactory system design. The software engineer involved with such systems will
need a much broader education than that of many others in computing.

6.2 Safety-Critical Systems

The distinguishing feature of safety-critical software is its ability to put human lives
at risk. Neumann has cataloged a large number of accidents caused by systems con-
trolled by computers, many as a result of software problems [192] and software
failures are an issue of continuing debate [114]. One of the most infamous acci-
dents where software was involved is the Therac-25 radiotherapy machine which
killed several people [169]. There was no hardware interlock to prevent overdosing
of patients and in certain rare circumstances, the software allowed such a situation
to occur.

The approaches used in safety-critical system development depends on the level
of risk involved, which may be categorized depending on what is acceptable (both
politically and financially) [12]. The analysis, perception and management of risk
is an important topic in its own right, as one of the issues to be addressed when
considering safety-critical systems [221].

The techniques that are suitable for application in the development of safety-
critical systems are a subject of much debate. The following extract from the BBC
television program Arena broadcast in the UK during October 1990 (quoted in [45])
illustrates the publicly demonstrated gap between various parts of the computing in-
dustry, in the context of the application of formal methods to safety-critical systems:
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Narrator: ‘. . . this concentration on a relatively immature science has been
criticized as impractical.’

Phil Bennett, IEE: ‘Well we do face the problem today that we are putting in
ever increasing numbers of these systems which we need to assess. The en-
gineers have to use what tools are available to them today and tools which
they understand. Unfortunately the mathematical base of formal methods
is such that most engineers that are in safety-critical systems do not have
the familiarity to make full benefit of them.’

Martyn Thomas, Chairman, Praxis: ‘If you can’t write down a mathemat-
ical description of the behavior of the system you are designing then you
don’t understand it. If the mathematics is not advanced enough to sup-
port your ability to write it down, what it actually means is that there is
no mechanism whereby you can write down precisely that behavior. If that
is the case, what are you doing entrusting people’s lives to that system be-
cause by definition you don’t understand how it’s going to behave under all
circumstances? . . . The fact that we can build over-complex safety-critical
systems is no excuse for doing so.’

This sort of exchange is typical of the debate between the various software engi-
neering factions involved with safety-critical systems [209, 211, 212]. As indicated
above, some suggest that formal methods, based on mathematical techniques, are a
possible solution to help reduce errors in software, especially in safety-critical sys-
tems ehere correctness is of prime importance [9]. Sceptics claim that the methods
are infeasible for any realistically sized problem. Sensible proponents recommend
that they should be applied selectively where they can be used to advantage. In any
case, assessment of approaches to software development, as well as safety-critical
software itself [213], is required to determine the most appropriate techniques for
use in the production of future software for high-integrity systems [166, 174].

6.3 Formal Methods for Safety-Critical Systems

As has previously been mentioned, the take up of formal methods is not yet great
in industry, but their use has often been successful when they have been applied
appropriately [243]. Some companies have managed to specialize in providing for-
mal methods expertise (e.g., CLInc in the US, ORA in Canada and Praxis in the
UK), although such examples are exceptional. A recent international investigation
of the use of formal methods in industry [63] provides a snapshot view of the situ-
ation by comparing some significant projects which have made serious use of such
techniques. Some sections of industry are applying formal methods effectively and
satisfactorily to safety-critical systems (e.g., see [66, 123, 225]). Medical applica-
tions are an example sector where formal methods are being considered and used
(see for example, [144, 149]).

[46], included in this Part, provides a survey of selected projects and companies
that have used formal methods in the design of safety-critical systems, as well as
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a number of safety-related standards. In critical systems, reliability and safety are
paramount, although software reliability is difficult to assess [54]. Extra cost in-
volved in the use of formal methods is acceptable, and the use of mechanization for
formal proofs may be worthwhile for critical sections of the software, and at vari-
ous levels of abstraction [27, 118]. In other cases, the total cost and time to market
is of highest importance. For such projects, formal methods should be used more
selectively, perhaps only using rigorous proofs or just specification alone. Formal
documentation of key components may provide significant benefits to the develop-
ment of many industrial software-based systems.

The human-computer interface (HCI) [71] is an increasingly important compo-
nent of most software-based systems, including safety-critical systems. Errors often
occur due to misunderstandings caused by poorly constructed interfaces [162]. It
is suspected that the ‘glass cockpit’ interface of fly-by-wire aircraft may be a con-
tributing factor in some crashes, although absolute proof of this is difficult to obtain.

Formalizing an HCI in a realistic and useful manner is a difficult task, but
progress is being made in categorizing features of interfaces that may help to en-
sure their reliability in the future [202]. There seems to be considerable scope for
further research in this area, which also spans many other disparate disciplines, par-
ticularly with application to safety-critical systems where human errors can easily
cause death and injury [112].

6.4 Standards

Until the last decade, there have been few standards concerned specifically with soft-
ware for safety-critical systems. Now a plethora are in the process of being or have
recently been introduced or revised [250], as well as even more that are applicable
to the field of software engineering in general [180].

An important trigger for the exploitation of research into new techniques such as
formal methods could be the interest of regulatory bodies or standardization com-
mittees (e.g., the International Electrotechnical Commission). A significant number
of emerging safety-related standards are now explicitly mentioning formal methods
as a possible approach for use on systems of the highest integrity levels [26, 37].
Many are strongly recommending the use of formal methods, requiring specific ex-
planation if they are not used.

A major impetus has already been provided in the UK by promulgation of the
proposed MoD Interim Defence Standard 00-55 [186], the draft of which mandates
the use of formal methods, languages with sound formal semantics and at least a
rigorous argument to justify software designs. The related Interim Defence Standard
00-56 has itself been subjected to formal analysis [258].

It is important that standards should not be prescriptive, or that parts that are pre-
scriptive should be clearly separated and marked as such. Goals should be set and the
onus placed on the software supplier to demonstrate that their methods achieve the
required level of confidence. If particular methods are recommended or mandated,
it is possible for the supplier to assume that the method will produce the desired
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results and blame the standards body if it does not. This reduces the responsibility
and accountability of the supplier. Some guidance is worthwhile, but is likely to date
quickly. As a result, it may be best to include it as a separate document or appendix
so that it can be updated more frequently to reflect the latest available techniques
and best practice. For example, 00-55 includes a separate guidance section.

6.5 Legislation

Governmental legislation is likely to provide increasing motivation to apply appro-
priate techniques in the development of safety-critical systems. For example, the
Machine Safety Directive, legislation issued by the European Commission, has been
effective from January 1993. This encompasses software and if there is an error in
the machine’s logic that results in injury then a claim can be made under civil law
against the supplier. If negligence can be proved during the product’s design or man-
ufacture then criminal proceedings may be taken against the director or manager in
charge. A maximum penalty of three months imprisonment or a large fine are pos-
sible. Suppliers will have to demonstrate that they are using best working practice
to avoid conviction.

However, care should be taken in not overstating the effectiveness of a particular
technique. For example, the term formal proof has been used quite loosely some-
times, and this has even led to litigation in the law courts over the VIPER micro-
processor, although the case was ended before a court ruling was pronounced [177].
If extravagant claims are made, it is quite possible that a similar case could occur
again. The UK MoD 00-55 Interim Defence Standard [186] differentiates between
formal proof and rigorous argument, preferring the former, but sometimes accept-
ing the latter with a correspondingly lower level of design assurance. Definitions in
such standards could affect court rulings in the future.

6.6 Education and Professional Issues

Most modern comprehensive standard textbooks on software engineering aimed
at computer science undergraduate courses now include information on real-time
and safety-critical systems (e.g., see [233]). However there are not many text-
books devoted solely to these topics, although they are becoming available (e.g.,
see [167, 240]). Real-time and safety-critical issues are seen as specialist areas, al-
though this is becoming less so as the importance of safety-critical systems increases
in the field of software engineering.

Undergraduate computer science courses normally includes a basic introduction
to the relevant mathematics (e.g., discrete mathematics such as set theory and pred-
icate logic [204, 99]), which is needed for accurate reasoning about computer-based
systems (see, for example, [65, 86]). This is especially important for safety-critical
systems where all techniques for reducing faults should be considered [135]. This
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will help improve matters in the future, although there is a long lag time between ed-
ucation and practical application. It is important to combine the engineering aspects
with the mathematical underpinning in courses [205, 207, 208, 87]. Unfortunately,
this is often not the case.

In the past, it has been necessary for companies to provide their own training
or seek specialist help for safety-critical system development, although relevant
courses are quite widely available from both industry and academia in some coun-
tries. For example, see a list of formal methods courses using the Z notation in the
UK as early as 1991 [193]. Particular techniques such as formal methods may be
relevant for the highest level of assurance [227, 244, 256].

There are now more specialized advanced courses (e.g., at Masters level) specif-
ically aimed at engineers in industry who may require the addition of new skills for
application in the development of safety-critical systems. For example, see the mod-
ula MSc in safety-critical systems engineering at the University of York in the UK
[248]. Engineers can take a number of intensive modules, each typically of a week
in length. When enough have been undertaken, an MSc degree can be awarded. It
is normally easier for working engineers to take a full week off work every so often
rather than individual days for an extended period.

Accreditation of courses by professional societies is increasingly important. For
example, in the UK, the British Computer Society (BCS) insists on certain subject
areas being covered in an undergraduate computer science course to gain accreda-
tion (and hence eased membership of the society by those who have undertaken the
course through exemption from professional examinations). Most universities are
keen for their courses to comply if possible, and will normally adapt their course
if necessary to gain accreditation. This gives professional bodies such as the BCS
considerable leverage in what topics are included in the majority of undergraduate
computer science courses in a particular country.

As well as technical aspects of computing, computer ethics [29] and related
professional issues [89] must also be covered (e.g., see [6]). Liability, safety and
reliability are all increasingly important areas to be considered as the use of com-
puters in safety-critical systems becomes more pervasive [235]. Software engineers
should be responsible for their mistakes if they occur through negligence rather than
genuine error [116] and should normally follow a code of ethics [97] or code of con-
duct. These codes are often formulated by professional societies and members are
obliged to follow them.

There are suggestions that some sort of certification of safety-critical system
developers should be introduced. The licensing of software engineers by profes-
sional bodies has been a subject for discussion in the profession [11]. This is still
an active topic for debate. However there are possible drawbacks as well as bene-
fits in introducing tight regulations since suitably able and qualified engineers may
be inappropriately excluded and under-qualified engineers may be certified without
adequate checks on their continued performance and training.
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6.7 Technology Transfer

Technology transfer is often fraught with difficulties and is inevitably (and rightly)
a lengthy process. Problems and misunderstandings at any stage can lead to overall
failure [211, 228]. A technology should be well established before it is applied,
especially in critical applications where safety is of great importance. Awareness
of the benefits of relevant techniques [3] must be publicized to a wide selection of
both technical and non-technical people, especially outside the research community
(e.g., as in [237]). The possibilities and limitations of the techniques available must
be well understood by the relevant personnel to avoid costly mistakes. Management
awareness and understanding of the effects of a particular technique on the overall
development process is extremely important.

Journals and magazines concerned with software engineering in general have
produced special issues on safety-critical systems which will help to raise awareness
among both researchers and practitioners (for example, see [150, 170]). Awareness
of safety issues by the general public is increasing as well [75, 198]. This Part in-
cludes two related articles from the former, reporting on a major survey of projects
using formal methods [63], many concerned with safety-critical systems. The first
article [90] reports on the general experience industry has had in applying formal
methods to critical systems. The second article [91] covers four specific instances
in more detail. Each has been successful to varying degrees and for various aspects
of application. The article provides a useful comparison of some of the possible ap-
proaches adopted in each of the presented studies. The third article, by Leveson and
Turner, gives a complete account of the investigation into the accidents, and subse-
quent deaths, caused by the Therac-25 radiation therapy machine. The investigation
indicates how testing can never be complete, due to the impact that the correction of
one ‘bug’ can have on other parts of the system.

Organizations such as the Safety-Critical Systems Club in the UK [219] have
organized regular meetings which are well attended by industry and academia, to-
gether with a regular club newsletter for members. Subsequently the European Net-
work of Clubs for REliability and Safety of Software (ENCRESS) has been formed to
coordinate similar activities through the European Union (e.g., see [101]). The Eu-
ropean Workshop on Industrial Computer Systems, Technical Committee 7 (EWICS
TC7) on Reliability, Safety and Security, and the European Safety and Reliability
Association also have an interest in safety-critical systems. There seems to be less
coordinated activity in the US of this nature, although the IEEE provides some sup-
port in the area of standards.

Unfortunately, the rapid advances and reduction in cost of computers in recent
years has meant that time is not on our side. More formal techniques are now suffi-
ciently advanced that they should be considered for selective use in software devel-
opment for real-time and safety-critical systems, provided the problems of education
can be overcome. It is likely that there will be a skills shortage in this area for the
foreseeable future and significant difficulties remain to be overcome.

Software standards, especially those concerning safety, are likely to provide a
motivating force for the use of emerging techniques, and it is vital that sensible and
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realistic approaches are suggested in emerging and future standards. 00-55 [186]
provides one example of a forward-looking standard that may indicate the direction
of things to come in the development of real-time safety-critical systems.
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7. Integrating Methods

7.1 Motivation

I
n general, no one method is the best in any given situation. Often it is advan-
tageous to use a combination of methods for a particular design, applying each
technique in a manner to maximize its benefits [53]. It is possible to integrate

the use of formal methods with other less formal techniques. Indeed, often, formal
methods provide little more than a mathematical notation, perhaps with some tool
support. Combining such a notation with a methodological approach can be helpful
in providing a rigorous underpinning to system design.

A number of successful applications of to real-life problems (see, for example,
papers in [125]), have helped to dispel the myth that formal methods are merely
an academic exercise with little relevance to practical system development. Increas-
ingly, the computer industry is accepting the fact that the application of formal meth-
ods in the development process (particularly when used with safety-critical systems)
can ensure an increase in levels of confidence regarding the ‘correctness’ of the re-
sulting system, while improving complexity control, and in many cases reducing
development costs (again, see [125]).

Formal methods have now been used, to some extent at least, in many major
projects. This trend seems set to continue, as a result of decisions by the UK Min-
istry of Defence, and other government agencies, to mandate the use of formal meth-
ods in certain classes of applications [37].

That is not to say that formal methods have been universally accepted. Many
agree that formal methods are still not employed as much in practice as they might
be, or as they should be [182, 191]. A lot of software development is still conducted
on a completely ad hoc basis. At best it is supported by various structured methods;
at worst, it is developed using a very naı̈ve approach – i.e., the approach taken by
many undergraduates when they first learn to program: ‘write the program and base
the design on this afterwards’.

Structured methods are excellent for use in requirements elicitation, and inter-
action with system procurers. They offer notations that can be understood by non-
specialists, and which can be offered as a basis for a contract. In general, they sup-
port all phases of the development life-cycle, from requirements analysis, through
specification, design, implementation, and maintenance. However, they offer no
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means of reasoning about the validity of a specification – i.e., whether all require-
ments are satisfied by the specification, or whether certain requirements are mutually
exclusive. Unsatisfied requirements are often only discovered post-implementation;
conflicting requirements may be detected during implementation.

Formal methods, on the other hand, allow us to reason about requirements, their
completeness, and their interactions. They also enable proof of correctness – that is,
that an implementation satisfies its specification. The problem is that formal meth-
ods are perceived to be difficult to use due to their high dependency on mathematics.
Certainly personnel untrained in mathematics and the techniques of formal methods
will be loath to accept a formal specification presented to them without a consider-
able amount of additional explanation and discussion. But, as Hall [105] points out,
one does not need to be a mathematician to be able to use and understand formal
methods. Most development staff should have a sufficient grounding in mathematics
to enable them to understand formal specifications and indeed to write such spec-
ifications. Formal proofs and refinement (the translation of a specification into a
lower level implementation) do require a considerable degree of mathematical abil-
ity, however, as well as a great deal of time and effort.

7.2 Integrating Structured and Formal Methods

In the traditional (structured) approach to software development, problems are an-
alyzed using a collection of diagrammatic notations, such as Data-Flow Diagrams
(DFDs), Entity-Relationship-Attribute Diagrams (ERADs) and State-Transition Di-
agrams (STDs). In general, these notations are informal, or, at best, semi-formal, al-
though work on making them more formal is in progress [7]. Only after the problem
has been analyzed sufficiently are the possible sequences of operations considered,
from which the most appropriate are chosen.

When using formal specification techniques, however, personnel must begin to
think in terms of the derivation of a model of reality (either explicit or implicit –
depending on the formal specification language being used, and the level of abstrac-
tion of the specification). In the specification of a functional system (one in which
output is a relation over the current state and the input) this involves relating inputs
to outputs by means of predicates over the state of the system. In reactive systems,
of which concurrent, real-time and distributed systems are representative, the spec-
ification is complicated by the need to consider side-effects, timing constraints, and
fairness. In either case, the mismatch, or ‘gap’ between the thought processes that
are required at the analysis stage and those needed to formally specify a system is
significant, and has been termed the Analysis–Specification Semantic Gap [214].

In traditional software development, a high-level specification is translated to a
design incrementally, in a process known as stepwise refinement. This process con-
tinues until the design is couched in such terms that it can be easily implemented in a
programming language. Effectively what the system designer is doing is deriving an
implicit tree of possible implementations, and performing a search of the possibili-
ties, eliminating those which are infeasible in the current development environment,
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and selecting the most appropriate of the rest. The tree is potentially (and normally)
infinite (up to renaming) and so an explicit tree is never derived.

In implementing a formal specification, however, the developer must change
from the highly abstract world of sets, sequences and formal logic, to considering
their possible implementations in terms of a programming language. Very few pro-
gramming languages support such constructs, and certainly not efficiently. As a re-
sult, this requires determining the most appropriate data structures to implement the
higher level entities (data refinement), and translating the operations already defined
to operate on arrays, pointers, records, etc., (operation refinement).

The disparity here has been termed the Specification–Implementation Semantic
Gap, and is clearly exacerbated by the lack of an intermediate format. Such a ‘gap’
represents a major difficulty for the software engineering community. Suggestions
for its elimination vary greatly . . . from the introduction of programming languages
supporting higher-level primitives [138], to the use of specification languages which
have executable subsets [84], e.g., CSP [129, 127] with Occam [139], OBJ [94],
or with inherent tool support, e.g., Larch [103], Nqthm [48], B [2], PVS [201].
The ProCoS project [43] on ‘Provably Correct Systems’ has been exploring the
formal foundations of the techniques to fill in these gaps from requirements through
specification, design, compilation [118, 239], and ultimately down to hardware [33,
155], but many problems remain to be solved, especially those concerning scaling.

A means by which structured and formal methods are integrated to some ex-
tent could help in systems of an industrial scale [100]. A method based on such an
integration would offer the best of both worlds:

– it offers the structured method’s support for the software life cycle, while admit-
ting the use of more formal techniques at the specification and design phases,
supporting refinement to executable code, and proof of properties;

– it presents two different views of the system, allowing different developers to
address the aspects that are relevant to them, or of interest to them;

– it provides a means of formally proving the correctness of an implementation with
respect to its specification, while retaining a structured design that will be more
acceptable to non-specialists;

– the formal method may be regarded as assigning a formal semantics to the struc-
tured method, enabling investigations of its appropriateness, and the study of pos-
sible enhancements;

– the structured design may be used as the basis for insights into the construction
of a formal specification.

The final point above is quite contentious. A number of people have cited this as
a disadvantage of the approach and something that should not be encouraged. The
view is that such an approach severely restricts levels of abstraction and goes against
many of the principles of formal specification techniques. On the other hand, there
is a valid argument that such an approach is often easier for those unskilled in the
techniques of formal specification to follow, and can aid in the management of size
and complexity, and provide a means of structuring specifications.
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7.3 An Appraisal of Approaches

A number of experiments have been conducted in using formal methods and struc-
tured methods in parallel. Leveson [165], Draper [72] and Bryant [5] all report suc-
cesses in developing safe and reliable software systems using such techniques. In
such cases, non-specialists were able to deal with more familiar notations, such as
DFDs (Data-Flow Diagrams), while specialists concentrated on more formal inves-
tigations, highlighting ambiguities and errors admitted by more conventional meth-
ods.

There is a severe restriction, however, in that the conventional specification and
design, and the formal approach will be engaged upon by different personnel. With
differing levels of knowledge of the system and implementation environment, and
lack of sufficient feedback between the two groups, it is unlikely that the benefits of
such an approach will be adequately highlighted. In fact, Kemmerer [148] warns of
potential negative effects.

A more integrated approach, whereby formal methods and more traditional tech-
niques are applied in a unified development method, offers greater prospects for
success. A number of groups have been working on such integrated methods, their
approaches varying greatly – from transliterations of graphical notations into math-
ematical equivalents, to formalizing the transformations between both representa-
tions.

Semmens, France and Docker, in their paper Integrated Structured Analysis and
Formal Specification Techniques (reprinted here) give an excellent and very com-
plete overview of the various approaches to method integration, both in academia
and in industry [229].
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8. Implementation

8.1 Refinement

A
s we discussed in earlier Parts, formal specifications are expressed at high
levels of abstraction and in terms of abstract mathematical objects, such as
sets, sequences and mappings, and with an emphasis on clarity rather than

efficiency. But we want our programs to be efficient and since most programming
languages do not support these abstract data types, how do we use the formal spec-
ification in system development?

Just as in traditional design methods, such as SSADM and Yourdon, we gradu-
ally translate our formal specification into its equivalent in a programming language.
This process is called refinement (or reification in VDM). Data refinement involves
the transition from abstract data types to more concrete data types such as record-
structures, pointers and arrays, and the verification of this transition.

All operations must then be translated so that they now operate on the more
concrete data types. This translation is known as operation refinment or operation
modeling, and gives rise to a number of proof obligations that each more concrete
operation is a refinement of some abstract equivalent. By ‘refinement’, we mean
that it performs at least the same functions as its more abstract equivalent, but is
in some sense ‘better’ – i.e., more concrete, more efficient, less non-deterministic,
terminating more often, etc.

These proof obligations may be discharged by constructing a retrieve function
for each operation which enables us to return from an operation to its more abstract
equivalent. In VDM, we must also construct an abstraction function which does the
opposite, and brings us from the abstract operation to the more concrete one. More
generally there may be a retrieve relation [257].

The refinement process is an iterative one, as shown in Figure 8.1. Except for
simple problems, we would never go straight from an abstract specification directly
to code. Instead, we translate our data types and operations into slightly more con-
crete equivalents at each step, with the final step being the translation into executable
code.



558 High-Integrity System Specification and Design

Abstract 

Specification

Concrete

Specification

Executable 

Code

Refinement

Refinement

Verification

Verification

Figure 8.1. The refinement process
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8.2 Rapid Prototyping and Simulation

Rapid System Prototyping (RSP) and simulation have much in common in the sense
that both involve the derivation and execution of an incomplete and inefficient ver-
sion of the system under consideration. They do, however, have different aims (al-
though these are certainly not incompatible), and are applied at different stages in
the system life-cycle.

Prototyping is applied at the earlier stages of system development as a means
of validating system requirements. It gives the user an opportunity to become au
fait with the ‘look-and-feel’ of the final system, although much of the logic will still
not have been implemented. The aim is to help in determining that the developer’s
view of the proposed system is coincident with that of the users. It can also help
to identify some inconsistencies and incompatibilities in the stated requirements. It
cannot, for example, be used to determine whether the requirements of efficiency
of operation and requirements of ease of maintenance are mutually satisfiable. The
prototype will in general be very inefficient, and will not necessarily conform to the
stated design objectives.

Best practice holds that the code for a prototype should be discarded before
implementation of the system. The prototype was merely to aid in eliciting and de-
termining requirements and for validation of those requirements; that is, determin-
ing that we are building the ‘right’ system [19]. It may have a strong bias towards
particular implementations, and using it in future development is likely to breech
design goals, resulting in an inefficient implementation that is difficult to main-
tain. Retaining a prototype in future development is effectively equivalent to the
transformational or evolutionary approach described above, with a certain degree of
circumvention of the specification and design phases.

Simulation fits in at a different stage of the life-cycle. It is employed after the
system has been specified, to verify that an implementation may be derived that is
consistent both with the explicitly stated requirements, and with the system specifi-
cation; in other words, that we are building the system ‘right’ [19]. While prototyp-
ing had the aim of highlighting inconsistencies in the requirements, simulation has
the aim of highlighting requirements that are left unsatisfied, or only partly satisfied.

Both rapid prototyping and simulation suffer from one major drawback. Like
testing, which can only highlight the presence of software bugs, but not their ab-
sence [70], prototyping and simulation can only demonstrate the existence of con-
tradictory requirements or the failure to fully satisfy particular requirements. They
cannot demonstrate that no contradictory requirements exist, nor that all specified
requirements are satisfied, respectively [126]. That is why attention has begun to be
focused on the use of formal methods in both Rapid System Prototyping and simu-
lation, as formal methods can actually augment both of these areas with proof [121].

The use of executable specification languages and the animation of formal spec-
ifications are clearly two means of facilitating prototyping and simulation, while
retaining the ability to prove properties.
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8.3 Executable Specifications

We make a distinction between the concept of executable specifications and that of
specification , although many authors consider them to be identical.

In our view, specifications are ‘executable’ when the specification language in-
herently supports explicit execution of specifications. While the means by which
executions of such specifications are performed are varied and interesting in them-
selves, they are not of concern to us here.

An executable specification language offers one distinct advantage – it augments
the conceptual model of the proposed system, derived as part of the system spec-
ification phase, with a behavioral model of that same system. As Norbert Fuchs
points out in his paper Specifications are (Preferably) Executable (reprinted in this
Part), this permits validation and verification (as appropriate) at earlier stages in the
system development than when using traditional development methods [84].

There is a fine line between executable specifications and actual implementa-
tions – that of resource management [266]. While a good specification only deals
with the functionality and performance properties of the system under considera-
tion, implementations must meet performance goals in the execution environment
through the optimal use of resources.

In their paper Specifications are not (Necessarily) Executable (also reprinted in
this Part), Ian Hayes and Cliff Jones criticize the use of executable specifications
on the grounds that they unnecessarily constrain the range of possible implemen-
tations [117]. While specifications are expressed in terms of the problem domain
in a highly abstract manner, the associated implementation is usually much less
‘elegant’, having, as it does, to deal with issues of interaction with resources, opti-
mization, meeting timing constraints, etc. Hayes and Jones claim that implementors
may be tempted to follow the algorithmic structure of the executable specification,
although this may still be far from the ideal, producing particular results in cases
where a more implicit specification would have allowed a greater range of results.

They also claim that while executable specifications can indeed help in early
validation and verification, it is easier to prove the correctness of an implementation
with respect to a highly abstract equivalent specification rather than against an im-
plementation with different data and program structures. This is crucial; it indicates
that executable specifications, while permitting prototyping and simulation, in the
long run may hinder proof of correctness.

8.4 Animating Formal Specifications

While executable specifications incorporate inherent support in the specification
language, animation applies to specification languages which are not normally exe-
cutable. In this category we include the animation of Z in Prolog [252] (logic pro-
gramming [85]) and Miranda [49] (functional programming), and the direct transla-
tion of VDM to SML (Standard ML) [197], as well as the interpretation and compi-
lation of Z as a set-oriented programming language [249], etc.
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Specification languages such as VDM and Z are not intended to be directly exe-
cutable, but by appropriately restating them directly in the notation of a declarative
programming language, become so. And, as Fuchs illustrates in his paper Specifica-
tions are (Preferably) Executable, with appropriate manipulations such animations
can be made reasonably efficient.

This approach seems preferable to executable specification languages. It too pro-
vides a behavioral model of the system, but without sacrificing abstraction levels. It
supports rapid prototyping and even more powerful simulation, but prototypes and
simulations are not used in future development. The refinement of the specifica-
tion to a lower-level implementation, augmented with the discharge of various proof
obligations ensures that the eventual implementation in a conventional (procedural)
programming language satisfies the original specification.



562 High-Integrity System Specification and Design



Part 8 Implementation 563

Specifications are not (Necessarily) Executable (Hayes & Jones)

TO BE ADDED: Hayes and Jones: Specifications are not executable

TO BE ADDED: 20 pages



582 High-Integrity System Specification and Design



Part 8 Implementation 583

Specifications are (Preferably) Executable (Fuchs)

TO BE ADDED: Fuchs: Specifications are executable

TO BE ADDED: 26 pages



608 High-Integrity System Specification and Design



9. CASE

J
ust as mechanization made the Industrial Revolution in Britain possible at the
beginning of the 19th century, so too is mechanization in system development
seen as a means to increased productivity and a ‘Systems Revolution’.

Indeed, in Part 1 we saw Harel’s criticism of Brooks’ view [50] of the state
of the software development industry due to his failure to adequately acknowledge
developments in CASE (Computer-Aided Software Engineering) technology and
visual formalisms [109]. In addition, in Part 2 we saw the originators of various
structured methods recognize the fact that certain levels of automated support are
vital to the successful industrialization of their respective methods [100].

9.1 What is CASE?

CASE is a generic term used to mean the application of computer-based tools (pro-
grams or suites of programs) to the software engineering process.

This loose definition serves to classify compilers, linkers, text editors, etc., as
‘CASE tools’, and indeed these should be classified in these terms. More usually,
however, the term ‘CASE’ is intended to refer to a CASE workbench or CASE
environment – an integrated suite of programs intended to support a large portion
(ideally all) of the system development life-cycle.

To date, most CASE workbenches have focused on information systems and on
supporting diagrammatic notations from various structured methods (DFDs, ERDs,
etc.) rather than any specific methodology. In their article CASE: Reliability Engi-
neering for Information Systems (reprinted in this Part), Chikofsky and Rubenstein
provide an excellent overview of the motivation for the use of CASE workbenches
in the development of reliable information systems, and of the advantages of such
an approach [57].

That is not to say that the application of CASE is limited to the domain of in-
formation systems. CASE workbenches have been applied successfully to com-
ponents of real-time and safety-critical systems, and some provide support for
State-Transition Diagrams (STDs), Decision Tables, Event-Life History Diagrams,
and other notations employed by various ‘real-time’ structured methods such as
SART [251], DARTS [96] and Mascot [222].
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9.2 CASE Workbenches

As was previously pointed out, commercially available CASE workbenches gener-
ally do not support any particular methodology (although there are exceptions) but
rather a range of differing notations that may be tailored to a particular (standard or
‘home-grown’) methodology. They differ greatly in the degree to which they sup-
port various methodologies and, as one might expect, in the levels of functionality
that they provide. We can, however, determine a minimal set of features that we
would expect all realistic CASE workbenches to support:

– a consistent interface to various individual tools comprising the workbench, with
the ability to exchange data easily between them;

– support for entering various diagrammatic notations with a form of syntax-
directed editor (that is, that the editor can aid the user by prohibiting the derivation
of syntactically incorrect or meaningless diagrams);

– an integrity checker to check for the consistency and completeness of designs;
– the ability to exchange data with other tools (perhaps using CDID, the CASE

Data Interchange Format);
– report generation facilities;
– text editing facilities.

9.3 Beyond CASE

We can see from the above that CASE workbenches concentrate primarily on the
early stages of system development. A number of workbenches, however, incorpo-
rate tools to generate skeleton code from designs as an aid to prototyping. Indeed,
some vendors claim code that is of a sufficiently high quality that it may be used in
the final implementation. Generally such workbenches are referred to as application
generators.

From our discussion of the system life-cycle in this and previous Parts, it should
be clear that we ideally require a CASE workbench that will support all aspects
of system development from requirements analysis through to post-implementation
maintenance. A workbench supporting all aspects of the software engineering pro-
cess is generally termed a Software Engineering Environment, or SEE. A useful SEE
can reasonably be expected to support an implementation of some form of software
metric, project costing, planning, scheduling and evaluation of progress.

Realistically, large-scale system development involves a large number of person-
nel, working on various aspects of the development. Different personnel may modify
the same software components [264], or may be modifying components required by
others, perhaps due to changing requirements, or as a result of errors highlighted
during unit testing. Therefore, co-ordination between developers and control over
modification to (possibly distributed) software components is required, and soft-
ware configuration management is desirable in a system development support envi-
ronment. Such support is provided by an Integrated Project Support Environment or
IPSE.
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9.4 The Future of CASE

We see tool support becoming as important in formal development as it has been
in the successful application of more traditional structured methods. In Seven More
Myths of Formal Methods (reprinted in Part 3), we described some widely available
tools to support formal development, and emphasized our belief that such tools will
become more integrated, providing greater support for project management and con-
figuration management [39]. In essence, we foresee the advent of Integrated Formal
Development Support Environments (IFDSEs), the formal development equivalent
of IPSEs.

As we also saw in Part 8, method integration is also an area auguring great po-
tential. As a first step towards IFDSEs, visual formalisms offer great promise; in
his paper On Visual Formalisms (reprinted in this Part) David Harel realizes the
great importance of visual representations and their relationship to underlying for-
malisms [108].

His paper describes his own works on Statecharts, supported by the STATEM-
ATE tool [110, 111], whereby an intuitive graphical notation that may be used in
the description of reactive systems is given a formal interpretation in terms of ‘hi-
graphs’, and for which support environments covering most phases of the life-cycle
already exist. The approach has proven to be very popular and very successful in
practice, and indeed many see visual formalisms as providing the basis for the next
generation of CASE tools.
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Glossary

Accreditation: The formal approval of an individual organization’s services (e.g.,
a degree course at a university) by a professional body provided that certain
specific criteria are met. Cf. certification.

Animation: The direct execution of a specification for validation purposes. This
may not be possible in all cases, or may be possible for only part of the specifi-
cation. Cf. rapid prototype.

Availability: A measure of the delivery of proper service with respect to the alter-
nation of proper (desirable) and improper (undesirable) service.

Assertion: A predicate that should be true for some part of a program state.

CASE: Computer-Aided Software Engineering. A programming support environ-
ment for a particular method of software production supported by an integrated
set of tools.

Class: A form of abstract data type in object-oriented programming.

Certification: The formal Indorsement of an individual by a professional body pro-
vided that certain specific criteria concerning education, training, experience,
etc. are met. This is likely to be of increasing importance for personnel working
on high-integrity systems, especially when software is involved. Cf. accredita-
tion. The term is also applied to the rigorous demonstration or official written
guarantee of a system meeting its requirements.

Code: Executable program software (normally as opposed to data on which the
program operates).

Concurrent system: A system in which several processes, normally with commu-
nication between the processes, are active simultaneously. Cf. distributed sys-
tem.

Deduction: A system of reasoning in a logic, following inference steps to arrive at
a desired logical conclusion.

Dependability: A property of a computing system which allows reliance to be jus-
tifiably placed on the service it delivers. The combined aspects of safety, relia-
bility and availability must normally be considered.

Design: The process of moving from a specification to an executable program, ei-
ther formally or informally.
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Development: The part of the life-cycle where the system is actually produced,
before it is delivered to the customer. After this time, maintenance of the system
is normally undertaken, and this is often far more costly than the originally
development.

Distributed system: A system that is implemented on a number of physically sep-
arate computer systems, with communication, normally via a network. Cf. con-
current system.

Embedded system: A system in which the controlling computer forms an integral
part of the system as a whole.

Emulation: A completely realistic imitation of a system by another different sys-
tem that is indistinguishable from the original via some interface for all practical
purposes. Cf. simulation.

Error: A mistake in the specification, design or operation of a system which may
cause a fault to occur.

Executable specification: Thought by some to be an oxymoron, this is a high-level
formal specification that can be animated.

Execution: The running of a program to perform some operation.

Failure: A condition or event in which a system is unable to perform one or more
of its required functions due to a fault or error.

Fault: An undesirable system state than may result in a failure.

Fault avoidance: Prevention by construction of fault occurrence or introduction.
For example, formal methods help in fault avoidance.

Fault tolerance: The provision by redundancy of a service complying with the
specification in spite of faults. N-version programming is an example of fault
tolerance.

Fault removal: The reduction by verification or testing of the presence of pre-
existing faults.

Fault forecasting: The estimation by evaluation of the presence, creation and con-
sequences of faults.

Formal methods: Techniques, notations and tools with a mathematical basis, used
for specification and reasoning in software or hardware system development.
The Z notation for formal specification) and the B-Method (for formal devel-
opment) are leading examples of formal methods.

Formal notation: A language with a mathematical semantics, used for formal
specification, reasoning and proof.

Formal specification: A specification written in a formal notation, potentially for
use in proof of correctness.

Genericity: A program unit that can accept parameters that are types and sub-
programs as well as variables and values. Cf. polymorphism.

Hardware: The physical part of a computer system. Cf. software.
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HCI: The means of communication between a human user or operator and a
computer-based system.

High-integrity system: A system that must be trusted to work dependably and may
result in unacceptable loss or harm otherwise. This includes safety-critical sys-
tems and other critical systems where, for example, security or financial con-
siderations may be paramount.

Hybrid system: A system which includes a combination of both analogue and dig-
ital (e.g., a controlling computer) aspects.

Implementation: An efficiently executable version of a specification produced
through a design process.

Informal: An indication of an absence of mathematical underpinning. E.g., cf. an
informal notation like English or diagrams with a formal notation like Z.

Information hiding: The encapsulation of data within program components or
modules, originally proposed by David Parnas, and now widely accepted as
a good object-oriented programming development principle.

Integrity: A system’s ability to avoid undesirable alteration due to the presence of
errors.

Life-cycle: The complete lifetime of a system from its original conception to its
eventual obsolescence. Typically phases of the life-cycle include requirements,
specification, design, coding, testing, integration, commissioning, operation,
maintenance, decommissioning, etc.

Logic: A scheme for reasoning, proof, inference, etc. Two common schemes are
propositional logic and predicate logic which is propositional logic generalized
with quantifiers. Other logics, such a modal logics, including temporal logics
which handle time – e.g., Temporal Logic of Actions (TLA), Interval Temporal
Logic (ITL) and more recently Duration Calculus (DC) – are also available.
Schemes may use first-order logic or higher-order logic. In the former, func-
tions are not allowed on predicates, simplifying matters somewhat, but in the
latter they are, providing greater power. Logics include a calculus which allows
reasoning in the logic.

Method integration: The combination of two or more techniques or notations to
improve the development process by benefits from the strengths of each. Typi-
cally the approaches may be a combination of formal and informal methods.

Methodology: The study of methods. Also sometimes used to mean a set of related
methods.

Model: A representation of a system – for example, an abstract state of the system
and a set of operations on that state. The model may not cover all the features
of the actual system being modeled.

Module: A structuring technique for programs, etc., allowing the breakdown of a
system into smaller parts with well-defined interfaces.
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N-version programming: The implementation of several programs from a com-
mon specification with the aim of reducing faults. Any variation in the oper-
ation of programs points to errors that can than be corrected. Also known as
diverse programming.

Object-oriented: An approach where all component parts (e.g., processes, files,
operations, etc.) are considered as objects. Messages may be passed between
objects. See also classes and information hiding.

Operation: The performance of some desired action. This may involve the change
of state of a system, together with inputs to the operation and outputs resulting
from the operation. To specify such an operation, the before state (and inputs)
and the after state (and outputs) must be related with constraining predicates.

Polymorphism: A high-level programming language feature allowing arguments
to procedures and functions to act on a whole class of data types rather that just
a single type. Cf. genericity.

Postcondition: An assertion (e.g., a predicate) describing the state after an opera-
tion, normally in terms of the state before the operation. Cf. precondition.

Precondition: An assertion (e.g., a predicate) which must hold on the state before
an operation for it to be successful. Cf. postcondition.

Predicate: A constraint between a number of variables which produces a truth
value (e.g., true or false). Predicate logic extends the simpler propositional logic
with quantifiers allowing statements over potentially infinite numbers of objects
(e.g., all, some).

Professional body: A (normally national or international) organization that mem-
bers of a particular profession (e.g., engineers) may join. Accreditation, certi-
fication and standards are activities in which such organizations are involved.
Examples include the Association of Computing Machinery (ACM) and the In-
stitute of Electrical and Electronics Engineers (IEEE), based in the USA but
with international membership, and the British Computer Society (BCS) and
the Institution of Electrical Engineers (IEE), based in the UK.

Program: A particular piece of software (either a programming language or its
matching executable machine code) to perform one or more operations.

Proof: A series of mathematical steps forming an argument of the correctness of
a mathematical statement or theorem using some logic. For example, the val-
idation of a desirable property for a formal specification could undertaken by
proving it correct. Proof may also be used to perform a formal verification or
‘proof of correctness’ that an implementation meets a specification. A less for-
mal style of reasoning is rigorous argument, where a proof outline is sketched
informally, which may be done if the effort of undertaking a fully formal proof
is not considered cost-effective.

Provably correct systems: A system that has been formally specified and imple-
mented may be proven correct by demonstrating a mathematical relationship
between the specification and the implementation in which the implementation
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is ‘better’ in some sense (e.g., more deterministic, terminates more often, etc.)
with respect to some set of refinement laws.

Rapid prototype: A quickly produced and inefficient implementation of a specifi-
cation that can be executed for validation purposes. Cf. animation.

Real-time: A system where the timing aspects are important (e.g., the timing of
external events is of comparable time to that of the computation undertaken by
the controlling computer) is known as a real-time system.

Refinement: The stepwise transformation of a specification towards an implemen-
tation (e.g., as a program). Cf. abstraction, where unnecessary implementation
detail is ignored in a specification.

Reliability: A measure of the continuous delivery of proper service (where service
is delivered according to specified conditions) or equivalently of the time to
failure.

Requirements: A statement of the desired properties for an overall system. This
may be formal or informal, but should normally be as concise and easily under-
standable as possible.

Rigorous argument: An informal line of reasoning that could be formalized as a
proof (given time). This level of checking may be sufficient and much more
cost-effective than a fully formal proof for many systems.

Risk: An event or action with an associated loss where uncertainty or chance to-
gether with some choice are involved.

Safety: A measure of the continuous delivery of a service free from occurrences of
catastrophic failures.

Safety-critical system: A system where failure may result in injury or loss of life.
Cf. high-integrity system.

Safety-related: A system that is not necessarily safety-critical, but nevertheless
where safety is involved, is sometimes called a safety-related system.

Security: Control of access to or updating of data so that only those with the cor-
rect authority may perform permitted operations. Normally the data represents
sensitive information.

Service: The provision of one or more operations for use by humans or other com-
puter systems.

Simulation: The imitation of (part of) a system. A simulation may not be perfect;
for example, it may not run in real-time. Cf. emulation.

Software: The programs executed by a computer system. Cf. hardware.

Specification: A description of what a system is intended to do, as opposed to how
it does it. A specification may be formal (mathematical) or informal (natural
language, diagrams, etc.). Cf. an implementation of a specification, such as a
program, that actually performs and executes the actions required by a specifi-
cation.
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Standard: An agreed document or set of documents produced by an official body
designed to be adhered to by a number of users or developers (or an associated
product) with the aim of overall improvement and compatibility. Standards bod-
ies include the International Organization for Standardization (ISO), based in
Switzerland but with international authority, and the American National Stan-
dards Institute (ANSI), based in the USA.

State: A representation of the possible values that a system may have. In an ab-
stract specification, this may be modeled as a number of sets. By contrast, in
a concrete program implementation, the state typically consists of a number of
data structures, such as arrays, files, etc. When modeling sequential systems,
each operation may include a before state and an after state which are related
by some constraining predicates. The system will also have an initial state,
normally with some additional constraints, from which the system starts at ini-
tialization.

Structured notation: A notation to aid in system analysis. A structured approach
aims to limit the number of constructs available to those that allow easy and
hence convincing reasoning.

System: A particular entity or collection of related components under considera-
tion.

Temporal logic: A form of modal logic that includes operators specifically to deal
with timing aspects (e.g., always, sometimes, etc.).

Validation: The checking of a system (e.g., its specification) to ensure it meets its
(normally informal) requirements. This helps to ensure that the system does
what is expected by the customer, but may be rather subjective. Animation or
rapid prototyping may help in this process (e.g., as a demonstration to the cus-
tomer). Proof of expected properties of a formal specification is another worth-
while approach. Cf. verification.

Verification: The checking of an implementation to ensure it meets its specifica-
tion. This may be done formally (e.g., by proof) or information (e.g., by testing).
This helps to ensure that the system does what has been specified in an objec-
tive manner, but does not help ensure that the original specification is correct.
Cf. validation.
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IPC, see Inter-Process Communication
IPSE, see Integrated Project Support

Environment
IRDS, see Information Resource Dictionary

System
is-a relationship, 271
is-a relationship, 634
ISO, see International Organization for

Standardization
ISO9000 series, 507
isomorphism, 398
is-part-of relationship, 271
ITCPN, see interval timed colour Petri Net
iterative array, 316, 322
iterator, 247
ITL, see Interval Temporal Logic
IV&V, see Independent Verification and

Validation

Jackson approach, 54–55

Jackson Structured Development, 244
Jackson Structured Programming, 54
Jackson System Development, 54, 55, 77
– combining processes, 109
– communication primitives, 103
– composition, 119
– data design, 108
– decomposition, 119
– examples, 96
– implementation phase, 107
– internal buffering, 114
– managerial framework, 122
– modelling phase, 78
– network phase, 93
– projects, 124
– tools, 124
– with several processors, 116
Jackson’s Structure Text, 551
JIS, 507
Jordan curve theorem, 624
JSD, see Jackson System Development
JSP, see Jackson Structured Programming
JSP-Cobol preprocessor, 124
JST, see Jackson’s Structure Text

Kate system, 176
key distribution, 301
Königsberg bridges problem, 623

LaCoS project, 426
Lamport, Leslie, 176, 188
LAN, see local area network
language
– declarative, 586, 604
– formal, 128
– formal specification, 168
– high-level, 15
– UML, see Unified Modeling Languagevi-

sual, 179
– Z, see Z notationLanguage of Temporal

Ordering of Specifications, 132, 179
Larch, 132, 179, 338, 531
– example, 183
– trait, 183
Larch handbook, 185
Larch Prover, 181
Larch specification, 183
Large Correct Systems, see LaCoS project
LATEX document preparation system, 440
LCF, 181
leads to;, 188, 350, 352
least common multiple, 591
legislation, 363, 509, 511
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level of formalization, 219
Leveson, Nancy, 438
licensing, 364
life-cycle, 2–6, 57, 77, 146, 158, 529, 661
light-weight process, 299
limits on proofs, 138
linac, see linear accelerator
linear accelerator, 447
linear propositional real-time logics, 391
linear semantics, 383
Lisp language, 246
live transition, 379
liveness, 185
– in transition axiom specification, 350–353
liveness properties, 188, 333, 384
Lloyd’s Register, 426
local area network, 295
locking, 299
logic, 381–404, 661
– CAS, 438
– concurrent and distributed systems, 195
logic programming, 181, 203–205, 215,

560, 586
– constraint, 387
logic specification language, 586
logical inference system, 173
logical modelling, 61
LOOPS, 247
loosely coupled systems, 296
Loral, 442
loss, 487
LOTOS, see Language of Temporal

Ordering of Specifications, see also
Urgent LOTOS

LSL, see logic specification language
lumpectomy, 453
Lustre language, 378
LWP, see light-weight processs299

Machine Safety Directive, 511
machine tools, 175
machine-checked proofs, 220
macrosteps, 377
maintainability, 418
maintenance, 5, 119, 201, 529
– using CASE, 621
MALPAS, 506
management, 122, 235, 417
many-to-many relationship, 59, 71
mapping, 59, 382
Martin information engineering, 266
– terms, 268
Mascot, 4, 609

mathematical reasoning, 201
MATRA Transport, 496
Matra Transport, 426, 433
matrix management, 442
matrix multiplication, 322
maturity model, 10
maximal parallelism, 384
McCabe’s Complexity Measure, 226
Mealy machines, 640
measures, 73
medical systems, 427, 447–483, 498
message passing, 272
Meta-Morph tool, 501
metaclass, 248
method integration, 158, 529–532, 661
– approaches, 534–535
methodology, 53, 57, 73, 661
– comparison of analysis methods, 274–278
– comparison of design methods, 282–287
– conventional, 264–267
– object-oriented analysis, 267–274
– object-oriented design, 278–282
– software engineering, 57–76
– TCAS, 439
methods, 38, 53, 57, 75, 158
– action-based, 388
– algebraic, 132, 179
– analysis, 274–278
– assertional proof, 347
– axiomatic, 132, 179
– classical, 615
– comparison, 274–278, 282–287
– data-oriented, 263
– design, 73, 158, 278–287
– development, 223, 237
– formal, see formal methodsFusion, 235
– Hoare’s proof-of-program, 433
– informal, 199
– integrated, 529–532
– JSD, see Jackson System Development
– metrification, 422
– model-oriented, 178
– object-oriented, 505, 278–282
– partial-lifecycle, 258
– process-oriented, 263
– programming, 216
– proof-of-program, 433
– property-oriented, 178
– SAZ, 223
– SCR/Darlington, 430
– semi-formal, 180, 199
– software, 57–76, 73, 237
– state transition, 336
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– state-based, 388
– structured, 4, 53–55, 264
– SVDM, 536
– TCAS, 439
– transition axiom, 188, 331
– VDM, see Vienna Development Method
Metric Temporal Logic, 388–391, 402
metrification methods, 422
m-EVES tool, 177, 181
MGS, see Multinet Gateway System
Michael Jackson Systems, Ltd., 125
microprocessors, 500
microsteps, 377
MIL-STD-882B standard, 507
million instructions per second, 16, 21
mini-spec, 265
Minimum Operational Performance

Standards, 438
MIPS, see million instructions per second
Miranda, 560
Miró visual languages, 180
MITI, 507
MITL, 390
Mitre Corp., 442
ML, 586
modal operators, 186
Modecharts, 401
model, 73, 371, 661
– analysis, 40–50
– conceptual, 35
– concurrent and distributed systems, 195
– executable, 41
– execution, 41
– hybrid, 403–404
– physical, 35
– versus specification, 371
model checking, 133, 181, 387
model execution tools, 42
model-oriented method, 178
model-oriented specification, 132, 535–542
modelling, 33–40, 61, 78, 375
modern structured analysis, 266, 271
Modula language, 17, 25, 128, 496
modularity, 356–357
modularization, 232
module, 231, 661
module diagram/template, 280, 283
monitors, 304, 318–321
monoprocessor, 304
MORSE project, 502
MS-DOS, 25
MSA, see modern structured analysis
MTL, see Metric Temporal Logic

multi-set, see bag
Multinet Gateway System, 441–445
multiple entry points, 314
multiple exits, 315, 318
multiple inheritance, 279
Mural system, 157
mutual exclusion, 384
m-Verdi, 181
MVS/370, 25
myelitis, 460
myths of formal methods, 130–131,

135–150, 153–163

N-version programming, 662
naming, 324
NASA, 426, 495
National Computer Security Center, 441
National Institute of Science and

Technology, 413
National Institute of Standards and

Technology, 426
natural language, 148, 172
Naval Research Laboratory, 413, 430
negation, 568, 587
negative information, 648
NETBLT protocol, 369
netlist, 504
network, 295
network operating system, 302
network phase, 93
neural nets, 33
Newtonian model, 375
next state, 186
NIH syndrome, see not-invented-here

syndrome
NIST, see National Institute of Standards

and Technology
non-bullets, 31, see also silver bullets
non-computable clause, 570, 594
non-determinacy, 576
non-determinism, 304, 574
– external, 572
– internal, 574, 597
non-deterministic operations, 571–576, 595
non-functional behavior, 192
non-functional requirements, 600
non-strict inheritance, 233
non-Zeno behaviour, see finite variability
nonatomic operations, 356
normalization, 64
NOS, see network operating system
NOT connective, 202
not-invented-here syndrome, 227
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notation, 201, 218, 306–312, 324
– diagrammatic, 609
– formal, 128, 660
– graphical, 611
– informal, 661
– semi-formal, 530
– structured, 53–54
Nqthm, 531
nuclear power plants, 496
null command, 306
numerical algorithms, 573
Nuprl proof tool, 177

OAM, see object-access model
OBJ, 132, 179, 181, 531
object, 237
– properties, 246–250
object and attribute description, 273
object clustering, 289
object diagram/template, 283
object orientation, 231–235
object paradigm, 231
Object Pascal, 231
object–action model, 297
object-access model, 273
object-communication model, 273
object-orientation, 662
object-oriented analysis, 261
– Coad and Yourdon, 270
– incremental versus radical change, 277
– methodology, 267–274
– methodology differences, 276
– methodology similarities, 276
– Shlaer and Mellor, 271
– terms, 272, 273
– versus conventional analysis, 274
object-oriented design, 234, 261
– Booch, 279
– incremental versus radical change, 287
– methodology differences, 286
– terms, 283
– versus conventional design, 282
object-oriented design methodology,

278–282
object-oriented development, 237, 242–246
– design case study, 252–257
– using Ada, 250–251
object-oriented methods, 505
object-oriented programming, 17
object-oriented requirements specification,

269
object-oriented structure chart, 279
object-oriented structured design, 262

– terms, 279
– Wasserman et al., 278
object-state diagram, 272
Objective C, 137
Objective-C, 247
Occam, 132, 301, 375, 426, 531
Occam Transformation System, 156
OCM, see object-communication model
one-to-many relationship, 71
Ontario Hydro, 429, 498
OOS, see object-oriented requirements

specification
OOSD, see object-oriented structured design
open-loop behaviour, 372
operating system, 300, 301
operation, 565, 662
– deterministic, 565–571
– hidden, 279
– inverse, 567
– non-deterministic, 571–576
operation modeling, 557
operation refinement, 531, 557
operation specification, 543, 546
operation template, 283
operations
– non-deterministic, 595
operator interface, 450
optimization, 209–210
OR connective, 202
OR decomposition, 377
ORA Corporation, 494
Ordnance Board, 499
orthogonal components, 628, 640
OS, see operating system
oscilloscope products, 426
oscilloscopes, 149
OSpec, 546
output command, 304, 305, 309
output events, 640
output guard, 327
overloading, 234
Oxford University Computing Laboratory,

219

P1228 Software Safety Plans, 509
package, 238
packages, 233
Paige/Tarjan algorithm, 395
PAISley language, 181
parallel command, 304, 306
parallel composition, 373
parallel programming, 216
parallelism
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– internal, 290
– maximal, 384
parbegin, 304
Paris Metro signalling system, 433
Paris metro signalling system, 437
Paris rapid-transit authority, 433, 496, aka

RATP
Parnas, David, 17, 19, 29, 161, 179, 430
parse tree, 593
partial execution, 602
partial function, 566
partial order semantics, 383
partial-lifecycle method, 237, 244, 258
partitioning, 628
partitioning function, 652
Pascal language, 25
passive entities, 269
past operators, 383
pattern-matching, 305
PCTE, see Portable Common Tools

Environment
PDCS project, 502
PDF graphics editor, 124
PDL, see program definition language
perfective maintenance, 5
performance, 296
periodicals, 165
PES, see Programmable Electronic Systems
Petri Nets, 36, 179, 378–384, see also

interval timed colour Petri Net, see also
Time Petri Net

phases
– implementation, 107
– modelling, 78
– network, 93
philosophers, dining, 320
physical model, 35
PL/1, 25
PL/I, 304
place, 379
plant, 371
point semantics, 383
POL, see proof outline logic
polymorphism, 233, 234, 279, 662
port names, 325
Portable Common Tools Environment, 149
posit and prove approach, 564
postcondition, 662
practicing engineers, 510
precondition, 566, 662
predicate, 662
predicate transformers, 176, 404

Predictably Dependable Computing
Systems, 502

Pressburger procedures, 400
prime numbers, 322
privacy, 300
probability, 296
procedural programming, 210–213, 215
procedure unit, 64
procedure-call graphs, 172
procedures, 304
process, 295, 304
– accessor, 273
– heavy-weight, 299
– light-weight, 299
process activation, 325
process algebra, 132, 551–553
– timed, 396–397
– untimed, 393–395
process cost, 417
process description, 273
process diagram/template, 283
process impact, 417
process model, 132, 271
process modelling, 290
process templates, 280
process–message model, 297
process-decomposition diagram, 268
process-dependency diagram, 268
process-oriented methodologies, 263
ProCoS project, 163, 502, 515, 531
product cost, 416
product impact, 416
product quality, 416
professional body, 662
professional institutions, 510, 514
professional issues, 363, 364
program, 662
program code, 659
program definition language, 286
program design, 201–216
program execution, 660
program refinement, 195
program verification, 20
Programmable Electronic Systems, 508
programmable hardware, 297, 504
programmed execution, 43
programming
– automatic, 9, 19
– functional, 207–209
– graphical, 9, 20
– logic, 203–205
– procedural, 210–213, 215
– transformational, 8
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programming environments, 16, 21
programming execution, 44
programming in the large, 59
programming languages, 169
– real-time, 375–376
programming methodology, 216
project management, 235
Prolog, 148, 181, 204, 560, 586
Prolog III, 387
proof, 8, 201, 363, 433, 559, 662
– and specification, 142
– limits, 138
– versus integration testing, 211
proof obligations, 176, 557, 561
proof of correctness, 129, 530
proof outline logic, 402
proof outlines, 402–403
proof system, 129
proof-checking tools, 181
proof-of-program method, 433
ProofPower tool, 157
proofs
– machine-checked, 220
properties, 151
properties of an object, 246–250
properties of specificands, 173
property-oriented method, 178
property-oriented specification, 132
protection mechanism, 300
prototype code, 47
prototype software system, 24
prototyping, see rapid prototyping
provably correct systems, 195, 502, 531,

662
PTIME, 391
public key, 301
punctuality property, 390
PVS, 531

qualitative temporal properties, 384
quality, 10, 416
quality standards, 224
quantification, 202
quantifier, 570, 661
quantitative temporal properties, 384
Queen’s Award for Technological

Achievement, 221
Quicksort, 572

Radiation Emitting Devices, 457
Radiation Protection Bureau, 455
radiation therapy machine, 447
Radio Technical Commission for

Aeronautics, 438, 507

Railway Industry Association, 508
railway systems, 496
RAISE, 132, 157, 426
RAISE project, 179
rapid prototyping, 23, 559, 580, 663
Rapid System Prototyping, 559
RATP, see Paris rapid-transit authority
RDD, see responsibility-driven design
reachability, 378
reachability tests, 45
reactive systems, 33, 179, 530, 638
reactor control, 149
readiness model, 394
real-time, 296, 359, 503, 663
– definition, 371
– first computer, 485
– graphical languages, 377–382
– process algebra, 393–400
– programming languages, 375–376
– structured methods, 376–377
– temporal logic, 382–393
Real-Time ACP, 396
real-time constraints, 368
real-time Hoare Logic, 401–402
Real-Time Logic, 400–401
real-time logics, 391
real-time systems, 359–360, 367, 370
– definition, 371
– future trends, 404–405
Real-Time Temporal Logic, 384
real-time temporal logic, 386
reasoning, 201, 661
record, 637
recursive data representation, 317
recursive factorial, 316
RED, see Radiation Emitting Devices
reengineering, 422
Refine language, 176
refinement, 5, 129, 130, 176, 195, 394, 531,

557, 663
– data, 216
– timewise, 399
refinement checker, 426
reformatting lines, 314
regulatory agencies, 413
reification, 557
relation
– consequence, 173
relationship, 70
relationship specification, 273
relationships, 91
relative completeness, 172
reliability, 488, 663
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– confused with safety, 480
reliability engineering, 620–622
remote procedure call, 298
removal of faults, 489, 660
repetitive command, 305, 310
requirements, 1, 201–203, 215, 371, 563,

663
– non-functional, 600
requirements analysis, 3, 176, 529
Requirements Apprentice system, 176
requirements capture, 418, 502
requirements elicitation, 3, 158, 529
requirements refinement, 23
RER, 496
response time
– bounded, 386
responsibility-driven design, 280
– terms, 284
responsiveness, 384
retrieve function, 557
retrieve relation, 557
reusable components, 418
reusable software architecture, 426
reusable software components, 257
reuse, 9, 227, 288, 483
– harvesting, 291
reuse specialists, 292
Reve, 181
revisability, 552
revolutionaries, 261
Rewrite Rule Laboratory, 181
rewrite rules, 181
RIA, see Railway Industry Association
rigorous argument, 362, 363, 663
risk, 487, 663
risk assessment, 481
Rolls-Royce and Associates, 149, 496, 497
roundtangles, 179
rountangles, 626
Royce’s model, see waterfall model
RPB, see Radiation Protection Bureau
RPC, see remote procedure call
RRL, see Rewrite Rule Laboratory
RSP, see Rapid System Prototyping
RTCA, see Radio Technical Commission for

Aeronautics
– DO-178, 507
RTCA, Inc., see Radio Technical

Commission for Aeronautics
RTCTL, 392
RTL, see Real-Time Logic
RTTL, see real-time temporal logic
RTTL(<,s), 390

SA, see structured analysis
SA/SD, 498
– and VDM, 536–538
SACEM, 433, 496
SADT, see structured analysis and design

technique
SafeFM project, 502
SafeIT initiative, 501
safemos project, 515
safety, 185, 487, 488, 663
– confused with reliability, 480
– cost, 492
– property defined, 332
– specification, 334, 336, 339
safety case, 359
safety factors, 375
safety properties, 188, 384
safety standards, 506–511
safety-critical systems, 1, 359–361, 367,

413–427, 487–493, 663
– case studies, 414–415, 429–445
– commercial and exploratory cases,

425–427
– formal methods, 361–362
– general lessons learned, 419–422
– history, 485–487
– industrial-scale examples, 493–501
– lessons learned, 415–419
Safety-Critical Systems Club, 365, 502
safety-related, 663
SAME, see Structured Analysis Modelling

Environment
SART, 609
SA/SD, 4
satisfaction, 176, 370
satisfiability, 390
satisfiable specification, see consistent

specification
satisfies relation, 168, 170
SAZ method, 223
SC, see Structure Charts
scaffolding, 24
scale, 419
scheduling, 318–321
SCR, see Software Cost Reduction
SCR/Darlington method, 430
SDI project, 29
SDIO, see Strategic Defense Initiative

Organization
SDLC, see systems development life-cycle
SDS, see shutdown system
SE/Z, 540–542
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Secure Multiprocessing of Information by
Type Environment, 149

security, 300, 663
security policy, 300
security-critical network gateway, 441
security-critical systems, 413
security-policy model, 427
SEE, see Software Engineering Environment
SEI, see Software Engineering Institute
selector, 247
semantic abstraction function, 170
semantic domain, 168, 169
semantic gap, 530, 531
semantic model
– of time, 384
semantic network, 636
semantically-Extended DFD, 543
semantics, 131, 370
semantics conservation, 398
semaphore, 304, 319
semi-formal, 530
semi-formal methods, 180, 199
sequential composition, 210, 303
sequential programs, 194
serialization (see also concurrency control),

347
servers, 248, 281
service, 663
service availability, 659
service chart, 272
set intersection, 588
set union, 588
SETL language, 565
sets, 631
– atomic, 626
– scanning, 317
Shlaer and Mellor object-oriented analysis,

271
Shlaer Mellor object-oriented analysis
– terms, 273
shoemaker’s children syndrome, 613
Shostak Theorem Prover, 495
shutdown system, 429
sieve of Eratosthenes, 322
SIFT project, 495
Signal language, 378
signoff points, 122
silver bullets, 8–10, 29
– non-bullets, 31
SIMULA 67, 246, 248, 304
Simula-67, 17, 231, 233
simulation, 559, 663

SIS, see Synchronous Interaction
Specification

skills
– formal methods, 421
skip, 306
sledgehammer, 335, 337
slow sort algorithm, 590
Smalltalk, 25, 238, 246–248, 250, 251
smartcard access-control system, 426
SMARTIE project, 506
SMITE, see Secure Multiprocessing of

Information by Type Environment
SML, 560
snapshot, 371
SNCF, see French national railway
soda
– defined, 334
soft real-time, 359, 503
soft-fail, 550
software, 663
– formal methods, 159
software code, 659
software components, 257, 610
Software Cost Reduction, 430
software development, 3
software development method, 237
Software Engineering Environment, 610
Software Engineering Institute, 10, 25
software life-cycle, see life-cycle
software methodology, 57–76
software process capability, 10
software quality, 10
Software Requirements Engineering

Methodology, 180
software reuse, 9, 483
software specification, 584
software tools, 149
some future state, 186
sorting, 568, 572
sorting sequences, 595
soundness, 370
sowing reuse, 288
SPADE, 506
specialization, 233
specificand, 168
specification, 1–10, 24, 168, 371, 529, 663
– algebraic, 542–551
– behavioural, 171
– by inverse, 567, 592
– combining clauses, 567
– complete, 172
– consistency of, 172
– examples, 587
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– executable, 41, 180, 560, 563, 584, 604,
660

– formal, 128, 219, 660
– functional, 4
– inference, 565, 577–578
– model-oriented, 132, 535–542
– negation, 568
– non-computable clause, 570
– of a system, 4
– of protocols, 132
– of software, 584
– proof, 142
– properties, 172
– property-oriented, 132
– structural, 172
– two-tiered, 183
– unambiguous, 172
– using known functions, 565
– variables, 576–577
– versus model, 371
specification animation, 560, 659
specification language, 128, 131, 132,

168–173
– logic, 586
specification languages
– compared with programming languages,

342
specification validation, 601
specification variables, 600, 601
specification–implementation semantic gap,

531
Spectool, 494
SPEEDBUILDER JSD tools, 124
SPIN tool, 133
spiral model, 6
spontaneous transition, 386
spreadsheets, 23
SQL, see System Query Language
square root of -1, 153
SREM, 244
SRI International, 494
SSADM, see Structured Systems Analysis

and Design Methodology
SSADM tools, 425
staircasing, 573
stakeholders, 419
standards, 132, 362–363, 514, 664
– formal methods, 506
– safety, 506
– tabular summary, 507
Standards Australia, 507
standards organizations, 413
start state, 640

state, 371, 547, 664
– Petri Net, 378
– zooming in and out, 377
state diagram, 638
state functions, 189
state model, 271, 273
state transition diagram, 335
state transition methods, 336
state transition system, 547
state vector inspection, 105
state-based methods, 388
State-Transition Diagram, 54, 265, 268,

280, 283, 530, 534, 609
Statecharts, 34, 36, 38, 45, 47, 179, 181,

377–378, 439, 611, 638–645
Statemate, 377, 637
STATEMATE tool, 611
Statemate tool, 34, 42, 45, 181, 440
static analysis, 506
STD, see State-Transition Diagram
stepwise refinement, 5, 176
stimulus-response diagrams, 291
STOP process, 393
STP, see Shostak Theorem Prover
Strategic Defense Initiative Organization, 29
strict inheritance, 233
structural specifications, 172
structure
– of a system, 171
structure chart, 265
Structure Charts, see Yourdon Structure

Charts
structure of states, 383
structured analysis, 53, 542
– modern, 266
– unifying framework, 551
structured analysis and design technique,

434
Structured Analysis Modelling Environ-

ment, 543, 550
Structured Design, 53, 180
structured design
– object-oriented, 262, 278
– terms, 279
structured English, 53
structured methods, 4, 53–55, 264
– integration, 530–531
– real-time, 376–377
– strengths and weaknesses, 534
– terms, 265
structured notation, 53–54, 664
structured programming, 53
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Structured Systems Analysis and Design
Method, 223

Structured Systems Analysis and Design
Methodology, 53

structured techniques, 53, 65
structured-design approach, 73–76
style sheet, 168
subprogram, 238
subprograms, 233
subroutines, 304, 314–318
substates, 377, 643
subsystem, 244
subsystem access model, 273
subsystem card, 284
subsystem communication model, 273
subsystem relationship model, 273
subsystem specification, 284
SUD, see system under development
sufficient completeness, 172
superstates, 377
support environment, 610, 611, 659
SVDM method, 536
SWARD, 247
Synchronous Interaction Specification, 548
synchronous interactions, 394
synchronous languages, 377–378
synchronous transitions, 550
synchrony hypothesis, 36, 378
syntactic domain, 168, 169
syntax, 131, 370
synthesis, 375
synthesists, 261
system, 664
– blackboard, 505
– closed, 191
– concurrent, 296, 659
– dependable, 488
– discrete event, 403
– distributed, 297, 660
– dynamic, 403
– embedded, 660
– high-integrity, 127, 661
– hybrid, 661
– loosely coupled, 296
– provably correct, 662
– rapid prototyping, 559
– reactive, 33, 530, 638
– real-time, 359–360, 663
– safety-critical, 359–361, 487, 663
– transformational, 638
system analysis, 178
system behaviour, 171
system design, 55, 77, 176

system development, 53, 660, see also
Jackson System Development

system documentation, 177
system evolution, 429
system functions, 66
system maintenance, 5
system modelling, 33–40
system outputs, meaning, 118
system partitioning, 289
System Query Language, 71
system specification, 4, 140
system structure, 171
system testing, 5
system under development, 372
system validation, 177
system verification, 177
systems analysis, 77
systems development life-cycle, 264
systems engineering, 616
systolic arrays, 33

T800 Transputer, 159, 221, 426, 493
T9000 Transputer, 159, 426
tables crisis, 485
tabular representation, 439
task, 238
Task Sequencing Language, 177, 179
TBACS, see Token-Based Access Control

System
TCAS, see Traffic Alert and Collision-

Avoidance System
TCAS II, 438
TCAS methodology, 439
TCCS, see Temporal CCS, see Timed CCS
TCSP, see Timed CSP
TCTL, 392
technology transfer, 365
– formal methods, 420
Tektronix, 149, 426
Temporal CCS, 396, 397
temporal logic, 36, 46, 185, 186, 340, 350,

353, 664
– branching time, 391–392
– interval, 392–393
– real-time, 382–393
Temporal Logic of Actions, 297, 661
temporal operators
– eventually 3, 350, 352
– henceforth 2, 350, 352
– leads to;, 350, 352
Temporal Process Language, 396
temporal properties, 384
temporal verification, 46
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Tempura, 392
termination, 384
terms
– Booch object-oriented design, 283
– Coad and Yourdon object-oriented

analysis, 272
– Martin information engineering, 268
– Shlaer Mellor object-oriented analysis,

273
– structured methods, 265
– Wasserman et al. object-oriented

structured design, 279
– Wirfs-Brock et al. responsibility-driven

design, 284
testing, 5, 226
testing tools, 196
Therac-20, 448
– problems, 462
Therac-25, 447–483
– design errors, 465
– hazard analysis, 452
– operator interface, 450
– software development and design, 463
– turntable positioning, 449
Theratronics International, Ltd., 448
there exists, 202
Third Normal Form, 71
tick transition, 384
time
– discrete, 384
– semantic model, 384
Time Petri Net, 380
time to market, 417
time-sharing, 15
time-stamp, 299
Timed CCS, 396
Timed CSP, 396, 503
Timed Probabilistic CCS, 396
timed process algebra, 396–397
Timed Transition Model, 384, 385
timed transition model, 387
timers, 271
timestamp, 380
timewise refinement, 399
timing diagram, 283
TLA, see Temporal Logic of Actions
Token-Based Access Control System, 426
tokens, 378
tolerance of faults, 489, 660
tool support, 181
– formal methods, 420
toolbenches, 16
tools, 21, 124, 175, 181

– for model execution, 42
– formal methods, 156, 196, 220, 418
tools, CASE, 609, 611
top-down, 54
top-down development, 394
topovisual, 623
torpedoes, 499
touch-and-feel experience, 584, 602
TPCCS, 392, see Timed Probabilistic CCS
TPCTL, 392
TPL, see Temporal Process Language
TPN, see Time Petri Net
tppls
– proof-checking, 181
TPTL, 390
trace model, 394
traces, 187
Traffic Alert and Collision Avoidance

System, 495
Traffic Alert and Collision-Avoidance

System, 438–441
training, 145, 510
trait, 183
transaction processing, 149
transaction-centered organization, 75
transactions, 299
transform-centered organization, 75
transformation, 195
transformational approach, 6–8, 564, 603
transformational development, 6
transformational programming, 8
transformational system, 638
transition, 371
– enabled, 385
– live, 379
– spontaneous, 386
– tick, 384
transition axiom method, 188, 331
transition axiom specification
– advantages, 333, 336, 338
– concurrency specification, 355–356
– hierarchical decomposition, 356
– in relation to programming, 341, 342, 349
– in relation to temporal specifications, 354
– introduced, 332
– liveness properties, 350
– modularity, 356–357
– of nonatomic operations, 356
– safety specification, 336, 339
transition axioms, 185
transition model
– timed, 387
transparency, 300
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Transputer, 149, 159, 221, 296, 426, 493
TRIO, 393
troika, 73
TSL, see Task Sequencing Language
TTM, see Timed Transition Model
TTM/RTTL framework, 384–388
tuning, 579
Turing machines, 380
two-phase commit, 299
two-tiered specification, 183
type
– of a relationship, 70
– of an entity, 70
– of an object, 248
types, 17

U-LOTOS, see Urgent LOTOS
UML, see Unified Modeling Language
unambiguous specification, 172
unbounded process activation, 325
uncertainty, 487
undecidable, 380
under-determined, 574
unfold/fold transformations, 604
unification, 568
Unified Modeling Language, 235
unified programming environments, 16
union, 588
unit testing, 5
UNITY, 382
Unity, 179
universal quantification, 202
UNIX, 298, 299, 304
Unix, 16, 25
unordered Cartesian product, 653
untimed process algebra, 393–395
update of text file, 588
Urgent LOTOS, 396
user interface, 483
users of formal methods, 173
uses of formal methods, 175

validation, 129, 177, 559, 563, 664
– of a specification, 601
vanilla approach, 30, 34
vanilla frameworks, 32
variant, 637
VDM, see Vienna Development Method
– and SA/SD, 536–538
– and Yourdon, 535–536
VDM-SL Toolbox, 157
vending machine, 396
Venn diagrams, 284, 623

Venn, John, 623
verification, 20, 127, 129, 177, 195, 196,

375, 563, 664
– formal, 220
– of consistency, 48
– temporal, 46
verification and validation, 419
verification conditions, 435
verifiers, 175
Verilog, 434
Veritas proof tool, 159
very high-speed integrated circuit, 48
VHDL, see VHSIC hardware description

language
VHSIC, see very high-speed integrated

circuit
VHSIC hardware description language, 48
Vienna Development Method, 131, 154, 491
– example, 182
– reification, 557
– standard, 132
Vienna Development Methods, 382
views of a specificand, 170
VIPER microprocessor, 363
Viper microprocessor, 500
Virtual Channel Processor, 426
Virtual Device Metafile, 154
Virtual DOS Machine, 154
visibility, 279
visual formalism, 651
visual formalisms, 37, 41, 609, 611
visual languages, 179
visual representation, 37
visual specification, 169

walk through, 430, 616
WAN, see wide area network
Ward/Mellor data and control flow diagrams,

551
Warnier/Orr approach, 57–61
Wasserman et al. object-oriented structured

design, 278, 279
watchdog, 46
waterfall model, 3, 6
weakest precondition calculus, 382
weakest precondition predicate transform-

ers, 404
well-defined, 169
well-formed sentences, 169, 173
“what”, 4, 58, 141, 177, 332, 382, 578, 580,

586
Whirlwind project, 485
why, 58
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wide area network, 295
Wirfs-Brock et al. responsibility-driven

design, 280
– terms, 284
workbench, CASE, 609, 610
workstations, 21
World Wide Web, 295
WWW, see World Wide Web

XCTL, 389
XOR, see exclusive-or

Yourdon, 4, 53, 54
– and CCS, 551–553
– and VDM, 535–536
– and Z notation, 538–540
Yourdon approach, 65–69
Yourdon Structure Charts, 551

Z notation, 4, 131, 382, 560, 660
– and LBMS SE, 540–542
– and Yourdon, 538–540
– example, 151–152, 182
– standard, 132
Zeno, see non-Zeno behaviour
Zola tool, 157
zoom out, 648
ZTC tool, 157


