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Abstract

Principal Components Analysis (PCA) is of great use in representation of multi-dimensional
data sets, often providing a useful compression mechanism. Sometimes, input data sets are
drawn from disparate domains, such that components of the input are heterogeneous, making
them difficult to compare in scale. When this occurs, it is possible for one component to
dominate another in the PCA at the expense of the information content of the original data.

We present an approach to balancing the contributions of different components that is con-
structive; it generalises to the case of the addition of several variables. Conjectures about
improved approaches and more complex data sets are presented.

The approach is demonstrated on two current research applications.

1 Introduction

The technique of Principal Components Analysis (PCA) has been in use for a considerable
time and is well understood. As a method for representing multidimensional data sets it
proves useful in pinpointing the nature of variation, and can therefore be used to great effect
in data compression by neglecting components of lower importance. Recently, PCA has
been used with great success in the computer vision domain in the construction of Point
Distribution Models (PDMs) [2, 3], a statistical model of shape which permits non-rigid
bodies (for example, faces [6], bones [4, 5] or silhouettes of pedestrians [1]) to be characterised
and therefore located in ‘difficult’ scenes.

PCA accepts a data set X of n-dimensional vectors, X = {x,}, a=1,2,..., N and derives
a linear transform P to give x = X + Pb (details are provided below); it is customary
to expect the vectors x to have internal coherence in the sense that the components have
corresponding meaning, and therefore scale. An illustration of this would be the derivation
of a PDM in which each vector is a concatenation of co-ordinates of boundary points of a
shape instance — thus the scale of the components (or, more particularly, the scale of the
variation in the components) is the same. Various applications exist, however, in which this
need not be (or is not) the case — we examine two of these in Section 3, in which the units
of measurement of the components of the data vector differ, giving immediate problems in
scale comparison.

This paper presents an approach to augmenting data vectors with new components in which
the appropriate scale is not known. An argument is given that a particular scale is optimal;
the argument is constructive and yields the appropriate factor. Two example applications
in which the technique is relevant are briefly described.



2 Formulation

PCA is well understood, and a brief summary only is given here. Commencing with a
population of N n-dimensional vectors,

X = {x1,%3,...,Xn}
X, = (zL, 2%, ... 2"

we compute the covariance matrix C,

Ci; = Covar(x', ') = B((2' — ') (27 — &) (1)
(' is a real symmetric matrix and therefore has n real, non-negative eigenvalues Ay, Ao, ..., Ay;
the associated eigen-vectors (appropriately normalised) y1,¥2,...,¥y, form an orthonormal

basis permitting the vectors x to be rewritten
x=X+ Pb (2)
where P is a matrix whose columns are the eigen-vectors of C'.

Without loss of generality we may assume the eigen-vectors of ' are ordered, so that
A > A > ... > A, > 0. The eigen-analysis of C' is particularly useful; the eigen-vector
corresponding to A; is the direction of maximum variation (the principal component) of the
original data X; the next most significant eigen-vector (corresponding to Ay) is the next most
significant, and so on. It is thus possible to use Equation 2 as the basis of a compression
scheme; defining P(k) to be the first k& columns of P, and b(k) to be the first & components
of b, we have

x~ X+ P(k)b(k)
Since the higher indexed elements of b are minimal contributors to the data, for suitable &

this truncation can be an efficient representation; indeed, it may have the effect of suppressing
noise in the data rather than losing ‘true’ information.

Consider now the effect of augmenting the original data by a new component y to provide
the population X, so that

X = (21,22, ... 2" y,)
When calculating the covariance matrix of this augmented population, Equation 1 removes
the influence of the value of the mean of individual components, but the scale of variation
may be unknown. Trivially, if the 27 are measured in miles, whether the y are measured in

miles or inches will influence the eigen-analysis. Therefore we write

Xa(s) = (25,0, - -, T SYa) (3)
for a scalar s, and ask how the choice of s affects the analysis.

The covariance matrix ' is easily calculated, being €' augmented by a column and row

N

Citngr) = CA'(n_H)Z' = 3 Covar(:z;i, Y)
= S¢i i:1,2,...,n
Clnttynsy = s Var(y)
= 5205 (4)
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Well established results [9] inform us that the eigenvalues p; of (' will interleave those of C,
MlZ)\lZMzZ)\zZ---)\nZMnHZO (5)

Supposing we know the eigen-vectors of €' to be Ay, Ao, ..., A, the characteristic polynomial
of C is straightforward to calculate as

P(u) = (p—s o)) [ (v - ZS¢ H H=2X) (6)

=1 J=1,57#1

Now behaviour in the limiting cases is clear; when s = 0, we have A\; = p;, ¢ = 1,2,...,n,
and pi,41 = 0, while as s grows, so does 1, while all the other p; are bounded by the interval
in which they lie (Equation 5).

2.1 Eigen-variance

The distribution of eigenvalues - or eigen-spectrum — of C is a measure of the correlation
between the variables. For compression purposes, we seek a non-uniform distribution; con-
versely, when introducing a new variable we are interested in it communicating as much as
possible to the model.

Clearly when s = 0 there is no contribution from y, while as s becomes large the influence of
the y component dominates the analysis, ultimately suppressing any contribution from the
x; — between these two extremes we might seek a position in which the eigen-spectrum of C
provides maximal information, where we are maximising the descriptive power of the new
variable y. One way of doing this is to ask for the spectrum to exhibit minimum variance,
thereby requiring that each component, in a relative sense, contributes as much as it can to
the representation.

Specifically, we take the distribution of normalised eigenvalues

n+1
M o= )
7=1
. i
fi = 37 (7)
and consider the variance of these quantities
n+1
V= = S 8
(5) n4+1 Z (n+ 1) (8)
We call V the eigen-variance. As s — oo (at which gy dominates all other eigenvalues),
V(is) = 1— ? The minimum value V(s) = 0 is assumed when all eigenvalues are equal

(and there is no correlation at all between the components of the original data).
Theorem 1: For s > 0, V(s) is unimodal, reaching a minimum at
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Proof: If the characteristic polynomial of C' is written

P(p) = ao+ ayp + agp® + ...+ app” + p" !

then

_an —

tp—1 =

Then

n+1
Youi=M
j=1

n+1 n+1

2N

J=1 k=1,k#]

From Equation 6

2(A; + 32051\ — 5*U)

=1 k=1 k#j
Writing
A=30A
Ay =2 N
Equations 9 and 10 give
Vi) = G -

(5205 +A)P2(n+1)

(10)

(11)



and hence
dV 8305(/\1, + 32051\ — 52W) B 43(05/\ — )

ds (5205 + AP(n+1) (5205 +A)P2(n+1)

43(205(/\1, + 32051\ — ) — (5205 + A)(O‘;A —U))

(5205 +AP(n+1)
45(52(031\ — 05\11) — (0‘5/\2 — 205/\1, — UA))
(5202 + AP(n+1)
43(3205(051\ —-U) — (051\2 — UA))

= 12
(5202 +AP(n+1) (12)
Equating % to 0 gives
s =0
O-ZAQ — WA
s =
o202\ — V)
0'2A2 — UA
_ Y _ 13
’ 72(o2A — U) (13)
The quantity under the square root is positive, unless y, = k,a = 1,2,..., N for some

constant k, in which case it is 0 and V/(s) is constant. To see this, we write

Z=17(y) = o*A,— WA

S 9 SRS - O DCRR Sy

Then

jé N %(2(% —y)(1 - %)) - % Z(z(x; — &) (yo — y)(1 — %))

Ay 1
= 21— \ya—17
v (=) —9)
Thus these derivatives are simultaneously 0 when all the y, are equal; clearly this provides
a minimum at which Z = 0. Note also that
U;A -v = 051\2 — AV
Z U;AQ — AU

= 7
and thus the denominator is non-negative too.

The limiting case of y, = k is of no interest since it provides nothing toward the description
of the population X.

Thus we have a unique positive value of s that minimises V' (s); Figure 1 illustrates V for a
particular data set.



2.2 Extension to several variables

It is natural to consider extending this approach to more than one additional variable; thus,
instead of equation 3, we may have

Xo(s) = (:1;;,:1;3,...,xZ,syi,syi,...,syfy) (14)

Following the same approach as in Section 2.1, we seek the terms in p"**=! and p"**=2 of
the characteristic polynomial of the covariance matrix (' derived from these data. Define

ij = Covar(z',y’)

If we suppose that the eigenvalues of the augmented datay, = (y.,92%,...,y"%) are wy,wy, ..., wy,
it is possible to find a rotation of the augmented data whose covariance matrix is

N

Cii == )\Z', i:1,2,...,n
CA'(H_H')(?H_Z') = 82(4)2', 1=1,2,...,k
Oi(n-l—j) = é(n-l—j)i = 877/)2']‘, 1= 1,2, cee ,n;j = 1,2, .. .,k

(15)

with all other entries 0.

For convenience, we will write

Q= Ef:l Wi Ql’ =

E Wil

k=1,k#j

(NN

J

Q=Y w=332 (16)

k k
=1

3

=1 7=1

with A, A,, Ay as before. Analogously to Equation 10, it is then straightforward to see that
the relevant polynomial coefficients are

a, = —(L+ SQQ)
an_1 = A, + s, + s2AQ — 20 (17)
Hence
Vis) = n B 2(A, + 5%, + s2AQ — $70)
(n+1)2 (s2Q+ A (n+1)
and

AV 4s(s2(AQy — Q) — (A,Q — WA))
ds (s2Q 4+ A)B3(n +1)

whence, for s > 0, equating % to 0 gives

A — WA
=3\ 18
B X T (18)
A similar argument to before guarantees that this quantity is real.
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More generally, it might not be reasonable to assume that the extra variables are ‘tied’ to
each other, in which case each would demand a different scale;

}A(OZ(S) = (xim xiv SRR J}Z, Slyiv 32y2¢7 ) Skyi) (19)
and we would seek ‘optimal” values of s = (sy,382,...,8;). The hypersurface V(s) has a
unique minimum: We can deduce this by noting that if V(s) had two minima, at s; and sz,
say, it would be possible to construct a rotation of the data such that one axis was parallel
to the line going s; and sz, and thence to construct a counterexample to Theorem 1.

The location of the minimum is not obvious, although a strategy for the selection of a
suboptimal s exists by adding the variables y’ singly, and selecting each value of s; via
equation 13.

2.3 Eigen-entropy

A more common measure of information content than variance is entropy. Corresponding to
Equation 8 we might define the eigen-entropy as

E=E(s) = — Z fii log (/i)
= los(M) — - > wilox(ny (20)

and then ask where maxima of this quantity lie.

In all the data sets we have observed — both single and multi-variable — the quantity F(s) has
been unimodal, exhibiting a maximum at which the information content of the eigenvalues
is at a peak, Further, this peak is achieved by a value of s (or s) very close to the value
that provides the minimum of V(s). It remains a conjecture that this quantity is indeed
unimodal for suitable s (s), and unknown as to what that mode may be.

Figure 1 illustrates F for a particular data set augmented by one variable y.

3 Applications

This work has been prompted by two independent applications.

3.1 The ‘Robotic Sheepdog’ project

The ‘robotic sheepdog’ project is constructing an autonomous robot that has the intelligence
to herd living creatures (for the purposes of demonstration, ducks). The project and its
motivation are described elsewhere [7, 8].

The robot receives its information about its own and the ducks’ parameters (position and
velocity) via a camera monitoring the scene. The ducks behave in a flocking manner, with
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the coarse shape of the flock being a good indicator of their behaviour - it is thus natural
to model the flock using the Point Distribution Models which have proved very successful in
modelling non-rigid shapes in other domains. This approach has been seen to work well.
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Figure 1: Data describing duck flock shape (concatenation of co-ordinate pairs) augmented

by robot distance: (a) V(s), (b) E(s).

The PDM so constructed is interesting but solely descriptive, while a predictive model is
sought. In order to proceed it is necessary to add to the model information about the velocity
of the flock, and the (relative) position and velocity of the robot. Figure 2 illustrates these
essential parameters.

\{I ock

/ Yobot

Figure 2: Parameters of the duck tracking system: Robot position and velocity, duck flock
shape, position and velocity; separating distance and direction.

We thus have parameters as follows

e Flock shape: N Cartesian co-ordinate pairs, used to define a spline (N = 20 here).
e Flock centroid velocity: 2 polar co-ordinates
e Robot distance and direction from flock centroid: 2 polar co-ordinates

e Robot velocity: 2 polar co-ordinates



We thus need to add six dimensions to the data used to describe shape alone; this we have
done using the approach outlined in Section 2.2. The orthogonal eigen-system so derived
contains significant redundancy (correlation between the components) and, after truncation
of the less significant eigen-vectors from the representation, is being used as the basis of a
predictor of duck behaviour derived from actual observation.

As an illustration, Figures 1 and 3 consider the addition of solely the robot distance param-
eter, and illustrate the eigen-spectrum in the cases

e s = (: This distribution is exactly that of the unaugmented data set.

o s = 0.955: This is the optimum derived from Equation 13, so this distribution of values
carries maximal information according to the definition of minimum variance. Figure
1 shows that a lower value would give maximal information according to an entropy

definition.
o s = 1.8: Here it is clear that the most significant eigenvalue is already dominating
significantly.
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Figure 3: The distribution of eigenvalues for factors of the robot distance: (a) s = 0,

V(s) =0.271; (b) s = 0.955, V(s) = 0.234; (¢) s = 1.8, V(s) = 0.309.

In fact, for the purposes of the demonstration we need also to add in a parameter describing
the ducks’ proximity to the boundary of their arena, since this also influences their behaviour.
It is also possible that we should consider the acceleration of both the flock centroid and
the robot. In due course we shall also try to observe the behaviour of individual birds. All
of these extra parameters may be included in the descriptive model using the approach we
have described.



3.2 Analysis of motorway flow data

The M25 motorway is an orbital highway around the city of London of circumference in
excess of 300 kilometres; for the majority of its length it carries four lanes of traffic in both
directions. The usually heavy flow is monitored at minute intervals by detectors placed
approximately 500 metres apart; at each detector station four quantities are measured in
each lane — speed (kilometres per hour), flow (vehicles per hour), occupancy (percentage of
time the detector is ‘occupied’) and headway (the time interval between the same point of
successive vehicles). This apparatus generates very significant quantities of uninterrupted
data that describe a highly complex and dynamic system (although it may be immediately
apparent that the data will contain significant redundancy).

It is common to consider sub-networks for monitoring and diagnostic purposes — for exam-
ple, the detectors in the neighbourhood of an interchange, or a small number of consecutive
detectors on a junction-free stretch; at simplest, we might consider two detectors that would
describe the behaviour of approximately one kilometre of road by delivering (in each direc-
tion) a 32-dimensional vector every minute.

The behaviour of traffic makes these raw data very noisy, although patterns are clearly visible
within it; for example, rush hour behaviour is clearly different to steady state mid-day flow
or the light flow of the night. It is also apparent when acute congestion occurs, and that
the ‘recovery’ of flow from an incident is different again. It is useful therefore to consider
approaches to extracting these patterns from the mass of data. One approach to doing this
is to perform a PCA and to consider only the components that dominate the variations.

2

i o
Speed 98.1 12.2
Flow 1291.2  48204.2
Occupancy | 10.9 5.2
Headway 2.8 0.3

Table 1: Data derived from clockwise lane 2 M25 flow on 8th October 1996, 0700 - 0900
from detector 4747b (near junction 10, Wisley).

Table 1 illustrates a small snapshot of behaviour; it is clear that the scale of the measurements
differs widely, and in constructing a PCA suitable choices of multiplying factors need to be
made.

This preliminary experiment combined observations from two consecutive detectors near
Wisley; arbitrarily, we perform an analysis of the speed (eight measurements) which we may
assume come from a homogeneous sub-population, and then extend the model by combining
in the eight measurements for flow using Equation 18. The factor delivered in this instance is
0.01335, which gives an optimal model according to the derivation of Section 2.2. Combining
further with occupancy and then headway extends the model further, but suboptimally; this
can be seen by comparing results from different data combinations. Table 2 illustrates the
eigen-variances and compactness, measured as the percentage variation described by the first
three and five principal components, of a selection of models, built from these data.
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Components | Dimension | Eigen-variance | % Ay - A3 | % A1 - A5
S 8 0.252 63.6 83.7
SF 16 0.187 57.0 69.5
SFO 24 0.176 54.7 68.8
SFOH 32 0.161 52.4 66.2
SH 16 0.174 54.1 69.6
SHF 24 0.164 53.2 66.2
SHFO 32 0.157 51.8 64.8

Table 2: Results from building composite models from four components: S=speed, F=flow,
O=O0Occupancy, H=Headway. Note that the order of combination affects the result.

This work is ongoing and is being used to provide an alarm mechanism to indicate ‘incidents’
during normal flow, which itself varies recognizably and which may be identified from this
model.

4 Conclusion

We have presented an approach to extending Principal Components Analysis when the input
variables are from different domains, and their relative scale is unknown. The approach
considers distributions of eigenvalues of covariance matrices and is constructive; in simple
cases it 1s optimal according to an elementary definition.

Two examples of the algorithm in use have been mentioned, both of which depend upon
extracting as much as possible from disparate data sources. Earlier uses of these data had
taken inefficient approaches (for example, scaling all inputs to be zero mean, unit variance),
which had the effect of reducing the descriptive power of some data components. It seems
probable that many other applications exist.

It has been noted that the definition of ‘information’” used to derive the algorithm is not
the usual (or best) one, and it remains to demonstrate that using entropy maximisation
rather than variance minimisation can deliver a constructive solution, although empirically
we discover it can, and such a solution is remarkably close to that given. It also remains to
derive an optimal solution in the case of data being augmented by more than one new data
subset.
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