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AbstractPrincipal Components Analysis (PCA) is of great use in representation of multi-dimensionaldata sets, often providing a useful compression mechanism. Sometimes, input data sets aredrawn from disparate domains, such that components of the input are heterogeneous, makingthem di�cult to compare in scale. When this occurs, it is possible for one component todominate another in the PCA at the expense of the information content of the original data.We present an approach to balancing the contributions of di�erent components that is con-structive; it generalises to the case of the addition of several variables. Conjectures aboutimproved approaches and more complex data sets are presented.The approach is demonstrated on two current research applications.1 IntroductionThe technique of Principal Components Analysis (PCA) has been in use for a considerabletime and is well understood. As a method for representing multidimensional data sets itproves useful in pinpointing the nature of variation, and can therefore be used to great e�ectin data compression by neglecting components of lower importance. Recently, PCA hasbeen used with great success in the computer vision domain in the construction of PointDistribution Models (PDMs) [2, 3], a statistical model of shape which permits non-rigidbodies (for example, faces [6], bones [4, 5] or silhouettes of pedestrians [1]) to be characterisedand therefore located in `di�cult' scenes.PCA accepts a data set X of n-dimensional vectors, X = fx�g ; � = 1; 2; : : : ; N and derivesa linear transform P to give x = �x + Pb (details are provided below); it is customaryto expect the vectors x to have internal coherence in the sense that the components havecorresponding meaning, and therefore scale. An illustration of this would be the derivationof a PDM in which each vector is a concatenation of co-ordinates of boundary points of ashape instance { thus the scale of the components (or, more particularly, the scale of thevariation in the components) is the same. Various applications exist, however, in which thisneed not be (or is not) the case { we examine two of these in Section 3, in which the unitsof measurement of the components of the data vector di�er, giving immediate problems inscale comparison.This paper presents an approach to augmenting data vectors with new components in whichthe appropriate scale is not known. An argument is given that a particular scale is optimal;the argument is constructive and yields the appropriate factor. Two example applicationsin which the technique is relevant are brie
y described.
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2 FormulationPCA is well understood, and a brief summary only is given here. Commencing with apopulation of N n-dimensional vectors,X = fx1;x2; : : : ;xNgx� = (x1�; x2�; : : : ; xn�)we compute the covariance matrix C,Cij = Covar(xi; xj) = E((xi � �xi)(xj � �xj)) (1)C is a real symmetricmatrix and therefore has n real, non-negative eigenvalues �1; �2; : : : ; �n;the associated eigen-vectors (appropriately normalised) y1;y2; : : : ;yn form an orthonormalbasis permitting the vectors x to be rewrittenx = �x+ Pb (2)where P is a matrix whose columns are the eigen-vectors of C.Without loss of generality we may assume the eigen-vectors of C are ordered, so that�1 � �2 � : : : � �n � 0. The eigen-analysis of C is particularly useful; the eigen-vectorcorresponding to �1 is the direction of maximum variation (the principal component) of theoriginal data X; the next most signi�cant eigen-vector (corresponding to �2) is the next mostsigni�cant, and so on. It is thus possible to use Equation 2 as the basis of a compressionscheme; de�ning P (k) to be the �rst k columns of P , and b(k) to be the �rst k componentsof b, we have x � �x+ P (k)b(k)Since the higher indexed elements of b are minimal contributors to the data, for suitable kthis truncation can be an e�cient representation; indeed, it may have the e�ect of suppressingnoise in the data rather than losing `true' information.Consider now the e�ect of augmenting the original data by a new component y to providethe population X̂ , so that x̂� = (x1�; x2�; : : : ; xn�; y�)When calculating the covariance matrix of this augmented population, Equation 1 removesthe in
uence of the value of the mean of individual components, but the scale of variationmay be unknown. Trivially, if the xj are measured in miles, whether the y are measured inmiles or inches will in
uence the eigen-analysis. Therefore we writex̂�(s) = (x1�; x2�; : : : ; xn�; sy�) (3)for a scalar s, and ask how the choice of s a�ects the analysis.The covariance matrix Ĉ is easily calculated, being C augmented by a column and rowĈi(n+1) = Ĉ(n+1)i = s Covar(xi; y)= s i i = 1; 2; : : : ; nĈ(n+1)(n+1) = s2V ar(y)= s2�2y (4)2



Well established results [9] inform us that the eigenvalues �j of Ĉ will interleave those of C,�1 � �1 � �2 � �2 � : : : �n � �n+1 � 0 (5)Supposing we know the eigen-vectors of C to be �1; �2; : : : ; �n, the characteristic polynomialof Ĉ is straightforward to calculate asP (�) = (�� s2�2y) nYi=1(�� �i) � nXi=1 s2 2i nYj=1;j 6=i(�� �j) (6)Now behaviour in the limiting cases is clear; when s = 0, we have �i = �i, i = 1; 2; : : : ; n,and �n+1 = 0, while as s grows, so does �1, while all the other �j are bounded by the intervalin which they lie (Equation 5).2.1 Eigen-varianceThe distribution of eigenvalues - or eigen-spectrum { of Ĉ is a measure of the correlationbetween the variables. For compression purposes, we seek a non-uniform distribution; con-versely, when introducing a new variable we are interested in it communicating as much aspossible to the model.Clearly when s = 0 there is no contribution from y, while as s becomes large the in
uence ofthe y component dominates the analysis, ultimately suppressing any contribution from thexi { between these two extremes we might seek a position in which the eigen-spectrum of Ĉprovides maximal information, where we are maximising the descriptive power of the newvariable y. One way of doing this is to ask for the spectrum to exhibit minimum variance,thereby requiring that each component, in a relative sense, contributes as much as it can tothe representation.Speci�cally, we take the distribution of normalised eigenvaluesM = n+1Xj=1 �j~�i = �iM (7)and consider the variance of these quantitiesV = V (s) = 1n+ 1 n+1Xj=1 ~�2j � 1(n+ 1)2 (8)We call V the eigen-variance. As s ! 1 (at which �1 dominates all other eigenvalues),V (s) ! 1 � 1n+1 . The minimum value V (s) = 0 is assumed when all eigenvalues are equal(and there is no correlation at all between the components of the original data).Theorem 1: For s � 0, V (s) is unimodal, reaching a minimum ats =s�2yPni=1 �2i �Pni=1  2i Pni=1 �i�2y(�2yPni=1 �i �Pni=1  2i )3



Proof: If the characteristic polynomial of Ĉ is writtenP (�) = a0 + a1� + a2�2 + : : :+ an�n + �n+1then �an = n+1Xj=1 �j =Man�1 = 12 n+1Xj=1 n+1Xk=1;k 6=j �j�kThen V (s) = 1n+ 1 n+1Xj=1 ~�2j � 1(n+ 1)2= 1M2(n+ 1) n+1Xj=1 �2j � 1(n+ 1)2= 1M2(n+ 1)((n+1Xj=1 �j)2 � n+1Xj=1 n+1Xk=1;k 6=j �j�k) � 1(n+ 1)2= 1a2n(n+ 1)(a2n � 2an�1) � 1(n+ 1)2= n(n+ 1)2 � 2an�1a2n(n+ 1) (9)From Equation 6 an = �(s2�2y + nXi=1 �i)an�1 = 12 nXj=1 nXk=1;k 6=j �j�k + s2�2y nXi=1 �i � s2 nXi=1  2i (10)Writing � =Pni=1 �i �x = 12 nXj=1 nXk=1;k 6=j �j�k�2 =Pni=1 �2i 	 = nXi=1  2i (11)Equations 9 and 10 give V (s) = n(n+ 1)2 � 2(�x + s2�2y�� s2	)(s2�2y + �)2(n+ 1)4



and hence dVds = 8s�2y(�x + s2�2y�� s2	)(s2�2y + �)3(n + 1) � 4s(�2y��	)(s2�2y + �)2(n+ 1)= 4s(2�2y(�x + s2�2y�� s2	)� (s2�2y + �)(�2y��	))(s2�2y + �)3(n+ 1)= 4s(s2(�4y�� �2y	)� (�2y�2 � 2�2y�x �	�))(s2�2y + �)3(n+ 1)= 4s(s2�2y(�2y��	)� (�2y�2 �	�))(s2�2y + �)3(n+ 1) (12)Equating dVds to 0 gives s = 0s = s �2y�2 �	��2y(�2y��	)s = �s �2y�2 �	��2y(�2y��	) (13)The quantity under the square root is positive, unless y� = k; � = 1; 2; : : : ; N for someconstant k, in which case it is 0 and V (s) is constant. To see this, we writeZ = Z(y) = �2y�2 �	�= �2N NX�=1(y� � �y)2 � �N2 nXi=1 ( NX�=1(xi� � �xi)(y� � �y))2Then dZdy� = �2N (2(y� � �y)(1 � 1N )) � �N2 nXi=1 (2(xi� � �xi)(y� � �y)(1� 1N ))= �2N (1 � 1N )(y� � �y)Thus these derivatives are simultaneously 0 when all the y� are equal; clearly this providesa minimum at which Z = 0. Note also that�2y��	 = �2y�2 � �	� �2y�2 � �	= Zand thus the denominator is non-negative too.The limiting case of y� = k is of no interest since it provides nothing toward the descriptionof the population X̂. �Thus we have a unique positive value of s that minimises V (s); Figure 1 illustrates V for aparticular data set. 5



2.2 Extension to several variablesIt is natural to consider extending this approach to more than one additional variable; thus,instead of equation 3, we may havex̂�(s) = (x1�; x2�; : : : ; xn�; sy1�; sy2�; : : : ; syk�) (14)Following the same approach as in Section 2.1, we seek the terms in �n+k�1 and �n+k�2 ofthe characteristic polynomial of the covariance matrix Ĉ derived from these data. De�ne ij = Covar(xi; yj)If we suppose that the eigenvalues of the augmented data y� = (y1�; y2�; : : : ; yk�) are !1; !2; : : : ; !k,it is possible to �nd a rotation of the augmented data whose covariance matrix isĈii = �i; i = 1; 2; : : : ; nĈ(n+i)(n+i) = s2!i; i = 1; 2; : : : ; kĈi(n+j) = Ĉ(n+j)i = s ij; i = 1; 2; : : : ; n; j = 1; 2; : : : ; k (15)with all other entries 0.For convenience, we will write
 =Pki=1 !i 
x = 12 kXj=1 kXk=1;k 6=j !j!k
2 =Pki=1 !2i 	 = nXi=1 kXj=1  2ij (16)with �;�x;�2 as before. Analogously to Equation 10, it is then straightforward to see thatthe relevant polynomial coe�cients arean = �(L+ s2
)an�1 = �x + s4
x + s2�
� s2	 (17)Hence V (s) = n(n+ 1)2 � 2(�x + s4
x + s2�
� s2	)(s2
 + �)2(n+ 1)and dVds = 4s(s2(�
2 �	
)� (�2
�	�))(s2
 + �)3(n+ 1)whence, for s > 0, equating dVds to 0 givess =r�2
�	��
2 �	
 (18)A similar argument to before guarantees that this quantity is real.6



More generally, it might not be reasonable to assume that the extra variables are `tied' toeach other, in which case each would demand a di�erent scale;x̂�(s) = (x1�; x2�; : : : ; xn�; s1y1�; s2y2�; : : : ; skyk�) (19)and we would seek `optimal' values of s = (s1; s2; : : : ; sk). The hypersurface V (s) has aunique minimum: We can deduce this by noting that if V (s) had two minima, at s1 and s2,say, it would be possible to construct a rotation of the data such that one axis was parallelto the line going s1 and s2, and thence to construct a counterexample to Theorem 1.The location of the minimum is not obvious, although a strategy for the selection of asuboptimal s exists by adding the variables yj singly, and selecting each value of sj viaequation 13.2.3 Eigen-entropyA more common measure of information content than variance is entropy. Corresponding toEquation 8 we might de�ne the eigen-entropy asE = E(s) = � n+1Xi=1 ~�i log( ~�i)= log(M) � 1M n+1Xi=1 �i log(�i) (20)and then ask where maxima of this quantity lie.In all the data sets we have observed { both single and multi-variable { the quantity E(s) hasbeen unimodal, exhibiting a maximum at which the information content of the eigenvaluesis at a peak, Further, this peak is achieved by a value of s (or s) very close to the valuethat provides the minimum of V (s). It remains a conjecture that this quantity is indeedunimodal for suitable s (s), and unknown as to what that mode may be.Figure 1 illustrates E for a particular data set augmented by one variable y.3 ApplicationsThis work has been prompted by two independent applications.3.1 The `Robotic Sheepdog' projectThe `robotic sheepdog' project is constructing an autonomous robot that has the intelligenceto herd living creatures (for the purposes of demonstration, ducks). The project and itsmotivation are described elsewhere [7, 8].The robot receives its information about its own and the ducks' parameters (position andvelocity) via a camera monitoring the scene. The ducks behave in a 
ocking manner, with7



the coarse shape of the 
ock being a good indicator of their behaviour - it is thus naturalto model the 
ock using the Point Distribution Models which have proved very successful inmodelling non-rigid shapes in other domains. This approach has been seen to work well.
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We thus need to add six dimensions to the data used to describe shape alone; this we havedone using the approach outlined in Section 2.2. The orthogonal eigen-system so derivedcontains signi�cant redundancy (correlation between the components) and, after truncationof the less signi�cant eigen-vectors from the representation, is being used as the basis of apredictor of duck behaviour derived from actual observation.As an illustration, Figures 1 and 3 consider the addition of solely the robot distance param-eter, and illustrate the eigen-spectrum in the cases� s = 0: This distribution is exactly that of the unaugmented data set.� s = 0:955: This is the optimum derived from Equation 13, so this distribution of valuescarries maximal information according to the de�nition of minimum variance. Figure1 shows that a lower value would give maximal information according to an entropyde�nition.� s = 1:8: Here it is clear that the most signi�cant eigenvalue is already dominatingsigni�cantly.
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3.2 Analysis of motorway 
ow dataThe M25 motorway is an orbital highway around the city of London of circumference inexcess of 300 kilometres; for the majority of its length it carries four lanes of tra�c in bothdirections. The usually heavy 
ow is monitored at minute intervals by detectors placedapproximately 500 metres apart; at each detector station four quantities are measured ineach lane { speed (kilometres per hour), 
ow (vehicles per hour), occupancy (percentage oftime the detector is `occupied') and headway (the time interval between the same point ofsuccessive vehicles). This apparatus generates very signi�cant quantities of uninterrupteddata that describe a highly complex and dynamic system (although it may be immediatelyapparent that the data will contain signi�cant redundancy).It is common to consider sub-networks for monitoring and diagnostic purposes { for exam-ple, the detectors in the neighbourhood of an interchange, or a small number of consecutivedetectors on a junction-free stretch; at simplest, we might consider two detectors that woulddescribe the behaviour of approximately one kilometre of road by delivering (in each direc-tion) a 32-dimensional vector every minute.The behaviour of tra�c makes these raw data very noisy, although patterns are clearly visiblewithin it; for example, rush hour behaviour is clearly di�erent to steady state mid-day 
owor the light 
ow of the night. It is also apparent when acute congestion occurs, and thatthe `recovery' of 
ow from an incident is di�erent again. It is useful therefore to considerapproaches to extracting these patterns from the mass of data. One approach to doing thisis to perform a PCA and to consider only the components that dominate the variations.� �2Speed 98.1 12.2Flow 1291.2 48204.2Occupancy 10.9 5.2Headway 2.8 0.3Table 1: Data derived from clockwise lane 2 M25 
ow on 8th October 1996, 0700 - 0900from detector 4747b (near junction 10, Wisley).Table 1 illustrates a small snapshot of behaviour; it is clear that the scale of the measurementsdi�ers widely, and in constructing a PCA suitable choices of multiplying factors need to bemade.This preliminary experiment combined observations from two consecutive detectors nearWisley; arbitrarily, we perform an analysis of the speed (eight measurements) which we mayassume come from a homogeneous sub-population, and then extend the model by combiningin the eight measurements for 
ow using Equation 18. The factor delivered in this instance is0.01335, which gives an optimal model according to the derivation of Section 2.2. Combiningfurther with occupancy and then headway extends the model further, but suboptimally; thiscan be seen by comparing results from di�erent data combinations. Table 2 illustrates theeigen-variances and compactness, measured as the percentage variation described by the �rstthree and �ve principal components, of a selection of models, built from these data.10



Components Dimension Eigen-variance % �1 - �3 % �1 - �5S 8 0.252 63.6 83.7SF 16 0.187 57.0 69.5SFO 24 0.176 54.7 68.8SFOH 32 0.161 52.4 66.2SH 16 0.174 54.1 69.6SHF 24 0.164 53.2 66.2SHFO 32 0.157 51.8 64.8Table 2: Results from building composite models from four components: S=speed, F=
ow,O=Occupancy, H=Headway. Note that the order of combination a�ects the result.This work is ongoing and is being used to provide an alarm mechanism to indicate `incidents'during normal 
ow, which itself varies recognizably and which may be identi�ed from thismodel.4 ConclusionWe have presented an approach to extending Principal Components Analysis when the inputvariables are from di�erent domains, and their relative scale is unknown. The approachconsiders distributions of eigenvalues of covariance matrices and is constructive; in simplecases it is optimal according to an elementary de�nition.Two examples of the algorithm in use have been mentioned, both of which depend uponextracting as much as possible from disparate data sources. Earlier uses of these data hadtaken ine�cient approaches (for example, scaling all inputs to be zero mean, unit variance),which had the e�ect of reducing the descriptive power of some data components. It seemsprobable that many other applications exist.It has been noted that the de�nition of `information' used to derive the algorithm is notthe usual (or best) one, and it remains to demonstrate that using entropy maximisationrather than variance minimisation can deliver a constructive solution, although empiricallywe discover it can, and such a solution is remarkably close to that given. It also remains toderive an optimal solution in the case of data being augmented by more than one new datasubset.5 AcknowledgementsAcknowledgements are due to Neil Sumpter for data on the Robotic Sheepdog, and HaiboChen for data from the M25. Jenny Gregory is to be thanked for conducting preliminaryexperiments that demonstrated the need for this analysis.11
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