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Abstract. Homotopy coends are an example of an indexed homotopy colimit.
In this expository note, we give a definition of homotopy coend for arbitrary
unenriched model categories and show how homotopy coends may be computed
either using the cyclic bar resolution or with Grothendieck’s derivator axioms.

1. Introduction

Homotopy colimits and their explicit realization with the bar resolution are two
of the most useful tools in the topologist’s kit: the decomposition of a space as a
homotopy colimit of its constituent cells or skeleta is fundamental to many inductive
arguments. Consequently the theory of homotopy colimits is (or ought to be)
fundamental to any abstract axiomatization of homotopy theory. By now, there
are many treatments of homotopy colimits and limits in the context of Quillen’s
model categories [21] and various generalizations [2, 3, 4, 9, 12, 13, 15, 18, 23]. This
note is a brief description of the properties of homotopy coends, a special kind of
homotopy colimit. It is written in the language of Quillen model categories, but
most of the arguments rely only on the sorts of properties possessed by weak left
Grothendieck derivators.

Homotopy coends appear frequently in the guise of a homotopy-invariant ten-
sor product: e.g., the homotopy left Kan extension of a diagram X : I → sSet
along f : I → K at k ∈ K ought to be the derived I -tensor product of the
contravariant I -functor K (f−, k) : I op → Set and the covariant I -functor
X. We expect to compute this by the realization of the two-sided bar resolution
B·(K (f−, k),I , X). However, in general there is no reason to restrict oneself to
homotopy coends of I op ×I -diagrams that are obtained by products of I op and
I -diagrams. Indeed, the so-called cyclic bar resolution [20] (discussed in Section
5) is a workable generalization for homotopy coends in sSet. However, when we
replace sSet by an arbitrary model category C , we may lose the simplicial enrich-
ment; we can’t use the bar resolution without the machinery of framings [9, 13, 15]
or Dugger’s structure theorems for model categories [7, 8, 6]. Moreover, although
we can compute homotopy coends with the cyclic bar construction, we may wish
to use another resolution. In fact this is possible. By regarding homotopy coends
as homotopy colimits of certain diagrams over the twisted arrow category, we ob-
tain a construction that works in any model category, agrees with the traditional
definition of homotopy coend, and does not rely on an explicit resolution.

The material in this paper has appeared in some form or another in the literature
of homotopy colimits: Dwyer and Kan introduced a homotopy end via the twisted
arrow category in [10] and a comparison theorem for products of diagrams appears
in [14].
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2. Axiomatic derived left extensions and Grothendieck derivators

In this section, we’ll give a brief recapitulation of homotopy left Kan extensions
following [4]. Suppose C is a cofibrantly generated model category with all small
limits and colimits. Recall that for any small category I , the category C I of dia-
grams admits a model structure known as the projective model structure in which
weak equivalences (respectively fibrations) are precisely those natural transforma-
tions X → Y for which Xi → Yi is a weak equivalence (respectively fibration) for
all i ∈ I [13, 15]. We can then construct the homotopy category HoC I . Given
any functor f : I → K , the pullback f∗ : C K → C I clearly preserves weak
equivalences. In fact, something more is true: f∗ is a right Quillen functor, since it
preserves projective fibrations as well. Its left adjoint is left Kan extension f! [19].
This adjunction descends to an adjunction

Lf! : HoC I // Ho C K : f∗oo

on the level of homotopy categories. When K = ∗, the derived pushfoward Lf! is
also called the homotopy colimit functor and denoted hocolimI . Note that although
the projective model structure ensures that all these derived functors exist, they
are uniquely determined simply by the weak equivalences of C .

Let’s examine this construction from a global perspective. We make the following
observations:

(1) The pullback functors fit together to give a strict 2-functor Catop → CAT
which assigns to I the category Ho C I . Note that this reverses both the
direction of 1-cells and 2-cells. By the uniqueness of adjunctions (or, if the
reader prefers, the fact that derived functors compose), Lg!Lf! ' L(gf)!
naturally if f and g are composable.

(2) Suppose Is, s ∈ S is a (possibly empty) set of small categories and I =∐
s∈S Is. The resulting product of pullback maps

Ho C I →
∏
s∈S

Ho C Is

is an equivalence of categories.
(3) Suppose I is a small category; let j : I ◦ → I denote the inclusion of

the lluf discrete subcategory of I (so obI ◦ = obI ). Then the functor
j∗ : Ho C I → Ho C I op

is conservative: if j∗F is a weak equivalence,
F ∈ arC I , then F is a weak equivalence.

(4) Suppose that f : I → K is a functor and k ∈ K . Write f ↓ k for the
comma category of pairs i ∈ I , fi → k. The 2-commutativity of the square

(2.1)

f ↓ k

⇐

π //

p

��

I

f

��
∗

k
// K

gives a change-of-base natural transformation

(2.2) Lp!π
∗ → k∗Lf!.

This is a weak equivalence: if X is a diagram I → C , then

(Lf!X)k ' hocolim
f↓k

(X ◦ π).
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In the case that C is cofibrantly generated, one can prove this by noting
that π∗ and k∗ are both left and right Quillen and then reducing (2.2) to
the usual formula for left Kan extensions—see [5, Proposition 3.4.14] or [4].
A more geometric way to see this, when C is simplicially enriched, is using
the bar resolution; we shall display the resolution in Section 5, but we’ll be
using (2.2) there, taking this item as a given.

A fancy way of saying this is that the functor Ho C− : Cat → CAT is a weak left
Grothendieck derivator. Our properties 2–4 are axioms Der1, Der2, and Der4g [4]
(see also [12]).1

The properties we enumerated above have some far-reaching consequences. A
simple observation, which we’ll be making use of later, is the following:

Lemma 2.1. Suppose f : K → L is a functor between small categories and I is
a small category. The commutative square

(2.3)

I ×K

p

��

id×f // I ×L

π

��
K

f
// L

induces a natural isomorphism

(2.4) Lp!(id×f)∗ → f∗Lπ!.

Here p and π are the projection functors onto K and L respectively.

This ought to be true because f∗ preserves colimits and weak equivalences; but
it is not left Quillen in general. An example of a counterexample is the functor
f : G → ∗, G a nontrivial group: the cofibrant objects in sSetG must be levelwise
free G-sets, but the objects in the essential image of f∗ have trivial G-action. Our
proof is a consequence of the axioms 1–4 enumerated above; the reader is invited
to translate it into the language of model categories.

Proof. If K is a point, the lemma says that homotopy colimits are computed
pointwise in a functor category. We will first make a reduction to that case. Suppose
k ∈ K ; we’ll also write k for the functor ∗ → K mapping the unique object of ∗
to k. It is sufficient to check that

k∗Lp!(id×f)∗ → k∗f∗Lπ!

is a weak equivalence, since all the functors k∗ collectively are conservative. Now
extend (2.3) to the left, observing that p ↓ k is isomorphic to I × (K ↓ k):

I
id×g //

r

��

I × (K ↓ k)

⇐q

��

id×ρ // I ×K

p

��

id×f // I ×L

π

��
∗ ∗

k
// K

f
// L

We use the base-change equivalence (2.2) and functoriality to reduce our problem
to showing that

Lq!(id×fρ)∗ → (fk)∗Lπ!

1Axiom Der3g is the existence of the adjunctions Lf! a f∗. The “g” abbreviates gauche; the
author is reluctant to translate this established notation).
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is a weak equivalence.
Let g : ∗ → K ↓ k be the inclusion of the terminal object. Then g is right

adjoint to the unique functor ` : K ↓ k → ∗. This forces `∗ to be right adjoint to
g∗ by functoriality, so g∗ = L`!. What’s more, since `g → id is an isomorphism,
we see that id → `∗L`! is an isomorphism. This is [4, Lemme 1.9]. Noting that
fρg = fk, we obtain a further reduction: we need to show that

Lr!(id×fk)∗ → (fk)∗Lπ!

is a weak equivalence. This follows from an analogous consideration of the diagram

I

r

��

// I × (L ↓ fk)

⇐

��

// I ×L

π

��
∗ ∗ fk // L .

�

We’ll also need a much deeper property of homotopy colimits:

Definition 2.2. Suppose I is a small category. Write NI for the nerve of I , i.e,
the simplicial set whose n-simplices are functors [n] → I . Now suppose g : I → K
is a functor between small categories. We say f is right homotopy cofinal if N(k ↓ f)
is weakly contractible for all k ∈ K .

Theorem 2.3 ([13, Theorem 19.6.7 (a)]). With notation as above, suppose X :
K → C is a diagram in an arbitrary small-cocomplete model category C . The
natural map

hocolim
I

g∗X → hocolim
K

X

is a weak equivalence.

We won’t reprise a proof of this theorem. Note that when g is a right adjoint, it
is right homotopy cofinal. The proof in this special case is straightforward (either
using the cofibrant generation of C , or the properties outlined above). One of the
deep consequences of Cisinski’s work [5] is that Theorem 2.3 holds in much greater
generality, in essence for any Grothendieck derivator. Our paper will only discuss
model categories, but the translation into the language of an arbitrary derivator
should be clear.

We close this section with a remark. What if C is not cofibrantly generated? The
diagram categories C I may not have a model structure with weak equivalences the
objectwise weak equivalences. It is a remarkable fact that Ho C I and all associated
homotopy left and right Kan extensions may be constructed for an arbitrary small-
complete and cocomplete model category C . Conceptually, we can take Ho C I to
be the fundamental category of (NcohC )I , where Ncoh is the coherent nerve. There
are many approaches to this in the literature: in addition to [4], some references
are [2, 3, 9, 13, 15, 18] and [23] for the enriched case. The key point is that
the enumerated properties 1–4 still hold for an arbitrary model category C . In
particular, we can dualize to consider homotopy right Kan extensions in C . In
the remainder of this paper, we’ll only use these properties of homotopy colimits
and drop the cofibrant generation hypothesis, so our results are readily dualized to
homotopy limits and ends.



A NOTE ON UNENRICHED HOMOTOPY COENDS 5

3. Homotopy coends

Suppose I is a small category and C a category with all small colimits. Write
eI for the category I op × I . A special cocone on a diagram F : eI → C is a
collection of arrows ϕi : F i

i → X so that given any arrow f : j → i in I , the square

(3.1)

F i
j

f∗ //

f∗

��

F j
j

ϕj

��
F i

i ϕi

// X

commutes. The initial special cocone on F is the coend of F and is denoted
∫ i∈I

F i
i

[19]. Coends can be manipulated in some ways similar to integrals; hence the
suggestive notation. We can express

∫ i∈I
F i

i as a colimit in the following way.
Associated to I is a category we shall call the lower twisted arrow category arτ I .
The objects of arτ I are arrows in I . A map f → g is a diagram

(3.2)

·

f

��

// ·
g

��
· ·,oo

i.e., a factorization of f through g. The lower twisted arrow category is the opposite
of the Grothendieck construction on the Hom-functor I (−,−) : eI → Set (for
this definition, see, e.g., [24]). It is equipped with source and target functors s :
arτ I → I and t : arτ I → I op. The coend

∫ i∈I
F i

i may be expressed as the
colimit of (t×s)∗F over arτ I [19]. We also record another formulation of left Kan
extensions in [19]: given f : I → K , a diagram F : I → C and D ∈ K , there is
a natural isomorphism

(3.3)
∫ i∈I

K (fi,D)× Fi
∼= (f!F )D.

Now suppose C is a small-cocomplete model category. The coend functor does
not preserve weak equivalences of diagrams. But the above discussion suggests a
homotopy-invariant replacement for

∫ I : given a diagram F : eI → C , we set

(3.4)
∫ i∈I

L

F i
i = hocolim

arτ I
(t× s)∗F.

Dwyer and Kan give a dual construction of homotopy ends in [10] in order to
compute the derived mapping space between two diagrams of simplicial sets. We
immediately have the following:

Proposition 3.1. Homotopy coend preserves weak equivalences of diagrams.

In this paper we will prove some other properties of the hoomotopy coend functor,
the most important of which is the following:

Theorem 3.2. Let f : I → K be a functor between small categories. Suppose C
is a small-cocomplete model category and F : I → C is a diagram such that Fi is
cofibrant for all i ∈ I . Then there is a weak equivalence

(3.5)
∫ i∈I

L

K (fi,D)× Fi → (Lf!F )D
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natural in F and D ∈ K .

Theorem 3.2 is a derived formulation of (3.3). Note that we need Fi to be
cofibrant since the copower functor K (fi,D) × − may not preserve weak equiva-
lences. If coproducts in C preserve weak equivalences, then this assumption may
be dropped.

We shall prove Theorem 3.2 in Section 4. Although the proof is involved, it is
straightforward. Before proceeding, we’ll list some other properties of the homotopy
coend functor whose proofs are all straightforward.

Proposition 3.3. Suppose X : eI → C is a diagram. Let τ : I op×I → I×I op

denote the interchange functor. Then there is a natural weak equivalence

(3.6)
∫ i∈I

L

Xi
i '

∫ i∈I op

L

(τ∗X)i
i.

Proposition 3.4 (Fubini’s theorem for homotopy coends). Suppose I and K are
small categories and

X : e(I ×K ) → C

is a diagram. Then there is a natural weak equivalence

(3.7)
∫ i,k∈I×K

L

Xi,k
i,k '

∫ i∈I

L

∫ k∈K

L

Xi,k
i,k .

Proposition 3.5. Suppose X : eI → C K is a diagram. There is a weak equiva-
lence

(3.8)
( ∫ i∈I

L

Xi
i

)
k

'
∫ i∈I

L

Xi
i,k

natural in k ∈ K and X.

Proposition 3.6. Suppose F : C → D is a left Quillen functor and X : eI → C
a diagram. Write LF for the left derived functor of F ; then there is a natural weak
equivalence

(3.9)
∫ i∈I

L

LF (Xi
i ) ' LF

∫ i∈I

L

Xi
i

The proofs of most of these are routine. Propositions 3.4 and 3.5 follow from
immediately from Lemma 2.1.

3.1. Universality of the coend and enriched homotopy coends. With the
language of enriched category theory, coends can be expressed as an indexed colimit
[17]: the weight for a diagram X : eI op → C is the Hom-functor I (−,−) : eI →
Set. This is related to the fact that the lower twisted arrow category arτ I is
the opposite of the Grothendieck construction applied to I (−,−). In enriched
category theory, one is forced to use the language of weights rather than arτ I .

Homotopy colimit may be defined in terms of a universal property, namely
hocolim : Ho C I → Ho C is the right Kan extension of colim : C I → Ho C along
the localization map C I → Ho C I . Although Theorem 3.2 and the subsequent
Propositions give some tools for computing homotopy coends, they are not a uni-
versal characterization of homotopy coends. Such a characterization arises from the
language of indexed colimits—as Michael Shulman has pointed out to the author, a
homotopy coend is an example of an indexed homotopy colimit. In a precise sense,



A NOTE ON UNENRICHED HOMOTOPY COENDS 7

the Grothendieck construction used to define the twisted arrow category is standing
in for the weight. In enriched homotopy theory, the Grothendieck construction is
unavailable; we may define homotopy coends either as a weighted homotopy col-
imit, or use the cyclic bar resolution (described below) to first define homotopy
coends as a fundamental construction. There is a discussion of enriched homotopy
coends along these lines in [23, §21]. In a subsequent paper with Mark Behrens,
the author will discuss applications of enriched homotopy coends to categorified
Fourier analysis and Goodwillie calculus [1].

4. A proof of Theorem 3.2

Let C be a small-cocomplete model category. Recall we are trying to construct
a natural weak equivalence∫ i∈I

L

K (fi,D)× Fi → (Lf!F )D,

where F : I → C is objectwise cofibrant, f : I → K is a functor, and D ∈ K .
The difficulty in proving Theorem 3.2 arises from the fact that the functor

(4.1) (i → j) 7→ K (fi,D)× Fj

is unlikely to be cofibrant as a arτ I -diagram, even if F is cofibrant. We will start
by proving Theorem 3.2 in the special case that K = ∗.

As promised, we will first show the following result.

Proposition 4.1. The source functor s : arτ I → I is right homotopy cofinal.
As a result, if F : I → C is a diagram,

∫ i∈I

L
Fi is naturally weakly equivalent to

the homotopy colimit hocolimI F .

Proof. That s is right homotopy cofinal is a consequence of our description of arτ I
as the opposite of a Grothendieck construction. To avoid confusion about variance,
we’ll give an explicit proof. Let i ∈ I . Define a functor i ↓ s → (i ↓ I )op sending
the data

i
g // j

h

��
j′

to i
hg // j′.

This has a left adjoint sending

i
k // j′ to

i
id // i

k

��
j′.

Hence i ↓ s → (i ↓ I )op induces an equivalence on nerves [24]; since (i ↓ I )op has
a terminal object, N(i ↓ s) is weakly contractible, so s is right homotopy cofinal.
By Theorem 2.3, hocolim s∗F and hocolim F are weakly equivalent. �

Before we prove Theorem 3.2, we record a similar computation. Let D ∈ K .
Write Π : arτ (f ↓ D) → arτ I be the functor induced by projection π : f ↓ D → I .
We introduce a bit of shorthand: we’ll write

i
� h // D
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to denote the pair i, h : fi → D in f ↓ D.

Lemma 4.2. Suppose g : i → j is an arrow in I . Regard the set K (fj,D) as a
discrete category and define a functor K (fj,D) → Π ↓ g sending k : fj → D to
the diagram

i
id //

g

��

i

g

��
j ~

k ��>
>>

>>
>>

> j
idoo

D

The functor K (fj,D) → Π ↓ g is a right adjoint and hence homotopy right cofinal.

Proof. The left adjoint sends

i′
h //

g

��

i

g

��
j′

�

k′ ��?
??

??
??

? j
`oo

D

to k′` : j 7→ D. In general, a functor r : A → B is a right adjoint precisely when
b ↓ r has an initial object for all b ∈ B [19], so all right adjoints are homotopy right
cofinal. �

Proof of Theorem 3.2. Let D ∈ K and consider the commutative diagram

(4.2)

arτ (f ↓ D)

s

��

Π // arτ I

s

�� p

��

f ↓ D

q
--

π
// I

∗
The base-change formula (2.2) for homotopy left Kan extensions gives a weak equiv-
alence

Lq!π
∗F ' (Lf!F )D

Since s is right homotopy cofinal, there is a weak equivalence Ls!s
∗π∗F → π∗F ;

hence
Lq!Ls!s

∗π∗F → Lq!π
∗F

is a weak equivalence. But since derived functors compose and (4.2) is commutative,
there is a further equivalence

Lp!LΠ!Π∗s∗F → Lq!Ls!s
∗π∗F.

It suffices to find an equivalence between the arτ I -diagrams

LΠ!Π∗s∗F → (t× s)∗
(
K (f−, D)× F−

)
.
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Weak equivalences are determined pointwise, so this reduces to producing a weak
equivalence

(LΠ!Π∗s∗F )g → K (fj,D)× Fi.

natural in g : i → j. Using base change again, we have a weak equivalence

hocolim
Π↓g

ρ∗s∗F → (LΠ!Π∗s∗F )g

where ρ : Π ↓ g → arτ I is the projection. By Lemma 4.2 and Theorem 2.3, we
obtain the required weak equivalence∐

k∈B(fj,D)

Fi → hocolim
Π↓g

ρ∗s∗F.

Note that we have implicitly used the cofibrance of Fi here, since the coproduct on
the left is really a homotopy colimit indexed on a discrete category. �

5. The cyclic bar construction

So far, we have avoided using any explicit cofibrant resolutions for homotopy
colimits or coends. In this section we’ll describe a well-known modification of
the classical bar resolution that computes homotopy coends (see, e.g., [23, §21]).
Assume C is a simplicial model category, i.e., that C is enriched over the category
sSet of simplicial sets and satisfies Quillen’s axiom SM7 [21]. Let sC = C ∆op

denote the category of simplicial objects in C .

Definition 5.1. Let X : eI → C be a diagram in C . Define the circular bar
resolution of X to be the simplicial object Bcyc

· (I , X) whose n-simplices are

Bcyc
n (I , X) =

∐
ι:[n]→I

X
ι(n)
ι(0) .

Now suppose F : I op → Set and G : I → C are functors. By taking copowers
we can define a functor F ×G : eI → C with (F ×G)i

j = F i ×Gj . The classical
bar resolution is the simplicial object B·(F,I , G) = Bcyc

· (I , F ×G).

The enrichment of C over sSet yields an adjoint pair

|−| : sC // C : Singoo

where |Y·| is the coend
∫ [n]∈∆ ∆[n] ⊗ Yn. We call |Y·| the geometric realization of

Y· and quote without proof the following Proposition, originally due to Reedy [22]
(see also [13, 15]):

Proposition 5.2. The adjunction |−| a Sing is a Quillen pair when sC is equipped
with the Reedy model structure. Furthermore, if X· ∈ sC is Reedy cofibrant, then
there is a weak equivalence |X·| ' hocolim[n]∈∆op Xn.

We now state the main result of this section.

Theorem 5.3. Suppose X : eI → C is an objectwise cofibrant diagram. Then
there is a weak equivalence ∣∣Bcyc

· (I , X)
∣∣ ' ∫ i∈I

L

Xi
i

natural in X.
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Recall that if G : I → C is an objectwise cofibrant diagram,

(5.1)
∣∣B·(∗,I , G)

∣∣ ' hocolim
I

G.

This is a classical fact—in fact, some authors define the homotopy colimit via
the bar resolution (see, for example [2, 13]). The equivalence of the two definitions
follows from the following facts: first, we may define a functor B(I ,I , G) : I → C
given by

(5.2) B(I ,I , G)j =
∣∣B·(I (−, j),I , G)

∣∣.
This maps to the constant simplicial functor at G via the I -functoriality of G.
The resulting map

(5.3) ε :
∣∣B(I ,I , G)

∣∣ → G

is a weak equivalence. Since B(I ,I , G) is Reedy cofibrant in sC , its geometric
realization is cofibrant, so ε is a cofibrant resolution. Furthermore, there is an
isomorphism

(5.4) colim
I

∣∣B(I ,I , G)
∣∣ ∼= ∣∣B·(∗,I , G)

∣∣
In fact, more generally, if f : I → K is a functor and D ∈ K , then

(Lf!G)D '
∣∣B·(K (f−, D),I , G)

∣∣,
so Theorem 5.3 furnishes an alternative proof of Theorem 3.2 in the case that C is
simplicially enriched.

We only need a modest modification of these steps to verify Theorem 5.3. This
is all more-or-less standard, but we’ll reprise the proofs.

Lemma 5.4. Suppose X : eI → C is objectwise cofibrant. Then Bcyc
· (I , X) is

Reedy cofibrant.

Proof. The nth latching map for Bcyc
· (I , X) is the map∐

ι∈(skn−1 NI )n

X
ι(n)
ι(0) →

∐
ι∈(NI )n

X
ι(n)
ι(0) .

By assumption, this is a coproduct of cofibrations. �

Corollary 5.5. The functor
∣∣Bcyc

· (I ,−)
∣∣ preserves weak equivalences of objectwise

cofibrant diagrams eI → C .

Lemma 5.6. Suppose X ∈ s2C is a bisimplicial object in C . Then there is a
natural isomorphism∫ [n],[m]∈∆

(∆[n]×∆[m])⊗Xn,m
∼=

∫ [n]∈∆

∆[n]⊗Xn,n.

Proof of Theorem 5.3. This proof is a slightly modified version of Hollender and
Vogt’s proof of [14, Proposition 6.2]. We’ll actually prove the result for τ∗X, where
τ : eI → eI is the symmetry (two applications of a symmetry are unavoidable in
this method of proof). Define a bisimplicial object B·,· ∈ s2C as follows with

Bm,n =
∐

ι:[m]→I op

∐
κ:[n]→I

I (κ(n), ι(m))×X
ι(0)
κ(0)
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Note that we can identify Bm,n =
∐

X
ι(0)
κ(0) with the coproduct indexed on diagrams

(5.5)

κ(0) // κ(1) // · · · // κ(n)

��
ι(0) ι(1)oo · · ·oo ι(m)oo

in I . Now, diag B·,· is the classical bar resolution

(5.6) B·(I (−,−), eI , X) ∼= B·(∗, arτ I , (t× s)∗X),

so |diag B·,·| '
∫ i∈I

L
Xi

i . Geometrically realize Bm,n in the variable n: for fixed
[m] ∈ ∆, we have∫ [n]∈∆

∆[n]⊗Bm,n
∼=

∐
ι:[m]→I op

∫ [n]∈∆ ∐
κ:[n]→I

I (κ(n), ι(m))×X
ι(0)
κ(0)

∼=
∐

ι:[m]→I op

∣∣B·(I (−, ι(m)),I , X
ι(0)
· )

∣∣
∼= Bcyc

m

(
I op,

∣∣B·(I (−, ι(m)),I , X
ι(0)
· )

∣∣).
Since X is objectwise cofibrant, there is a weak equivalence∣∣B·(I (−, ι(m)),I , X

ι(0)
· )

∣∣ → X
ι(0)
ι(m)

natural in ι(m) and ι(0). Furthermore, both the source and target of this arrow
are cofibrant in C . Now geometrically realize in the m direction; we find there is a
weak equivalence∫ [m],[n]∈∆

(∆[m]×∆[n])⊗Bm,n =
∣∣∣[m] 7→ Bcyc

m

(
I op,

∣∣B·(I (−, ι(m)),I , X
ι(0)
· )

∣∣)∣∣∣
'

∣∣Bcyc
· (I op, τ∗X)

∣∣.
Here τ : eI → eI is the symmetry. Assembling all this together and recalling
Lemma 5.6 and Proposition 3.3, we obtain a chain of weak equivalences∣∣Bcyc

· (I op, τ∗X)
∣∣ ' ∫ i∈I

L

Xi
i '

∫ i∈I op

L

(τ∗X)i
i. �
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xxiv+390. MR MR2294028 (2007k:55002)

6. Daniel Dugger, Combinatorial model categories have presentations, Adv. Math. 164 (2001),
no. 1, 177–201. MR MR1870516 (2002k:18022)

7. , Replacing model categories with simplicial ones, Trans. Amer. Math. Soc. 353 (2001),
no. 12, 5003–5027 (electronic). MR MR1852091 (2002f:55043)

8. , Universal homotopy theories, Adv. Math. 164 (2001), no. 1, 144–176.
MR MR1870515 (2002k:18021)



12 SAMUEL BARUCH ISAACSON

9. William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith, Homotopy
limit functors on model categories and homotopical categories, Mathematical Surveys and
Monographs, vol. 113, American Mathematical Society, Providence, RI, 2004. MR MR2102294
(2005k:18027)

10. William G. Dwyer and Daniel M. Kan, Function complexes for diagrams of simplicial sets,
Nederl. Akad. Wetensch. Indag. Math. 45 (1983), no. 2, 139–147. MR MR705421 (85e:55038)

11. Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Progress in Mathematics,
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