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ABSTRACT

I provide an overview of inverse probability weighted (IPW) M-estimators for

cross section and two-period panel data applications. Under an ignorability

assumption, I show that population parameters are identified, and provide

-----

straightforward rN-consistent and asymptotically normal estimation methods.

I show that estimating a binary response selection model by conditional

maximum likelihood leads to a more efficient estimator than using known

probabilities, a result that unifies several disparate results in the

literature. But IPW estimation is not a panacea: in some important cases of

nonresponse, unweighted estimators will be consistent under weaker

ignorability assumptions.

Keywords: Attrition; Inverse Probability Weighting; M-Estimator;

Nonresponse; Sample Selection; Treatment Effect
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1. INTRODUCTION

The problems of nonrandom sample selection, self selection, and

attrition are potentially very important in microeconometric applications.

An important kind of nonrandom selection, often called incidental truncation,

arises when certain individuals (or units from any underlying population) do

not appear in a random sample due to individual choices or behaviors. A

leading example is where the equation of interest is a wage offer equation

for the population of all adults of working age, but the wage offer is

observed only for working adults. Depending on the nature of the self

selection, using a sample of working people to estimate the wage offer

equation may result in inconsistent estimation of the population wage offer

function.

Problems of survey nonresponse also fall under the rubric of incidental

truncation. For example, a test score (such as IQ) may not be available for

all individuals in a sample because some individuals do not give permission

for that information to be released. Or, in a survey, a family may not

report its annual charitable contributions, even though it reports income and

various demographic characteristics.

When incidental truncation leads to nonobservability of the response

variable in a linear regression model, Heckman’s (1976) solution requires

that there be at least one exogenous variable affecting selection that does

not appear in the structural equation; this is often a tenuous assumption.

Further, in addition to the linear model, Heckman’s approach is known to only

work for special nonlinear models, such as an exponential regression model

[Wooldridge (1997), Terza (1998)]. In cases of survey nonresponse or
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attrition in panel data, the fact that some exogenous variables might not be

observed introduces further complications in applying Heckman’s approach.

An alternative approach to consistent estimation in the presence of

nonrandom selection is based on inverse probability weighting, which has a

long history in statistics and has been recently studied more closely in

econometrics. Horvitz and Thompson (1952) proposed an inverse probability

weighted (IPW) estimator of the population mean when data are nonrandomly

missing. Robins and Rotnitzky (1995) use an IPW estimator in the context of

multiple regression with nonrandomly missing data, and Robins, Rotnitzky and

Zhao (1995) show how an IPW estimator can be used to estimate conditional

means in the presence of attrition in panel data. Horowitz and Manski (1998)

compare weighting and imputation methods for estimating population means.

Rosenbaum (1987) and Hirano, Imbens, and Ridder (2000) study IPW estimators

of average treatment effects.

In this paper I study the properties of inverse probability weighted M-

estimators, thereby providing a unified treatment that includes many special

cases of interest. Under the key assumption that selection is, in an

appropriate sense, ignorable, an inverse probability weighting scheme

generally identifies the population parameters. Special cases include least

squares, conditional maximum likelihood, partial maximum likelihood, and

various quasi-likelihood methods. In fact, any problem that can be written

as minimizing or maximizing a sample average of objective functions fits the

framework, provided basic regularity conditions hold. Studying IPW methods

in a general framework highlights the role of the key ignorability

assumption, and shows that the mechanics and asymptotic theory of IPW

estimation are straightforward.
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Weighting by inverse probabilities can solve a variety of sample

selection problems, including that inherent in estimating average treatment

effects. In addition, the general framework I put forth in Section 3 applies

to variable probability stratified sampling, a case I considered explicitly

in Wooldridge (1999). Outside of stratified sampling, the probability

weights usually must be estimated in a first stage, and I consider the

effects of first-stage estimation on the asymptotic distribution of the

estimator in Section 4. In Section 5 I discuss the pros and cons of

weighting, and Section 6 contains concluding remarks about directions for

future research.

2. THE POPULATION OPTIMIZATION PROBLEM AND RANDOM SAMPLING

We begin with the optimization problem in the population, as this is

needed to define the parameters of interest. This section applies most

directly to nonresponse in a cross section setting, although the

identification arguments readily extend to a two-period panel data setting

with attrition after the first time period.

M
Let w be an M * 1 random vector taking values in W C R . Some aspect of

the distribution of w depends on a P * 1 parameter vector, Q, contained in a

P
parameter space $ C R . Let q(w,Q) denote an objective function depending on

w and Q.

ASSUMPTION 2.1: Q e $ is the unique solution to the population minimizationo

problem

min E[q(w,Q)]. ) (2.1)
Qe$
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In the leading case, Q indexes some correctly specified feature of theo

distribution of w, such as a conditional mean, a conditional median, a

conditional variance, or a full conditional distribution. However,

Assumption 2.1 applies when an underlying model may be misspecified. At this

level, we only assume that Q uniquely solves (2.1). Sufficient, buto

certainly not necessary, for existence of at least one solution is

compactness of $ and continuity of E[q(w,Q)] on $. The uniqueness assumption

plays the role of identification in this general context.

Given a random sample of size N from the population, {w : i = 1,...,N},i

the M-estimator solves the problem

N
min S q(w ,Q). (2.2)i
Qe$ i=1

Under general conditions, the M-estimator is consistent and asymptotically

normal [for example, Wooldridge (2002, Chapter 12)].

A leading example is a linear regression model. Let y be a scalar and x

a 1 * K row vector, and consider the population linear model

y = xQ + u, E(x’u) = 0, (2.3)o

where x would typically contain unity. In other words, Q is the vector ino

the linear projection of y on x in the population. It may also be the case

that E(y|x) = xQ , but this stronger assumption is not required too

consistently estimate Q given a random sample. The objective function foro

2
OLS estimation of Q is q(w,Q) = (y - xQ) .o

If we specify a nonlinear regression function, say m(x,Q), Q e $, and

E(y|x) = m(x,Q ) for some Q e $, then Q minimizeso o o

2
E{[y - m(x,Q)] }. (2.4)

Provided m(W,W) and the distribution of x satisfy reasonable assumptions, Qo
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would be the unique solution. Even if m(x,Q) is misspecified for E(y|x),

there generally is a value Q e $ that uniquely minimizes (2.4). This waso

noted by Huber (1967) and White (1980, 1982). In the nonlinear regression

o
case, the solution to Q is easily shown to be the minimizer of E{[m (x) -o

2 o
m(x,Q)] }, where m (x) _ E(y|x) is the true conditional mean function. In

other words, Q provides the best mean square approximation of m(x,Q) too

o
m (x). From this perspective, Q becomes the population parameter ofo

interest, and nonlinear least squares under random sampling is generally

consistent for Q .o

In the next section we modify the objective function to account for

various forms of nonresponse and stratification.

3. CONSISTENCY OF WEIGHTED M-ESTIMATORS

Nonrandom sampling from a cross-sectional population is conveniently

viewed as follows: we randomly draw w e W from the population, but it isi

not always (fully) observed. Let s denote a binary selection indicator: si i

= 1 if w is observed, s = 0 otherwise. Typically, s is a function of somei i i

elements of w , but s can also depend on unobservables. A generic elementi i

from the population is now denoted (w,s). Because of the selected sample,

identification of Q [introduced in Section 2 as the unique solution too

problem (2.1)] now must be studied in terms of the joint distribution of

(w,s).

The M-estimator that uses the selected sample solves the problem

N
min S s q(w ,Q), (3.1)i i
Qe$ i=1

where N denotes the size of the underlying random sample. The sample size N
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need not be known, although often it is. Notice how the selection indicators

s determine observations actually appearing in the minimization problem.i

The number of observations used in estimating Q is N = s + s + ... + s ,o 0 1 2 N

which is random. To distinguish (3.1) from the weighted estimator to be

introduced shortly, we refer to the estimator from (3.1) as the unweighted M-

^
estimator (using the selected sample), and denote it by Q .u

When will the unweighted M-estimator based on the selected sample

consistently estimate Q , the solution to (2.1)? By a standard analogyo

principle argument [for example, Manski (1988), Wooldridge (2002, Chapter

12)], Q should also uniquely solveo

min E[sWq(w,Q)]. (3.2)
Qe$

Without further assumptions, a solution to (2.1) does not generally solve

(3.2). A simple example is the incidental truncation problem in a linear

regression model (2.3). If s is correlated with the error u, the true

2
regression parameter Q does not generally minimize E[sW(y - xQ) ] becauseo

E(sWx’u) $ 0. Later we show that when we strengthen the population

identification condition and selection is based only on conditioning

variables, then Q solves (3.2). But this does does not cover all cases ofo

interest.

An assumption that allows us to consistently estimate Q , while applyingo

to many problems of data nonobservability, is the following.

ASSUMPTION 3.1: (i) w is observed whenever s = 1. (ii) For a random vector

v containing w, p(v) _ P(s = 1|v) is observed whenever s = 1. )

Part (i) of Assumption 3.1 simply defines when the data are observable;
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presumably, some or all of w is not observed when s = 0, or we would use

standard methods based on random sampling.

Part (ii) is the key. What gives this assumption content is the

requirement that p(v) is observable whenever s = 1; without this assumption,

Assumption 3.1(ii) would be a tautology because we could just take v = w and

define p(w) _ P(s = 1|w).

Assumption 3.1 covers the variable probability (VP) sampling setup

treated in Wooldridge (1999). To see how, partition the sample space W into

J nonempty, mutually exclusive, and exhaustive strata, W , W , ..., W . For1 2 J

each strata, define a binary indicator b = 1[w e W ], so that b + b + ...j j 1 2

+ b = 1. We first draw w from the population and then observe its stratum.J

The VP sampling scheme, as formally described by Wooldridge (1999),

effectively defines a selection indicator, s, by

s = h b + h b + ... + h b ,1 1 2 2 J J

where h is a binary indicator determining whether an observation fallingj

into stratum j is kept. Notice that the h are determined by the samplingj

scheme, and have nothing to do with the original population distribution.

Also, the h typically are not known when s = 0 because all information onj

the observation is discarded when s = 0. By the nature of VP sampling, each

h is independent of w. Let p _ P(h = 1) be the sampling probability forj j j

stratum j, that is, the probability of keeping a randomly drawn observation

that falls into stratum j. Because each h is independent of w, and each bj j

is a deterministic function of w,

E(s|w) = E(h )b + ... + E(h )b = p b + ... + p b _ p(w). (3.3)1 1 J J 1 1 J J

The sampling probabilities, p , are part of the sampling design and arej

generally reported along with other variables. But p(w) is only observed
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when s = 1, that is, for units actually appearing in the sample. If w falls

into stratum j but h = 0, we do not observe the stratum. Nevertheless,j

Assumption 3.1(ii) is satisfied with v _ w.

Assumption 3.1 applies more generally to any stratified sampling scheme

where the sampling probability function p(w) is observed whenever s = 1. For

example, with multi-stage stratified sampling, where the strata in later

stages are nested within strata in earlier stages, we can obtain sampling

probabilities as the products of conditional probabilities, provided that the

final strata are mutually exclusive.

In the context of attrition and other kinds of nonrandom response,

special cases of Assumption 3.1 have been called selection on observables

(for example, Fitzgerald, Gottschalk, and Moffitt (1999)). When v is always

observed, this name makes some sense, although Assumption 3.1 does not imply

that s is a determistic function of v. Still, the name "selection on

observables" is a useful label to distinguish Assumption 3.1 from assumptions

used in Heckman-type approaches to sample selection corrections. In

Heckman’s approach, selection would be correlated with an endogenous variable

(say, y) even after conditioning on all exogenous variables (say, x). In

other words, we have selection on unobservables because selection is

correlated with the part of y that cannot be explained by x.

A simple lemma is at the heart of inverse probability weighted

approaches to estimation. Essentially, it shows that the inverse probability

weighting recovers population moments from a selected sample.

LEMMA 3.1: As in Assumption 3.1, p(v) = P(s = 1|v), where w C v, and assume

that p(v) > 0 with probability one. Then, for any real-valued function g(w)
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such that E[|g(w)|/p(v)] < 8,

E{[s/p(v)]g(w)} = E[g(w)]. (3.4)

PROOF: The assumption E[|g(w)|/p(v)] < 8 implies that both [s/p(v)]g(w) and

g(w) have finite absolute moments, since each is dominated by |g(w)|/p(v).

Then, we can apply the law of iterated expectations: E{[s/p(v)]g(w)} =

E(E{[s/p(v)]g(w)|v}) = E{[E(s|v)/p(v)]g(w)} (because w C v) =

E{[p(v)/p(v)]g(w)} = E[g(w)]. )

Lemma 3.1 immediately suggests how to use the sampling probabilities to

^
consistently estimate Q . The weighted M-estimator, Q , is the solution too w

N
min S [s /p(v )]q(w ,Q). (3.5)i i i
Qe$ i=1

This objective function simply weights each observation for which we observe

w by the inverse conditional probability of appearing in the sample; thei

observations for which s = 0 do not appear in the optimization problem.i

^
Because Assumption 3.1 maintains that p(v ) is observed whenever s = 1, Qi i w

is computable from the observed data.

^
The consistency of Q follows from Lemma 3.1 and a standard applicationw

of the analogy principle (along with regularity conditions, of course).

Under Assumptions 2.1 and 3.1, Lemma 3.1 immediately implies that Q uniquelyo

solves

min E{[s/p(v)]q(w,Q)}. (3.6)
Qe$

In other words, if Q is identified in the population, it is identified byo

the nonrandom sampling scheme under Assumption 3.1. A formal consistency

proof simply requires adding some regularity conditions; other than verifying

identification of Q by the weighted objective function, the proof iso
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standard.

THEOREM 3.1: Assume that

(i) {(v ,s ): i = 1,2,...,N} are random draws from the populationi i

satisfying Assumption 3.1. (Remember, this is not the same as random

sampling from the original population of interest.)

(ii) For some d > 0, p(v) > d > 0 for all v e V.

(iii) Q uniquely solves (2.1), that is, Assumption 2.1 holds.o

(iv) For all Q e $, |q(w,Q)| < b(w) for some function b(W) such that

E[b(w)] < 8.

P
(v) For each w e W, q(w,W) is continuous on $, a compact subset of R .

^ p
Then Q L Q as N L 8.w o

PROOF: All remaining proofs are given in the appendix. )

Given Assumption 3.1, the remaining conditions of Theorem 3.1 are quite

weak, and, with the exception of assumption (ii), are essentially the same as

those used to establish consistency of the M-estimator on random samples.

Conditions such as continuity of q(w,W) and compactness of $ can be relaxed

at the cost of complicating the analysis; see Newey and McFadden (1994) for

discussion.

Part (ii) of Theorem 3.1 requires that the selection probabilities be

bounded from below. This assumption can be relaxed by assuming a dominating

function, say b(v), for |q(w,Q)/p(v)| with E[b(v)] < 8. In the context of

stratified sampling, assumption (ii) implies that each strata sampling

probability is strictly positive.
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Theorem 3.1 applies to a broad range of estimation problems, including

nonlinear least squares, conditional maximum likelihood, partial MLE, quasi-

MLE, and least absolute deviations. The reason for having a selected sample

can be varied: incidental truncation, nonresponse, and attrition, to name

three. Therefore, Theorem 3.1 provides the foundation for a unified approach

to solving nonresponse and stratification in nonlinear models. The key is

Assumption 3.1.

For the comparisons of weighted and unweighted estimators in Section 5,

an important point is that the IPW M-estimator consistently estimates the

unique solution to equation (2.1). There is no presumption that an

underlying model is correctly specified. As we discussed in Section 2, M-

estimators based on random sampling are generally consistent for the solution

to the population problem. Theorem 3.1 is the simple extension to the case

of nonrandom sampling but where sampling probabilities are available that

satisfy Assumption 3.1.

Often we need to estimate the sampling probability function, p(W).

Estimation of the probabilities using parametric methods has no interesting

consequences for the consistency of the weighted M-estimator: consistency

follows under standard regularity conditions from basic results on two-step

estimation [for example, Newey and McFadden (1994)]. However, estimation of

p(v) does have interesting implications for the asymptotic variance of the

weighted M-estimator. Therefore, we postpone a treatment of estimating the

selection probabilities until the next section.

We end this section with an example that is similar to some that arise

in epidemiology [for example, Lin (2000)]. A key feature is that, as with

variable probability sampling, the element in v determining selection isi
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observed only when s = 1.i

EXAMPLE 3.1: Let (x ,y ) be a random draw from a population entering somei i

program or treatment at some point in a specified time interval, say [0,b], b

< 8. Time zero corresponds to the first calendar date at which units can

enter the program. The program or treatment could be the start of

unemployment benefits or medical treatment for an illness. If time is

measured in weeks and the population consists of people entering the program

during a two-year interval, then b = 104.

The x are covariates observed at the start of treatment and y is somei i

measure of usage or cost of the progam or treatment over a given length of

time, say t. We are interested in some feature of the distribution of yi

given x , often a conditional mean or conditional median, but maybe a fulli

conditional distribution. For example, we might be interested in the cost of

unemployment benefits over the duration of an unemployment spell as a

function of covariates observed at the beginning of the spell (including

measures of benefit generosity). If unemployment benefits run out after,

say, 26 weeks, then t = 26. Some people will use a full 26 weeks of benefits

*
while others will use only part of the benefits. Let t denote the length ofi

time on treatment and let 0 < a < b denote the starting time for individuali

i. (Thus, we have, in duration terminology, "flow data.")

Assume that data collection stops at time b, so the duration is censored

*
if t > b - a . Even if we do not observe the full duration, it could stilli i

* *
be that we observe t long enough to observe y . Let t = min(t ,t). (If wei i i i

set t = 8, so that we are interested in, say, lifetime costs for an elderly

person on Medicare, then we only observe those costs if the person dies
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within the interval [0,b].) Then y is observed if and only if t < b - ai i i

or a < b - t . (In other words, we do not observe the costs of thosei i

individuals whose treatment times last longer than t and take them past the

calendar date, b.) Therefore, the selection indicator is s = 1(a < b -i i

*
t ). Now, assume that the starting time, a , is independent of (t ,x ,y ).i i i i i

Then E(s |t ,x ,y ) = P(a < b - t |t ) = G(b - t ), where G(a) _ P(a < a).i i i i i i i i i

Therefore, in Assumption 3.1, we can take v _ (t ,x ,y ) _ (t ,w ). (Onlyi i i i i i

t affects the selection probability.) Note that t is observed only wheni i

the duration is not censored, which exactly corresponds to s = 1. So, giveni

a distribution of starting times -- say, uniform over [0,b] -- we can obtain

p(v ) = G(b - t ) as the selection probabilities. Or, because we have ai i

random sample {a : i = 1,...,N}, we can consistently estimate G(W) quitei

generally. (For example, we could allow for seasonality in the context of

unemployment durations.) We could also allow the starting time distribution

to depend on the covariates x . Letting D(W|W) denote conditionali

*
distribution, we would assume D(a |t ,x ,y ) = D(a |x ) and then estimatei i i i i i

G(W|x ). In these contexts, the x would be always observed.i i

If we are interested in E(y |x ) we could use, say, an exponentiali i

regression function and a quasi-MLE using the gamma log-likelihood, or we

could use log(y ) in a linear regression analysis. We can also handle casesi

where y is a count variable, measuring, say, the number of visits to ai

hospital in the first year covered by an insurance plan. Then, a Poisson

regression model is appropriate. Or, y could be a binary indicator, ini

which case q(x,y,Q) is the log-likelihood for a binary response model. )

13



4. THE ASYMPTOTIC VARIANCE OF THE WEIGHTED M-ESTIMATOR

We now consider a special case of Assumption 3.1 and allow for

estimating the selection probabilities using binary response models for s .i

-----

Showing rN-asymptotic normality of the weighted M-estimator is fairly

straightforward.

We replace Assumption 3.1 with

ASSUMPTION 4.1: (i) The random vector z is always observed and w is observed

when s = 1.

(ii) w is ignorable in the selection equation, conditional on z:

P(s = 1|w,z) = P(s = 1|z) _ p(z). (4.1)

(iii) For a known function p(W,W),

p(z) = p(z,G ), z e Z, (4.2)o

M
where G e ! C R . )o

Assumption 4.1 means that we have a vector, z, which is always observed, that

is a good predictor of selection. For example, in an attrition problem,

where we evaluate a response variable in a second period after participation

in the program in the first period [or the change in the response variable],

we must assume that first-period variables predict attrition sufficiently

well that the responses and covariates in the second period are ignorable.

Assumption 4.1(iii) means that we have a correctly specified parametric model

for the selection probability. In practice, we can use a flexible logit or

probit model. We will not study the possibility of using nonparametric

estimation of p(z), but clearly this is possible under suitable regularity
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conditions. [Hirano, Imbens, and Ridder (2000) show that, in the case of

estimating the average treatment effect under ignorability of treatment,

nonparametric estimation allows one to obtain the most efficient estimator

possible. Extending their results to the general M-estimator case seems

technically challenging, but a good topic for future research.]

^ ^
Let G denote the maximum likelihood estimator (MLE) of G , that is, Go

solves the binary response problem

N
max S {s log[p(z ,G)] + (1 - s )log[1 - p(z ,G)]}. (4.3)i i i i

i=1Ge!

Given that selection is a binary response, and without extra information, the

MLE is the most sensible estimator, as it is asymptotically efficient. We

impose standard regularity conditions on p, such as twice continuous

differentiability in G.

^
The weighted M-estimator, Q , now solvesw

N ^
min S [s /p(z ,G)]q(w ,Q). (4.4)i i i
Qe$ i=1

We will not state a formal consistency result, as there are no interesting

twists, although we must rule out the possibility that response probability

gets arbitrarily close to zero as we vary z in Z and Q in $.

The weighting in (4.4) underlies a popular approach to estimating

average treatment effects. In the treatment effects literature, the goal is

to estimate m - m _ E(y ) - E(y ), the difference in population means with1 0 1 0

and without treatment. The outcomes, y and y , are counterfactual because0 1

each unit from a random sample of the population is either treated or not.

Therefore, we observe only y = (1 - s )y + s y for each individual i. Ai i i0 i i1

key assumption is the so-called ignorability of treatment, which is that, si

is independent of (y ,y ) conditional on the observed set of covariates,i0 i1
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N^ -1 ^
z . Then a consistent estimator of m is m = N S [s /p(z ,G)]y ;i 1 1 i i i

i=1
N^ -1

similarly, a consistent estimator of m is m = N S {(1 - s )/[1 -0 0 i
i=1

^ ^
p(z ,G)]}y . In treatment effect contexts, p(z ,G) is called the propensityi i i

^
score. See Hirano, Imbens, and Ridder (2000) for a careful study of m and1

^
m when the propensity score is estimated nonparametrically. Blundell and0

Costa Dias (this issue) survey other methods for using the propensity score

in program evaluation.

We now sketch a derivation of the asymptotic of the weighted M-estimator

without worrying about the regularity conditions that allow use of the

uniform law of large numbers. We assume that the function q(w,W) is twice

continuously differentiable on the interior of $ for all w e W and that Q iso

in the interior of $. Then, a standard mean value expansion of the score

about Q gives, with probability approaching one,o

N N-1/2 ^ & -1 ^ * ----- ^¨0 = N S [s /p(z ,G)]g(w ,Q ) + N S [s /p(z ,G)]H rN(Q - Q ),i i i o i i i w o7 8i=1 i=1

¨where g(w,Q) _ D q(w ,Q)’ is P * 1 and H is the P * P hessian of q(w ,Q)q i i i

^
with rows evaluated at mean values between Q and Q . Definew o

A _ E{[s /p(z ,G )]H(w ,Q )} = E[H(w ,Q )], (4.5)o i i o i o i o

where the equality follows from Lemma 3.1, and assume A is nonsingular.o

Then, by the uniform weak law of large numbers, we can write

N
----- ^ -1& -1/2 ^ *
rN(Q - Q ) = -A N S [s /p(z ,G)]g + o (1), (4.6)w o o i i i p7 8i=1

were g _ g(w ,Q ). The next step is to use a mean value expansion on thei i o

-1
term multiplying -A , about G . Let p _ p(z ,G ). Theno o i i o

N N-1/2 ^ -1/2
N S [s /p(z ,G)]g = N S (s /p )gi i i i i i

i=1 i=1
----- ^

- E[(s /p )g (D p /p )]rN(G - G ) + o (1), (4.7)i i i g i i o p

where we define D p _ D p(z ,G ) and use the fact that D [1/p(z ,G)] =g i g i o g i

2
-D p(z ,G)/[p(z ,G) ]. If we defineg i i
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C _ E[(s /p )g (D p /p )], (4.8)o i i i g i i

we see that C is the covariance between the score of the weighted M-o

estimator objective function, evaluated at the true parameters, and

D log[p(z ,G )] = D p /p . Next, under standard regularity conditions, weg i o g i i

can write

N
----- ^ -1 -1/2
rN(G - G ) = [E(d d’)] N S d + o (1), (4.9)o i i i p

i=1

where

d _ s (D p’/p ) - (1 - s )[D p’/(1 - p )] (4.10)i i g i i i g i i

is the M * 1 score of the binary response log-likelihood, evaluated at G .o

The next step is important. Because s = s s , we can insert an extra si i i i

multiplying D p /p into the formula for C . Further, because s (1 - s ) =g i i o i i

0, s (D p /p ) = s d’, and soi g i i i i

C = E[(s /p )g (s d’)] = E[(s /p )g d’].o i i i i i i i i i

Now define k _ (s /p )g . Collecting terms together, we have shown thati i i i

N N-1/2 ^ -1/2 -1
N S [s /p(z ,G)]g = N S {k - E(k d’)[E(d d’)] d } + o (1)i i i i i i i i i p

i=1 i=1
N-1/2

_ N S u + o (1), (4.11)i p
i=1

-1
where u _ k - E(k d’)[E(d d’)] d is the P * 1 vector of residuals fromi i i i i i i

the population regression of k on d . Combining (4.11) and (4.6) givesi i

N
----- ^ -1& -1/2 *
rN(Q - Q ) = -A N S u + o (1), (4.12)w o o i p7 8i=1

and so

----- ^ -1 -1
Avar[rN(Q - Q )] = A D A , (4.13)w o o o o

-1
where D _ E(u u’) = E(k k’) - E(k d’)[E(d d’)] E(d k’).o i i i i i i i i i i

Equation (4.13) has several important implications. First, it shows

that, if we somehow happen to know G , so that we could insert the knowno

selection probabilities, p(z ,G ), into the objective function, we shouldi o

nevertheless use the estimated probabilities based on the conditional maximum
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^
likelihood estimator, G. To see why, we can use an even simpler argument to

~
find the asymptotic variance of the estimator, say Q , that uses the knownw

probabilities:

----- ~ -1 -1
Avar[rN(Q - Q )] = A B A , (4.14)w o o o o

where B = E(k k’) = E(g g’/p ). But theno i i i i i

-1
B - D = E(k k’) - E(u u’) = E(k d’)[E(d d’)] E(d k’),o o i i i i i i i i i i

----- ~
positive semi-definite matrix, which immediately implies that Avar[rN(Q -w

----- ^
Q )] - Avar[rN(Q - Q )] is p.s.d.o w o

Interestingly, equation (4.13) implies that, even if we have the model

for P(s = 1|z ) correctly specified, we can do no worse -- and usually doi i

better asymptotically -- by adding nonlinear functions of z to any probit ori

logit estimation. The reason is simple: as we add more functions of z , thei

score vector in the MLE binary response expands (even though the true

coefficients on the new variables are zero), and this implies that the

regression of k on d will have a smaller variance matrix.i i

----- ^
Equation (4.13) suggests simple estimators for Avar[rN(Q - Q )]. Letw o

^ ^ ^ ^
u’ be the 1 * P residuals from the regression k’ on d’, i = 1,...,N, where ki i i i

^ ^ ^ ^
= [s /p(z ,G)]g(z ,Q ), d = d(s ,z ,G), and N is the total number ofi i i w i i i

observations, as before. Then a consistent estimator of D iso

N^ -1 ^ ^
D = N S u u’. (4.15)i i

i=1

A general, consistent estimator of A , iso

N^ -1 ^ ^
A = N S (s /p )H(w ,Q ), (4.16)i i i w

i=1

which, of course, simply weights the selected observations by the estimated

inverse probabilities.

In most econometric applications, w can be partitioned as (x,y), where x

represents the conditioning variables. Then, a simpler estimator of A iso
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often based on G(x ,Q ) _ E[H(w ,Q )|x ]. A simple iterated expectationsi o i o i

^ ^
argument shows that G(x ,Q ) can replace H(w ,Q ) in (4.16) without changingi w i w

the consistency result:

N-1 ^ ^ p
N S (s /p )G(x ,Q ) L A . (4.17)i i i w o

i=1
^

In cases where x is observed for all i, we can drop (s /p ) and use thei i i

N-1 ^
unweighted estimator, N S G(x ,Q ).i w

i=1

The comparison of the estimators that use the estimated versus the known

selection probabilities implies that if we compute the asymptotic variance as

if we have not estimated the probabilities, the standard errors are larger

than necessary, and so confidence intervals and inference are conservative.

In other words, if we obtain significant estimates using the incorrect

standard errors, the corrected standard errors would lead to even larger t

statistics. This is somewhat unusual for two-step estimation problems, where

the prevailing wisdom is that adjusting standard errors for a first stage

estimation usually results in larger standard errors. Interestingly, the

above derivation hinges crucially on the assumption that the parameters in

p(z,G ) are estimated using maximum likelihood binary response. I do noto

know whether the efficiency gains from estimating G carry over to othero

methods of estimating G , such as the one described in Example 3.1.o

The following theorem simply fills in the missing regularity conditions.

THEOREM 4.1: Assume that

(i) {(w ,z ,s ): i = 1,2,...,N} is a random sample from a populationi i i

satisfying Assumption 4.1.

(ii) The assumptions of Theorem 3.1 hold.

(iii) p(z,W) is continuous on the compact set !, twice continuously
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differentiable on int(!), G e int(!), and p(z,G) > d > 0 for all z e Z, G eo

^ ^
!. Let G be the conditional maximum likelihood estimator of G , and let 1/po i

^
_ 1/p(z ,G) be the inverse probability weights.i

(iv) The representation in (4.6) holds, with E[g(w ,Q )] = 0 and Ai o o

nonsingular.

----- ^
Then (4.13) holds, and a consistent estimator of Avar[rN(Q - Q )] isw o

given by

^-1^^-1
A DA , (4.18)

^ ^
where D is given in (4.15) and A is given in (4.16) or (4.17). )

The following example illustrates the broad applicability of Theorem 4.1.

EXAMPLE 4.1: Let m(x,Q) be a parametric conditional mean function for the

scalar response variable y. Assume that for some Q e Q, E(y|x) = m(x,Q ).o o

Let q(w,Q) = log f[y|m(x,Q)] denote the quasi log-likelihood for a member of

the linear exponential family [LEF; for example, GMT (1984)]. Included are

binary response, such as probit and logit and the fractional regression

models of Papke and Wooldridge (1996), Poisson regression models, and gamma

regression models. Let v(x,Q) denote the variance function associated with

the LEF density. In the Poisson case, v(x,Q) = m(x,Q), in the gamma case

2
v(x,Q) = [m(x,Q)] , and in the binary response case v(x,Q) = m(x,Q)[1 -

^
m(x,Q)]. Nonlinear regression is encompassed by taking v(x,Q) _ 1. Let G be

the first-stage probit or logit estimator of s on z , i = 1,...,N, where thei i

^
z are the observed variables that predict sample selection. Let p =i i

^
p(z ,G) be the fitted probabilities. Then the weighted quasi-MLE solvesi

N ^
max S (s /p )log{f[y |m(x ,Q)]}.i i i i
Qe$ i=1
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^
A conservative estimate of the asymptotic variance of Q isw

N -1 N& ^ ^ ^ ^ * & ^2 ^2 ^ ^ ^2*
S (s /p )D m’D m /v S (s /p )e D m’D m /v (4.19)i i q i q i i i i i q i q i i7 8 7 8i=1 i=1

N -1& ^ ^ ^ ^ *
W S (s /p )D m’D m /v ,i i q i q i i7 8i=1

^ ^ ^ ^ ^ ^
where D m _ D m(x ,Q ), v _ v(x ,Q ), and e _ y - m(x ,Q ). This isq i q i w i i w i i i w

identical to the Huber-White "sandwich" estimator using the s = 1i

^
observations but where the quasi-log likelihood has been weighted by 1/p fori

each i. (We have not regressed the weighted score of the quasi-log

^
likelihood on d , the score from the selection probability estimation, ini

forming the matrix in the middle of the sandwich, and that is why the

^
estimator is conservative.) If x is always observed, we can drop s /p fromi i i

the two terms on the outside of the sandwich.

Importantly, we need to use an estimator that has the sandwich form even

if the variance implicit in the linear exponential family is correctly

2
specified up to a constant of proportionality: Var(y|x) = s v(x,Q ). (Thiso o

is a common assumption in the generalized linear models literature.) For

example, for linear or nonlinear regression, we need to use (4.18) (or the

^-1^^-1 2
more precise version A DA /N) even if Var(y|x) = s . For binary response,o

where the variance must be correctly specified if the mean is, we still need

a so-called robust form of the variance matrix estimator. Similar comments

hold for Poisson and gamma regression models.

This example covers some interesting possibilities for estimating

average treatment effects conditional on covariates. For concreteness,

suppose we want to use linear or nonlinear regression, where s is now ai

treatment indicator and we observe y = (1 - s )y + s y , and the notationi i i0 i i1

is the same as before. Let m (x,B) be the model for E(y |x) and m (x,A) be1 1 0

the model for E(y |x); for example, these could be linear or exponential. We0
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want to estimate m (x,B) - m (x,A) at different values of x. Consider1 0

estimating B; the argument for A is essentially identical. If we know the

propsensity score, p(z ,G ) -- the probability of receiving treatment basedi o

on covariates z, with x C z -- the weighted objective function is

N N2 2
S [s /p(z ,G )][y - m (x ,B)] /2 = S [s /p(z ,G )][y - m (x ,B)] /2,i i o i 1 i i i o i1 1 i

i=1 i=1
2

where we use the simple facts that s y = s y and s = s . Thei i i i1 i i

ignorability of treatment assumption is that P(s = 1|y ,y ,z) = P(s = 1|z),0 1

which implies that Assumption 4.1(ii) holds with w = (x,y ). Therefore,1

provided E(y |x) = m (x,B ), we can consistently estimate B using the IPW1 1 o o

nonlinear least squares estimator, and the asymptotic distribution theory

applies directly. Of course, we would estimate G first. Then we can use (1o

^
- s ) and [1 - p(z ,G)] to estimate A , and obtain estimates of m (x,B) -i i o 1

m (x,A). )0

Before leaving this section, we make a final observation. Suppose that,

in the population, the information matrix equality holds: E[g (Q )g (Q )’] =i o i o

E[H (Q )] _ A , as would happen in the case of maximum likelihood estimation.i o o

As is well known from the theory of M-estimation with random samples [for

example, Wooldridge (2002, Chapter 12)], the asymptotic variance of the

-1
properly centered and scaled M-estimator is, under random sampling, A . Ifo

instead we use nonrandom sampling with known sampling probabilities, the

asymptotic variance is given in equation (4.14). The difference in

-1 -1 -1 -1 -1
asymptotic variances, A B A - A = A (B - A )A , is easily shown to beo o o o o o o o

positive semi-definite. In fact, B - A = E(g g’/p ) - E(g g’) = E[g g’(1 -o o i i i i i i i

p )/p ], which is a positive semi-definite matrix. This shows that it isi i

better, under the information matrix equality, to use a random sample than to
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use a nonrandom sample with known sampling weights. However, I cannot claim

a similar result if the probability weights are estimated, as in Theorem 4.1.

-1
It appears that (4.13) could be smaller than A (in the matrix sense),o

although I have not worked out an example.

5. TO WEIGHT OR NOT TO WEIGHT? THAT IS THE QUESTION

An important issue that arises in the analysis of stratified data with

sampling weights is: When should the sampling weights actually be used? The

same question arises with general nonresponse. Unfortunately, there is no

clear-cut answer for all applications.

To provide some guidance about weighting, we must recognize that there

are two issues. The first involves consistency of the two procedures while

the second involves asymptotic efficiency comparisons in cases where both the

weighted and unweighted estimators are consistent. We first consider the

consistency issue.

As we saw in Section 3, the weighted estimator is consistent if we have

an appropriate ignorability assumption and if we either know or can

consistently estimate the sampling probabilities. When sample selection is,

in an appropriate sense, based on conditioning variables, the unweighted M-

estimator is generally consistent. The definition of "conditioning

variables" is effectively that Q minimizes the expected value of theo

objective function conditional on any value of x. We must also assume that

Q is the unique solution to (2.1).o

ASSUMPTION 5.1: (i) For each x e X, Q solves the problemo
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min E[q(w,Q)|x]. (5.1)
Qe$

(ii) Q is the unique solution to problem (3.2). )o

Practically, part (i) of Assumption 5.1 means that the underlying econometric

model -- whether it is a model of a conditional mean, conditional

distribution, conditional quantile, and so on -- is correctly specified. A

simple argument shows that Assumption 5.1(i) is much stronger than just

assuming Q solves problem (2.1): if E[q(w,Q )|x] < E[q(w,Q)|x] for all x eo o

X, Q e $, then iterated expectations implies that Q solves (2.1). As ao

simple example of where the converse is not true, consider the linear

regression model y = xQ + u where E(x’u) = 0. Then, as we discussed ino

2
Section 2, Q minimizes E[(y - xQ) ]. But Q is only guaranteed to minimizeo o

2
E[(y - xQ) |x] for each x if E(u|x) = 0.

Assumption 5.1 holds in the context of conditional MLE when the density

of y given x is correctly specified. It also holds for problems such as

weighted least squares, even in multivariate contexts, when the conditional

mean is correctly specified but the variance function is effectively

misspecified. In the context of quasi-MLE in the linear exponential family

-- for example, Gourieroux, Monfort, and Trognon (1984) -- Assumption 5.1(i)

holds when the conditional mean is correctly specified, even though

everything else about the distribution might be misspecified.

Part (ii) of Assumption 5.1 is needed because we could have situations

where the selected subpopulation is not sufficiently rich to identify Q . Ino

the linear regression case from the previous paragraph, lack of

identification would occur if rank E(x’x|s = 1) < K.

The notion that sampling depends on the conditioning variables x is

24



formalized in part (ii) of the following assumption:

ASSUMPTION 5.2 (i) w is observed whenever s = 1.

(ii) For x from Assumption 5.1,

P(s = 1|w) = P(s = 1|x). ) (5.2)

A leading case where equation (5.2) holds is when s is a deterministic

function of x, that is, selection is based purely on the value of x. Of

course it also holds when s is independent of w, and therefore of x.

It is easy, again using the analogy principle, to show that Assumptions

5.1 and 5.2, along with regularity conditions, imply consistency of the

unweighted estimator. Recall from Section 3 that the limiting minimization

problem that corresponds to the unweighted M-estimator is given by (3.2).

Therefore, we show that Q is a solution to (3.2), again using iteratedo

expectations. For any Q e $,

E[sWq(w,Q)] = E{E[sWq(w,Q)|x]} = E{E(s|x)E[q(w,Q)|x]} (5.3)

= E{p(x)E[q(w,Q)|x]},

where the second equality follows by iterated expectations: E[sWq(w,Q)|x] =

E{E[sWq(w,Q)|w]|x} = E[E(s|w)q(w,Q)|x] = E(s|x)E[q(w,Q)|x] because E(s|w) =

E(s|x) under Assumption 5.1(ii). Because p(x) > 0 for all x, and Qo

minimizes E[q(w,Q)|x] for all x, it follows that

p(x)E[q(w,Q )|x] < p(x)E[q(w,Q)|x], x e X, Q e $. (5.4)o

Taking the expectation with respect to x shows that Q is a solution too

(3.2), as claimed.

25



THEOREM 5.1: Assume that

(i) {(w ,s ): i = 1,2,...,N} are random draws satisfying Assumption 5.2.i i

(ii) Assumption 5.1 holds.

(iii) Parts (iv) and (v) of Theorem 3.1 hold.

^
Then the unweighted M-estimator using the selected sample, Q , is consistentu

^ p
for Q : Q L Q as N L 8. )o u o

Once we verify that Q is identified in the subpopulation, the proof ofo

Theorem 5.1 is very similar to that of Theorem 3.1, and so it is omitted.

One interesting feature of Theorem 5.1 is that it does not require the

selection probabilities to be strictly positive: if selection is based on x

and Assumption 5.1 holds, we can exclude parts of the population that are

defined in terms of x, provided we can still identify Q in the observedo

subpopulation. Entirely excluding part of the population is not possible in

Theorem 3.1. Therefore, if we are willing to make the assumptions in Theorem

5.1, the unweighted estimator has the advantage of allowing selection schemes

where part of the population is not represented at all.

In most cases that are not stratified sampling, there is some positive

probability that any population member will appear in the selected sample.

So, what if the sampling probabilities are strictly positive and depend only

on conditioning variables in the sense of Assumption 5.2? Still, even from a

consistency standpoint, it is not obvious whether or not to weight. As we

discussed in Section 3, the weighted estimator identifies the solution to

(2.1) whether or not there is any kind of model misspecification. The

requirement that Q solves (5.1) for all x essentially means that the featureo

of the distribution of y given x that we are modeling is correctly specified.
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Under misspecification, the solution to problem (3.2) will not be the same as

the solution to (2.1). In other words, the weighted and unweighted

estimators will have different probability limits even though sampling is

exogenous. Since the solution to (3.2) depends on the sampling scheme --

namely, the probabilities P(s = 1|x) = p(x) -- most would conclude that the

unweighted estimator is not very attractive. If we take the broad view that

we want to estimate the vector that solves the population problem even under

misspecification, then the weighted estimator is preferred.

A counterbalance to the previous argument is a somewhat subtle reason to

prefer the unweighted estimator in problems of nonresponse, such as

attrition. This has to do with unobservability of some elements of x for the

excluded subpopulation. Assumptions 5.1 and 5.2 hold. Then we know the

unweighted estimator is consistent. If we also assume the probabilities p(x)

are bounded from below by a strictly positive number, so that part (ii) of

Theorem 3.1 holds, then the weighted estimator based on p(x) or consistent

estimates would also be consistent. The problem for the weighted estimator

is that, if some elements of x are not observed, we cannot estimate the p(x )i

even for the selected sample. Typically, the response probabilities are

estimated from a binary response of s on z using a random sample from thei i

entire population. (Example 3.1 is an exception.) Any element of x that is

missing for a subset of the population cannot be included in z. This means

that, for the purposes of correcting the nonrandom sampling problem, our

first-stage estimation of the selection probabilities could be misspecified.

Importantly, this has nothing to do with whether p(z,G) is correctly

specified for P(s = 1|z). The problem is that, under Assumption 5.2(ii), it

is unlikely that P(s = 1|w,z) = P(s = 1|z) unless we can take x to be a
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subset of z.

If x is always observed then the weighted estimator is more attractive

because we can, and should, include x in z. If, for example, selection is a

deterministic function of x, then a sufficiently flexible model for P(s =

1|z) should pick this out as long as x C z. In addition, the weighted

estimator allows observable factors other than x to affect selection, while

the unweighted estimator effectively does not.

Consider a concrete example. Suppose that, in an initial time period,

we obtain a random sample of people participating in a job training program.

We have, say, before-training earnings, education levels, workforce

experience, and demographic variables. Denote pre-training earnings as y0

and the pre-training covariates as x . Then, some people participate in the0

program, and assume participation is exogenous. Let r be a binary job-

training participation indicator. In follow-up interviews to obtain post-

training earnings and updates on other variables (say, marital status), some

people are not available. So post-training earnings and information on other

variables that change from the first period are unavailable. Denote the

post-training earnings y and the post-training time-varying covariates as1

w . One evaluation approach would try to estimate E(y |r,y ,x ,w ) and study1 1 0 0 1

the effect of r on this expectation. Let s be the attrition indicator (s = 1

if still available in the second time period). Then an unweighted analyis --

this could be a regression approach, an MLE, or a quasi-MLE method that works

under ranom sampling -- is consistent provided

P(s = 1|y ,r,y ,x ,w ) = P(s = 1|r,y ,x ,w ). (5.5)1 0 0 1 0 0 1

(Remember that the unweighted estimator does not require us to estimate the

selection probability.) In applying a weighted M-estimator, we can only
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estimate P(s = 1|r,y ,x ) because w , the vector of time-varying covariates,0 0 1

is missing for those who attrit. Therefore, we must take z _ (r,y ,x ) to0 0

apply the IPW method in Section 4, which means that the needed ignorability

assumption is

P(s = 1|y ,r,y ,x ,w ) = P(s = 1|r,y ,x ). (5.6)1 0 0 1 0 0

Assumption (5.6) is the same as saying s is independent of (y ,w )1 1

conditional on (r,y ,x ). But then s and y are necessarily independent,0 0 1

conditional on (r,y ,x ,w ). In other words, (5.6) implies (5.5), but the0 0 1

converse is not generally true. In fact, since attrition might well be

related to time-varying covariates -- for example, changes in marital status

or job tenure -- (5.5) is practically more appealing than (5.6).

The previous discussion suggests some general considerations when

deciding whether or not to use weighting. In cases where some of the

covariates are unobserved for the unselected part of the population and the

feature of interest -- a conditional expectation, a conditional median, or a

condition distribution as the leading cases -- is conditional on all possible

covariates and any initial response variable, there is a strong argument

against weighting. Effectively, the "kitchen sink" nature of the population

conditional expectation or conditional distribution of interest means that

selection can depend on the broadest set of variables possible, that is,

every variable observed at any time except the response variable after

attrition. Any weighting necessarily excludes from the selection probability

covariates that are not observed after attrition, and so it is consistent

only under stronger assumptions than needed for the unweighted estimator.

When might weighting be preferred in cases of nonresponse on some

covariates? Weighting is most appealing when the model we want to estimate
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has a more structural interpretation and is not simply a kitchen-sink-type

analysis. In the job-training example with attrition described earlier,

suppose we start with an unobserved effects model, which we write for a

random draw from the population as

y = a r + w B + c + u , t = 0, 1, (5.7)it o it it o i it

where c is unobserved heterogeneity and w contains time-varyingi it

covariates, and r is the job-training participation indicator. (In theit

setup discussed above, r = 0 for all i.) Differencing the two time periodsi0

gives a cross-sectional equation,

Dy = a Dr + Dw B + Du . (5.8)i o i i o i

Now, suppose we are only willing to assume E(Du |Dr ,Dw ) = 0. If we had ai i i

random sample, we would just estimate (5.8) by OLS. If we have attrition, we

could still apply OLS to (5.8) under the assumption P(s = 1|Dy ,Dr ,Dw ) =i i i i

P(s = 1|Dr ,Dw ). Unlike in the earlier case, we cannot condition oni i i

initial earnings, y , in the selection probability. In other words, now wei0

have to assume that attrition is ignorable with respect to the change in

earnings conditional only on (Dr ,Dw ). If we instead estimate (5.8) byi i

weighted least squares, using inverse probability weights, then we would

include (y ,x ,r ,r ) in the selection probit or logit, where xi0 i0 i0 i1 i0

contains all initial period covariates. Now the ignorability assumption used

by IPW is not more restrictive than that used by the unweighted analysis, and

so the IPW estimator could be consistent in cases where the unweighted

estimator is not.

So far, our discussion has focused on consistency. But there are also

efficiency issues when the sampling is exogenous, as in Assumption 5.1. In

the context of different kinds of stratified sampling, Wooldridge (1999,
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2001) shows that when w partitions as (x,y) where some feature of the

conditional distribution of y given x is correctly specified, stratification

is a function of x, and a generalized conditional (on x) information matrix

equality holds, then the unweighted estimator is asymptotically more

efficient than the weighted estimator. This covers the fairly well-known

regression and conditional maximum likelihood cases, and many others as well.

Recall from Theorem 4.1 that estimating the selection probabilities

generally leads to a more efficient estimator than using the known p(z ) (ifi

these were available). An important result is that, if Assumptions 5.1 and

5.2 hold, then the asymptotic variance of the weighted estimator is the same

^
whether or not the selection probabilities are estimated. Let Q be thew

^ ~
weighted estimator based on p(x ,G) and let Q be the weighted estimatori w

based on p(x ,G ).i o

THEOREM 5.2: Let the assumptions of Theorem 4.1 hold, and, in addition, make

Assumptions 5.1 and 5.2. (So we take z _ x in Theorem 4.1.) Assume that

part (iv) of Theorem 4.1 can be strengthened to E[g(w ,Q )|x ] = 0, as wouldi o i

hold under Assumption 5.1 under a standard interchange of an integral and

----- ^
partial derivatives. Then E(d’k ) = 0, and therefore Avar rN(Q - Q ) and isi i w o

----- ~
given by equation (4.14), which is the same as Avar rN(Q - Q ). )w o

^ ~
Interestingly, the asymptotic equivalence of Q and Q does not hinge onw w

a generalized information matrix equality. For example, suppose we have a

model for E(y|x), say m(x,Q), and the model is correctly specified -- E(y|x)

= m(x,Q ) for some element of Q in the parameter set. If P(s = 1|y,x) = P(so o

= 1|x) = p(x,G ), and we always observe x, then estimating G by binaryo o
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response MLE leads to the same asymptotic variance as using p(x ,G ), even ifi o

there is heteroskedasticity in Var(y|x) of unknown form. In a quasi-MLE

environment, say, with Poisson regression, the variance can have any form,

^ ~
and the estimators Q and Q are still asymptotically equivalent. In a panelw w

data setting (where selection is in all time periods or not at all), there

can be neglected serial correlation of any form.

We can combine Theorem 5.2 with a generalization of the information

matrix equality from maximum likelihood theory to conclude that the

unweighted estimator is more efficient under correct model specification and

exogenous sampling under standard assumptions. We need a definition:

DEFINTION 5.1: The generalized conditional information matrix equality

2
(GCIME) holds if, for some s > 0,o

2
E{D q(w,Q )’D q(w,Q )|x} = s G(x,Q ), (5.9)q o q o o o

where

2
G(x,Q ) _ E[D q(w,Q )|x]. ) (5.10)o q o

The GCIME is natural for many problems. The GCIME always holds for

conditional MLE under correct specification of the conditional density with

2
s = 1. Another important case is quasi-MLE in the LEF under the so-calledo

generalized linear models (GLM) assumption. This assumption states that

Var(y|x) is proportional to the variance implied by the density used in the

quasi-log likelihood. For example, in Poisson regression, the GLM assumption

2
is Var(y|x) = s E(y|x).o

ASSUMPTION 5.3: The conditional information matrix equality holds. )
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THEOREM 5.3: Assume that Assumptions 5.1, 5.2, and 5.3 hold, along with

^
standard identification and regularity conditions. Let Q be the unweightedu

^
M-estimator using the selected sample, and let Q be the weighted M-estimatorw

using weighting function 1/p(x), where p(x) _ P(s = 1|x). Then

----- ^ 2 -1
Avar rN(Q - Q ) = s {E[p(x)G (x)]} , (5.11)u o o o

and

----- ^ 2 -1 -1
Avar rN(Q - Q ) = s {E[G (x)]} E[G (x)/p(x)]){E[G (x)]} . (5.12)w o o o o o

----- ^ ----- ^
Further, the difference between Avar rN(Q - Q ) and Avar rN(Q - Q ) isw o u o

positive semi-definite. )

This result shows that the weighted estimator is inefficient when selection

is on exogenous variables and the generalized GCIME holds. This provides

further support for using the unweighted estimator when we think selection is

determined by conditioning variables. Not suprisingly, when the GCIME holds,

it is best to use M-estimation under random sampling. Why? Under random

sampling and the GCIME, the asymptotic variance of the M-estimator is

2 -1 2 -1
s {E[G (x)]} = s A [just take p(x) _ 1]. The difference in asymptotico o o o

variances is positive semi-definite because A - E[p(x)G (x)] = E{[1 -o o

p(x)]G (x)} is positive semi-definite.o

If the GCIME does not hold then the weighted estimator could be more

efficient than the unweighted estimator, and either could be more efficient

than using random sampling. The preferred estimator depends on the nature of

the GCIME violation and the choice of p(x).
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6. CONCLUDING REMARKS

In cases where the population model is linear, Heckman’s (1976) approach

is the most common way, in econometrics, of handling nonrandom sample

selection. Unfortunately, Heckman’s approach does not extend easily to

general nonlinear models. Plus, the Heckman correction relies on having a

variable in the selection equation that can be excluded from the population

conditional mean function. In many cases, such variables are difficult to

find. Inverse probability weighting works under different assumptions than

Heckman’s approach. We assume that we have access to variables, in addition

to those appearing in the population model of interest, that are sufficiently

good predictors of sample selection.

One benefit of IPW estimators is that they can be obtained for general

nonlinear models. Here, I have focused on M-estimators. Useful extensions

would be to two-step M-estimators and generalized method of moments

estimators. An interesting research agenda is to extend the derivation of

the asymptotic distributions in Section 4 to allow for nonsmooth problems. A

leading case of a nonsmooth problem is least absolute deviations (LAD). As

is now well known, under random sampling and fairly weak assumptions, LAD is

consistent for the parameters in a correctly specified conditional mean and

-----

has a rN-asymptotic normal distribution. Thereorm 3.1 applies to LAD under

nonrandom sampling provided we can find suitable inverse probability weights.

But asymptotic normality of the IPW M-estimator for LAD, along with

consistent estimation of the asymptotic variance, is not a trivial extension

of Theorem 4.1. Presumably, the arguments in Newey and McFadden (1994) can

be adapted to the IPW, but the details remain to be worked out.
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APPENDIX

PROOF OF THEOREM 3.1: We already showed that

E{[s/p(v)]q(w,Q)} = E[q(w,Q)], Q e $,

and so Q is identified by the weighted M-estimator objective function undero

Assumption 2.1. To complete the proof, we simply show that the objective

function satisfies the weak uniform law of large numbers. Define g(v,s,Q) _

[s/p(v)]q(w,Q). Then, by (ii) and (iv),

-1
|g(v,s,Q)| < d b(w), all (v,s),

and E[b(w)] < 8 by (iv). It now follows from Lemma 2.4 in Newey and McFadden

(1994) that {g(v ,s ;Q): i = 1,2,...} converges in probability to itsi i

expectation, uniformly over Q. From the consistency result in Newey and

^ p
McFadden (1994, Theorem 2.1), Q L Q . )w o

PROOF OF THEOREM 5.2: It suffices to show that E(d’k ) = 0. But, asi i

discussed in Section 4, E(d’k ) = E{[(s /p )g (Q )][D p (G )/p ]}, wherei i i i i o g i o i

g (Q ) _ g(w ,Q ) and, with z = x , p _ p(x ,G ). Since D p (G )/p is ai o i o i i i i o g i o i

function of x it suffices, by iterated expectations, to show thati

E[(s /p )g (Q )|x ] = 0. But by Assumption 5.2 with z = x , E(s |w ) =i i i o i i i i i

E(s |x ) = p . Since g (Q ) is a function of w , E[(s /p )g (Q )|w ] =i i i i o i i i i o i

g (Q ). But another application of iterated (since x C w ) givesi o i i

E[(s /p )g (Q )|x ] = E[g (Q )|x ] = 0.i i i o i i o i

PROOF OF THEOREM 5.3: By standard first order asymptotics,

----- ^ -1 -1
Avar rN(Q - Q ) = A B A , (A.1)u o u u u

where
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2
A = E[sD q(w,Q )] and B = E[sD q(w,Q )’D q(w,Q )].u q o u q o q o

Assumption 5.2 implies that s and w are independent conditional on x, so

iterated expectations implies

2
A = E[E(s|x)E{D q(w,Q )|x}] = E[p(x)G (x)]. (A.2)u q o o

Similarly,

2
B = E{E(s|x)E[D q(w,Q )’D q(w,Q )|x]} = s E[p(x)G (x)], (A.3)u q o q o o o

where the last equality follows from Assumption 5.3. Equation (5.11) follows

from (A.1), (A.2), and (A.3).

A similar argument proves (5.12). First,

----- ^ -1 -1
Avar rN(Q - Q ) = A B Aw o w w w

where

2
A _ E{[s/p(x)]D q(w,Q )} = E{[E(s|x)/p(x)]G (x)} = E[G (x)]w q o o o

and

2 2
B _ E{[E(s|x)/p(x) ]E[D q(w,Q )’D q(w,Q )|x]} = s E[G (x)/p(x)].w q o q o o o

----- ^ -1
Finally, we prove the last statement. This holds if [Avar rN(Q - Q )}] -u o

----- ^ -1
[Avar rN(Q - Q )] is positive semi-definite. Definew o

1/2 1/2 -1/2 1/2
D(x) _ [p(x)] G (x) , F(x) _ [p(x)] G (x) .o o

2
Then, dropping the scalar s ,o

----- ^ -1 ----- ^ -1
[Avar rN(Q - Q )}] - [Avar rN(Q - Q )]u o w o

-1
= E[D(x)’D(x)] - E[D(x)’F(x)]{E[F(x)’F(x)]} E[F(x)’D(x)]

_ E[U(x)’U(x)],

where U(x) is the P * P matrix of population residuals from the population

regression of D(x) on F(x). This completes the proof as E[U(x)’U(x)] is

positive semi-definite. )
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