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ABSTRACT

| provide an overview of inverse probability weighted (IPW Mestimtors for
cross section and two-period panel data applications. Under an ignorability
assunption, | show that popul ati on paraneters are identified, and provide
strai ghtforward V- consi stent and asynptotically nornmal estination nethods.

I show that estinmating a binary response sel ection nodel by conditiona

maxi mum | i kel i hood |l eads to a nore efficient estinmator than using known
probabilities, a result that unifies several disparate results in the
literature. But IPWestimation is not a panacea: in sonme inportant cases of
nonr esponse, unwei ghted estimators will be consistent under weaker

i gnorability assunptions.
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1. | NTRODUCTI ON

The probl ens of nonrandom sanpl e sel ection, self selection, and
attrition are potentially very inportant in nicroecononetric applications.
An inmportant Kkind of nonrandom sel ection, often called incidental truncation
ari ses when certain individuals (or units fromany underlying popul ation) do
not appear in a random sanple due to individual choices or behaviors. A
| eadi ng exanple is where the equation of interest is a wage offer equation
for the population of all adults of working age, but the wage offer is
observed only for working adults. Depending on the nature of the self
sel ection, using a sanple of working people to estinmate the wage of fer
equation may result in inconsistent estimtion of the popul ati on wage of fer
function.

Probl ems of survey nonresponse also fall under the rubric of incidental
truncation. For exanple, a test score (such as 1Q may not be avail able for
all individuals in a sanple because sone individuals do not give perm ssion
for that information to be released. O, in a survey, a fanmly may not
report its annual charitable contributions, even though it reports incone and
vari ous denographi ¢ characteristics.

When incidental truncation |eads to nonobservability of the response
variable in a linear regression nodel, Hecknman's (1976) solution requires
that there be at | east one exogenous variable affecting selection that does
not appear in the structural equation; this is often a tenuous assunption.
Further, in addition to the linear nodel, Heckman's approach is known to only
work for special nonlinear nodels, such as an exponential regression nodel
[ Wool dridge (1997), Terza (1998)]. In cases of survey nonresponse or

1



attrition in panel data, the fact that some exogenous variables night not be
observed introduces further conplications in applying Heckman’s approach

An alternative approach to consistent estimation in the presence of
nonr andom sel ecti on i s based on inverse probability weighting, which has a
long history in statistics and has been recently studied nore closely in
econonetrics. Horvitz and Thonpson (1952) proposed an inverse probability
wei ghted (I PW estimtor of the popul ation mean when data are nonrandonly
m ssing. Robins and Rotnitzky (1995) use an |IPWestinmator in the context of
mul tiple regression with nonrandomy nissing data, and Robins, Rotnitzky and
Zhao (1995) show how an | PWestinmator can be used to estimate conditiona
means in the presence of attrition in panel data. Horowitz and Manski (1998)
conpare wei ghting and inputation nethods for estinating popul ati on neans.
Rosenbaum (1987) and Hirano, |nbens, and Ri dder (2000) study |IPWestimtors
of average treatnment effects.

In this paper | study the properties of inverse probability weighted M
estimators, thereby providing a unified treatnment that includes nany specia
cases of interest. Under the key assunption that selection is, in an
appropriate sense, ignorable, an inverse probability weighting scheme
generally identifies the popul ation paraneters. Special cases include |east
squares, conditional maxi mum |ikelihood, partial maxi numlikelihood, and
various quasi-Ilikelihood nmethods. 1In fact, any problemthat can be witten
as mnimzing or nmaxim zing a sanple average of objective functions fits the
framework, provided basic regularity conditions hold. Studying |PW nethods
in a general framework highlights the role of the key ignorability
assunption, and shows that the nmechanics and asynptotic theory of |PW

estimation are straightforward.



Wei ghting by inverse probabilities can solve a variety of sanple
sel ection problems, including that inherent in estimating average treatnent
effects. In addition, the general franework | put forth in Section 3 applies
to variable probability stratified sanpling, a case | considered explicitly
in Wholdridge (1999). CQutside of stratified sanpling, the probability
wei ghts usually nust be estimated in a first stage, and | consider the
effects of first-stage estimation on the asynptotic distribution of the
estimator in Section 4. 1In Section 5 1 discuss the pros and cons of
wei ghting, and Section 6 contains concluding remarks about directions for

future research.
2. THE POPULATI ON OPTI M ZATI ON PROBLEM AND RANDOM SAMPLI NG

We begin with the optimzation problemin the population, as this is
needed to define the paranmeters of interest. This section applies nost
directly to nonresponse in a cross section setting, although the
identification argunents readily extend to a two-period panel data setting
with attrition after the first tinme period.

Let wbe an M x 1 random vector taking values in W c RV Some aspect of
the distribution of w depends on a P x 1 paraneter vector, @, contained in a
paraneter space O c g Let gq(w,8) denote an objective function dependi ng on

w and e.

ASSUMPTION 2.1: 6, € ® is the unique solution to the population mninimization
probl em
. [ |
mn E[g(w,8)]. (2.1)
6cO
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In the | eading case, 6, i ndexes sonme correctly specified feature of the
distribution of w, such as a conditional mean, a conditional nedian, a
condi tional variance, or a full conditional distribution. However,
Assunption 2.1 applies when an underlying nodel nay be misspecified. At this
level, we only assume that 6, uniquely solves (2.1). Sufficient, but
certainly not necessary, for existence of at |east one solution is
conmpactness of ® and continuity of E[q(w,8)] on ® The uni queness assunption
plays the role of identification in this general context.

G ven a random sanple of size N fromthe population, {w: i =1,...,N
the Mestimtor solves the problem

gieg iglq(vv.,e)- (2.2)

Under general conditions, the Mestimator is consistent and asynptotically
normal [for exanple, Woldridge (2002, Chapter 12)].

A leading exanple is a linear regression nodel. Let y be a scalar and x

a 1l x Krow vector, and consider the popul ation |inear nodel

y = x8, + u, E(x’u) =0, (2.3)
where x would typically contain unity. In other words, @, is the vector in
the linear projection of y on x in the population. It may also be the case

that E(y|x) = x@, but this stronger assunption is not required to
consistently estimate 6, given a random sanple. The objective function for
OLS estimation of 6, is q(w,8) = (y - xe)%
If we specify a nonlinear regression function, say mx,8), @ € ® and
E(yIx) = m(x,8,) for sone 6, € ® then e, mnimzes
E([y - n(x,0)]%. (2.4)
Provided n( -, *) and the distribution of x satisfy reasonable assunptions, o,
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woul d be the unique solution. Even if m(x,8) is msspecified for E(ylx),

there generally is a value 6, € ® that uniquely mninizes (2.4). This was
noted by Huber (1967) and Wiite (1980, 1982). In the nonlinear regression
case, the solution to 6, is easily shown to be the mininizer of E{[uo(x) -

m(x, )] %}, where u’(x)

E(ylx) is the true conditional mean function. In
ot her words, 6, provides the best nean square approximation of nm(x,e) to
uo(x). Fromthis perspective, 8, becones the popul ati on paraneter of
i nterest, and nonlinear |east squares under random sanpling is generally
consistent for 6.

In the next section we nodify the objective function to account for

various forns of nonresponse and stratification
3. CONSI STENCY OF WEI GHTED M ESTI MATORS

Nonrandom sanpling froma cross-sectional population is conveniently
viewed as follows: we randomy draww € W fromthe population, but it is
not always (fully) observed. Let s; denote a binary selection indicator: s

=1if w is observed, s; = 0 otherwise. Typically, s; is a function of some

|
el enents of w, but s; can also depend on unobservables. A generic el enment
fromthe population is now denoted (w,s). Because of the sel ected sanpl e,
identification of @, [introduced in Section 2 as the unique solution to
problem (2.1)] now nust be studied in ternms of the joint distribution of
(w,s).

The Mestimator that uses the selected sanple solves the problem

where N denotes the size of the underlying random sanple. The sanple size N
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need not be known, although often it is. Notice how the selection indicators
s; determine observations actually appearing in the mininzation problem
The number of observations used in estimating 6, is Ny = s; + s, + ... + s
which is random To distinguish (3.1) fromthe weighted estinmator to be
i ntroduced shortly, we refer to the estimator from(3.1) as the unweighted M
estimator (using the selected sanple), and denote it by gw

When will the unwei ghted Mestimtor based on the sel ected sanple
consistently estimate 6, the solution to (2.1)? By a standard anal ogy
principle argunment [for exanple, Manski (1988), Wol dridge (2002, Chapter
12)], e, should also uniquely solve

mn E[s-q(w,0)]. (3.2)
6cO

W thout further assunptions, a solution to (2.1) does not generally solve
(3.2). A sinple exanple is the incidental truncation problemin a l|inear
regression nodel (2.3). |If s is correlated with the error u, the true
regression paraneter 6, does not generally ninimze Es-(y - xe)z] because
E(s-x’u) # 0. Later we show that when we strengthen the popul ation
identification condition and selection is based only on conditioning
variables, then 6, solves (3.2). But this does does not cover all cases of
i nterest.

An assunption that allows us to consistently estimte 8, while applying

to many probl ens of data nonobservability, is the follow ng.

ASSUMPTION 3.1: (i) wis observed whenever s = 1. (ii) For a random vector

v containing w, p(v) = P(s = 1|v) is observed whenever s = 1. u

Part (i) of Assunption 3.1 sinply defines when the data are observabl e;
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presumably, some or all of wis not observed when s = 0, or we would use
standard met hods based on random sanpli ng.

Part (ii) is the key. What gives this assunption content is the
requi renent that p(v) is observable whenever s = 1; without this assunption,
Assunmption 3.1(ii) would be a tautol ogy because we could just take v = w and
define p(w) = P(s = 1|w).

Assunption 3.1 covers the variable probability (VP) sanpling setup
treated in Woldridge (1999). To see how, partition the sanple space W into
J nonenpty, mutually exclusive, and exhaustive strata, W,, W,, ..., W;. For
each strata, define a binary indicator b; = 1[w e W;], so that b, + b, + ..

+ by =1. W first draw w fromthe population and then observe its stratum
The VP sanpling schene, as fornmally described by Wol dridge (1999),
effectively defines a selection indicator, s, by

s = hyby + hoby, + ... + hjby,
wher e hj is a binary indicator deternining whether an observation falling
into stratumj is kept. Notice that the hj are determ ned by the sanpling
scheme, and have nothing to do with the original population distribution
Al so, the hj typically are not known when s = 0 because all information on
the observation is discarded when s = 0. By the nature of VP sanpling, each
hj i s independent of w. Let p; = P(hj = 1) be the sanpling probability for
stratumij, that is, the probability of keeping a randomy drawn observation

that falls into stratumj. Because each hj i s i ndependent of w, and each b

is a determnistic function of w,

p(w) . (3.3)

E(slw = E(hy)) by + ... + E(hy)by = psby + ... + pjb;
The sanpling probabilities, pj, are part of the sanpling design and are
generally reported along with other variables. But p(w) is only observed
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when s = 1, that is, for units actually appearing in the sanple. If wfalls
into stratum | but hj = 0, we do not observe the stratum Neverthel ess,
Assunption 3.1(ii) is satisfied with v = w

Assunption 3.1 applies nore generally to any stratified sanpling scheme
where the sanpling probability function p(w) is observed whenever s = 1. For
exanple, with nulti-stage stratified sanpling, where the strata in later
stages are nested within strata in earlier stages, we can obtain sanpling
probabilities as the products of conditional probabilities, provided that the
final strata are nmutually exclusive

In the context of attrition and other kinds of nonrandom response,
speci al cases of Assunption 3.1 have been call ed selection on observables
(for example, Fitzgerald, Gottschalk, and Moffitt (1999)). Wen v is always
observed, this name nmakes sonme sense, although Assunption 3.1 does not inply
that s is a determistic function of v. Still, the nane "selection on
observabl es" is a useful label to distinguish Assunption 3.1 from assunptions
used i n Heckman-type approaches to sanple selection corrections. In
Heckman' s approach, selection would be correlated with an endogenous vari abl e
(say, y) even after conditioning on all exogenous variables (say, x). In
ot her words, we have sel ection on unobservabl es because selection is
correlated with the part of y that cannot be explained by x.

A sinple lemma is at the heart of inverse probability weighted
approaches to estimation. Essentially, it shows that the inverse probability

wei ghti ng recovers popul ati on noments froma sel ected sanpl e.

LEMVA 3.1: As in Assunption 3.1, p(v) = P(s = 1|v), where w c v, and assune
that p(v) > 0 with probability one. Then, for any real-val ued function g(w)
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such that E[ Ig(w) I/p(Vv)] < «,

E[s/p(v)]a(w} = E[g(W]. (3.4)

PROCF: The assunption E[ Ig(w) |/p(v)] < o inplies that both [s/p(v)]g(w) and
g(w) have finite absolute nonents, since each is donminated by |g(w) |/p(v).
Then, we can apply the law of iterated expectations: FE{[s/p(v)]g(w} =
E(E{[s/p(v)]1g(w) Iv}) = E{[E(s|v)/p(v)]g(wW} (because wc v) =

EIp(v)/p(V]g(W} = Elg(w]. ™

Lemma 3.1 i nmedi ately suggests how to use the sanmpling probabilities to

AN
consistently estimate 6,. The weighted Mestimtor, 6, is the solution to

N
mn v Isi/p(vi)la(w,e). (3.5)
6el® i =1
Thi s objective function sinply weights each observation for which we observe
w by the inverse conditional probability of appearing in the sanple; the
observations for which s; = 0 do not appear in the optinization problem
N
Because Assunption 3.1 mmintains that p(v;) is observed whenever s; =1, @,
is conputable fromthe observed data.
N
The consistency of 6, follows fromLenma 3.1 and a standard application
of the analogy principle (along with regularity conditions, of course).
Under Assunptions 2.1 and 3.1, Lemma 3.1 inmmediately inplies that e, uniquely
sol ves
mn E{[s/p(v)]a(we)}. (3.6)
6cO
In other words, if @, is identified in the population, it is identified by
t he nonrandom sanpling scheme under Assunption 3.1. A formal consistency
proof sinmply requires adding sone regularity conditions; other than verifying

identification of 6, by the weighted objective function, the proof is
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st andard.

THEOREM 3. 1: Assune t hat

(i) {(viys3): i =1,2,..., N are randomdraws fromthe popul ation
satisfying Assunption 3.1. (Renmenber, this is not the sanme as random
sanpling fromthe original population of interest.)

(ii) For sone 8 >0, p(v) =238 >0 for all v € V.

(iii) e, uniquely solves (2.1), that is, Assunption 2.1 holds.

(iv) For all @ € ® Ig(w,e)| = b(w for sonme function b(-) such that
E[b(wW] < o.

(v) For each we W, g(w, ) is continuous on ® a conpact subset of R
Then gw B 6, @as N > o,

PROCF: Al remaining proofs are given in the appendi x. u

G ven Assunption 3.1, the remaining conditions of Theorem 3.1 are quite
weak, and, with the exception of assunption (ii), are essentially the sanme as
those used to establish consistency of the Mestimator on random sanpl es.
Condi tions such as continuity of g(w, ) and conpactness of ® can be rel axed
at the cost of conplicating the anal ysis; see Newey and MFadden (1994) for
di scussi on.

Part (ii) of Theorem 3.1 requires that the selection probabilities be
bounded from bel ow. This assunption can be relaxed by assum ng a doni nating
function, say b(v), for |qg(w,e)/p(v)| with E[b(v)] < w. In the context of
stratified sanpling, assunption (ii) inplies that each strata sanpling
probability is strictly positive.

10



Theorem 3.1 applies to a broad range of estimation problenms, including
nonl i near |east squares, conditional maxi mumlikelihood, partial ME, quasi-
M.E, and | east absolute deviations. The reason for having a selected sanple
can be varied: incidental truncation, nonresponse, and attrition, to nane
three. Therefore, Theorem 3.1 provides the foundation for a unified approach
to sol ving nonresponse and stratification in nonlinear nodels. The key is
Assunption 3.1.

For the conparisons of weighted and unwei ghted estimators in Section 5,
an inmportant point is that the |PWMestimtor consistently estimtes the
uni que solution to equation (2.1). There is no presunption that an
underlying nodel is correctly specified. As we discussed in Section 2, M
estimators based on random sanpling are generally consistent for the solution
to the population problem Theorem 3.1 is the sinple extension to the case
of nonrandom sanpling but where sanpling probabilities are avail abl e that
satisfy Assunption 3.1.

Oten we need to estimate the sanpling probability function, p(-).
Estinmation of the probabilities using paranetric nmethods has no interesting
consequences for the consistency of the weighted Mestimator: consistency
foll ows under standard regularity conditions frombasic results on two-step
estimation [for exanple, Newey and McFadden (1994)]. However, estinmation of
p(v) does have interesting inplications for the asynptotic variance of the
wei ghted Mestimator. Therefore, we postpone a treatnent of estimating the
sel ection probabilities until the next section

We end this section with an exanple that is simlar to sone that arise
in epidem ology [for exanple, Lin (2000)]. A key feature is that, as with
variabl e probability sampling, the elenent in v; deternining selection is
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observed only when s; = 1.

EXAMPLE 3.1: Let (Xx;,y;) be a randomdraw froma popul ati on entering sone
programor treatnment at sone point in a specified tinme interval, say [0,b], b
< o Time zero corresponds to the first cal endar date at which units can
enter the program The programor treatnment could be the start of

unenpl oyment benefits or nedical treatnment for an illness. If tineis
measured in weeks and the popul ation consists of people entering the program
during a two-year interval, then b = 104.

The x; are covariates observed at the start of treatnent and y; is sone
measure of usage or cost of the progamor treatnment over a given | ength of
time, say t. W are interested in some feature of the distribution of y;j
given x;, often a conditional nmean or conditional nedian, but maybe a ful
conditional distribution. For exanple, we mght be interested in the cost of
unenpl oyment benefits over the duration of an unenpl oynent spell as a
function of covariates observed at the beginning of the spell (including
measures of benefit generosity). |f unenpl oynent benefits run out after
say, 26 weeks, then T = 26. Sone people will use a full 26 weeks of benefits
while others will use only part of the benefits. Let t: denote the length of

tinme on treatnent and let 0 = a

i = b denote the starting tinme for individua

i. (Thus, we have, in duration termnology, "flow data.")
Assume that data collection stops at time b, so the duration is censored

if t: =zb - a.

i i Even if we do not observe the full duration, it could stil

be that we observe t: I ong enough to observe y;. Let t; = nin(t:,r). (If we
set T = o, so that we are interested in, say, lifetinme costs for an elderly
person on Medicare, then we only observe those costs if the person dies
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within the interval [0,b].) Then vy, is observed if and only if t; =b - a

or ag =b - t;. (In other words, we do not observe the costs of those

i ndi vi dual s whose treatnent tines |ast |onger than T and take them past the
cal endar date, b.) Therefore, the selection indicator is s; = 1(a
t;). Now, assume that the starting time, a;, is independent of (t:,xi,yi).
Then E(s; It;,%;,y;) = P(a; =b - t;[t;) = Gb - t;), where Ga) = P(a; = a).
Therefore, in Assunption 3.1, we can take v; = (t;,x%;,y;) = (t;,w). (Only

t, affects the selection probability.) Note that t; is observed only when
the duration is not censored, which exactly corresponds to s; = 1. So, given
a distribution of starting times -- say, uniformover [0,b] -- we can obtain
p(v;) = Qb - t;) as the selection probabilities. O, because we have a
randomsanple {a;: i = 1,...,N}, we can consistently estimate G +) quite
generally. (For exanple, we could allow for seasonality in the context of
unenpl oynment durations.) W could also allow the starting tinme distribution
to depend on the covariates x;. Letting D(-|:) denote conditiona

di stribution, we would assune EKaiIt:,xi,yi) = D(a; |x;) and then estimte

& :1x;). In these contexts, the x; woul d be al ways observed.

If we are interested in E(y; [x;) we could use, say, an exponenti al
regression function and a quasi-ME using the gamma | og-1ikelihood, or we
could use log(y;) in a linear regression analysis. W can also handle cases
where y; is a count variable, nmeasuring, say, the nunber of visits to a
hospital in the first year covered by an insurance plan. Then, a Poisson
regression nodel is appropriate. O, y; could be a binary indicator, in

whi ch case q(x,y,8) is the log-likelihood for a binary response nodel . u
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4. THE ASYMPTOTI C VARI ANCE OF THE WEI GHTED M ESTI MATOR

We now consi der a special case of Assunption 3.1 and allow for
estimating the sel ection probabilities using binary response nodels for s;.
Showi ng VN—asynptotic normal ity of the weighted Mestimator is fairly
strai ghtforward

We replace Assunption 3.1 with

ASSUMPTION 4.1: (i) The randomvector z is always observed and w is observed
when s = 1.
(ii) wis ignorable in the selection equation, conditional on z:
P(s = 1|lw,z) = P(s = 1]z) = p(z2). (4.1
(iii) For a known function p(-, ),
p(z) =p(z,%,), z € Z, (4.2)

where y, € T ¢ g™

Assunption 4.1 nmeans that we have a vector, z, which is always observed, that
is a good predictor of selection. For exanple, in an attrition problem
where we eval uate a response variable in a second period after participation
in the programin the first period [or the change in the response variabl e],
we nust assunme that first-period variables predict attrition sufficiently
well that the responses and covariates in the second period are ignorable.
Assunmption 4.1(iii) means that we have a correctly specified paranmetric nodel
for the selection probability. In practice, we can use a flexible logit or
probit nodel. W will not study the possibility of using nonparanmetric
estimation of p(z), but clearly this is possible under suitable regularity
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conditions. [Hirano, Inbens, and R dder (2000) show that, in the case of
estimating the average treatnent effect under ignorability of treatnent,
nonparanetric estimation allows one to obtain the nost efficient estimator
possible. Extending their results to the general Mestimtor case seens
technically challenging, but a good topic for future research.]

A

N
Let ¥ denote the maxi mumlikelihood estimator (M.E) of %, that is, ¥

sol ves the binary response problem

N
mex vy {sjlog[p(zi,¥)] + (1 - sj)log[l - p(z;,¥)]}. (4.3)
,a,er'l—l

G ven that selection is a binary response, and without extra information, the
MLE is the nbst sensible estinmator, as it is asynptotically efficient. W

i mpose standard regularity conditions on p, such as tw ce continuous
differentiability in %.

AN
The wei ghted Mestimtor, e, now solves

mn 3 si/p(z. )] AW, 0). (4.9)
W will not state a formal consistency result, as there are no interesting
twists, although we nust rule out the possibility that response probability
gets arbitrarily close to zero as we vary z in Z and @ in @.

The weighting in (4.4) underlies a popul ar approach to estinmating
average treatment effects. |In the treatnment effects literature, the goal is
to estimate u; - pg = E(yq) - E(yg), the difference in popul ation neans with
and without treatnment. The outconmes, y, and y;, are counterfactual because
each unit froma random sanpl e of the population is either treated or not.
Therefore, we observe only y; = (1 - s;)Yjo * Sjyij1 for each individual i. A
key assunption is the so-called ignorability of treatnment, which is that, s

i s independent of (y;q, ¥ij1) conditional on the observed set of covariates,
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z;. Then a consistent estimator of u; is ﬁl = Nj}gl[si/p(zi,;)]y“
similarly, a consistent estimator of pug is ﬁo = Nj}gl{(l - s)/[1 -
p(zi,;)]}yi. In treatnent effect contexts, p(zi,;) is called the propensity
score. See Hirano, I|nbens, and Ri dder (2000) for a careful study of ﬁl and
ﬁo when the propensity score is estinmated nonparanetrically. Blundell and
Costa Dias (this issue) survey other nmethods for using the propensity score
i n program eval uati on.

We now sketch a derivation of the asynptotic of the weighted Mestinator
wi t hout worrying about the regularity conditions that allow use of the
uniformlaw of |arge nunbers. W assune that the function q(w, -) is twce
continuously differentiable on the interior of ® for all we W and that o, is
inthe interior of ® Then, a standard nean val ue expansion of the score
about 6, gives, with probability approaching one,

_1/2 N A 1 N A .Y — A

0= N2y Isi/p(zi. T, 00 + [N 3 Isi/p(z1.2)1H VN8, - 6o),
where g(w,8) = V,q(w,8)’ is Px 1 and H is the P x P hessian of q(w,®e)
with rows eval uated at nean val ues between gw and 6,. Define

Ao = E{[si/p(z;,9,) | HwW,8,)} = E[Hw,8,)], (4.5)
where the equality follows fromLemma 3.1, and assume A, i s nonsingular.
Then, by the uniformweak | aw of |arge nunbers, we can wite

Wy - 09 = -AHNY? Tisi/p(zi, 0161 ] + op(D), (4.6)

were g; = g(w,08,). The next step is to use a nmean val ue expansion on the

term mul tiplying -Agl, about y,. Let p; p(z;,%,) - Then

3 N A N
N”iZJa/szwlm = N

- EL(si/py) 6 (VP P TVNGY - 70) + 0(1), (4.7)

1/2 N
izl(si/pi)gi

where we define V,p; = V,p(z;,%, and use the fact that V,[1/p(z;,¥)] =
Up(z, 9) [p(z,. %)%, 1f we define
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Co = EL(si/pi) g (Vopi/pi)], (4.8)

we see that C, is the covariance between the score of the weighted M
esti mator objective function, evaluated at the true paraneters, and
Vylog[p(zi,yo)] = V,p;/p;. Next, under standard regularity conditions, we
can wite

Ny - 7g) = [E(didi’)]'lN'llzigldi + op(1), (4.9)
wher e

di = s;(Vyp{/p;) - (1 - s;)[Vep{/(1 - p;)] (4.10)
is the Mx 1 score of the binary response |og-1likelihood, evaluated at %,.
The next step is inportant. Because s; = s;s;, We can insert an extra s
mul tiplying Vyp;/p; into the formula for C,. Further, because s;(1 - s;) =
0, si(Vypi/p;j) = s;d/, and so

G = El(si/pj)gi(sid{)] = E[(si/pj)gidi].

Now define k; = (s;/p;)g;. Collecting terns together, we have shown that
-1/2 N A -1/2 N , Saq-1
N ,zl[si/p(zi,ar)]gi =N y {ki - E(kid{)[E(did{)] "d;i} + o,(1)
1= =
_ 12N
= N YU+ op(l), (4.11)

i =1

where u; = k; - E(kid{)[E(did{)]'ldi is the P x 1 vector of residuals from
the popul ation regression of k; on d;. Conbining (4.11) and (4.6) gives
NGB, - 8) = -AHNYZ 5 u ] + 0(1) (4.12)
W o = A izli p ; .
and so
A 1 -1
Avar [VN(e,, - 8,)] = Ay DA, (4.13)
7 7 7 7 -1 7
where D, = E(ujui) = E(k;k{) - E(k;d/)[E(d;d/)] "E(d;k{).
Equation (4.13) has several inportant inplications. First, it shows
that, if we sonmehow happen to know %, so that we could insert the known
sel ection probabilities, p(z;,%,, into the objective function, we should
nevert hel ess use the estimted probabilities based on the conditional naxinmum
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N
likelihood estimator, . To see why, we can use an even sinpler argunent to

find the asynptotic variance of the estimtor, say 5W that uses the known
probabilities:
Avar[VN(8,, - 8,)] = A, BoA, (4.14)
where B, = E(k;k{) = E(g;9{/p;). But then
B, - D, = E(kik{) - E(uu/) = E(kdf)[E(d;d/)] "E(d;k{),
positive senmi-definite matrix, which imediately inplies that AMar[VN(EW—
6,)] - Avar[VN(e, - 6,)] is p.s.d.

Interestingly, equation (4.13) inplies that, even if we have the nodel
for P(s; = 1lz;) correctly specified, we can do no worse -- and usually do
better asynptotically -- by adding nonlinear functions of z; to any probit or
logit estimation. The reason is sinple: as we add nore functions of z;, the
score vector in the MLE binary response expands (even though the true
coefficients on the new variables are zero), and this inplies that the
regression of k; on d; will have a snaller variance matrix.

Equation (4.13) suggests sinple estimtors for AMar[VN(gw - 6,)]. Let

N AN
7/

N N
u/ be the 1 x P residuals fromthe regression ki on d/, i =1,...,N where K

N N N
= [si/p(z;,¥)]9(z;,8y), dj = d(si,zi,;), and Nis the total nunber of

observations, as before. Then a consistent estimator of D, is

A R A A
D=N"yuul. (4. 15)
i =1

A general, consistent estimator of A, is

I~z

A 1 N A A
A=N izﬁsi/pﬁf{vw,ew, (4.16)
whi ch, of course, sinply weights the sel ected observations by the estinated
i nverse probabilities.
In nmost econonetric applications, w can be partitioned as (x,y), where Xx
represents the conditioning variables. Then, a sinpler estimator of A, is
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of ten based on ((x;,08,) = E[H(w,0,) IXx;]. A sinple iterated expectations
argurent shows that Cxxi,gm) can repl ace H(m4,3m) in (4.16) w thout changing
the consistency result:
1 N A A

N iZl(si/pi)G(xi,e\,\,) > A (4.17)
In cases where x; is observed for all i, we can drop (silgi) and use the
unwei ght ed esti mator, N'l' ’Z\l:lG( X, gw).

i &

The conparison of the estimators that use the estinmated versus the known
selection probabilities inplies that if we conpute the asynptotic variance as
if we have not estimated the probabilities, the standard errors are |arger
than necessary, and so confidence intervals and inference are conservative.
In other words, if we obtain significant estimates using the incorrect
standard errors, the corrected standard errors would lead to even |arger t
statistics. This is sonmewhat unusual for two-step estimation problens, where
the prevailing wisdomis that adjusting standard errors for a first stage
estimation usually results in larger standard errors. Interestingly, the
above derivation hinges crucially on the assunption that the paraneters in
p(z,¥,) are estimated using maxi mum |ikelihood binary response. | do not
know whet her the efficiency gains fromestinmating y, carry over to other
nmet hods of estimating ¥, such as the one described in Exanple 3.1.

The following theoremsinply fills in the missing regularity conditions.

THEOREM 4. 1: Assun®e t hat

(i) {(w,z;,8;): i =1,2,...,N is a randomsanple froma popul ation
satisfying Assunption 4.1.

(ii) The assunptions of Theorem 3.1 hold.

(iii) p(z,-) is continuous on the conpact set I, twi ce continuously
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differentiable on int(I'), 7, € int(Ir), and p(z,y) =23 >0 for all z € Z, y €

N N
. Let y be the conditional maxinumlikelihood estimator of ¥, and let 1/p

N
1/p(z;,¥) be the inverse probability weights.
(iv) The representation in (4.6) holds, with E[g(w,8,] = 0 and A,
nonsi ngul ar.

— A
Then (4.13) holds, and a consistent estimtor of Avar[VN(e, - 6,)] is

gi ven by
N_QNAN_
A'pat, (4.18)
A . . N . . ]
where Dis given in (4.15) and Ais given in (4.16) or (4.17).
The following exanple illustrates the broad applicability of Theorem4.1

EXAMPLE 4.1: Let m(x,8) be a paranetric conditional nean function for the
scal ar response variable y. Assume that for some 6, € 8, E(y[x) = m(x,6,).
Let q(w,8) = log f[yln(x,8)] denote the quasi |og-likelihood for a nenber of
the linear exponential famly [LEF;, for exanple, GMI (1984)]. Included are
bi nary response, such as probit and logit and the fractional regression
nodel s of Papke and Wol dri dge (1996), Poi sson regression nodels, and gama
regression nodels. Let v(x,8) denote the variance function associated with
the LEF density. |In the Poisson case, v(x,8) = n(x,8), in the gama case
v(x,8) = [n(x,e)]z, and in the binary response case v(x,8) = n(x,0)[1 -

N
1. Let ¥ be

nmx,8)]. Nonlinear regression is enconpassed by taking v(x,8)
the first-stage probit or logit estimator of s; on z;, i =1,...,N where the

Z:

A
i are the observed variables that predict sanple selection. Let p;, =

N
p(z;,>) be the fitted probabilities. Then the weighted quasi-ME sol ves

N A
mex  y (s;i/p;)log{fly;Inx;,6)]}.
0€l® i =1
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A conservative estinmate of the asynptotic variance of gw is
N A A A AY-1(N Ao Nop A Y)
{Z(Si/m)VJﬁVdn/w] {Z(si/m)eimgdvdn/w] (4.19)
=1 N /\I_l N AoAY-1
‘{Z(Si/m)VJWVdﬂ/W] ,
i =1 A
yi - mx;,6,. Thisis

N N N N N
where Vom = Von(x;,8,), Vi = Vv(x;,68,), and e

identical to the Huber-Wite "sandw ch" estimator using the s; =1
observations but where the quasi-log likelihood has been wei ghted by 1/§i for
each i. (We have not regressed the weighted score of the quasi-Ilog

l'i kelihood on Gi, the score fromthe selection probability estimation, in
formng the matrix in the niddle of the sandwi ch, and that is why the
estimator is conservative.) |If x; is always observed, we can drop silgi from
the two ternms on the outside of the sandw ch

I mportantly, we need to use an estinmator that has the sandwi ch form even
if the variance inplicit in the linear exponential fanmly is correctly
specified up to a constant of proportionality: Var(ylx) = ogv(x,eo). (This
is a common assunption in the generalized Iinear nodels literature.) For
exanple, for linear or nonlinear regression, we need to use (4.18) (or the
nore preci se version z'%ikllhb even if Var(ylx) = og. For binary response,
where the variance nust be correctly specified if the nean is, we still need
a so-called robust formof the variance matrix estimator. Simlar coments
hol d for Poisson and ganma regressi on nodel s.

This exanpl e covers sone interesting possibilities for estimating
average treatnment effects conditional on covariates. For concreteness,
suppose we want to use linear or nonlinear regression, where s; is now a
treatnent indicator and we observe y; = (1 - s;)Y;o * S;¥ij1, and the notation
is the same as before. Let m(x,B) be the nodel for E(y,[x) and my(x, «) be
the nodel for E(yqylx); for exanple, these could be linear or exponential. W
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want to estimate m(x,B) - my(x,«) at different values of x. Consider

estimating B; the argunment for « is essentially identical. |If we know the
propsensity score, p(z;,¥, -- the probability of receiving treatnent based
on covariates z, with x ¢ z -- the weighted objective function is

TLsi/p(z a1y - O @12 = D Isi/p(zi a9 [vin - mixi. )72

where we use the sinple facts that s;y; = s;y;; and s? =s;. The

ignorability of treatnment assunption is that P(s = 1lyg,y4,2) = P(s = 11z),
which inplies that Assumption 4.1(ii) holds with w = (x,y;). Therefore,
provided E(y;Ix) = m(x,B,), we can consistently estimate B, using the | PW
nonl i near |east squares estinmator, and the asynptotic distribution theory
applies directly. O course, we would estimate y, first. Then we can use (1
- s;) and [1 - p(zi,;)] to estimate o, and obtain estimates of m(x,B) -

my( X, o) . u

Before leaving this section, we nmake a final observation. Suppose that,
in the population, the information matrix equality holds: FE[g;(6,)09;(6,) '] =
E[H(6,)] = A,, as would happen in the case of maxi numlikelihood estinmation.
As is well known fromthe theory of Mestimation with random sanples [for
exanpl e, Whol dridge (2002, Chapter 12)], the asynptotic variance of the
properly centered and scaled Mestimtor is, under random sanpli ng, Ag? | f
i nstead we use nonrandom sanpling with known sanpling probabilities, the
asynptotic variance is given in equation (4.14). The difference in
asynptotic variances, AngoAgl - Agl = A@,l(B0 - Ab)Agl, is easily shown to be
positive sem -definite. In fact, By - Ay = E(g;9{/p;) - E(9;9/) = E[g;9/(1 -
pi)/p;]l, which is a positive senmi-definite matrix. This shows that it is
better, under the infornmation matrix equality, to use a random sanple than to
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use a nonrandom sanple with known sanpling weights. However, | cannot claim
a sinmlar result if the probability weights are estinmated, as in Theorem4.1
It appears that (4.13) could be smaller than Agl (in the matri x sense),

al though | have not worked out an exanpl e.

5. TO VEI GHT OR NOT' TO WEI GHT? THAT IS THE QUESTI ON

An inportant issue that arises in the analysis of stratified data with
sampling weights is: Wen should the sanpling weights actually be used? The
same question arises with general nonresponse. Unfortunately, there is no
clear-cut answer for all applications.

To provi de sonme gui dance about wei ghting, we nust recognize that there
are two issues. The first involves consistency of the two procedures while
t he second invol ves asynptotic efficiency conparisons in cases where both the
wei ght ed and unwei ghted estinmators are consistent. W first consider the
consi stency issue.

As we saw in Section 3, the weighted estinmator is consistent if we have
an appropriate ignorability assunption and if we either know or can
consistently estinate the sanpling probabilities. Wen sanple selection is,
in an appropriate sense, based on conditioning variables, the unweighted M
estimator is generally consistent. The definition of "conditioning
variables" is effectively that e, m ninizes the expected val ue of the
obj ective function conditional on any value of x. W nust also assune that

0, is the unique solution to (2.1).

ASSUMPTION 5.1: (i) For each x € X, &, solves the problem
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mn Eq(w 6) IX]. (5.1)
($1=0)

(ii) @, is the unique solution to problem(3.2). u
Practically, part (i) of Assunption 5.1 neans that the underlying econonetric
nodel -- whether it is a nodel of a conditional nean, conditiona
distribution, conditional quantile, and so on -- is correctly specified. A
simpl e argunment shows that Assunption 5.1(i) is nuch stronger than just
assuming 6, solves problem (2.1): if E[q(w 6y IX] = E[q(w,0) [x] for all x €
X, 6 € ® then iterated expectations inplies that e, solves (2.1). As a
simpl e exanpl e of where the converse is not true, consider the linear
regression nodel y = x0, + u where E(x’u) = 0. Then, as we discussed in
Section 2, 6, mininizes E[(y - xe)z]. But e, is only guaranteed to mninmnize
E[(y - xe)2|x] for each x if E(ulx) = 0.

Assunption 5.1 holds in the context of conditional M.E when the density
of y given x is correctly specified. It also holds for problens such as
wei ghted | east squares, even in nultivariate contexts, when the conditiona
mean is correctly specified but the variance function is effectively
nm sspecified. In the context of quasi-ME in the linear exponential fanmily
-- for exanple, CGourieroux, Mnfort, and Trognon (1984) -- Assunption 5.1(i)
hol ds when the conditional nmean is correctly specified, even though
everyt hing el se about the distribution nmight be misspecified.

Part (ii) of Assunption 5.1 is needed because we could have situations
where the sel ected subpopulation is not sufficiently rich to identify e,. In
the linear regression case fromthe previous paragraph, |ack of
identification would occur if rank E(x'x|s = 1) < K

The notion that sanpling depends on the conditioning variables x is
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formalized in part (ii) of the follow ng assunption:

ASSUMPTION 5.2 (i) wis observed whenever s = 1.
(ii) For x from Assunption 5.1,

P(s = 1lw) = P(s = 1|x). ™

(5.2)
A | eadi ng case where equation (5.2) holds is when s is a deterninistic
function of x, that is, selection is based purely on the value of x. O
course it also holds when s is independent of w, and therefore of x.

It is easy, again using the analogy principle, to show that Assunptions
5.1 and 5.2, along with regularity conditions, inply consistency of the
unwei ghted estimator. Recall from Section 3 that the liniting mninzation
problemthat corresponds to the unwei ghted Mestinmator is given by (3.2).
Therefore, we show that 6, is a solution to (3.2), again using iterated

expectations. For any e € B,

E[s-a(w.e)] = E{E[s-q(w e) [x]} = E{E(sIx)E[a(w e) [x]} (5.3)

E{p(x)E[a(w, e) Ix]},
where the second equality follows by iterated expectations: E[s-q(w8) Ix] =
E{E[s-q(w,8) Iw] |x} = E[E(sIw)q(w,8) IX] = E(sIx)E[q(w, @) [x] because E(s|w) =
E(sIx) under Assunption 5.1(ii). Because p(x) = 0 for all x, and e,
mninmzes E[q(w,8) [x] for all x, it follows that

P(x)E[a(w 6,) IX] = p(x)E[q(w,8) IX], X € X, 8 € B. (5.4)
Taki ng the expectation with respect to x shows that e, is a solution to

(3.2), as clained.
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THEOREM 5. 1:  Assun®e t hat
(i) {(w,s;): i =1,2,..., N} are randomdraws satisfying Assunption 5. 2.
(ii) Assunption 5.1 holds.
(iii) Parts (iv) and (v) of Theorem 3.1 hold.

Then the unwei ghted Mestimtor using the sel ected sanpl e, gu, i s consistent

N
for e, 8, B 6, @as N > o, "

Once we verify that @, is identified in the subpopul ation, the proof of
Theorem 5.1 is very sinilar to that of Theorem3.1, and so it is ontted
One interesting feature of Theorem5.1 is that it does not require the
selection probabilities to be strictly positive: if selection is based on x
and Assunption 5.1 holds, we can exclude parts of the population that are
defined in terms of x, provided we can still identify e, in the observed
subpopul ation. Entirely excluding part of the population is not possible in
Theorem 3. 1. Therefore, if we are willing to make the assunptions in Theorem
5.1, the unweighted estimtor has the advantage of allow ng sel ection schenes
where part of the population is not represented at all

In nost cases that are not stratified sanpling, there is sone positive
probability that any popul ati on menber will appear in the selected sanple.
So, what if the sanpling probabilities are strictly positive and depend only
on conditioning variables in the sense of Assunption 5.2? Still, even froma
consi stency standpoint, it is not obvious whether or not to weight. As we
di scussed in Section 3, the weighted estinmator identifies the solution to
(2.1) whether or not there is any kind of nodel nisspecification. The
requi renent that e, solves (5.1) for all x essentially nmeans that the feature
of the distribution of y given x that we are nodeling is correctly specified.
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Under mi sspecification, the solution to problem (3.2) will not be the sanme as
the solution to (2.1). In other words, the weighted and unwei ghted
estimators will have different probability limts even though sanpling is
exogenous. Since the solution to (3.2) depends on the sanpling schene --
narmely, the probabilities P(s = 1|x) = p(x) -- nobst would conclude that the
unwei ghted estinmator is not very attractive. |If we take the broad view that
we want to estinmate the vector that solves the popul ati on probl em even under
m sspeci fication, then the weighted estimator is preferred.

A counterbal ance to the previous argunent is a sonmewhat subtle reason to
prefer the unweighted estimator in problenms of nonresponse, such as
attrition. This has to do with unobservability of sone elenents of x for the
excl uded subpopul ation. Assunptions 5.1 and 5.2 hold. Then we know the
unwei ghted estimator is consistent. |f we also assunme the probabilities p(x)
are bounded from below by a strictly positive nunber, so that part (ii) of
Theorem 3.1 holds, then the weighted estinmator based on p(x) or consistent
estimates would al so be consistent. The problemfor the weighted estinator
is that, if some elements of x are not observed, we cannot estimate the p(x;)
even for the selected sanple. Typically, the response probabilities are
estimated froma binary response of s; on z; using a random sanple fromthe
entire population. (Exanple 3.1 is an exception.) Any elenent of x that is
m ssing for a subset of the population cannot be included in z. This neans
that, for the purposes of correcting the nonrandom sanpling problem our
first-stage estimation of the selection probabilities could be m sspecified.

I mportantly, this has nothing to do with whether p(z,y) is correctly
specified for P(s = 1|z). The problemis that, under Assunption 5.2(ii), it
is unlikely that P(s = 1|w,z) = P(s = 1|z) unless we can take x to be a
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subset of z.

If x is always observed then the weighted estimator is nore attractive
because we can, and should, include x in z. |f, for exanple, selectionis a
deterministic function of x, then a sufficiently flexible nodel for P(s =
1|/z) should pick this out as long as x < z. |In addition, the weighted
estimator allows observable factors other than x to affect selection, while
t he unwei ghted estimator effectively does not.

Consi der a concrete exanple. Suppose that, in an initial tinme period,
we obtain a random sanpl e of people participating in a job training program
W have, say, before-training earnings, education |evels, workforce
experience, and denographic variables. Denote pre-training earnings as yg
and the pre-training covariates as xg. Then, some people participate in the
program and assume participation is exogenous. Let r be a binary job-
training participation indicator. |In followup interviews to obtain post-
training earni ngs and updates on other variables (say, marital status), sone
peopl e are not available. So post-training earnings and infornation on other
vari abl es that change fromthe first period are unavailable. Denote the
post-training earnings y; and the post-training tine-varying covariates as
w;.  One eval uation approach would try to estimate E(yqIr,yq, Xg, W) and study
the effect of r on this expectation. Let s be the attrition indicator (s =1
if still available in the second tinme period). Then an unweighted analyis --
this could be a regression approach, an MLE, or a quasi-ME nethod that works
under ranom sanpling -- is consistent provided

P(s = 1ly1,r, Yo X, W) = P(s = 1]r,yq, Xg, W) . (5.5)
(Remenber that the unwei ghted estimator does not require us to estinate the
sel ection probability.) In applying a weighted Mestinator, we can only
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estimate P(s = 1]|r,yq, Xo) because w;, the vector of tine-varying covariates,
is missing for those who attrit. Therefore, we nust take z = (r,yg Xg) to
apply the IPWnethod in Section 4, which nmeans that the needed ignorability
assunption is

P(s = 1ly1,r, Yo Xg. W) = P(s = 11]r,ygq, Xq)- (5.6)
Assunption (5.6) is the same as saying s is independent of (yq, w)

conditional on (r,yg Xg). But then s and y,; are necessarily independent,

conditional on (r,yg Xg,W). In other words, (5.6) implies (5.5), but the
converse is not generally true. 1In fact, since attrition mght well be
related to time-varying covariates -- for exanple, changes in marital status
or job tenure -- (5.5) is practically nore appealing than (5.6).

The previous discussion suggests sone general considerations when
deci di ng whet her or not to use weighting. In cases where sone of the
covari ates are unobserved for the unsel ected part of the population and the
feature of interest -- a conditional expectation, a conditional median, or a
condition distribution as the |eading cases -- is conditional on all possible
covariates and any initial response variable, there is a strong argunent
agai nst weighting. Effectively, the "kitchen sink" nature of the population
condi tional expectation or conditional distribution of interest means that
sel ection can depend on the broadest set of variables possible, that is,
every variabl e observed at any tinme except the response variable after
attrition. Any weighting necessarily excludes fromthe selection probability
covariates that are not observed after attrition, and so it is consistent
only under stronger assunptions than needed for the unwei ghted esti mator.
When mi ght wei ghting be preferred in cases of nonresponse on sone
covariates? Wighting is nost appealing when the nodel we want to estinmate
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has a nmore structural interpretation and is not sinply a kitchen-sink-type
analysis. |In the job-training exanple with attrition described earlier
suppose we start with an unobserved effects nodel, which we wite for a
random draw from the popul ation as

Yit = %lit * WiBo + C + Uy, t =0 1, (5.7)
where c; is unobserved heterogeneity and w, contains tine-varying
covariates, and r;, is the job-training participation indicator. (In the
setup di scussed above, r;; = 0 for all i.) Differencing the two tine periods

gives a cross-sectional equation

Ay; = apAry + Aw B, + Au;. (5.8)
Now, suppose we are only willing to assume E(Au; |[Ar;,Aw) = 0. |If we had a
random sanple, we would just estimate (5.8) by O.S. |If we have attrition, we

could still apply OLS to (5.8) under the assunption P(s; = 1[Ay,,Ar;,Aw) =
P(s; = 1lar;,Aw). Unlike in the earlier case, we cannot condition on
initial earnings, yjo in the selection probability. In other words, now we
have to assune that attrition is ignorable with respect to the change in
earnings conditional only on (Ar;,Aw). If we instead estinmate (5.8) by
wei ght ed | east squares, using inverse probability weights, then we would
include (Yjg Xjgrjo:"j1) in the selection probit or logit, where x;,
contains all initial period covariates. Now the ignorability assunption used
by IPWis not nore restrictive than that used by the unwei ghted anal ysis, and
so the IPWestimator could be consistent in cases where the unwei ghted
estimator is not.

So far, our discussion has focused on consistency. But there are also
ef ficiency issues when the sanpling is exogenous, as in Assunption 5.1. In
the context of different kinds of stratified sanpling, Woldridge (1999,
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2001) shows that when w partitions as (x,y) where sone feature of the
conditional distribution of y given x is correctly specified, stratification
is a function of x, and a generalized conditional (on x) information matrix
equality holds, then the unweighted estimator is asynptotically nore
efficient than the weighted estimator. This covers the fairly well-known
regression and conditional maxi num likelihood cases, and many others as well.
Recall from Theorem 4.1 that estimating the selection probabilities
generally leads to a nore efficient estimator than using the known p(z;) (if
these were available). An inportant result is that, if Assunptions 5.1 and
5.2 hold, then the asynptotic variance of the weighted estimator is the sane
whet her or not the selection probabilities are estimted. Let gw be the
wei ght ed esti mator based on p(xi,;) and | et 5W be the wei ghted estimator

based on p(X;,¥,) -

THEOREM 5. 2: Let the assunptions of Theorem 4.1 hold, and, in addition, nake
Assunmptions 5.1 and 5.2. (So we take z = x in Theorem4.1.) Assune that
part (iv) of Theorem 4.1 can be strengthened to E[g(w,e6,) Ix;] = 0, as would
hol d under Assunption 5.1 under a standard interchange of an integral and
partial derivatives. Then E(d/k;) = 0, and therefore Avar VN(QW - 8, and is

given by equation (4.14), which is the sane as Avar VN(EW - 8,) - u

N ~
Interestingly, the asynptotic equival ence of 6, and 6, does not hinge on
a generalized information matrix equality. For exanple, suppose we have a

nodel for E(ylx), say m(x,8), and the nodel is correctly specified -- E(ylx)

mx, 8,) for some elenent of 6, in the parameter set. |If P(s = 1ly,x) = P(s

11x) = p(x, %, ., and we always observe x, then estimating y, by binary
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response MLE |l eads to the same asynptotic variance as using p(x;,¥,) . even if
there is heteroskedasticity in Var(yl|x) of unknown form |In a quasi-ME
envi ronnent, say, wth Poisson regression, the variance can have any form
and the estinmators gw and 5W are still asynptotically equivalent. In a pane
data setting (where selectionis in all tinme periods or not at all), there
can be neglected serial correlation of any form

We can conbine Theorem 5.2 with a generalization of the infornmation
matrix equality from maxi num likelihood theory to conclude that the
unwei ghted estimator is nore efficient under correct nodel specification and

exogenous sanpling under standard assunptions. W need a definition

DEFINTION 5.1: The generalized conditional information matrix equality
(GOIME) holds if, for some oo > 0,
, 2
E{Voa(w 6,) ‘Vea(w, 8,) X} = oc,&(x, 6,), (5.9

wher e
[ |

2
G(x, 6y) E[ Voa(w, 6,) IX]. (5.10)
The GCIME is natural for many problens. The GCI ME al ways hol ds for

condi tional ME under correct specification of the conditional density with
oﬁ = 1. Another inportant case is quasi-ME in the LEF under the so-called
generalized linear nodels (GLM assunption. This assunption states that
Var(yIx) is proportional to the variance inplied by the density used in the
quasi -l og likelihood. For exanple, in Poisson regression, the GLM assunption
is Var(ylx) = ogE(ylx).

[ |

ASSUMPTI ON 5.3: The conditional information matrix equality hol ds.

32



THEOREM 5. 3:  Assune that Assunptions 5.1, 5.2, and 5.3 hold, along with
standard identification and regularity conditions. Let gu be the unwei ghted
M estimator using the selected sanple, and |et gw be the wei ghted M estinmator
usi ng wei ghting function 1/p(x), where p(x) = P(s = 1|x). Then
Avar VN(B, - 8,) = o{E[p(x)G(x)]} %, (5.11)

and

Avar VN(B,, - 8,) = ool El Gy(x) 1} "EL Gy(x) /p(x) 1) {EL Gy(x)]} (5.12)
Further, the difference between Avar VN(QW - 8, and Avar Vﬁ(gu - 8y is

positive seni-definite. u

This result shows that the weighted estinmator is inefficient when selection
i s on exogenous variables and the generalized GCl ME holds. This provides
further support for using the unweighted estinmator when we think selection is
determi ned by conditioning variables. Not suprisingly, when the GCl ME hol ds
it is best to use Mestimation under random sanpling. Wwy? Under random
sanmpling and the GCI ME, the asynptotic variance of the Mestimator is
o*cz){E[Gb(x)]}'1 = oﬁAgl [just take p(x) = 1]. The difference in asynptotic
variances is positive seni-definite because Aj - E[p(x)G,(x)] = E{[1 -
P(x)] Gy(x)} is positive seni-definite.

If the GCI ME does not hold then the weighted estimtor could be nore
efficient than the unwei ghted estimator, and either could be nore efficient
t han using random sanpling. The preferred estimtor depends on the nature of

the GCIME violation and the choice of p(x).
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6. CONCLUDI NG REMARKS

In cases where the population nodel is linear, Heckman's (1976) approach
is the nbst comopn way, in econonetrics, of handling nonrandom sanpl e
selection. Unfortunately, Heckman's approach does not extend easily to
general nonlinear nodels. Plus, the Heckman correction relies on having a
variable in the selection equation that can be excluded fromthe popul ation
conditional nean function. |In many cases, such variables are difficult to
find. Inverse probability weighting works under different assunptions than
Heckman' s approach. W assunme that we have access to variables, in addition
to those appearing in the popul ati on nodel of interest, that are sufficiently
good predictors of sanple selection.

One benefit of IPWestimators is that they can be obtained for genera
nonlinear nodels. Here, | have focused on Mestimtors. Useful extensions
woul d be to two-step Mestinmators and generalized nethod of nonents
estimators. An interesting research agenda is to extend the derivation of
the asynptotic distributions in Section 4 to allow for nonsnooth problens. A
| eadi ng case of a nonsnmooth problemis | east absolute deviations (LAD). As
is now well known, under random sanpling and fairly weak assunptions, LAD is
consistent for the paranmeters in a correctly specified conditional nmean and
has a VN—asynptotic normal distribution. Thereorm 3.1 applies to LAD under
nonrandom sanpl i ng provi ded we can find suitable inverse probability weights.
But asynptotic nornmality of the IPWMestinmator for LAD, along with
consi stent estimation of the asynptotic variance, is not a trivial extension
of Theorem 4.1. Presunably, the argunments in Newey and McFadden (1994) can
be adapted to the IPW but the details remain to be worked out.
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APPENDI X

PROOF OF THECREM 3.1: W already showed that

E{[s/p(v)]a(w e)} = E[q(w,8)], 8 € O,
and so 6, is identified by the weighted Mestimtor objective function under
Assunption 2.1. To conplete the proof, we sinply show that the objective
function satisfies the weak uniform|law of |arge nunbers. Define g(v,s,8) =
[s/p(v)]a(w,e). Then, by (ii) and (iv),

lg(v,s,8) | = & 'b(w, all (v,s),

and E[b(W)] < o by (iv). It now follows fromLemma 2.4 in Newey and MFadden
(1994) that {g(v;,s;;8): i =1,2,...} converges in probability to its
expectation, uniformy over 8. Fromthe consistency result in Newey and

N
McFadden (1994, Theorem 2.1), 8, B 0o- -

PROOF OF THEOREM 5. 2: It suffices to show that E(d/k;) = 0. But, as

di scussed in Section 4, E(d{k;) = E[(s;/p;j)g;(0,)][Vypi(7,)/Pi]l}, where
0i(6,) = 9g(w,08,) and, with z; = x;, p; = p(X;,%,) . Since V,p,(7,)/p; is a
function of x; it suffices, by iterated expectations, to show that
E[(sij/p;j)0i(6,) IX;] = 0. But by Assunption 5.2 with z; = x;, E(s;Iw) =
E(s;j Ix;) = p;. Since g;(6,) is a function of w, E[(s;/p;)g;(6y) W] =
0;(6,). But another application of iterated (since x; < w) gives

E[(si/pj)gi(6y) IXj]1 = E[g;(8y) IX;] = 0.

PROOF OF THEOREM 5. 3: By standard first order asynptotics,
A 1, -1
Avar VN(e, - 8,) = A, BA,, (A1)
wher e
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A, = E[svgq(w, 0,)] and B, = E[sV,a(w, 8,) "Voq(w, 6,)].

Assunption 5.2 inplies that s and w are independent conditional on x, so
iterated expectations inplies

Ay = ELE(s 1) E{ Voa(w, 85) Ix}] = E[p(X) Gy(X)] . (A 2)
Simlarly,

B, = E{E(S |x) E[ Voa(w, 8,)  Voq(w 8,) Ix]} = ooEl p(x) Gy(X)], (A3
where the last equality follows from Assunption 5.3. Equation (5.11) follows
from(A 1), (A 2), and (A 3).

A simlar argunent proves (5.12). First,
Avar \/Kl(gw - 8y) = AYBA,

wher e

Aw

E([S/p(X)]Voa(w 8)} = E[[E(sIX)/p(X)]1Gy(X)} = E[Gy(X)]

and

2 , 2

By = E{[E(sX)/p(x)TE[Vea(w 8,) "Voa(W, 8,) IX]} = o B[ G(X)/p(X)].
Finally, we prove the last statenent. This holds if [Avar \/Kl(gu - eo)}]'1 -
[Avar VN(8, - 6,)]1 ' i's positive semi-definite. Define

[p()] %G 02

D(x) = [p(x)]"%G(x) "% F(x)
Then, dropping the scalar o2,
[Avar VN(B, - 8,)}]1 - [Avar VN(8,, - 8,)] *
E[D(x) ‘D(x)] - E[D(x)"F(x)]1{E[F(x)"F(x)1} "E[F(x) "D(x)]

E[U(x) "U(x) ],

where U(x) is the P x P matrix of population residuals fromthe popul ati on
regression of D(x) on F(x). This conpletes the proof as E[U(x) U(x)] is

positive seni-definite. u
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