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Abstract. We investigate the problem of finding the correspondence
from multiple images, which is a challenging combinatorial problem. In
this work, we propose a robust solution by exploiting the priors that
the rank of the ordered patterns from a set of linearly correlated images
should be lower than that of the disordered patterns, and the errors
among the reordered patterns are sparse. This problem is equivalent to
find a set of optimal partial permutation matrices for the disordered
patterns such that the rearranged patterns can be factorized as a sum
of a low rank matrix and a sparse error matrix. A scalable algorithm
is proposed to approximate the solution by solving two sub-problems
sequentially: minimization of the sum of nuclear norm and l1 norm for
solving relaxed partial permutation matrices, followed by a binary integer
programming to project each relaxed partial permutation matrix to the
feasible solution. We verify the efficacy and robustness of the proposed
method with extensive experiments with both images and videos.

Key words: Feature correspondence, partial permutation, low rank and
sparse matrix decomposition.

1 Introduction

Finding visual pattern correspondence across images or video sequences is a
long-standing problem in computer vision. It facilitates a wide range of vision
applications such as object recognition [1], 3D reconstruction [2, 3] and image
matching [4, 5]. To date, most existing works focus on finding the feature cor-
respondence between two images. The works in [1, 6–9] formulated it as graph
matching problem, in which features were modeled as graph nodes while ge-
ometric relations between features were modeled as graph edges and efficient
algorithms based on spectral technique were widely used to solve the problem.
Linear programming model was also proposed to solve the correspondence prob-
lem [10–12], in which the geometric invariances were expressed as affine functions
and constraints and they were incorporated into a linear model. In addition, Cho
et al. [13] proposed to construct clusters of mutually coherent feature correspon-
dence while eliminating outlier from candidate correspondence via hierarchical
agglomerative clustering. Barnes et al. [14] proposed a algorithm based on kd-
tree to efficiently find the dense matches.
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It is also crucial to find the feature correspondence across video sequence.
For example, in video action recognition, the trajectory of the key points can be
easily found if features correspondence is established. In video segmentation, it
relies on the well established correspondence among features to effectively divide
the video into smaller clips. It is possible to directly apply the above mentioned
methods to find correspondence among multiple images, however, this generally
leads to suboptimal solutions because information in other images is not used
for regularizing this pair of correspondence. In addition, propagating the result
for the next pair of correspondence is error prone. On the other hand, very
few researches focus on simultaneously finding correspondence among multiple
images. In particular, the rank constraint was enforced in [15] to recursively
compute the correspondence for one image at a time, but this greedy algorithm
suffered from error propagation and it was not robust against noise and outliers;
A graph matching approach was proposed in [16] to learn an embedding rep-
resentation for all images and the k-means algorithm was then applied to find
the correspondence, but it was difficult to enforce the bijective property of the
correspondence and it did not have any mechanism to identify outliers.

Finding the global correspondence for features/patches (referred to as pat-
terns) from multiple images can be formulated as a combinatorial NP-hard prob-
lem, in which a set of partial permutation matrices need to be found. Meanwhile,
if each pattern is exactly the same across images, the matrix formed by the well
corresponded patterns will be low rank, ideally rank one. However, if there exist
variations such as occlusion, rotation and non-rigid transformations in images,
the matrix of the well corresponded patterns might have an unknown rank higher
than one. Therefore it is more appropriate to search for the permutation matrices
that minimize the rank of a matrix formed by the well corresponded patterns.
The pioneering works in [17, 18, 15] exploited this property and a greedy algo-
rithm was proposed to recursively find one partial permutation at a time for
correspondence. These works motivate us to employ the rank constraint as a
criterion to effectively search optimal partial permutation matrices for the cor-
respondence problem among multiple images.

Some recent developments for low rank representation have also incorpo-
rated the sparse error term into their frameworks to cope with corruption and
occlusion that inevitably exist in images and videos [19–21]. Motivated by these
works, we propose a robust and scalable method based on low-rank and sparse
representation to find the optimal partial permutation matrices. Compared with
the existing methods for feature correspondence, our proposed method has three
major contributions: i) The proposed method formulates the challenging combi-
natorial correspondence task as a low-rank and sparse matrix decomposition that
can be efficiently solved by our proposed algorithm. ii) The proposed method
operates in a batch mode, in which all the images are simultaneously taken into
consideration to determine the global optimal correspondence. Even if a mis-
alignment happens, it would not be propagated to the subsequent frames. iii)
The proposed method has a robust built-in mechanism to effectively cope with
corruption and occlusion, and identify outliers.
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2 Related Works

Finding feature correspondence between two images is a well-studied research
topic. Different formulations that explore feature similarity and spatial con-
straint have been proposed. Meanwhile, these methods are either difficult or
ineffective when used for finding correspondence for multiple images. To solve
this problem, Marwan and Ahmed [16] proposed a graph matching approach
to learn an Euclidean embedding representation via minimizing an objective
function that promoted coherence between features similarity with their spatial
arrangement, where the objective function was reduced to Laplacian embedding
and was solved efficiently by only one eigen decomposition. The final correspon-
dence could be obtained by using k-means algorithm. Although it is efficient, as
argued in [7], such spectral technique is sensitive to noise and outliers.

The proposed method is motivated from the work by Ricardo et al. [15].
They proposed to enforce the rank constraint to find correspondence for multi-
ple images. Specifically speaking, their method tried to recursively find a partial
permutation matrix for each image based on the assumption that the correspon-
dence of the reordered patterns from preceding rounds of matching had been
well established. The patterns from the image being considered were appended
in such a way that their rearrangement would make the newly formed matrix
highly rank deficient, in which the order of the rearrangement was encoded in the
corresponding partial permutation matrix. Their method repeated this process
for all images. Although the rank constraint is effective in guiding the search for
the partial permutation matrix, there are four shortcomings regarding to this
formulation: i) It operates in a recursive mode and only part of the data is used
for computing one partial permutation matrix. ii) It assumes that the correspon-
dence from preceding rounds is well established. If this assumption is violated,
the whole model would be broken down and the error would be propagated to
the subsequent alignment. iii) There is no mechanism to handle noise. iv) It
can only handle low dimensional data. In contrast, our proposed method is free
from these shortages. This is because it operates in a batch mode, where all the
images are considered simultaneously for finding coherent correspondence based
on the low-rank constraint. To improve the robustness, a sparse error term is
introduced in this work to handle errors such as corruption and occlusion, which
are common in images and videos.

Our method is most related to sparse and low-rank matrix decomposition [19].
Their work proves that if a data matrix is superposition of a low-rank matrix and
a sparse matrix, each matrix can be exactly recovered. Peng et al. [20] extended
this framework to robustly align a batch of linearly correlated images despite
the gross corruption and occlusion, in which they proposed to find an optimal
set of image domain transformations (e.g., affine transformations) such that the
matrix of the transformed images could be decomposed as the sum of a low-rank
matrix of recovered aligned images and a sparse matrix of errors. Our proposed
method shares similar spirit but in another direction. It seeks a set of optimal
partial permutation matrices for correspondence such that the rearranged matrix
can be factorized into a low rank matrix and a sparse matrix.
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3 Global Correspondence via Sparse and Low-rank
Matrix decomposition

In this section, we formulate the correspondence as the search for the opti-
mal partial permutation matrices that minimizes the rank of the reordered fea-
tures/patches. A sparse error term is also introduced into the framework to
improve its robustness to gross corruption and occlusion. Since the proposed
optimization problem is not convex, we propose a two-step approach to approx-
imate the solution by solving two subproblems sequentially: minimization of the
sum of nuclear norm and l1 norm for solving the relaxed partial permutation
matrices. Then each of the partial permutation matrix is projected to its feasible
solution via solving a binary integer programming problem.

3.1 Matrix Rank as a Measure of Correspondence: A Prior

Suppose we are given N images I1, · · · , IN . For each image In, we can extract K̄
features fn,1, · · · , fn,K̄ ∈ Rd at K̄ landmark locations, or divide each image into
K̄ blocks, vectorize the pixel values from the ith block as fn,i for i = 1, ..., K̄ and

stack them as a matrix Fn = [fn,1, · · · , fn,K̄ ] ∈ Rd×K̄ . As shown in [15, 20], if
these features or patches are well aligned (i.e., features from the same landmark
location or patches of the same place across different images are put into the
well-corresponded entry in the feature space) without noise and outliers, then
they should be linearly correlated. Specifically, if we denote vec : Rw×h → Rwh

as the operator that stacks a w×h matrix as a (wh)-dimensional vector, then the
matrix A = [vec(F1)| · · · |vec(FN )] ∈ RdK̄×N should be approximately low-rank.

3.2 Modeling Correspondence via Partial Permutation Matrix

Now, we consider a more general case where each image In has Kn patterns
of size d, and assume that these patterns extracted from N images F1, · · · ,FN

are not well corresponded with respect to each other. Our interest is to find K̄
intrinsic patterns for each image where K̄ ≤ Kn ∀n ∈ {1, · · · , N}, and their
correspondence among N images (i.e., N sets of K̄ features). Now, we first
model the correspondence with partial permutation matrix Pn ∈ Pn for image
In similar to [15], where Pn is defined as follows:

Pn = {Pn|Pn ∈ {0, 1}Kn×K̄ , 1T
Kn

Pn = 1T
K̄ , Pn1K̄ ≤ 1Kn},

where {0, 1}Kn×K̄ denotes a Kn×K̄ matrix whose elements are either 0 or 1 and
1c (resp. 0c) denotes a column vector of all 1 (resp. 0) of length c. Then, there
exist partial permutation matrices P1, · · · ,PN such that the reordered patterns
are well corresponded. In other words, the matrix [vec(F1P1)| · · · |vec(FNPN )] ∈
RdK̄×N is rank deficient. Hence the correspondence problem can be formulated
as the following optimization problem:

min
Pn∈Pn|Nn=1,L

rank(L), s.t. [vec(F1P1)| · · · |vec(FNPN )]=L. (1)
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3.3 Modeling Noise in Features as Large and Sparse Errors

In practise, error such as corruption and occlusion is common in images and
videos, thus the low rank property of the aligned matrix is likely to be violated.
To improve the robustness, such error is modeled as a sparse matrix as it only
affects a small fraction of the data. Then, the problem (1) is modified as follows:

min
Pn∈Pn|Nn=1,L,E

rank(L) + λ∥E∥0, s.t. [vec(F1P1)| · · · |vec(FNPN )] = L+E, (2)

where ∥ · ∥0 denotes the number of nonzero entries and λ > 0 is a trade off
parameter that balances the rank of the solution and the sparsity of the error.

3.4 Convex Relaxation

The optimization problem is not directly tractable due to the following aspects:
i) The minimization on the matrix rank is non-convex; ii) The l0 norm is hard
to optimize; iii) The optimization with respect to Pn is non-linear, therefore the
corresponding integer programming is hard to solve. Moreover, since the rank of
a matrix and the l0 norm are discrete-valued functions, the solution for the above
optimization is unlikely to be stable. Meanwhile, it has been shown in [19, 20]
that if the rank of the matrix L to be recovered is not too high and the number of
non-zero entries in E is not too large, minimizing its convex surrogate (i.e., the
rank(·) is replaced with the nuclear norm while the l0 norm is replaced with the
l1 norm) can exactly recover the low rank matrix L. In addition, it is well known
that there is no efficient solution to the general integer programming problem.
Similar to [1, 15], we relax the binary constraint to a real value between 0 and 1.
Based on the above relaxation and after performing some change of variables,

θn = vec(Pn), Zn =

[
IK̄ ⊗ Fn

IK̄ ⊗ 1T
Kn

]
, Mn =

[
1T
K̄ ⊗ IKn

−IK̄Kn

]
, hn =

[
1Kn

0K̄Kn

]
,

where ⊗ denotes the Kronecker product and Ic is a c × c identity matrix, we
approximate the solution by solving the following optimization problem:

min
L,E,θ1,···θN

∥L∥∗ + λ∥E∥1, (3)

s.t. [Z1θ1, · · · ,ZNθN ] =

[
L+E
1K̄1T

N

]
,

Mnθn ≤ hn, ∀n ∈ {1, · · · , N},

where ∥·∥∗ denotes the nuclear norm, and ≤ denotes component-wise inequality.

Since the number of variables in the optimization problem (3) is usually
large, scalable solution is essential for its practical use. Fortunately, researches
have proposed efficient methods for solving the low rank approximation [21,
22]. Motivated by the fast first-order method Alternative Direction Method of
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Multiplier (ADMM) [23], we develop a solution to solve the optimization problem
(3). For ease of our development that follows, we define the following notations:

Q(L,E,θ1, ...,θN ) = [Z1θ1, · · · ,ZNθN ]−
[
L+E
1K̄1T

N

]
, (4)

IC(θn) =

{
0 if Mnθn ≤ hn

+∞ otherwise
, (5)

where Q(L,E,θ1, ...,θN ) = 0 represents the equality constraint of problem (3),
and IC(θn) is the indicator function of the inequality associated with θn in
problem (3). Hence, the augmented Lagrangian function of the optimization
problem (3) can be easily written as

Lµ(L,E,θ1, · · · ,θN ,Y) = ∥L∥∗ + λ∥E∥1+ <Y,Q(L,E,θ1, ...,θN )>

+

N∑
n=1

IC(θn) +
µ

2
∥Q(L,E,θ1, ...,θN )∥2F , (6)

where Y∈R(d+1)K̄×N is the Lagrange multiplier matrix, µ is a positive scalar,
<., .> denotes the matrix inner product and ∥ · ∥F denotes the Frobenius norm.
An iteration of augmented Lagrangian method [21] for problem (3) are given by

(Lt+1,Et+1,θt+1
1 , · · · ,θt+1

N ) := argmin
L,E,θ1,··· ,θN

Lµ(L,E,θ1, · · · ,θN ,Yt), (7)

Yt+1 := Yt + µQ(Lt+1,Et+1,θt+1
1 , ...,θt+1

N ), (8)

where t is the current iteration number, and µ follows the updating rule µt+1 =
ρµt for some ρ > 1 as in [20]. As pointed out in [23], the problem (7) is hard to
solve in general, and hence we minimize Lµ(L,E,θ1, · · · ,θN ,Yt) with respect
to (L,E) and (θ1, ...,θN ) alternatingly, and both of them are relatively easy to
solve.

Update L, E: The partial minimization problem of (7) with respect to (L, E)
can be equivalently written as follows:

(Lt+1,Et+1) := argmin
L,E

∥L∥∗+λ∥E∥1+ <Ȳ
t
,Dt−L−E> +

µ

2
∥Dt−L−E∥2F , (9)

where Dt = [F1θ
t
1, · · · ,FNθt

N ], Ȳ
t ∈ RdK̄×N is a matrix containing the first dK̄

rows of Yt. This optimization problem can be solved similarly to [21]:

[U,S,V] = svd(Dt −Et + µ−1Ȳ
t
),

Lt+1 = USµ−1 [S]VT , (10)

Et+1 = Sλµ−1 [Dt − Lt+1 + µ−1Ȳ
t
], (11)

where Sτ [X] is the shrinkage operator for the matrix X that applies Sτ [x] =
sign(x) ·max{|x| − τ, 0} to all the elements of X.
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Update θ1, · · · , θN : The partial minimization problem of (7) with respect to
(θ1, · · · ,θN ) can be decoupled into N independent subproblems, each of which
corresponds to θn and can be equivalently formulated as the following convex
quadratic programming (QP) problem:

θt+1
n := argmin

Mnθn≤hn

1

2
θT
nZ

T
nZnθn + eTn

(
1

µ
Yt −

[
Lt+1 +Et+1

1K̄1T
N

])T

Znθn, (12)

where en is a unit column vector with all the entries set to 0 except the nth

entry set to 1. This problem can be readily solved by a standard QP solver.

3.5 Converting θ1, · · · , θN back to binary vectors

Since the solutions θ1, · · · ,θN obtained using the ADMM method above are not
necessarily binary vectors, we need to project them back to feasible solutions via
the binary integer programming (BIP):

min
xn∈{0,1}K̄Kn

−θT
nxn, s.t. (IK̄ ⊗ 1T

Kn
)xn=1K̄ , (1T

K̄ ⊗ IKn)xn≤1Kn . (13)

Once the optimal xn is acquired, we can recover the permutation matrix. The
whole algorithm is summarized in Algorithm 1.

4 Experiments

We evaluate the performance of the proposed method for finding correspondence
using only features/patches, in which the spatial information is not taken into
consideration. We first quantitatively evaluate the proposed method on finding
correspondence among local features extracted from landmarks of a face im-
age, and compare with the state-of-the-art methods such as [15] (referred to as
RankConstr) and [16] (referred to as OneShot) that have integrated mechanism
to find correspondence for multiple images. In addition, we verify the robustness

Algorithm 1 The optimization algorithm for the proposed method

Input: [F1, · · · ,FN ], λ, ρ > 1,Y0,E0,L0,θ0
n|Nn=1

t = 0;
WHILE not converge do

Update Lt+1 as in Eqn.(10);
Update Et+1 as in Eqn.(11);
Update θt+1

n as in Eqn.(12) with QP solver, ∀n = {1, · · · , N};
Update Yt+1 as in Eqn.(8);
t = t+ 1;

End While
Optimize xn as in Eqn.(13) with BIP solver, ∀n = {1, · · · , N};
Reshape xn back to matrix and store in Pn, ∀n = {1, · · · , N};
Output: Pn|Nn=1
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Fig. 1. A face image extracted from “Buffy the Vampire Slayer”. Fig. 1(a) is the original
face image. Fig. 1(b) shows the detected face with nine landmarks detected by [25].
The landmarks are the left and right corners of the eyes, the two nostrils and the tip
of the nose, as well as the left and right corners of the mouth.

of the competing methods with respect to different levels of corruption and dif-
ferent number of outliers. In the second task, we evaluate the proposed method
on face videos from [24], in which there exist variations in pose and expression
for the cropped faces. There are two evaluation metrics used in these two sets
of experiments: one is the feature level matching precision (referred to as Pfea),
which measures the percentage of correctly matched patterns with respect to the
total number of inlier patterns; The other one is the image level matching pre-
cision (referred to as Pimg), which measures the percentage of perfect matched
images over the total number of images. An image is counted as a perfect match
if all the patterns within the image are well matched to the patterns used in the
first image. They are formally defined as follows:

Pfea =
number of matched patterns

total number of inlier patterns
, Pimg =

number of perfect matched images

total number of images
.

In this work, we empirically set ρ = 1.1 for both tasks and λ = 1
3
√
N

(resp.

λ = 1.3√
dN

) for the 1st (resp. 2nd) task where d is the number of pixels.

4.1 Features correspondence for landmarks of a face

In this set of experiments, we evaluate the proposed method on finding corre-
spondence among local features extracted from nine landmarks of a face image
as shown in Fig. 1. We extract the 128-dimension SIFT feature [26] to form a
matrix of size 128× 9. We randomly rearrange the column order of this matrix
for 20 times and stack them as a matrix of size 128× 180. We are interested in
recovering the correspondence from this disordered matrix. We further add white
Gaussian noise (resp. outliers) to compare the robustness of all the methods.

Results and discussion on noise: There are two factors for generating the
white Gaussian noise. One is the percentage of dimensions where the corre-
sponding entry is corrupted. The other is the multiplication factor (denoted as
MF) used to define the standard deviation of the white Gaussian noise (i.e.,
N(0,MF × max(F))), where max(F) is the maximum value from the full data
matrix. To reduce the effect of randomness of the pseudo-order and noise, we
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(a) Correspondence Result by OneShot [16]

(b) Correspondence Result by RankConstr [15]

(c) Correspondence Result by our proposed RankSP

Fig. 2. An exemplar results using OneShot [16], RankConstr [15] and our proposed
RankSP. The results are based on the following experiment setting: 40% of entries are
corrupted with multiplication factor (MF) set to 0.2. The features in images from the
first column are used as the template for all methods. For better presentation, only the
right corner of the right eye (marked as 4), the corner of the right nostril (marked as
7), and the right corner of the mouth (marked as 9) are shown for comparison.

repeat the experiment for 5 times using different orders of random corrupted fea-
tures and calculate the mean accuracy. An exemplar matching result is shown
in Fig. 2 and all the empirical results for different levels of noise are shown in
Fig. 3. From these results, we have the following observations:

1. Both RankSP and RankConstr can achieve 100% accuracy for both Pfea and
Pimg when there is no noise in the data. This clearly shows the effectiveness
to use of the rank constraint for finding correspondence for multiple images.

2. RankConstr is very sensitive to noise, its performance for both evaluation
criteria drops significantly even only small amount of corruption is presented
in the data. On the other hand, our proposed method RankSP can reliably
find the correspondence as the percentage of corrupted entries and the stan-
dard derivation of the white Gaussian noise increase. Even when as much as
60% of the entries are corrupted by noise, our proposed method still achieves
mean accuracy of 98% (resp. 96%) for Pfea (resp. Pimg). An explanation is
that the proposed method introduces an sparse error term. When there ex-
ists error such as corruption in the data, it would be factorized into this error
term and therefore the low rank matrix is not severely affected.

3. OneShot has poor mean accuracy on Pimg using both clean and corrupted
data. This is probably because OneShot applies k-means clustering to solve
the correspondence problem, in which there is no explicit control to avoid
the many-to-one correspondence (i.e., multiple patterns within one image
match to one pattern in the template image). Therefore it is very unlikely it
can achieve good result on Pimg. On the other hand, our proposed method
RankSP has an integrated mechanism to avoid the many-to-one correspon-
dence by enforcing the constraint of the partial permutation matrix (i.e.,
one pattern can be at most matched to one pattern in the template).
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Fig. 3. Results with respect to different levels of white Gaussian noise. The 1st (resp.
2nd) row shows the results for the mean accuracy based on Pfea (resp. Pimg).

Results and discussion on outlier: We also investigate the performance
variations with respect to the number of outliers. For the above images, we
additionally extract SIFT features from random locations. Since OneShot does
not have any mechanism to identify outliers, we only compare our proposed
method RankSP with RankConstr. Fig. 4 shows the performance variation with
respect to the number of outliers. From these experimental results, we find that
the proposed method is very robust to the outliers, in which it can reliably
achieve 100% mean accuracy using both evaluation criteria as the number of
outliers increases from 0 to 10. Meanwhile, the mean accuracy Pfea (resp. Pimg)
for RankConstr decreases significantly from 100% to around 20% (resp. 10%).
An explanation is that RankConstr is a greedy approach. It recursively computes
a partial permutation matrix for one image at a time using only the reordered
features from preceding rounds of calculation (i.e., part of the data is used),
in which it assumes that the correspondence among these reordered features
has been well established. If this assumption is violated, the error would be
propagated to the subsequent matches, leading to many inaccurate matches. In
contrast, our method operates in a batch mode and the low rank constraint is
enforced on the full data matrix, hence it is more robust to the outliers.

4.2 Rearrangement from Dis-order Face Patches in Videos

In this section, we evaluate the proposed algorithm for recovering disordered face
videos [24]. Compared to the image used in the previous section, the faces from
different frames exist variations in pose and expression. We crop the face from
each frame and it is resized to 60× 60 pixels and divided into 3× 3 blocks. The
order of blocks in each frame are then perturbed independently. In addition, to
evaluate the robustness of the proposed algorithm with respect to different levels
of occlusion, we generate a uniformly distributed random number between 0 and
1 for each frame. If this number is less than a pre-defined threshold T , then a
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Fig. 4. Results with respect to the number of outliers. The left (resp. right) figure
shows the correspondence results for Pfea (resp. Pimg). Since OneShot does not have
any mechanism to identify outliers, only results from RankConstr and RankSP are
shown in this figure.

randomly selected block from this frame will be filled with black. An exemplar
result is shown in Fig. 5 and all the empirical results are shown in Fig. 6. We
observe that RankConstr can only handle at most 30 images for this dataset,
hence only the first 30 frames for all the videos are used for its performance
evaluation. From this set of results, we have the following observations:

1. Our proposed method RankSP can achieve close to 100% accuracy if only
variations in pose and expression exist (i.e., there is no occlusion). An ex-
planation is that the transition in videos is usually smooth, and if there are
enough disordered faces from one person to be recovered, the low-rank prop-
erty would not be significantly affected even if variation in pose exists. In
addition, the variation in expression only affects parts of a face (e.g., smile
only affects the mouth and cheek areas of a face, frown may only affects the
eyebrow area of a face, etc), which is readily handled by the sparse error
term in our proposed method. In contrast, OneShot and RankConstr do not
have a well-formulated solution to simultaneously handle these two effects,
and hence they generally perform worse than our method.

2. When the probability that a block is occluded within a frame increases, the
performance of our RankSP does not degrade much, which shows the ro-
bustness of the proposed method. Specifically speaking, RankSP can still
achieve above 90% for Pfea and 80% for Pimg when the threshold T is set
to 0.2 (i.e., approximately 20% of frames are occluded). An explanation is
that occlusion only affects small proportion of the face, and such kind of
error is readily handled in the proposed method via the sparse error term.
In addition, RankSP operates in a batch mode, in which all the images are
simultaneously taken into consideration. So even if a misalignment acciden-
tally happens in one frame, it would not adversely affects other frames. In
contrast, RankConstr again cannot handle such occlusion. An explanation
is that this method lacks of a robust mechanism to handle sparse error and
its greedy solution further deteriorates the result.

We also take the Connie Chung video as an example to compare the robust-
ness of our method RankSP with OneShot and RankConstr for 9, 16 and 25
blocks. We report the running time of the two most time-consuming operations
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# of blocks
OneShot RankConstr RankSP

Time(s) Pfea(%) Pimg(%) Time(s) Pfea(%) Pimg(%) Loop(s) BIP(s) Pfea(%) Pimg(%)
9 blocks (3*3) 8 51.7 0.0 393 55.2 20.0 212 6 99.8 99.3
16 blocks (4*4) 39 53.4 0.0 239 50.2 26.7 488 24 93.6 63.0
25 blocks (5*5) 142 53.1 0.0 180 45.6 6.7 1509 52 71.1 14.1

Table 1. Running time and accuracy (Pfea and Pimg) of the Connie Chung video.

(i.e., the while loop and BIP solver) for RankSP together with Pfea and Pimg.
The result is shown in Table 1, which is obtained on an IBM workstation with
3.33GHz CPU and 32GB memory. The result shows that RankSP consistently
outperforms OneShot and RankConstr as the number of blocks increases. It is
also observed that solving the QP problem is the most time-consuming operation
inside the WHILE loop. To accelerate our work, one direction is to decompose
the large QP into a set of smaller ones by exploring the block-diagonal quadratic
term to facilitate parallel computing.

(a) Ordered face video

(b) Dis-order face video with occlusion

(c) face video recovered by OneShot [16]

(d) face video recovered by RankConstr [15]

(e) face video recovered by our proposed RankSP
Fig. 5. Sampled cropped face images from a video of Connie Chung [24]. The original
video contains 135 frames. Fig. 5(a) shows face images without distortion; Fig. 5(b)
shows the corresponding distorted face images with occlusion. Each face image is di-
vided into 3×3 blocks, and the block order within each image is unknown and at most
one block per frame may be occluded subjected to threshold (T=0.1 for this figure) ex-
cept the first image (referred to as a template frame); Fig. 5(c), 5(d) and 5(e) show the
result recovered by OneShot, RankConstr and RankSP, repsectively. The comparison
clearly shows the effectiveness of our proposed RankSP, in which only one correspon-
dence for a frame in the mid of second row is wrong, while there are gross errors for
OneShot and RankConstr.
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Fig. 6. Face recovering results using OneShot, RankConstr and our RankSP with
threshold T = {0, 0.1, 0.2}. The corresponding number of frames are shown as fol-
lows: A.J.Cook(194 frames), Anjum Hussain(71 frames), Coleen Rowley(164 frames),
Connie Chung(135 frames), Emily Robison(69 frames), Peter Lundgren(105 frames),
Pupi Avati(65 frames), Wen Jia Bao(63 frames).

5 Conclusion

We have proposed a method for finding the correspondence from multiple im-
ages by exploiting the priors that the rank of the ordered patterns from a set
of images should be lower than disordered patterns, and the error among the
reordered pattern is sparse. Based on these priors, we have formulated the cor-
respondence problem as finding a set of optimal partial permutation matrices
for the disordered patterns such that the ordered patterns can be factorized as a
sum of a low rank matrix and a sparse matrix. A scalable algorithm that solves a
sequence of tractable optimization problems has been proposed for the optimal
solution, which allows us to efficiently find the correspondence across dozens or
even hundreds of images. Moreover, we have shown the efficacy and robustness
of our method with extensive experiments using local features extracted from a
face with different levels of noise and number of outliers, and the raw pixel values
from face videos with variations in pose and expression coupled with occlusion.
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