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ABSTRACT
Approximation of non-linear kernels using random feature
mapping has been successfully employed in large-scale data
analysis applications, accelerating the training of kernel ma-
chines. While previous random feature mappings run in
O(ndD) time for n training samples in d-dimensional space
and D random feature maps, we propose a novel random-
ized tensor product technique, called Tensor Sketching, for
approximating any polynomial kernel in O(n(d + D logD))
time. Also, we introduce both absolute and relative error
bounds for our approximation to guarantee the reliability
of our estimation algorithm. Empirically, Tensor Sketching
achieves higher accuracy and often runs orders of magni-
tude faster than the state-of-the-art approach for large-scale
real-world datasets.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation

General Terms
Algorithms, Performance, Experimentation

Keywords
polynomial kernel; SVM; tensor product; Count Sketch; FFT

1. INTRODUCTION
Kernel machines such as Support Vector Machines (SVMs)

have recently emerged as powerful approaches for many ma-
chine learning and data mining tasks. One of the key proper-
ties of kernel methods is the capability to efficiently find non-
linear structure of data by the use of kernels. A kernel can be
viewed as an implicit non-linear data mapping from original
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data space into high-dimensional feature space, where each
coordinate corresponds to one feature of the data points. In
that space, one can perform well-known data analysis al-
gorithms without ever interacting with the coordinates of
the data, but rather by simply computing their pairwise in-
ner products. This operation can not only avoid the cost
of explicit computation of the coordinates in feature space
but also handle general types of data (such as numeric data,
symbolic data).

While kernel methods have been used successfully in a va-
riety of data analysis tasks, their scalability is a bottleneck.
Kernel-based learning algorithms usually scale poorly with
the number of the training samples (a cubic running time
and quadratic storage for direct methods). This drawback
is becoming more crucial with the rise of big data applica-
tions [12, 3]. Recently, Joachims [9] proposed an efficient
training algorithm for linear SVMs that runs in time lin-
ear in the number of training examples. Since one can view
non-linear SVMs as linear SVMs operating in an appro-
priate feature space, Rahimi and Recht [16] first proposed
a random feature mapping to approximate shift-invariant
kernels in order to combine the advantages of both linear
and non-linear SVM approaches. This approach approxi-
mates kernels by an explicit data mapping into relatively
low-dimensional random feature space. In this random fea-
ture space, the kernel of any two points is well approximated
by their inner product. Therefore, one can apply existing
fast linear learning algorithms to find data relations corre-
sponding to non-linear kernel methods in the random feature
space. That leads to a substantial reduction in training time
while obtaining similar testing error.

Following up this line of work, many randomized approaches
to approximate kernels are proposed for accelerating the
training of kernel machines [10, 12, 20, 21]. While the train-
ing algorithm is linear, existing kernel approximation map-
pings require time proportional to the product of the number
of dimensions d and the number of random features D. This
means that the mapping itself is a bottleneck whenever dD
is not small. In this paper we address this bottleneck, and
present a near-linear time mapping for approximating any
polynomial kernel.

Particularly, given any two points of a dataset S of n
points, x = {x1, · · · , xd} , y = {y1, · · · , yd} ∈ S ⊂ Rd and
an implicit feature space mapping φ : Rd 7→ F , the inner
product between these points in the feature space F can
be quickly computed as 〈φ(x), φ(y)〉 = κ(x, y) where κ() is
an easily computable kernel. An explicit random feature
mapping f : Rd 7→ RD can efficiently approximate a kernel
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κ() if it satisfies:

E [〈f(x), f(y)〉] = 〈φ(x), φ(y)〉 = κ(x, y) .

So we can transform data from the original data space into a
low-dimensional explicit random feature space and use any
linear learning algorithm to find non-linear data relations.

Rahimi and Recht [16] introduced a random projection-
based algorithm to approximate shift-invariant kernels (e.g.
the Gaussian kernel κ(x, y) = exp(−‖x− y‖2 /2σ2), for σ >
0). Vempati et al. [21] extended this work to approximate
generalized radial-basic function (RBF) kernels (e.g. the
exponential-χ2 kernel κ(x, y) = exp(−χ2(x, y)/2σ2), where
σ > 0 and χ2 is the Chi-squared distance measure). Re-
cently, Kar and Karnick [10] made use of the Maclaurin se-
ries expansion to approximate inner product kernels (e.g.
the polynomial kernel κ(x, y) = (〈x, y〉 + c)p, for c ≥ 0 and
an integer p).

These approaches have to maintain D random vectors
ω1, · · ·ωD ∈ Rd inO(dD) space and needO(ndD) operations
for computing D random feature maps. That incurs sig-
nificant (quadratic) computational and storage costs when
D = O(d) and d is rather large. When the decision bound-
ary of the problem is rather smooth, the computational cost
of random mapping might dominate the training cost. In
addition, the absolute error bounds of previous approaches
are not tight. Particularly, the Maclaurin expansion based
approach [10] suffers from large error because it approxi-
mates the homogeneous polynomial kernel κ(x, y) = 〈x, y〉p

by
∏p
i=1 〈ωi, x〉

∏p
i=1 〈ωi, y〉 where ωi ∈ {+1,−1}d. Our

experiments show that large estimation error results in ei-
ther accuracy degradation or negligible reduction in training
time.

In this work, we consider the problem of approximating
the commonly used polynomial kernel κ(x, y) = (〈x, y〉+ c)p

to accelerate the training of kernel machines. We develop
a fast and scalable randomized tensor product technique,
named Tensor Sketching, to estimate the polynomial kernel
of any pair of points of the dataset. Our proposed approach
works in O(np(d+D logD)) time and requires O(pd logD)
space for random vectors. The main technical insight is the
connection between tensor product and fast convolution of
Count Sketches [2, 14], which enables us to reduce the com-
putational complexity and space usage. We introduce both
absolute and relative error bounds for our approximation to
guarantee the reliability of our estimation algorithm. The
empirical experiments on real-world datasets demonstrate
that Tensor Sketching achieves higher accuracy and often
runs orders of magnitude faster than the state-of-the-art ap-
proach for large-scale datasets.

The organization of the paper is as follows. In Section 2,
we briefly review related work. Section 3 describes back-
ground and preliminaries. The proposed approach is pre-
sented and analyzed in Section 4 and 5. In Section 6, we
show experimental evaluations of our proposed approach on
real world datasets. Section 7 concludes the paper.

2. RELATED WORK
Traditional approaches for solving non-linear SVMs on

large datasets are decomposition methods [1, 13]. These
methods divide the training set into two sets, named work-
ing set and fixed set; and iteratively solve the optimization
problem with respect to the working set while freezing the
fixed set. In other words, they iteratively update a subset

of kernel methods’ coefficients by performing coordinate as-
cent on subsets of the training set until KKT conditions have
been satisfied to within a certain tolerance. Although such
approaches can handle the memory restrictions involving the
dense kernel matrix, they still involve numerical solutions of
optimization subproblems and therefore can be problematic
and expensive to large-scale datasets.

In order to apply kernel methods to large-scale datasets,
many approaches have been proposed for quickly approxi-
mating the kernel matrix, including the Nyström methods
[5, 23], sparse greedy approximation [19] and low-rank kernel
approximation [7]. These approximation schemes can reduce
the computational and storage costs of operating on a kernel
matrix while preserving the quality of results. An assump-
tion of these approaches is that the kernel matrix has many
zero eigenvalues. This might not be true in many datasets.
Furthermore, there is a lack of experiments to illustrate the
efficiency of these approaches on large-scale datasets [16].

Instead of approximating the kernel matrix, recent ap-
proaches [10, 12, 16, 20, 21, 24] approximate the kernels
by explicitly mapping data into a relatively low-dimensional
random feature space. The explicit mapping transforms
data into a random feature space where the pairwise in-
ner products of transformed data points are approximately
equal to kernels in feature space. Therefore, we can apply
existing fast linear learning algorithms [6, 9, 18] to find non-
linear data relations in that random feature space. While
previous such approaches can efficiently accelerate the train-
ing of kernel machines, they incur significant computational
cost (quadratic in the dimensionality of data). That results
in performance degradation on large-scale high-dimensional
datasets.

3. BACKGROUND AND PRELIMINARIES

3.1 Count Sketch
Charikar et al. [2] described and analyzed a sketching ap-

proach, called Count Sketch, to estimate the frequency of
all items in a stream. Recently, the machine learning com-
munity has used Count Sketch as a feature hashing tech-
nique for large-scale multitask learning [22] because Count
Sketches can preserve the pairwise inner products within
an arbitrarily small factor. In our work, we view Count
Sketch as a specific random projection technique in high-
dimensional space because it maintains linear projections of
a vector with the number of random vectors defined impli-
citly by simple independent hash functions.

Definition 1. Given two 2-wise independent hash func-
tions h : [d] 7→ [k] and s : [d] 7→ {+1,−1}. Count Sketch
of a point x = {x1, · · · , xd} ∈ Rd is denoted by Cx =
{(Cx)1, · · · , (Cx)k} ∈ Rk where (Cx)j =

∑
i:h(i)=j s(i)xi.

Note that the two Count Sketches C(1)x,C(2)x of a point
x are different if they use different hash functions h1 6= h2

and s1 6= s2. The following lemma provides the bias and
variance of the pairwise inner product of Count Sketches.

Lemma 2. Given two points x, y ∈ Rd, we denote by
Cx,Cy ∈ Rk the respective Count Sketches of x, y on the
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same hash functions h, s.

E[〈Cx,Cy〉] = 〈x, y〉 ,

Var[〈Cx,Cy〉] =
1

k

∑
i6=j

x2i y
2
j +

∑
i6=j

xiyixjyj

 .

Proof. See [22, Appendix A].

We derive an upper bound of variance of any pairwise
inner product of Count Sketches as follows:

Lemma 3. Given two points x, y ∈ Rd, we denote by
Cx,Cy ∈ Rk the respective Count Sketches of x, y on the
same hash functions h, s.

Var[〈Cx,Cy〉] ≤ 1

k

(
〈x, y〉2 + ‖x‖2 ‖y‖2

)
.

Proof. Given any two points x = {x1, · · · , xd} , y =
{y1, · · · , yd}, we have:

‖x‖2‖y‖2 =
∑
i

x2i y
2
i +

∑
i6=j

x2i y
2
j ,

〈x, y〉2 =
∑
i

x2i y
2
i +

∑
i6=j

xiyixjyj .

By the lemma 2, we have:

Var[〈Cx,Cy〉] =
1

k

∑
i6=j

x2i y
2
j +

∑
i6=j

xiyixjyj


=

1

k

(
〈x, y〉2 + ‖x‖2 ‖y‖2

)
− 2

k

∑
i

x2i y
2
i

≤ 1

k

(
〈x, y〉2 + ‖x‖2 ‖y‖2

)
.

It is worth noting that Count Sketch might not distort a
sparse vector. This is due to the fact that non-zero elements
will always be hashed into a cell of Count Sketch. In other
words, they are retained after sketching with high probabil-
ity. In addition, Count Sketch requires O(nd) operations for
n points in d-dimensional space. Therefore, Count Sketch
might provide better performance than traditional random
projections in applications dealing with sparse vectors.

3.2 Tensor product
Given a vector x = {x1, · · · , xd} ∈ Rd, the 2-level tensor

product or outer product x(2) = x⊗ x is defined as follows:

x(2) = x⊗ x =


x1x1 x1x2 · · · x1xd
x2x1 x2x2 · · · x2xd

...
...

. . .
...

xdx1 xdx2 · · · xdxd

 ∈ Rd
2

.

Given an integer p, we consider a p-level tensor product
Ωp : Rd 7→ Rd

p

given by

x 7→ x(p) = x⊗ · · ·⊗︸ ︷︷ ︸
p times

x .

The following lemma justifies that tensor product is an
explicit feature mapping for the homogeneous polynomial
kernel.

Lemma 4. Given any pair of points x, y and an integer
p, we have: 〈

x(p), y(p)
〉

= 〈x, y〉p .

Proof. See [17, Proposition 2.1].

By taking y = x on the lemma 4, we have:

Lemma 5. Given any point x and an integer p, we have:

‖x(p)‖2 = ‖x‖2p .

It is obvious that the tensor product requires dp dimen-
sions to comprise the polynomial feature space. Therefore,
it fails for realistically sized applications.

4. TENSOR SKETCHING APPROACH
As elaborated above, it is infeasible to directly perform

any learning algorithm in the polynomial feature space. In
this section, we introduce an efficient approach to randomly
project the images of data without ever computing their
coordinates in that polynomial feature space. The proposed
approach runs in O(np(d + D logD)) time for n training
examples in d-dimensional space and D random projections;
and outputs unbiased estimators of the degree-p polynomial
kernel of any pair of data points.

4.1 The Convolution of Count Sketches
Recently, Pagh [14] has introduced a fast algorithm to

compute Count Sketch of an outer product of two vectors.
Instead of directly computing the outer product, the ap-
proach compresses these vectors into their Count Sketches
and then computes the Count Sketch of their outer product
by those sketches. Due to the fact that the outer product of
two different Count Sketches can be efficiently computed by
the polynomial multiplication (using FFT), we can compute
the Count Sketch of an outer product of any two vectors in
time near-linear in the dimensionality of the sketches.

More precisely, given a vector x ∈ Rd, we denote by
C(1)x,C(2)x ∈ RD its two different Count Sketches using
2-wise independent hash functions h1, h2 : [d] 7→ [D] and
s1, s2 : [d] 7→ {+1,−1}. We consider the outer product

x ⊗ x ∈ Rd
2

and its Count Sketch Cx(2) ∈ RD using in-
dependent and decomposable hash functions H : [d2] 7→ [D]
and S : [d2] 7→ {+1,−1}. We decompose H and S as follows:

H(i, j) = h1(i) + h2(j) mod D and S(i, j) = s1(i)s2(j).

We note that the hash functions H and S are 2-wise in-
dependent [15]. We then represent a Count Sketch in D-
dimensional space as a polynomial of degree D − 1 where
each coordinate corresponds to one term of the polynomial.
For example, we consider two degree-(D − 1) polynomials

representing for C(1)x,C(2)x:

P (1)
x (ω) =

d∑
i=1

s1(i)xiω
h1(i) and P (2)

x (ω) =

d∑
j=1

s2(j)xjω
h2(j).

We can fast compute the degree-(D−1) polynomial for Cx(2)

using hash functions H and S:

Px(2)(ω) =

d∑
i,j=1

S(i, j)xixjω
H(i,j)

= FFT−1(FFT(P (1)
x ) ∗ FFT(P (2)

x )),
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where (∗) is the component-wise product operator and FFT
uses D interpolation points. In other words, the Count
Sketch Cx(2) of x⊗ x can be efficiently computed by Count
Sketches C(1)x,C(2)x in O(d+D logD) time.

Inspired by the fast convolution of Count Sketches, we
are able to efficiently compute the the polynomial Px(p)(ω)

for the Count Sketch in D-dimensional space, Cx(p), of the
tensor product x(p) of any point x ∈ Rd by using indepen-
dent and decomposable hash functions H : [dp] 7→ [D] and
S : [dp] 7→ {+1,−1}. We decompose H and S as follows:

H(i1, · · · , ip) =

p∑
k=1

hk(ik) mod D,

S(i1, · · · , ip) =

p∏
k=1

sk(ik),

where h1, · · · , hp : [d] 7→ [D] and s1, · · · , sp : [d] 7→ {+1,−1}
are chosen independently from 2-wise independent family.

The proposed approach works in O(p(d + D logD)) time
by using 2p different and independent hash functions as elab-
orated above. This idea motivates the intuition for Tensor
Sketching approach to approximate polynomial kernels.

4.2 Tensor Sketching Approach
We exploit the fast computation of Count Sketches on ten-

sor domains to introduce an efficient algorithm for approxi-
mating the polynomial kernel κ(x, y) = (〈x, y〉+ c)p, for an
integer p and c ≥ 0. It is obvious that we can avoid the
constant c by adding an extra dimension of value

√
c to all

data points. So, for simplicity, we solely consider the homo-
geneous polynomial kernel κ(x, y) = 〈x, y〉p for the proposed
algorithm and theoretical analysis.

For each point x ∈ S ⊂ Rd, Tensor Sketching returns the
Count Sketch of size D of the tensor product x(p) as random
feature maps in RD for the polynomial kernel. The pseudo-
code in Algorithm 1 shows how Tensor Sketching works. We
maintain 2p independent hash functions (lines 2 - 3), where
h1, · · · , hp and s1, · · · , sp are 2-wise independent. For each
point x, we create p different Count Sketches of size D using
these 2p different and independent hash functions (line 5).

We then compute the Count Sketch of x(p) by the usage
of polynomial multiplication (using FFT) (lines 6-8). As a
result, we have obtained a random feature mapping f which
provides unbiased estimators for the polynomial kernel.

Now, we analyze the complexity of Tensor Sketching. It
requires O(pd logD) space usage to store 2p hash functions.
For each point, the running time of computing the Count
Sketch of its p-level tensor product is O(pd+ pD logD) due
to applying FFT. Therefore, the total running time of Ten-
sor Sketching is O(np(d + D logD)). To increase the accu-
racy of estimates, we choose D = O(d); therefore, we need
O(npd log d) operations compared to O(nd2) of the previous
approaches [10, 16].

5. ERROR ANALYSIS
In this section we analyze the precision of estimate of the

kernel κ(x, y) = 〈x, y〉p, where x, y ∈ Rd and p is an integer,
showing bounds on the number of random features (D) to
achieve a given absolute or relative precision ε. It is worth
noting that the previous approaches [10, 16, 20, 12] only
introduced bounds of an absolute error estimate. Often,
however, the kernel has small value and a good absolute error

Algorithm 1 Tensor Sketching(S, p,D)

Require: A dataset S of size n, the number of random
features D and the degree of polynomial kernel p

Ensure: Return Count Sketches of the point set S as a
random feature mapping f for the polynomial kernel
κ(x, y) = 〈x, y〉p

1: f(S)← ∅
2: Pick p independent hash functions h1, · · · , hp : [d] 7→

[D], each from a 2-universal family
3: Pick p independent hash functions s1, · · · , sp : [d] 7→
{+1,−1}, each from a 2-universal family

4: for each data point x ∈ S do
5: Create p different Count Sketches: C(1)x, · · · , C(p)x
6: (C(1)x, · · · , C(p)x)← FFT(C(1)x, · · · , C(p)x)
7: Obtain f(x) in frequency domain by the component-

wise multiplication C(1)x ∗ · · · ∗ C(p)x
8: f(x)← FFT−1(f(x))
9: Insert f(x) into f(S)

10: end for
11: return Return f(S)

approximation is typically a poor relative error estimate.
Large errors of estimate might result in either performance
degradation or negligible reduction in computational cost.

5.1 Relative error bound
In contrast to the previous techniques, our approach can

be viewed as a specific random projection technique applied
to images of data in the explicit polynomial feature space.
In fact, Tensor Sketching maintains random projections of
images of data in the feature space via independent hash
functions of Count Sketches. Therefore, its estimators are
unbiased and have tight error bounds.

Given two points x, y ∈ Rd, we denote by Cx(p), Cy(p) ∈
RD the Count Sketches of x(p), y(p) ∈ Rd

p

, respectively. The
lemma 4 and 5 guarantee that〈
x(p), y(p)

〉
= 〈x, y〉p , ‖x(p)‖ = ‖x‖p, ‖y(p)‖ = ‖y‖p .

So applying the lemma 2 and 3, we have:

Lemma 6.

E
[〈
Cx(p), Cy(p)

〉]
= 〈x, y〉p ,

Var
[〈
Cx(p), Cy(p)

〉]
≤ 1

D

(
〈x, y〉2p + ‖x‖2p ‖y‖2p

)
.

While previous works on random feature mappings do not
provide bounds on the variance of estimates, the variance of
our estimate can be bounded. We make use Chebyshev’s
inequality to bound the relative error, which depends on the
cosine of the angle θxy between x and y.

Lemma 7.

P
[∣∣∣〈Cx(p), Cy(p)〉− 〈x, y〉p∣∣∣ ≥ ε 〈x, y〉p] ≤ 2

Dε2

(
1

cos θxy

)2p

.
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Proof. Consider the random variableX =
〈
Cx(p), Cy(p)

〉
,

Chebyshev’s inequality guarantees that:

P[|X −E[X]| ≥ εE[X]] ≤ Var[X]

ε2E[X]2

≤ 1

Dε2
〈x, y〉2p + ‖x‖2p ‖y‖2p

〈x, y〉2p

=
1

Dε2

(
1

(cos θxy)2p
+ 1

)
≤ 2

Dε2

(
1

cos θxy

)2p

.

It is obvious that we need more random features to ap-
proximate polynomial kernels of large degree p. In addition,
the relative error depends on the pairwise angles of data
points. So we have to use large D for almost orthogonal
data points to achieve a good approximation.

5.2 Absolute error bound
Following up on the work of Kar and Karnick [10], we

assume that the 1-norm of any point of data can be bounded,
such that ‖x‖1 ≤ R for any point x and a nonnegative real

R. It is clear that ‖x(p)‖1 = ‖x‖p1 ≤ Rp. So we first establish

the bound of
∣∣∣〈Cx(p), Cy(p)〉∣∣∣ for any pair of points x, y as

follows:

Lemma 8. ∣∣∣〈Cx(p), Cy(p)〉∣∣∣ ≤ R2p .

Proof. The Hölder inequality says that
∣∣∣〈Cx(p), Cy(p)〉∣∣∣ ≤

‖Cx(p)‖1‖Cy(p)‖∞. So it suffices to prove that ‖Cx(p)‖1 ≤
Rp for any x due to ‖Cx(p)‖∞ ≤ ‖Cx(p)‖1. By apply-

ing the Cauchy-Schwarz inequality, we have: ‖Cx(p)‖1 =∑D
i=1 |Cx

(p)
i | ≤

∑dp

i=1 |x
(p)
i | ≤ R

p . That proves the claim.

For any pair of points x, y, we use t different pairs of Count

Sketches
(
C(1)x(p), C(1)y(p)

)
, · · · ,

(
C(t)x(p), C(t)y(p)

)
. By

Hoeffding’s inequality, we achieve a tighter absolute error
bound than the previous approach [10] as follows:

Lemma 9. Let X = 1
t

∑t
i=1Xi be an average of the sum

of independent random variables Xi =
〈
C(i)x(p), C(i)y(p)

〉
for each i ∈ [t], Xi ∈ [−R2p, R2p] for any nonnegative real
R. For any ε > 0,

Pr[|X −E[X]| ≥ ε] ≤ 2 exp

(
−tε2

2R4p

)
.

Our absolute error bound depends on the largest value
taken by the polynomial kernel in the data space (e.g. R2p).
In fact, no algorithm guaranteeing an absolute error can
avoid this dependence due to the unbounded nature of the
polynomial kernel.

5.3 Normalization
Empirically, it has been shown that normalizing a kernel

may improve the performance of SVMs. A way to do so
is to normalize the data such as ‖x‖ = 1 so that the exact
kernel is properly normalized, i.e. κ(x, x) = 〈x, x〉p = 1. The
following lemma shows that Count Sketches can preserve the
normalization of kernels.

Lemma 10. Given fixed constants ε, δ < 1 and a point x
such that ‖x‖ = 1, we denote by Cx(p) ∈ RD the Count

Sketch of x(p). If ‖x(p)‖∞ ≤ ε

18
√

log (1/δ) log (D/δ)
and D ≥

72 log (1/δ)/ε2, we have that

Pr
[∣∣∣〈Cx(p), Cx(p)〉− 1

∣∣∣ ≥ ε] ≤ 2δ.

Proof. See [22, Appendix B].

It is obvious that our kernel approximation can maintain
the normalization of kernels within an arbitrarily small fac-
tor. In contrast, the Maclaurin expansion based approach [10]
does not satisfy this property.

6. EXPERIMENTAL RESULTS
We implemented random feature mappings in Matlab-

7.11.0 and conducted experiments in a 2.67 GHz core i7
Windows platform with 3GB of RAM. We compared the
performance of random feature mappings, including Tensor
Sketching (TS) and Random Maclaurin (RM) [10] with non-
linear SVMs on 4 real world datasets: Adult [8], Mnist [11],
Gisette [1], and Covertype1 [8]. We used LIBSVM-3.14 [1]
for non-linear kernels and LIBLINEAR-1.92 [6] for random
feature mappings for classification task. All averages and
standard deviations are over 5 runs of the algorithms.

6.1 Accuracy of Estimation
This subsection presents the accuracy experiments to eval-

uate the reliability of our estimation algorithm. We car-
ried out experiments to compare the accuracy of estimators
based on the number of random features (D) on two ran-
dom feature mappings: Tensor Sketching (TS) and Random
Maclaurin (RM). We measured the relative error of the ap-
proximation of the homogeneous and inhomogeneous poly-
nomial kernels of degree p = 2, 3, 4. We took D in ranges
[500, 3000] and conducted experiments on Adult dataset
with size n = 48, 842 and dimensionality d = 123. Fig-
ure 1 displays the relative error (ε) from expectation of the
two approaches on different polynomial kernels.

It is obvious that TS provides a smaller error than the
RM approach on those polynomial kernels. The difference
is most dramatic on the homogeneous kernels because of the
use of Rademacher vectors ωi ∈ {+1,−1}d in RM. In fact,
it estimates 〈x, y〉p as

∏p
i=1 〈ωi, x〉

∏p
i=1 〈ωi, y〉, which incurs

very large variance, especially for large p. Due to the fact
that we have to normalize data before applying any kernel
method, RM gives small error on inhomogeneous kernels. In
this case, the value of Maclaurin expansion concentrates on
some low order terms that have small variance of estimate.
When the accuracy of kernel machines depends on higher
order terms, RM either suffers from low accuracy or needs
large D due to large variance of estimate. In contrast, TS
is a specific random projection in the polynomial feature
space. So it greatly outperforms RM and does not require
a large number of random features to achieve a small error.
For example, on the inhomogeneous kernels, TS only needs
D = 500 to achieve ε < 1 while RM requires more than 3000
random features.

1We sample 100,000 points for Covertype datasets due to
the limit of RAM

243



500 1000 1500 2000 2500 3000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of random features (D)

R
el

at
iv

e 
er

ro
r (

ε)

 

 
TS, κ = <x,y>2

TS, κ = (1 + <x,y>)2

RM, κ = <x,y>2

RM, κ = (1 + <x,y>)2

500 1000 1500 2000 2500 3000
0

1

2

3

4

5

Number of random features (D)

R
el

at
iv

e 
er

ro
r (

ε)

 

 
TS, κ = <x,y>3

TS, κ = (1 + <x,y>)3

RM, κ = <x,y>3

RM, κ = (1 + <x,y>)3

500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

Number of random features (D)

R
el

at
iv

e 
er

ro
r (

ε)

 

 TS, κ = <x,y>4

TS, κ = (1 + <x,y>)4

RM, κ = <x,y>4

RM, κ = (1 + <x,y>)4

Figure 1: Comparison of relative errors between Tensor Sketching (TS) and Random Maclaurin (RM) esti-
mators on the Adult dataset (n = 48,842, d = 123) using different polynomial kernels. (Figures best viewed
in color.)

6.2 Efficiency
This subsection compares the random feature construc-

tion time of the two approaches, TS and RM, on two large
high-dimensional datasets: Adult (d = 123) and Mnist (d =
780). As analyzed above, TS requires O(np(d + D logD))
time while RM demands O(ndD) time and much random-
ness. It is obvious that the running time of TS is faster
and less dependent on the original dimensionality of data,
a very desirable property since random feature mapping of-
ten contributes a significant computational cost in training
large-scale high-dimensional datasets.

Figure 2.a shows the CPU time requirements in seconds of
the two approaches on the kernel κ = (1+〈x, y〉)4 when vary-
ing the number of random features D in ranges [0, 4000] and
fixing the number of training samples n = 10, 000. It is clear
that the running time of TS approach is almost independent
from the dimensionality of data d when using large D. On
both Adult (d = 123) and Mnist (d = 779) datasets, TS
approach scales well when increasing D compared to RM on
Adult dataset. In contrast, RM shows a linear dependence
with d, as depicted on Mnist dataset (d = 780). When the
dataset (e.g. Mnist) has a smooth decision boundary, RM
feature construction time dominates the training time. This
property might limit the use of RM.

When the dimensionality of data d increases, we need to
increase the number of random features D = O(d) to boost
the accuracy. Figure 2.b demonstrates a quadratic running
time of RM in terms of dimensionality of data on the syn-
thetic dataset with setting d = D and n = 10, 000. This
means that RM will be a bottleneck of kernel machines on
high-dimensional datasets. The next section will show a sig-
nificant domination of RM feature mapping when training
on the Gisette dataset (d = 5000).

6.3 Scalability
In this experiment, we compare the performance of ran-

dom feature mappings (TS, RM) along with LIBLINEAR [6]
and non-linear kernel mapping along with LIBSVM [1] for
classification tasks on 4 large-scale datasets. We measured
the training accuracy and time of these approaches on a va-
riety of polynomial kernels. We note that training time of
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Figure 2: Comparison of CPU time (s) between Ten-
sor Sketching (TS) and Random Maclaurin (RM)
approaches on 3 datasets: (a) Adult (d = 123)
and Mnist (d = 780); (b) Synthetic (d = D) using
κ = (1 + 〈x, y〉)4. (Figures best viewed in color.)

random feature mapping approaches include time for feature
construction and linear SVMs training.

Figure 3 demonstrates a comparison of accuracy between
TS, RM and non-linear SVMs on degree-2 polynomial ker-
nels. The results impressively show that TS provides higher
accuracy than RM on 4 datasets. The most dramatic dif-
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Figure 3: Comparison of accuracy of Tensor Sketching (TS), Random Maclaurin (RM) with LIBLINEAR
and non-linear kernels with LIBSVM on 4 datasets with the homogeneous kernel κ = 〈x, y〉2 (upper row) and
the inhomogeneous kernel κ = (1 + 〈x, y〉)2 (lower row). (Figures best viewed in color.)
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Figure 4: Comparison of training time between Tensor Sketching (TS) and Random Maclaurin (RM) with
LIBLINEAR on 4 datasets with the inhomogeneous polynomial kernel κ = (1 + 〈x, y〉)2. (Figures best viewed
in color.)

ference is on the homogeneous kernels due to large error of
estimate of RM. Moreover, the accuracy of TS converges
faster than RM to that of non-linear kernels when increas-
ing the number of random features D. RM even decreases
the accuracy on Gisette dataset because it requires a signif-
icantly large number of random features for approximating
higher order terms of Maclaurin expansion well.

Figure 4 shows the CPU time requirements in seconds
of the two approaches in training linear SVMs using LIB-
LINEAR on the kernel κ = (1 + 〈x, y〉)2. It is obvious
that TS provides performance benefits on high-dimensional
datasets, such as Mnist and Gisette. On Covertype and
Adult datasets, RM is slightly faster than TS. This is be-
cause RM generates more features for the low order terms
of Maclaurin expansion which do not require high compu-
tational cost. When p is large, TS significantly outperforms
RM, as illustrated in Table 1.

It is obvious that RM performs quite poorly on homoge-
neous kernels on the 4 datasets. Due to the large error of
estimate in homogeneous kernels, RM provides low accuracy
on 4 datasets, especially in the kernel κ = 〈x, y〉4. In fact,
the large error of estimate produces meaningless results of

training linear SVMs (e.g. 41.45 % of accuracy on the Mnist
dataset). In contrast, TS shows stronger results than both
RM and non-linear SVMs because it requires rather small
time for feature construction and linear SVMs training while
obtaining similar accuracy. TS performs exceptionally well
on datasets of non-smooth decision boundaries, including
Covertype and Adult, where it can achieve speed-ups of 50
and 1600 times, respectively, compared to non-linear SVMs
on the kernel κ = (1 + 〈x, y〉)4.

RM works better on inhomogeneous polynomial kernels
because the value of Maclaurin expansion concentrates on
some low order terms. However it suffers from large compu-
tational cost of random mapping in high-dimensional datasets
(e.g. Gisette and Mnist). Because these datasets have smooth
decision boundaries, their training time is dominated by the
random feature construction time. So RM gives similar per-
formance to non-linear SVMs on the Gisette dataset. When
RM suffers from large error of estimate, it can influence the
smoothness of decision boundaries of linear SVMs algorithm
and therefore require more training time. This explains the
inefficiency of RM compared to non-linear SVMs on Mnist
dataset on the kernel κ = (1 + 〈x, y〉)4.
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Table 1: Comparison of Tensor Sketching (TS), Random Maclaurin (RM) feature mappings with LIBLINEAR
and non-linear kernels with LIBSVM on 4 datasets on many polynomial kernels.

Kernel κ+libsvm TS+liblinear RM+liblinear

〈x, y〉2 79.73% 78.87±0.06% 72.58±1.46%
11.3 mins 1.6 mins 3.7 secs

(1 + 〈x, y〉)2 79.73% 78.90±0.12% 75.96±0.45%
11.5 mins 1.7 mins 0.8 mins

〈x, y〉4 84.01% 79.39±0.13% 58.55±2.75%
1 hour 1.6 mins 3.3 secs

(1 + 〈x, y〉)4 84.20% 79.36±0.19% 76.76±0.42%
1.5 hours 1.8 mins 1.6 mins

(a) Covertype (n = 100,000, d = 54, D = 500)

Kernel κ+libsvm TS+liblinear RM+liblinear

〈x, y〉2 97.92% 95.81±0.08% 86.00±1.12%
4.7 mins 1.3 mins 0.5 mins

(1 + 〈x, y〉)2 97.93% 95.84±0.10% 92.76±0.08%
4.7 mins 1.3 mins 2.7 mins

〈x, y〉4 97.17% 92.49±0.22% 41.45±4.81%
5 mins 2.1 mins 0.5 mins

(1 + 〈x, y〉)4 97.31% 92.44±0.04% 90.07±0.65%
5 mins 2.1 mins 17.2 mins

(b) Mnist (n = 60,000, d = 780, D = 1000)

Kernel κ+libsvm TS+liblinear RM+liblinear

〈x, y〉2 84.33% 84.33±0.12% 77.85±1.32%
0.5 hours 3.6 secs < 1 sec

(1 + 〈x, y〉)2 84.34% 84.51±0.07% 84.42±0.10%
0.5 hours 3.8 secs 3.4 secs

〈x, y〉4 79.34% 81.09±0.63% 58.04±2.37%
2 hours 4.3 secs < 1 sec

(1 + 〈x, y〉)4 79.31% 81.89±0.24% 84.04±0.46%
2 hours 4.5 secs 14.8 secs

(c) Adult (n = 48,842, d = 123, D = 200)

Kernel κ+libsvm TS+liblinear RM+liblinear

〈x, y〉2 97.54% 96.46±0.17% 90.40±0.79%
1.4 mins 10.6 secs 1 min

(1 + 〈x, y〉)2 97.54% 96.23±0.14% 90.38±0.56%
1.4 mins 10.6 secs 1.1 mins

〈x, y〉4 97.91% 95.11±0.15% 78.89±0.68%
1.8 mins 13.6 secs 1.5 mins

(1 + 〈x, y〉)4 97.91% 95.21±0.33% 88.86±0.57%
1.8 mins 13.5 secs 2.9 mins

(d) Gisette (n = 7000, d = 5000, D = 5000)

In contrast, the TS approach gives more stable and better
performance than RM and non-linear SVMs approaches on
4 datasets. In particular, it has a slightly lower accuracy but
runs much faster than non-linear SVMs. It not only achieves
higher accuracy (up to 7%) but also runs faster (up to 13
times) than RM on the Mnist and Gisette datasets. Table 2
shows the speedup of TS compared to RM and non-linear
SVMs on 4 datasets on the kernel κ = (1 + 〈x, y〉)4.

Table 2: Speedup of Tensor Sketching compared to
Random Maclaurin and non-linear SVMs on κ = (1+
〈x, y〉)4.

Datasets
Random Maclaurin

κ + libsvm
Mapping Training

Adult (D = 200) 8× 1600×
Covertype (D = 500) 50×

Mnist (D = 1000) 2× 9× 2×
Gisette (D = 5000) 9× 25× 8×

The TS random mapping does not show any speedup on
low-dimensional datasets (e.g. Covertype, Adult) compared
to RM, except for achieving smaller error. However, TS runs
8 times faster than RM in training the Adult dataset due
to smaller estimation error. For high-dimensional datasets
(e.g. Mnist and Gisette), TS shows speedup on both ran-
dom mapping and training time. Compared to non-linear
kernels, TS achieves significant speedup on Adult and Cover-
type which have non-smooth decision boundaries.

6.4 Comparison with Heuristic H0/1
In the previous work, the authors [10] introduce a heuristic

named H0/1 for fast training. Due to the fact that we have
to normalize data before applying any SVM-based learning

algorithms, the value of Maclaurin expansion often concen-
trates on the low order terms. Therefore, we can precompute
the first and second terms of the Maclaurin expansion to
achieve higher accuracy. For example, consider a Maclau-
rin expansion of a degree-4 polynomial kernel as follows:
κ = (1+〈x, y〉)4 = 1+4 〈x, y〉+6 〈x, y〉2+4 〈x, y〉3+〈x, y〉4 .
We can easily compute 1 + 4 〈x, y〉 in advance and use D′

random features to estimate 6 〈x, y〉2 + 4 〈x, y〉3 + 〈x, y〉4.
This means that H0/1 needs D = d + D′ random features
and is able to achieve higher accuracy due to the use of D′

random features for approximating higher order terms.
However, H0/1 shows some disadvantages: (1) it cannot

be used for homogeneous kernels; (2) it is not a dimension-
ality reduction technique because of using d + D′ random
features and (3) H0/1 requires longer feature construction
times due to the use of more randomness. When d is large,
the feature construction time is even larger and often dom-
inates the training time. Table 3 shows the comparison be-
tween Tensor Sketching and Random Maclaurin with H0/1.
Note that we do not use H0/1 on the Gisette dataset because
of the large computational cost of random feature construc-
tion.

Table 3: Comparison of Tensor Sketching and Ran-
dom Maclaurin with H0/1 on κ = (1 + 〈x, y〉)4.

Datasets Tensor Sketching
Random Maclaurin

with H0/1
Adult 81.89±0.24% 84.79±0.09%
D = 200 4.5 secs 5.7 secs

Covertype 79.36±0.19% 78.88±0.12%
D = 500 1.8 mins 2.2 mins

Mnist 92.44±0.04% 89.19±0.74%
D = 1000 2.1 mins 7.8 mins
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Although RM with H0/1 can offer better accuracy than
plain RM, its accuracy is still lower than TS, except on
the Adult dataset. In fact, the Adult dataset works well
and achieves higher accuracy (84.92%) on the kernel κ =
1 + 4 〈x, y〉 than with κ = (1 + 〈x, y〉)4 (79.31%). That
explains why the accuracy of RM with H0/1 is exception-
ally high. Due to the use of more randomness, the feature
construction time of RM with H0/1 is much longer than
TS on 3 datasets. In general, H0/1 is only suitable for low-
dimensional datasets and works well when the value of poly-
nomial kernel highly concentrates on the first and second
terms of Maclaurin expansion.

7. CONCLUSION
In this paper, we have introduced a fast and scalable ran-

domized tensor product technique for approximating poly-
nomial kernels, accelerating the training of kernel machines.
By exploiting the connection between tensor product and
fast convolution of Count Sketches, our approximation algo-
rithm works in time O(n(d+D logD)) for n training samples
in d-dimensional space and D random features. We present
a theoretical analysis of the quality of approximation to gua-
rantee the reliability of our estimation algorithm. We show
empirically that our approach achieves higher accuracy and
often runs orders of magnitude faster than the state-of-the-
art approach on large-scale real-world datasets.

An interesting research direction is analyzing and evalu-
ating Tensor Sketching on other learning tasks, such as clus-
tering [4] and multitask learning [22] on large-scale datasets.
We also intend to apply Tensor Sketching on other kernels
(e.g. Gaussian kernel, sigmoid kernel) by exploiting Taylor-
series approximations of these kernels. By applying Tensor
Sketching on Taylor-series approximations, we might achieve
a substantial speedup in training these kernel machines.
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