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Unsteady Flow Calculations by 
Numerical Methods1 

A review of methods of handling unsteady flow problems in metal pipes by numerical 
methods is undertaken. The characteristic method, typifying explicit methods, and the 
centered implicit method are developed, including the manner various boundary condi­
tions are introduced into the solutions. High velocity flow is briefly reviewed, i.e., flow 
cases with the velocity of flow of the same order of magnitude as the pulse wave speed. 
Three complex boundary conditions are examined: turbomachinery, column separation, 
and the compressed gas accumulator. 

TB I HE calculation of unsteady flow of liquids in pipes 
by numerical methods is reviewed in this paper. The first defini­
tive treatment of the subject is that of Joukowsky [1]2 in 1898 
which not only developed the theory, but confirmed the findings 
by large scale experiments. Another early pioneer in the field is 
Allievi [2]. Until about 1930, waterhammer calculations were 
made by the arithmetic method which neglected friction, and 
applied reflection coefficients at the ends of the piping elements. 

1 Symposium Paper: State-of-the-Art: Fluid Transients. 
2 Numbers in brackets designate References at end of paper. 
Contributed by the Fluids Engineering Division and presented at 

the Winter Annual Meeting, Washington, D. C, November 28-
December 2, 1971, of THE AMESICAN SOCIETY or MECHANICAL ENGI-
NEEBS. Manuscript received at ASME Headquarters, July 23, 1971. 
Paper No. 71-WA/FE-13. 

Graphical methods of calculation came into practical use about 
1930, and were developed to a high degree by many practitioners 
in the field [3, 4, 5, 6]. In the early 1960's, the digital computer 
was applied to unsteady flow problems and is now in the process 
of supplanting the graphical and arithmetic methods. Early 
work leading to application of the digital computer methods in­
clude Gray [7]; Perkins, Tedrow, Eagleson, and Ippen [8]; 
and Wood, Ddrsch, and Lightner [9]. 

The basic partial differential equations of continuity and mo­
tion, including the equation of state for the liquid and the elastic 
properties of the pipe, are placed into algebraic finite-difference 
equations by use of either implicit or explicit formulations. The 
most popular explicit method utilizes the method of characteris­
tics and is the only explicit method discussed in this treatment. 
The centered-implicit method is treated as representative of 
the implicit approach. 
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The basic equations are first presented, followed by the meth­
ods of solution for the basic flow element, first by the method 
of characteristics and then by the centered-implicit method. 
Questions of stability and accuracy are discussed. Boundary 
conditions are introduced in terms of algebraic and ordinary dif­
ferential equations. Applications to high velocity flow are con­
sidered, followed by a discussion of frequently encountered 
boundary conditions, including turbomachines, column separa­
tion, and the gas accumulator. 

Bulk Modulus of Elasticity. For small changes in density the 
bulk modulus is the constant K given by 

K = p 
dp 

dp 

p is the pressure. Equation (2) may also be written as 

K = p 

(2) 

(3) 

Equations o! Continuity and Motion 
Unsteady flow theory of liquids in metal pipes assumes that 

the liquid is compressible and that the pipe wall is extensible, but 
limited to an extent that the liquid density p and the pipe diame­
ter D do not change by more than, say, one percent. For these 
conditions the bulk modulus of elasticity K may be considered 
to be a constant (as well as Young's modulus E for the pipe 
walls). Hence, the area A of a cross section is taken as constant, 
but it is recognized that the small changes in A and in p deter­
mine the acoustic wave speed a in the systems. When high veloc­
ity flows are considered, with velocity V varying from zero up to 
a, the density must be considered to change appreciably, but 
strength considerations require small changes only in the pipe 
areas. 

Poisson ratio effects alter the relationship between the internal 
pressure p in the pipe and its cross-sectional area, which changes 
the acoustic wave speed by a few percent. In technical applica­
tions liquids usually contain some dissolved air and other gases 
which may come out of solution in the form of microscopic bubbles 
when pressure is reduced. These bubbles do not immediately 
return to the dissolved state upon return to higher pressure. The 
bubbles reduce the density very slightly, bu t greatly reduce the 
bulk modulus of elasticity of the liquid. One tenth percent of air 
content in bubbles in water reduces the acoustic wave speed by 
more than fifty percent [10]. Because of the uncertainty as to 
the microscopic bubble content of liquid during a transient, the 
smaller effects of Poisson's ratio are neglected. 

Continuity Equation. With reference to Fig. 1 showing a control 
volume within a short segment of pipe, the net mass inflow per 
unit time is equated to the time rate of increase of mass within 
the control volume, 

-(pQ)xSx = (pA),Sx (1) 

x and t are the independent variables distance along the pipe, 
measured positively downstream, and time, respectively. Q(Q = 
AV) is the discharge (volume per unit time flowing). The inde­
pendent variable subscripts represent partial differentiation with 
respect to the subscript. Equation (1) may be written as 

F, + ^ + 4 = 0 (lo) 

which is also the proper equation when Poisson effects are in­
cluded. 

with the dot indicating total differentiation with respect to time. 
Elastic Pipe Wall Equation. In terms of the pipe wall thickness 

e and the Young's modulus E, the rate of change of area is given 
by 

A 

A 

pD 

eE (4) 

considering thin wall pipe stresses and neglecting Poisson's ratio 
effects. By use of p = pg(H — z) from Fig. 1, equations (1), (3) 
and (4) may be combined to yield the continuity equation in a 
more useful form 

Ht + 
gA (5) 

Some small terms have been neglected, g is the acceleration of 
gravity, and a is defined as the collection of constants 

V K/P 

- I ! 
(6) 

H is the piezometric head, or elevation of the hydraulic grade-
line above an arbitrary fixed datum, Fig. 1. 

Equation of Motion. The equation of motion for a small segment 
of liquid in a conduit may take the form 

Hx + —Qt+ RQ\Q\m = 0 
gA 

(7) 

R is the steady-state resistance coefficient per unit length of con­
duit. If one wishes to use the Darcy-Weisbach friction factor /, 
m = 1, and 

R f 
2DA*g 

(8) 

Equations (5) and (7) are the controlling equations for unsteady 
flow of liquid in a closed conduit. As they are quasilinear equa­
tions, there is no closed form solution. The method of characteris­
tics solution and the centered-implicit solution are discussed in 
the next section. 

Methods of Solution for the Flow Element 
To solve an unsteady flow problem, the transmission of piezo­

metric head and discharge through a pipe, or segment of pipe, 
must be formulated in algebraic form, and methods must be 
available to bring into the problem the boundary conditions 
arising at the ends of the pipes. 

By use of the method of characteristics, equations (5) and (7) 
become transformed into the following two algebraic equations: 

C+: HP HA + — (QP - QA) + RAxQA\QA\™ = 0 (9) 

C~: HP-HB- - (QP - QB) - RAxQB\QB\™ = 0 (10) 
gA 

Fig. 1 Fluid element in a conduit Equation (9) is valid along a line in the a;£-plane, Fig. 2, having 
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the slope At/Ax = 1/a, and equation (10) is valid along a line 
having the slope At/Ax = —1/a. In the equations Ax = a At, 
a nd the friction terms have been evaluated by using values of Q 
at the beginning of the time increment At. The characteristics 
method shows a to be the pulse wave speed (acoustic velocity). 

For a single pipe, having constant wave speed a, the solution 
may be visualized on an xJ-plot, Fig. 3, using a rectangular grid 
whose intersections represent specific locations along the pipe at 
specified times. By selecting N, the number of reaches in the 
pipe, as an even number, then Ax = L/N, with L the pipe length, 
and At = Ax/a. In general, steady, or known, conditions prevail 
at t = U, and the transient is to be calculated for later times, when 
particular boundary conditions are imposed on each end of the 
pipe. Calculations are made at the intersections of the diagonals 
of Fig. 3, and the boundary calculations are made at time incre­
ments of 2At. 

To calculate the piezometric head H and flow Q at point P, 
BA, QA> HB, and QB are known in equations (9) and (10). After 
eliminating Qp in the two equations, the first of the following two 
equations is obtained: 

HP = 0.5 (H*+H*+i (QA - QB) 

+ RAx(QB\QBh - QA\QA\m) (11) 

end, and similarly equation (10) applies at the upstream end. 
One piece of information is needed from outside the piping ele­
ment at each end that states the value of QP, HP, or some rela­
tion between the two. 

Evangelisti [11] has extended the concept of the rectangular 
grid to apply to a pipe or pipes in series where a may vary along 
the length of line, but is a known function of x. The cross-
sectional area may also change somewhat, by steps, along the 
pipe. He first calculates the time TL for a wave to travel the full 
length of the system, then divides this time by an even integer to 
obtain At, the time increment for vertical spacing of the grid. 
TL is given by 

- r dx 
(13) 

The horizontal spacings Ax ; may now vary across the grid. 
Starting at the upstream end Axi is given by 

TL _ fAxi dx 

N ~ Jo « 
and Ax2 is determined by 

2 ^ 
N L 

Axi + AX2 dx 

(14) 

(15) 

gA 
(HP - HA + RAxQA\i (12) 

Equation (12) is equation (9) solved for Qp. 
To calculate the boundary conditions, the C+ equation (9) is 

available as a linear equation in QP and HP at the downstream 

-*»X 
Fig. 2 Characteristic lines in the xf-plane 

Axi is the only unknown in equation (14) and then Ax2 is the 
unknown in equation (15). Continuing with these integrals all 
Ax,- are found including Ax^. When the integral is carried across 
a change in cross section, the value of R and a/gA must be ad­
justed to yield a fair approximation of the whole segment. I t 
should be mentioned that there is no value of a/gA for the change 
in cross section case tha t will yield the proper natural frequency 
of the system (this frequency has different values when the flow 
direction sense is reversed). Fig. 4 indicates the form of this 
staggered grid. 

When two or more pipes comprise a system, such as a parallel, 
branching or network system of pipes, it is essential tha t the same 
At be used for all calculations, so that the boundary conditions 
can be worked out. To find the proper Ax( throughout the sys­
tem may require that either the lengths of the pipes be altered 
somewhat, or tha t the estimated wave speeds be adjusted. In 
some situations neither of these means are satisfactory; it is then 
necessary to use interpolations [12, pp. 36-38], to use lumped 
segments of pipelines (treated as incompressible), or to use a 
combined implicit-characteristic method [13]. 

Implicit Method. In the centered-implicit method equations 
(5) and (7) are used to solve for Q and H at the end points of a 
segment of pipe, Fig. 5, but since each of the two equations has 
the four unknowns HPA, QPA, HPB, and QPB, the solution of the 

t0+4At 

t0+2At 

A AX Ax B Ax Ax 

Fig. 3 Staggered rectangular grid 

t0+4At 

te+2At 

to 
Ax. AX. "2 " 3 " 4 

Fig. 4 Staggered grid for series pipeline, or for variable w a v e speeds 
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QA A B QB 

Fig. 5 Centered-implicit cell for a segment of pipe of length Ax 

At2 

At, 

Q=QW 
AX| AX2 AXj 

F(Q,H)=0 

Fig. 6 3-cell implicit model of pipeline 

whole system, including boundary conditions, must be accom­
plished simultaneously. 

By the centered-implicit method, the terms in equations (5) 
and (7) become, in finite different notation 

H, 
HPA + HPB — HA — HB 

2At 

QPB + QB ~ QPA 

2kx 

HPB + HB — HPA 

2A.x 

QPA + QPB ~~ QA 

-QA 

- BA 

- QB 

E, = 

2 At 

Q = 0.25(QA + QB + QPA + QPB) 

Equation (5) becomes 

HPA + HPB + C1(QPB - QPA) + C2 = 0 

in which 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

o2 At 

^AAx C2 = °UQB ~ QA) ~ HA ~ H» ( 2 2 ) 

and equation (7) becomes 

HPB ~ HPA + C3(QPA + QPB) + C4 

+ R ~ (QPA + QPB + QA + QB) 

X \0.25(QPA + QPB + QA + QB)\>» = 0 (23) 

in which 

C3 = 
Ax 

gAAt 
C4L = BB-HA- C2(QA + QB) (24) 

Equations (21) and (23) are the algebraic equivalents of 
equations (5) and (7). The implicit method has no restrictions 
on the ratio Ax/At (as in the case of the characteristics method) 
which makes it much more flexible in applying to systems of pipes 
of various lengths. The time increment must be the same for all 
portions of the system in the simultaneous solution, but At may 
change for the next set of cells, as indicated in Fig. 6. To solve 
the problem of Fig. 6, a series piping system having 3 cells, there 

are two equations for each cell, plus one equation for boundary 
condition at each end, yielding eight equations for the eight un­
knowns, QP, HP at each section. As the equations of motion (23\ 
are nonlinear, the eight equations are usually solved by the New-
ton-Raphson method. 

Boundary Conditions 
The algebraic equations relating head and discharge at each 

of the ends of pipe reaches have been developed for the charac­
teristics and the centered-implicit methods. To solve actual 
problems the boundary conditions must be .expressed in suitable 
form. In the characteristics method, one equation is always 
available from the adjacent pipe reach (C + equation downstream 
and C~ equation upstream). This equation in effect brings to the 
boundary all information from the system and may be referred 
to as the system response equation at the boundary. This equa­
tion has the form 

QP = B1HP + B2 (25) 

with Bi and B% known constants at time of application of the 
equation. QP and HP are the unknown discharge and piezometrio 
head at the boundary at the end of the time increment At under 
consideration. A few very simple boundary conditions follow: 

Reservoir at End of Pipe. HP is a known constant, so QP may be 
found directly from the characteristic equation. 

Waves on a Reservoir. HP may be expressed as a known func­
tion of time, from information about the waves, and QP then may 
be calculated from the characteristic equation. 

Valve at Downstream End of Pipe. The valve is treated as an ori­
fice of variable area. In dimensionless form 

- = TJ^ 
'• lH0 

(26) 

in which r is the dimensionless valve opening, equal to unity for 
initial steady state for Q0 and piezometrio head Ha (the datum for 
elevation of hydraulic gradeline must be through the centerline 
of the valve for this simple form of equation). In general, r is a 
known function of time which describes the motion of the valve. 
The C + characteristic equation for the downstream pipe reach is 
solved simultaneously with equation (26), requiring the solution 
of a quadratic equation. 

Simple Constant Speed Centrifugal Pump at Upstream End of Pipe. 
By taking the elevation datum as the suction reservoir surface, 
the head-discharge curve may be approximated by a quadratic 
eqviation 

HP = H0 + hQp (27) 

in which H0 is the shutoff head. This equation is solved with the 
C - equation for the upstream reach of pipe to find HP and QP. 

One big advantage of the characteristic method is the explicit 
solution for Qp and HP at every computing section. 

Implicit method boundary conditions. The boundary condition 
equations may be expressed in the same analytic form for either 
the implicit or the characteristic solutions. The solutions for all 
unknowns, however, must be made simultaneously in the implicit 
method, which usually requires an iterative solution by the 
Newton-Kaphson method. 

Simple Differential Equation Boundary Condition. If a small storage 
tank of cross-sectional area A R supplies liquid to a piping system, 
the change in surface elevation affects the transient flow, Fig. 7. 
The differential equation for flow from the reservoir is given by 

—ABdz = Qdt (28) 

As the piezometrio head is the liquid surface, this equation may 
be approximated by 

-AR(HP - H1) = QP + Qi 
2At (29) 
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in which Hi and Qi are head and discharge at the boundary from 
the previous boundary calculation 2At seconds earlier. As HP 

and Qp are the only unknowns, the solution consists of solving 
the C~ equation and equation (29), two linear equations in two 
unknowns. The simultaneous solution for the whole system is 
required in the implicit method. 

A second order procedure for solving a differential equation 
boundary condition is discussed for turbomachines. 

Comparison of Implicit and Characteristics Methods 
The characteristics method is unconditionally stable for all Ax, 

so long as At = Ax/a. The longer the reach Ax for the basic 
computation unit, the less well the friction is modeled. When 
friction is very important, as in long pipelines, a trapezoidal ap­
proximation for friction may be made, yielding the following 
characteristic equations: 

C+: ffP - HA + ~ (QP - QA) 
gA 

+ | &X(QA\QA\~ + Qp\Qp\m) (30) 

C-: HP - HB - ~ (QP - QB) 

gA 
- Y Ax(QB\QB\>» + Qp\Qp\»>) (31) 

These equations are to be compared with equations (9) and (10). 
The equations are now nonlinear, and require an iterative-type 
(Newton-Raphson) solution for each interior point and at the 
boundaries. 

For the same values of Ax and At, and using equations (9) 
and (10), the computer program is usually more simple to con­
struct, and easier to debug, than the implicit one; it also requires 
less computing time. The implicit method has no restriction on 
the ratio Ax/At, which permits various sizes of Axt to be ac­
commodated within a system for given At. I t also permits At to 
be large to handle slow, long duration transient computations 
economically. The implicit scheme has neutral stability as 
written in equations (17) and (18). After generalizing these 
equations, they become 

0(QPS - QPA) + (1 ~ 0){QB ~ QA) 

6(HPB - HPA) + (1 - 6)(HB - HA) 

When 6 = 0.5, equations (32) and (33) become equations (17) and 
(18). For most piping systems with changing boundary condi­
tions 6 = 0.5 has yielded satisfactory results. A complex piping 
system implicit program for a pumped-storage project, which 
contained the details of the penstock bifurcations was found to 
yield satisfactory results until steady-state conditions started to 
be re-established. Then, with continued running of the program, 
the implicit scheme became unstable. By increasing 6 to some 
value between 0.5 and 1.0, the instabilities disappeared. Open 
channel applications [14, 15] first indicated the instabilities in 
the centered-implicit method. Recent unpublished work indi­
cates a considerable difference in results as 6 is varied between 0.5 
and 1.0 for open channel calculations. 

The implicit method has also been noted to yield unsatisfactory 
results for very sudden, sharp transients. Physically, the imposi­
tion of a sudden pressure increase cannot be noticed at distance 
Ax away in less than Ax/a sec. However, in the simulta­
neous solution required by the implicit method, an appreciable 
change in conditions (H and Q) can be observed at distances 

Z y 

\ | 

™ 

\ 
• 

—e~ 

Qp 

Datum 
Fig. 7 Small reservoir at upstream end of pipeline 

greater than a At. In severe cases the resulting transient calcu­
lations are unreliable. 

The implicit scheme models the friction in a very satisfactory 
manner, probably better than the trapezoidal scheme of the char-
actei'istics method, because it uses the average discharge obtained 
from the four corners of the cell, Fig. 5. 

In some physical systems being modeled, it appears advan­
tageous to use both methods. The inclusion of characteristic 
reaches tends to reduce the size of matrices needed in the implicit 
solution, and large values of At may be employed by including 
the short reaches in the implicit portion. 

High Velocity Flow 
The characteristic equations in finite difference form, equations 

(9) and (10) are for those situations where velocity is very small 
compared with pulse wave speed. For very severe transients, 
with pressure changes of tens of thousands of psi, the velocity 
may become of the same order of magnitude as the pulse 
wave speed. Small terms in the derivations of continuity and 
the equation of motion, which previously were neglected, may 
now be of importance. Not only must these terms be considered, 
bvit the method of solution of the characteristic equations must 
be altered, either by using interpolations (which leads to inac­
curacies) or by use of the characteristic grid. 

The piping must be extremely strong to withstand the large 
pressure changes, and this means that the diameter changes do 
not increase much more than with the low velocity transient 
cases. The liquid density may change, however, by as much as 
20 percent, so that it is appropriate to consider the bulk modulus 
of elasticity as a linear function of p rather than as a constant, 

K = K„ + hp (34) 

With equation (34) and the retention of small terms, the con­
tinuity equation and the equation of motion become 

F i = Mx + P6Pt = 0 

F2 = px + Plilf|Af| + P2MMX + P3M, 

+ P4:M*PX + P5Mpt = 0 

in which PI through P6 are known functions of p only. M is the 
mass flow. These two equations may be converted to four ordi­
nary differential equations by the method of characteristics, in a 
similar manner to the previous low-velocity case. The equations 
are quite complicated and are not reproduced here. The four 
equations, in finite difference form, are solved simultaneously 
for point P, say, of Fig. 8, when conditions at A and B are known. 
As the equations are nonlinear, the Newton-Raphson method 
may be used to solve for x, t, p, and M. This procedure is then 
repeated to complete the characteristics grid. 

The centered-implicit method gave unsatisfactory results for 
the sharp transient cases, as illustrated in Fig. 9. This case in­
volved the rise of pressure at the upstream end of a 200 ft pipe 
from 1000 psi to 2000, 4000, and 8000 psi at 0.0, 0.01, 0.02, and 
0.03 sec, respectively. The wave, physically, could only reach 
the 150-ft location, but the implicit method showed a substantial 
change at the downstream end of the pipe. 
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with HP, QPl, Qp2, Qpa, and QpA the unknowns. By substituting 
for the Qp's into equation (36) 

HP 

HCPl/fil + HCP2/.B2 + HCM3/B3 + HCM4/BB - Q(t) 
1/B1 + 1/B2 + 1/B3 + lTfii ' 

A B 
Fig. 8 Characteristics grid for high-velocity flow 

0 50 I0Q ^ 200 

Distance Along Pipe, ft. 

Fig. 9 High velocity transient case 

Series Pipes, Branching Pipes, and Networks 
It has been noted that a series pipe system may be treated on a 

single x-t diagram by using Evangelisti's method of a rectangular 
grid. For complex systems it is usually necessary to consider a 
separate si-diagram for each pipe comprising the system. A 
series connection is shown in Fig. 10. If minor losses and changes 
in velocity head are neglected, then Qpi = Qp2 and Hpi = Hpz 
and the two end characteristics equations are solved for the two 
unknowns. If it is desired to take minor losses and velocity-head 
changes into account, then the energy equation (steady state) is 
written from point 1 to point 2 of Fig. 10, including the loss term 
for a sudden expansion 

HPl + 
Qp 

2gAS = HPl + 
Qp 

+ 
KQp 

2gAi* 2gA 
(35) 

This equation in the three unknowns Qp, Hpv and HP2 is solved 
simultaneously with the two characteristics equations. 

For a general branching junction, such as that shown in Fig. 
11, with two inflow pipes, two outflow pipes and a known flow 
demand Q{t), the solution is quite simple when minor losses are 
neglected or are accounted for by increasing the resistance terms 
for each pipe. The continuity equation for the function is 

QPX + Qp, = Qp, + Qp, + Q(t) (36) 

In addition, the four characteristic equations may be expressed as 

HP = HCP1 - BlQPl (37) 

HP = HCP2 - B2QP2 (38) 

HP = HCM3 + BSQP> (39) 

HP = HCM4 + B4QP4 (40) 

(41) 

This equation is easily changed to any number of inflow or out­
flow pipes. The actual flow directions, of course, do not have to 
be in the direction of the arrows. • • 

One may solve a transient network by solving for each branch 
junction plus other boundary conditions, as well as for internal 
sections along the pipes. This method, however, would require 
a special computer program for each network. More sophisti­
cated methods are available in which the program is quite general 
and the network to be solved is specified in the input data for the 
program [16, 17]. 

Complex Boundary Conditions 
Three complex boundary conditions are considered in this sec­

tion, all based on the characteristics method. They are turbo-
machines, column separation, and the compressed gas surge 
tank. 

Turbomachines. The turbomachines may be pumps or turbines, 
and they may be connected to a reservoir or to suction and dis­
charge pipes, with a discharge valve as shown in Fig. 12. The 
transient problems are startup of pumps, loss of power (or shut-
off) of pumps, and loss of generator load for turbines. A single 
machine is first considered, or several identical machines in 
parallel, acting in identical fashion. The case of several identical 
parallel units, some of which lose power or load, is next con­
sidered. 

For one or more identical machines, the two characteristic 
equations for pipelines are available, plus the head balance equa­
tion over the units and discharge valves, and the differential 
equation relating torque to rotational acceleration of the units. 
The characteristic equations are 

Fig. 10 Series connection 

Fig. 11 Branching of pipes 

]EE*3I Turbor. 
mochine EL 

Fig. 12 Turbomachine with discharge valve ~ 
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Fig. 13 Head-discharge curve for normal zone of pump operation 

HP, = H C P - BIQpM 

HPl = H C M + B2QPM 

(42) 

(43) 

with HOP, H C M being known at time of application of the 
equations. M is the number of units and QP the flow through a 
unit. The head balance equation is 

HPl + T D H - % ^ - ° Qp\QP\ = HP2 (44) 

in which T D H is the total dynamic head and flvaive is the loss 
across the valve when in its steady state position ( T = 1) dis­
charging the rated flow QR. As the valve closes, T is considered 
to be a known function of time, varying from 1.0 to zero. The 
turbomachine characteristic curves may be represented by 
straight-line equations through points on the curves at the cur­
rent points of interest. In Fig. 13, for a portion of the curve, the 
straight line 

T D H 

iV2 = Ao + A 
Qp 
N 

(45) 

H O P BIQpM + N'(A, + AtQrN) - ^ ~ Qp\QP\ 

= H C M + BzQpM (50) 

This algebraic equation contains two unknowns QP and N for 
the end of the time period At. Equation (49) solved for AiV 
yields (with equation (47)) 

AiV 
30gA< 

~WR*ir 
NKC, + CrQp/N) (51) 

To solve equations (50) and (51) a second order procedure is 
utilized. Since N and Q are known at the beginning of the 
period At, from equation (51) a first order approximation of AiV 
is found. By using this, a first order value iVi of the speed is 
found at the end of At. By use of iVi in equation (50), it is solved 
for QP. This value of QP and iVi are now used in equation (51) 
to find a new AiV. The two AiV's are averaged to find the speed 
change and the N is then calculated for end of At. Equation (50) 
is again solved for QP with the new N. With QP and N known at 
end of At, all other quantities are easily calculated. 

For the case of parallel units with M0 units operating and Mf 

units failing, two new equations are needed (and equation (50) 
is rewritten). The continuity equation 

MQP = M0QPQ + M,QP, (52) 

in which Qpa is flow through an operating unit, and Qpf is flow 
through a failing unit. The head balance for operating pumps is 

HCP - BIQpM + AV(Ao„ + A^QPJNK) 

- " ? QftlQp.l = HCM + BiQpM (53) 
QB2 

Equation (50) becomes, for the failing units 

H C P - BIQpM + N*(A«f + AlfQPf/N) 

H valve 
QP,\QP,\ = HCM + BzQpM (54) 

represents the curve; N is the rotational speed of machine; Ao 
and Ai are calculated for each time increment, based on the 
extrapolated value of QP/N for end of the calculation period At. 
When N is small the homologous curve may be replaced by the 
straight line 

T D H J , N 

— T = A„ + A, — 
Qp2 Qp 

(46) 

I t is essential that good characteristic curve data be obtained 
for the units to ensure reliable transient calculations for all zones 
of operation. In a similar manner the torque T data may be 
represented either by 

or by 

N2 - Co + c , N 

= C„ 4- ft ~ 
Qp 

From the torque equation 

T = 
-WR2irdN 

g30 dt 

(47) 

(48) 

(49) 

the rate of change of speed is related to torque, JV is in rpm, and 
WR2 is the product of weight of rotating parts (including en­
trained liquid) and the square of the radius of gyration. 

By Substitution into equation (44) for Hpu HP, and T D H 

The procedure for solving is to find iVi, as before, then solve 
equations (52), (53), and (54) for Qp„ QPf, and QP. Then equa­
tion (51) is solved again using QP/ and Mi to find a new N. The 
two AiV's are averaged and N is computed. Equations (52), 
(53), and (54) are then again solved for QP, Qps, and QP the final 
values for end of period Ai. 

The outlined procedure applies to failing pumps or to turbine 
trips outs. If the turbine gates are moving as a known function 
of time, this requires an extra interpolation of the turbine charac­
teristic curves for the proper gate position. 

Column Separation. With the usual technical liquids carried in 
pipelines, vapor pockets will form as soon as the pressure in the 
pipe is reduced to vapor pressure. Upon occurrence of vapor 
pressure at an internal computing section, the hydraulic grade 
line is then known at the section and computation is treated as a 
boundary condition with known head. The volume of the vapor 
pocket is calculated, assuming the liquid does not have vapor 
pockets between sections. The procedure is continued until the 
volume of the vapor pocket becomes negative (or zero), then the 
section is treated as an ordinary internal section again with HP (I) 
and QP(I) both as unknowns. In general the size of vapor pocket 
is very small compared with the volume of liquid between sec­
tions, so each reach is treated as if it were completely filled with 
liquid. The cavity is assumed to stay at the section. 

The procedure to use in computing is to check after each sec­
tion piezometric head calculation to see if it is below vapor pres­
sure. If so, an index is set to indicate an internal boundary con­
dition is in effect. With reference to Fig. 14, QPP(I) is calculated 
from the C+ characteristic equation and QP(I) from the C~ equa­
tion; then, the first cavity size is 
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Fig. 14 Notation for calculation of cavity volume 

CAV{I) = 0.5(QP(I) - QPP(I))AT (55) 

Each calculation QPP(I) is stored as QQP(I), and the next cavity 
calculation is 

CAV(I) = CAV(I) + 0.5(0(7) + QP(I) 

- QQP{I) - QPP(I))At (56) 

After each cavity calculation a check is made to see if it is nega­
tive. If so, the index is changed for an internal calculation and 
the section is recalculated for HP(I) and QP(I). No special 
calculation of pressure rise upon collapse of the pocket is needed. 
I t is important that transient calculations be continued for, say, 
2L/a sec after collapse, as the worst situation may develop 
at another section of the system. Laboratory experiments indi­
cate that the pressure rise is actually less than the value obtained 
from this procedure. 

Compressed Gas Surge Tanks. If of the proper size and location, 
a compressed gas accumulator or surge tank can be most helpful 
in alleviating sharp transients in piping systems. The gas, being 
much more compressible than liquid, can absorb energy, or release 
it to the system with relatively slow changes in pressure. An 
accumulator just downstream from a reciprocating pump may 
greatly reduce the pressure variations at the pump and through­
out the system. In order to determine the effectiveness of the 
accumulator, the system may be analyzed for transient behavior. 

In Fig. 15 an accumulator is shown attached to a pipeline by a 
short reach of pipe of length I. For quick response I must be 
small. The gage pressure at 4 is P 4 = 7(7^4 — z) with i74 the 
hydraulic grade line elevation at the liquid gas interface, y the 
specific weight of liquid, and z the elevation of liquid surface above 
datum. If the barometer reading, HBar, is in feet of liquid, then 
the polytropic expansion equation for the compressed gas of 
volume V4 becomes 

(77p4 + HBar — zp)VPin = const (57) 

n is usually taken as 1.2. The equation of motion for the vertical 
riser of length I is (neglecting compressibility of the riser liquid) 

yA3 [—^ - P- RQ3\Q3\) 

yAsl (QP3 - Q3) 
= —. r , ' (58) 

gAi At 

in which R is the resistance coefficient for the liquid column. The 
two characteristic equations are 

HP = H C P - B QPl (59) 

TTp = H C M + B QP2 (60) 

and the continuity equation for the junction is 

QPl - QP2 = QP3 (61) 

The change in z is given by 

OP3 + Q3 zF - z _ _Av_ 4 _ V4 - YPl 

2 At ~ At ~ At { ' 

H§! 

H4 r 
z 

' 

9) *AR 

—9"v-
C • c-

Qp,-*<D ® -
; 

—sn-Qpo 

Datum 

Fig. 15 Notation for an accumulator 

By eliminating QPl and QP2 from equations (59), (60), and (61), 
then substituting the resulting Hp into equation (58), it will con­
tain as unknowns QP3 and 77P4. By use of equation (62) y P 4 

may be eliminated from equation (57), and then equations (57) 
and (58) contain 77P4 and QP3 from which a solution is easily ob­
tained. 

This procedure is carried on for each transient period At as 
one of the boundary conditions of the system. 

Summary 
Transient calculations for liquids in metal pipes may be carried 

out by digital computer using either explicit or implicit methods. 
The explicit methods were represented by the method of charac­
teristics, which is stable and accurate. The main limitation is 
the length Ax of computing reach which is tied to the time in­
crement of the calculation At. I t is a very detailed method, 
and may require excessive calculations by virtue of the small At 
required. The implicit methods were illustrated by the centered 
implicit method which has no restriction on the ratio Ax/At. 
I t requires a simultaneous solution of all unknowns for any given 
time. For very sharp transients some error results in the initial 
calculations that carry through to succeeding calculations and 
yield questionable results. Instabilities have also been en­
countered in the method. 

The calculation of transients in high velocity flow was discussed 
in terms of the characteristics grid. 

Boundary conditions were examined for the characteristics 
method, including turbomachinery, column separation, and the 
gas accumulator. 

Acknowledgment 
The author wishes to acknowledge the support of the National 

Science Foundation through its grant No. GK-721 to the Uni­
versity of Michigan. 

References 
1 Joukowski, N., "Waterhammer" (Translated by Miss O. 

Simin), Proceedings of the American Waterworks Association, Vol. 24, 
1904, pp. 341-424. 

2 Allievi, L., "Teoria generate del moto perturbato dell 'acqua 
nei tubi in pressione," Ann. Soc. Ing. Arch., Milan, 1903. 

3 Lowy, Robert, Druchschwankungen in Druckrohrteibungen, 
Springer, Vienna, 1928. 

4 Schnyder, O., Druckstatte in Pumpen Steigleitungen Schweiz 
Bauzeitung, 1929, and Uber Druckstasse in Rohrleitungen Wasserkraft 
and Wasserwirtschaft, 1932. 

5 Angus, R. W., "Simple Graphical Solution for Pressure Rise in 
Pipes and Pump Discharge Lines," Journal of the Engineering Insti­
tute, Canada, Feb. 1935, pp. 72-81. 

6 Bergeron, Louis, Waterhammer in Hydraulics and Wave Surges 
in Electricity, Wiley, New York, 1961. (Original French text pub­
lished by Dunod, Paris, 1950.) 

464 / JUNE 1972 Transactions of the ASME 
Downloaded From: https://fluidsengineering.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



7 Gray, C. A. M., "The Analysis of the Dissipation of Energy in 
Waterhammer," Proceedings of ASCE, Paper 274, Vol. 119, 1953, pp. 
1176-1194. 

8 Perkins, F. E., Tedrow, A. C , Eagleson, P. S., and Ippen, A. T., 
"Hydro-Power Plant Transients, Part II, Response to Load Rejec­
tion," Dept. Civil Eng. Hydrodynamics Lab., Rep. 71, MIT, Sept. 
1964. 

9 Wood, D. J., Dorsch, R. G., and Lightner, C , "Wave-Plan 
Analysis of Unsteady flow in Closed Conduits," Journal of the Hy­
draulic Division, Proceedings of ASCE, Vol. 92, No. HY2, Mar. 
1968, pp. 83-110. 

10 Kobori, Yokoyama, T., S., and Miyashiro, H., "Propagation 
Velocity of Pressure Waves in Pipe Lines," Hitachi Hyoron, Vol. 37, 
No. 10, Oct. 1955. 

11 Evangelisti, G., "Waterhammer Analysis by the Method of 
Characteristics," L'Energia Elettrica," Nos. 10, 11, 12, Vol. XLVI, 
1969. 

12 Streeter, V. L., and Wylie, E. B., Hydraulic Transients, Mc­
Graw-Hill, New York, 1967. 

13 Streeter, V. L., "Waterhammer Analysis," Journal of the Hy­
draulic Division, Proceedings of ASCE, Vol. 95, No. HY6, Nov. 1969, 
pp. 1959-1972. 

14 Cunge, J. A., andWegner, M., "Numerical Integration of Barre 
de Saint-Venant's Flow Equations by Means of an Implicit Scheme of 
Finite Differences, Applications in the case of alternately free and 
pressurized flow hi a tunnel," La Houille Blanche No. 1, 1964. 

15 Quinn, F . H., "Quantitative Dynamic Mathematical Models 
for Great Lakes Research," doctoral dissertation, Civil Engineering 
Dept., University of Michigan, 1971. 

16 Wylie, E. B., Stoner, M. A., and Streeter, V. L., "Network Sys­
tem Transient Calculations by Implicit Method," Soc. of Petroleum 
Engineers, SPE 2963, presented in Houston, Sept. 1970. 

17 Streeter, V. L., "Water-Hammer Analysis of Distribution 
Systems," Journal of the Hydraulic Division, Proceedings of ASCE, 
Vol. 93, No. HY5, Sept. 1967, pp. 185-201. 

D I S C U S S I O N 

F. T. Brown3 

Professor Streeter has given a fine summary of the basic nu­
merical techniques for unsteady flows, presuming that equation 
(7) is an adequate statement of the conservation of momentum. 
Some exceptions, likely omitted because of overly inflexible 
ASME length limitations, ought nevertheless to be cited. 

One exception, well known to Professor Streeter and included 
in several of his references, is the simpler case of laminar rather 
than turbulent friction for low frequency excitation. Only 
minor variations in the equations are necessary. 

A much greater departure from equation (7) occurs at high 
frequencies (abrupt transients) when the wall shear depends on 
the instantaneous velocity profile or, often equivalently, on the 
history of the mean flow across the tube. Zielke [18]4 intro­
duced the concept of a historetic weighting function, which he 
evaluated for laminar flow, to permit the method of character­
istics to apply to such cases. This discusser generalized this 
concept as a "quasi method Of characteristics" [19] applicable 
to a wider class of problems, including the effect of heat transfer 
on the unsteady laminar flow of perfect gases. Another paper 
[20] shows tha t equation (7) applies reasonably well in turbulent 
flow only for frequency components below certain specific limits. 
A more recent report [21] (unavailable when this paper was pre­
pared) gives weighting functions for a variety of initial turbulent 
Reynolds numbers for transient disturbances which are so brief 
only frequency components above certain higher specific limits 
are involved. At such frequencies the applicability of one-
dimensional models can be questioned, however (see, for ex­
ample, the alternative methods and calculations of Jayasinghe 
and Leutheusser [22] and Tsao [23] which could be adapted to 
turbulent flow). The report also reveals a dramatic phenomenon 

3 Professor of Mechanical Engineering, Lehigh University, Bethle­
hem, Pa. 

4 Numbers in brackets designate Additional References at end of 
discussion. 

at intermediate frequencies in turbulent flow. Apparently be­
cause of a little-understood resonance of ring vortices, the step 
response of a tube may contain significant oscillations. Wave­
lengths of the complicated patterns are about 25 and 50 
diameters. (Further information is forthcoming in a thesis by 
Margolis.) The report also discusses the details of numerical 
application of the quasi method of characteristics to large ampli­
tude transients, with illustrations. 

Readers should know that the paper and this discussion rep­
resent a highly selected rather than comprehensive review of 
the important literature on numerical methods for unsteady 
flow calculations in channels and tubes. 
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T. P. Propson6 

The author has conducted a thorough review of the most 
popular techniques currrently employed to numerically evaluate 
the effect of transient flows in liquid piping systems. His dis­
cussion of the relative advantages and disadvantages of both the 
characteristics (explicit) and centered implicit method is excellent; 
of particular interest to the writer were the author's comments 
relative to the occurrence of instabilities and inaccuracies occa­
sionally encountered during application of the implicit tech­
niques. Recent unpublished work by the writer has confirmed 
these problems. 

When frictional effects are very important, the writer would 
suggest tha t equations (30) and (31) be altered in the following 
manner: 

C + :HP HA + 
gA 

QA) + RAx 

X 

(QA + QP\ 

QA + QP = 0 (63) 

C-:HP - HB (QP - QB) - RAx 
gA 

X 

(QB + QP\ 

QB + QI 0 (64) 

I t may be shown that the error introduced into the integration of 
the friction term by these finite-difference equations is usually 
about one-half of tha t introduced by equations (30) and (31). 
From this point of view, application of this latter form of the 

5 Assistant Professor of Civil Engineering, South Dakota School 
of Mines and Technology, Rapid City, S. Dak. 
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