
Automating Modular Veri�cation�Rajeev Alur1 Luca de Alfaro2 Thomas A. Henzinger3 Freddy Y.C. Mang21 Department of Computer and Information Science, University of Pennsylvania, and Bell Laboratories,Lucent Technologies. Email: alur@cis.upenn.edu2 Department of Electrical Engineering and Computer Sciences, University of California at Berkeley.Email: fdealfaro,fmangg@eecs.berkeley.edu3 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, andMax-Planck Institute for Computer Science, Saarbr�ucken. Email: tah@eecs.berkeley.eduAbstractModular techniques for automatic veri�cation attempt to overcome the state-explosionproblem by exploiting the modular structure naturally present in many system designs.Unlike other tasks in the veri�cation of �nite-state systems, current modular techniquesrely heavily on user guidance. In particular, the user is typically required to constructmodule abstractions that are neither too detailed as to render insu�cient bene�ts instate exploration, nor too coarse as to invalidate the desired system properties. In thispaper, we construct abstract modules automatically, using reachability and controlla-bility information about the concrete modules. This allows us to leverage automaticveri�cation techniques by applying them in layers: �rst we compute on the state spacesof system components, then we use the results for constructing abstractions, and �nallywe compute on the abstract state space of the system. Our experimental results indicatethat if reachability and controllability information is used in the construction of abstrac-tions, the resulting abstract modules are often signi�cantly smaller than the concretemodules and can drastically reduce the space and time requirements for veri�cation.1 IntroductionThe single largest obstacle to the use of automatic methods in system veri�cation is thestate-explosion problem, which is the exponential increase in the number of system statescaused by a linear increase in the number of system components or variables. Modularveri�cation techniques attempt to overcome the state-explosion problem by exploiting themodular structure naturally present in most system designs. The basic idea is to analyzeeach module of the system separately, perhaps together with an environment that representsa simpli�ed model of the rest of the system; the results obtained for the individual modules�An abbreviated version of this paper is to appear in Proceedings of CONCUR 99: Concurrency Theory.This research was supported in part by the NSF CAREER award CCR-9734115, by the NSF CAREERaward CCR-9501708, by the DARPA (NASA Ames) grant NAG2-1214, by the DARPA (Wright-PattersonAFB) grant F33615-98-C-3614, by the ARO MURI grant DAAH-04-96-1-0341, and by the Gigascale SiliconResearch Center. 1

are then combined into a single result about the compound system. Unlike other tasks inthe veri�cation of �nite-state systems, which have been largely automated, current modularveri�cation techniques still rely heavily on user guidance. Aside from deciding how to breakup a system into modules, the user also has to specify the environment in which to studyeach module, which is usually a di�cult task. In this paper, we present an approach tomodular veri�cation that is almost entirely automatic, leaving to the user only the task ofspecifying which variables of a module should be relevant to the other modules.For each concrete module, we erase some variables to construct an abstract module,which has a smaller state space; the abstract module is then used to replace the concretemodule in the veri�cation process. If this approach is pursued naively, typically one oftwo things happens. Either one abstracts only variables that do not in
uence the prop-erty to be veri�ed, which is certainly prudent but more often than not leads to insu�cientsavings, or one abstracts variables that do in
uence the desired property, in which casethe abstract module may violate the property even though the concrete module does not.We take the second route, but use additional information about the concrete module inorder to construct more useful abstractions than could be achieved by simply erasing vari-ables. In the most basic variation of our method, we use reachability information about theconcrete module when erasing variables to construct an abstraction. In a more advancedvariation, we also use controllability information about the concrete module with respectto the desired property. In all cases, the additional information we use can be obtainedfully automatically by looking only at individual modules and the property to be veri�ed|there is no need to involve the compound system. Our experimental results indicate thatthe use of reachability and controllability information can lead to dramatic improvementsin veri�cation: the resulting module abstractions are often much smaller than the concretemodules yet still preserve the desired property.Our model of computation is that of transition systems de�ned over �nite sets of statevariables. We describe systems as the parallel composition of one or more modules. Amodule P = (VP ; IP ; TP) consists of a set VP of variables, partitioned into input andoutput variables, an initial predicate IP over VP de�ning the initial states of P , and atransition predicate TP over VP [V 0P de�ning the possible state transitions of P in termsof their source states (over VP) and destination states (over V 0P = fx0 j x 2 VPg). Weconsider systems consisting of non-blocking modules, in which every state has a successor,regardless of the inputs to the module. The semantics of parallel composition is conjunction:P kQ = (VP [VQ; IP ^ IQ; TP ^ TQ). For the sake of simplicity, in this paper we focus onMoore modules, for which the outputs during a transition depend only on the source state ofthe transition. Our approach can be adapted with only minor modi�cations to Mealy-typemodules, such as the Reactive Modules of [AH96]. We consider the veri�cation of invarianceproperties. An invariance property for the module P is speci�ed by an invariant predicate' over VP . The module P satis�es the invariant predicate ', written P j= 2', if P neverleaves the set of states de�ned by '.Consider a system P kQ consisting of two modules P and Q, and a desired invari-ant predicate ' for P kQ. To check if P kQ j= 2' without constructing the globalstate space of P kQ, we can remove a subset WP � VP of the variables of P and asubset WQ � VQ of the variables of Q. Formally, the abstract module (9WP :P) =(VP nWP ;9WP : IP ;9WP9W 0P : TP) is constructed by existentially quantifying the removed2

variables in the initial and transition predicates; we say that (9WP :P) is obtained by erasingfrom P the variables in WP . Then we can attempt to use the following standard inferencerule: (9WP :P) k (9WQ:Q) j= 2'P kQ j= 2' (1)This rule is sound, because every reachable state of the concrete system P kQ correspondsto a reachable state of the abstract system (9WP :P) k (9WQ:Q). The e�ciency advantageof the rule stems from the fact that the premise involves fewer variables than the conclusion,reducing the size of the state space to be explored. However, the premise may fail eventhough the conclusion holds, because there may be many reachable states of the abstractsystem that do not correspond to reachable states of the concrete system. In fact, it is oftenimpossible to choose suitable, reasonable large sets WP and WQ, because modular designsaggregate naturally within each module only closely interdependent variables. By erasingsuch dependencies between variables, the number of transitions of the abstract system growsquickly to the point of violating all but trivial invariants. Our goal is to con�ne this growthin abstract transitions by utilizing additional information about the component modules Pand Q.More precisely, a state s of P can be written as a pair s = (sa; sw), where sa is a stateover the set VPnWP of variables, and sw is a state over the set WP of erased variables.The abstract module (9WP :P) contains a transition from source state sa to destinationstate s0a i� the concrete module P contains a transition from (sa; sw) to (s0a; s0w) for some swand s0w. As a �rst improvement, we can include a transition from sa to s0a in the abstractmodule only if, for some sw and s0w, there is a transition from (sa; sw) to (s0a; s0w) in theconcrete module and the state (sa; sw) is reachable in the concrete module. This is becauseit is certainly not useful to include abstract transitions that have no reachable concretecounterparts. To this end, we compute a predicate RP over VP that de�nes the reachablestates of P . The predicate RP can be computed using standard state-space exploration(symbolic or enumerative). Our experiments based on symbolic methods indicate that thiscomputation is e�cient, since the module P is considered in isolation. From the predicateRP we construct the module (P &RP) = (VP ; IP ; TP ^ RP), which is like P , except thatit allows only transitions from reachable states. After erasing the variables in WP , weobtain the abstract module (9WP :(P &RP)). In a similar way, we compute the reachabilitypredicate RQ for Q and construct the abstract module (9WQ:(Q&RQ)). To complete theveri�cation process, we then use the following rule:(9WP :(P &RP)) k (9WQ:(Q&RQ)) j= 2'P kQ j= 2' (2)Since the systems P kQ and (P &RP) k (Q&RQ) have the same reachable states, rule (2)is sound. As we shall see, unlike the simplistic rule (1), the improved rule (2) can often besuccessfully applied even when the sets WP and WQ include variables that contribute toensure the invariant '. Yet the savings in checking the premise of rule (2) are just as greatas those for checking the premise of the earlier rule (1), because the same sets of variablesare erased. In other words, (9WP :(P &RP)) k (9WQ:(Q&RQ)) is a more accurate but nomore detailed abstraction of P kQ than is (9WP :P) k (9WQ:Q). In our experiments we3

shall obtain dramatic results by applying rule (2) with the simple heuristics of erasing thosevariables that are not involved in the communication between P and Q. While reachabilityinformation is often used in algorithmic veri�cation, the novelty of rule (2) consists in theuse of such information for the modular construction of abstractions.The e�ectiveness of a rule such as (1) or (2) is directly related to the number of variablesthat can be erased in a successful application of the rule. Rule (2) improves on rule (1)by using reachability information about the individual modules in the construction of theabstractions, which usually permits the erasure of more variables. It is possible to furtherimprove on the rule (2) by using, in addition to reachability information, also informationabout the controllability of the individual modules with respect to the speci�cation 2'.This improvement is based on the following observation. The predicate RP used in (2)de�nes the reachable states of P when P is in a completely general environment. However,the module P may exhibit anomalous behaviors in a completely general environment; inparticular, more states may be reachable under a completely general environment than un-der the speci�c environment provided by Q. Of course, we do not want to compute thereachable states of P when P is composed with Q: doing so would require the explorationof the state space of the global system P kQ, which is exactly what our modular veri�cationrules try to avoid. To study the module P under a suitable con�ning environment, whilestill avoiding the exploration of the global state space, we consider the module P in themost general environment E that ensures the invariant '; that is, E is the least restrictivemodule such that P kE j= 2'. In practice, we need not construct E explicitly, but computeonly the predicate DP that de�nes the set of reachable states of P kE. Since E is morerestrictive than the completely general environment, the predicate DP is stronger than RP ,and the implication DP ! RP holds. The algorithm for computing DP follows from thestandard game-theoretic algorithm for computing the set of states of the module P thatare controllable with respect to the invariant '; it can be implemented symbolically or enu-meratively, with a time complexity that is linear in the size of the state space of P [Bee80].This leads to the following modular veri�cation rule:(IP ^ IQ)! (DP ^DQ)P k (9WQ:(Q&DQ)) j= 2DPQ k (9WP :(P &DP)) j= 2DQP kQ j= 2' (3)where WP � VP and WQ � VQ. The soundness of this rule depends on an inductiveargument, and it will be proved in detail in the paper. Essentially, the �rst premise ensuresthat the modules P and Q are initially in states satisfying DP ^DQ. The second premiseshows that, as long as Q does not leave the set de�ned by DQ, the module P will not leavethe set de�ned by DP ; the third premise is symmetrical. As the implications DP ! 'and DQ ! ' hold, the three premises lead to the conclusion. The rule is in fact closelyrelated to inductive forms of assume-guarantee reasoning [Sta85, AL95, AH96, McM97].The use of the stronger predicates DP and DQ in the second and third premises of therule (3) potentially enables the erasure of more variables compared to the earlier rule (2).However, in rule (3) this erasure can take place only on one side of the parallel compositionoperator or, in the case of multi-module systems, for all modules but one.4

While automatic approaches to the construction of abstractions for model checking havebeen proposed, for example, in [Kur94, Dam96, GS97, CC99], these approaches do not ex-ploit reachability and controllability information in a modular fashion. In particular, insteadof the standard principle \�rst abstract, then model check the abstraction," our approachfollows the more re�ned principle \�rst model check the components, then use this informa-tion to abstract, then model check the compound abstraction." In this way, our modular ver-i�cation rules are doubly geared towards automatic veri�cation methods: state-space explo-ration is used both to compute the reachability and controllability predicates, and to checkall temporal premises (those which contain the j= operator). It is worth pointing out thatnontemporal premises would result in rules that are considerably less powerful. For example,suppressing variable erasures, the temporal premise (P &RP) k (Q&RQ) j= 2' of rule (2)is weaker than the two nontemporal premises IP ^ IQ ! ' and '^RP ^TP ^RQ^TQ ! '0would be (here, '0 results from ' by replacing all variables with their primed versions).Similarly, the second premise of rule (3) is weaker than the two nontemporal premisesIP ^ IQ ! DQ ^DP and DP ^ TP ^DQ ^ TQ ! D0P would be. It is easy to �nd exampleswhere our temporal premises apply, but their nontemporal counterparts do not.The outline of the paper is as follows. After introducing preliminary de�nitions inSection 2, we develop the technical details of the proposed modular veri�cation rules inSection 3. The veri�cation rules have been implemented on top of the Mocha modelchecker [AHM+98], using BDD-based �xpoint algorithms for the computation of the reach-ability and controllability predicates. In Section 4 we discuss the implementation of theveri�cation rules, and we describe the script language we devised in order to be able toexperiment e�ciently with various modular veri�cation techniques. In Section 5 we presentexperimental results for three examples: a demarcation protocol used to maintain the con-sistency between distributed databases [BGM92], a token-ring arbiter, and a sliding-windowprotocol for data communication [Hol91]. We conclude the paper with some insights gath-ered in the course of the experimentation with the proposed veri�cation rules.2 ModulesGiven a set V of typed variables with �nite domain, a state s over V is an assignment forV that assigns to each x 2 V a value s[[x]]. We also denote by V 0 = fx0 j x 2 Vg the setobtained by priming each variable in V. Given a predicate H over V, we denote by H 0the predicate obtained by replacing in H every x 2 V with x0 2 V 0. Given a set A andan element x, we often write Anx for Anfxg, when this generates no confusion. A moduleP = (CP ; EP ; IP ; TP) consists of the following components:1. A (�nite) set CP of controlled variables, each with �nite domain, consisting of thevariables whose values can be accessed and modi�ed by P .2. A (�nite) set EP of external variables, each with �nite domain, consisting of thevariables whose values can be accessed, but not modi�ed, by P .3. A transition predicate TP over CP [EP [C0P .4. An initial predicate IP over CP . 5

We denote by VP = CP [EP the set of variables mentioned by the module. Given a states over VP , we write s j= IP if IP is satis�ed under the variable interpretation speci�ed bys. Given two states s; s0 over VP , we write (s; s0) j= TP if predicate TP is satis�ed by theinterpretation that assigns to x 2 VP the value s[[x]], and to x0 2 V 0P the value s0[[x]]. Amodule P is non-blocking if the predicate IP is satis�able, i.e., if the module has at leastone initial state, and if the assertion 8VP :9C0P :TP holds, so that every state has a successor.A trace of module P is a �nite sequence of states s0; s1; s2; : : : sn 2 States(VP), where n � 0and (sk; sk+1) j= TP for all 0 � k < n; the trace is initial if s0 j= IP . Two modules P andQ are composable if CP \CQ = ;; in this case, their parallel composition P kQ is de�ned as:P kQ = �CP [CQ; (EP [EQ)n(CP [CQ); IP ^ IQ; TP ^ TQ� :Given a module P and a predicate H over VP , we denote by(P &H) = �CP ; EP ; IP ^H;TP ^H�the module like P , except that only transitions from states that satisfy H are allowed.Given a module P and a set W of variables, we let(9W:P) = �CP nW; EP nW;9W : IP ;9W;W 0 : TP�be the module obtained by erasing the variablesW in P . Note that the module (P &H) canbe blocking even if module P is non-blocking. On the other hand, the parallel composition ofnon-blocking modules is non-blocking, and a module obtained from a non-blocking moduleby erasing variables is also non-blocking.A state of a module P is reachable if it appears in some initial trace of P . We denote byReach(P) the predicate de�ning the reachable states of P ; this predicate can be computeusing standard state-space exploration techniques [CES83]. Given a module P and a predi-cate ', the relation P j= 2' holds i� the implication Reach(P)! ' is valid. In this paper,we present modular techniques for verifying whether the relation P1 k � � � kPn j= 2' holds,where P1, P2, . . . , Pn are composable modules, for n > 0, and where ' is de�ned over theset of variables Sni=1 VPi . This veri�cation problem is known as the invariant veri�cationproblem, and it is one of the most basic problems in formal veri�cation.3 Modular Rules for Invariant Veri�cationIn this section, we present three modular rules for the veri�cation of invariants; the rulesare presented in order of increasing sophistication, and of increasing ability of successfullyerasing variables. The �rst rule is a standard rule based on the construction of abstractmodules: (9W1:P1) k � � � k (9Wn:Pn) j= 2'P1 k � � � kPn j= 2' (4)The second rule is derived from the above rule, by using in the construction of the abstractmodules also information about the reachable states of the concrete modules. The thirdrule constructs the abstract modules using both reachability and controllability informationabout the concrete modules. 6

3.1 Reachability-based abstractionsIn order to improve the ability of rule (4) to successfully erase variables, we construct theabstract modules using reachability information about the concrete modules. Hence, weformulate the following modular veri�cation rule:(9W1:(P1&Reach(P1))) k � � � k (9Wn:(Pn&Reach(Pn))) j= 2'P1 k � � � kPn j= 2' (5)This rule is sound. The rule is also complete, since whenever the conclusion holds, thepremise also does, with the choice W1 = � � � = Wn = ;. Our experiments indicated thatrule (5) is often surprisingly e�ective in enabling the successful erasure of variables, leadingto dramatic savings in the space and time requirements of veri�cation. We illustrate thiswith an example.Example 1 This example is a simpli�ed version of the token-ring example presentedin Section 5. Consider a system composed of two modules P and Q that circulate atoken through a 4-phase handshake protocol. The module P has controlled variablesCP = fgrant 1; ack 1; x1; y1; c1g and external variables EP = fgrant 2; ack2g. All variablesare boolean, except for c1 that has domain f0; 1; 2; 3g. The module Q is de�ned similarly,except that the subscripts 1 and 2 are exchanged. Intuitively, grant2 and ack1 form thehandshake that passes a token from Q to P . Once the token arrives into P , it is stored �rstin x1, then in y1. The handshake variables grant1 and ack2 are used to pass the token backto Q. The variable c1 is an auxiliary variable that records the number of tokens in P . Theinitial condition of P is IP : :ack1 ^ :grant1 ^ x1 ^ :y1 ^ (c1 = 0); the initial condition ofQ is IQ : :ack2 ^ :grant2 ^ :x2 ^ :y2 ^ (c2 = 0), so that the token is initially in x1. Wepresent the transition predicate of P in guarded-commands notation, with the conventionthat the values of the variables not mentioned in the assignments are not modi�ed, and thatthe command to be executed is chosen nondeterministically among those whose guards aretrue: [] grant2 ^ :ack1 ^ :x1 �! ack 01 := t; x01 := t; c01 := (c1 + 1) mod 4[] :grant2 ^ ack1 �! ack 01 := f[] x1 ^ :y1 �! x01 := f; y01 := t[] :grant1 ^ :ack2 ^ y1 �! grant 01 := t; y01 := f; c01 := (c1 � 1) mod 4[] grant1 ^ ack2 �! grant 01 := f[] t �!The transition predicate of Q is identical, except that the subscripts 1 and 2 are exchanged.The invariant is ' : [(c1 + c2) mod 4 < 2], and states that there is at most one token. Toverify that P kQ j= 2', we can apply rule (5) with sets of erased variables WP = fx1; y1gand WQ = fx2; y2g. Hence, we are able to erase all the variables that are not used forcommunication, and that do not appear in the invariant. The intuition is that, once thevalue of c1 is known, the predicateReach(P) : �c1 = 0 ^ :x1 ^ :y1� _ �c1 = 1 ^ (x1 6� y1)� _ �c1 = 2 ^ x1 ^ x2�7

provides su�cient information about the possible values of the erased variables x1 and y1to enable an accurate computation of the successor states. In contrast, rule (4) does notenable the erasure of any variables.3.2 Controllability and reachability-based abstractionsConsider an instance P1 k � � � kPn j= 2' of the invariant veri�cation problem, for n � 1.As mentioned in the introduction, the predicate Reach(Pi) de�nes the reachable statesof module Pi when the module Pi is in a completely arbitrary environment, for 1 � i � n.However, a module may have many more reachable states when composed with a completelyarbitrary environment, than when composed with the other modules of the system. Toobtain more precise predicates, we consider the states of Pi that are reachable under themost general environment under which Pi satis�es the speci�cation 2', for 1 � i � n. Theidea is that, if the system has been properly designed, then the actual environment of Pi isa special case of this most general environment.An environment for a module P is a non-blocking module E composable with P . Givena module P and a predicate ', we denote by Envs(P) the set of all environments of P , andwe let Envs'(P) = fE 2 Envs(P) j P kE j= 2'g the set of environments of P under whichthe speci�cation 2' holds. We de�neCR(P;') = WE2Envs'(P) 9(VEnVP) : Reach(P kE)with the convention that CR(P;') = f if Envs'(P) = ;. The predicate CR(P;') de�nesthe set of states of P that can be reached when P is composed with an environment underwhich 2' holds. Denote by V' the variables occurring in '. The following proposition givessome additional properties of the predicate CR(P;').Proposition 1 Given a non-blocking module P and a predicate ', the following assertionshold.1. There is an environment E 2 Envs'(P) with VE = VP [V' such thatCR(P;') � 9(V'nVP) : Reach(P kE).2. The implications CR(P;')! 9(V'nVP) : ' and CR(P;')! Reach(P) hold.Regarding the second assertion, note that in the introduction we implicitly assumed V' �VPi for 1 � i � n for the sake of simplicity, while here we are only assuming the weakerV' � Sni=1 VPi . We can then formulate the veri�cation rule:Vni=1 IPi ! Vni=1 CR(Pi; ')Pi k �kj2f1;:::;ngni (9Wj:(Pj &CR(Pj ; ')))� j= 2CR(Pi; ') 1 � i � nP1 k � � � kPn j= 2' (6)In the second premise of this rule, for 1 � i � n, we cannot erase variables of Pi. Infact, the predicate CR(Pi; ') on the right hand side of j= involves most of the variables inPi, preventing their erasure. In the experiments described in Section 5, the systems were8

composed of two modules, and rule (5) performed better than rule (6), since in rule (5) thevariables could be erased in both the composing modules. In systems composed of manymodules, it is conceivable that the advantage derived from using the stronger predicatesof rule (6) in all modules but one, thus possibly erasing more variables, outweighs thedisadvantage of not being able to erase variables in one of the modules.Proposition 2 Rule (6) is sound. If P1, . . . , Pn are non-blocking, rule (6) is also com-plete: if the conclusion holds, then the premises also hold for W1 = � � � =Wn = ;.Proof. It su�ces to consider the caseW1 = � � � =Wn = ;. To show that the rule is sound,we assume that its premises hold, and we prove by induction on k � 0 that, if s0; s1; : : : ; skis an initial trace of P1 k � � � kPn, then si j= CR(Pj ; ') for all 0 � i � k and 1 � j � n.The base case follows from the �rst premise of (6). For the induction step, assume thatthe assertion holds for k, and consider the assertion for k + 1 for any j, with 1 � j � n.The trace s0; s1; : : : ; sk; sk+1 is an initial trace of Pj k �kl2f1;:::;ngnj (Pj &CR(Pj ; '))� Hence,we have that sk+1 j= CR(Pj ; '), completing the induction step. From V' � Sni=1 VPi andfrom Proposition 1, part 2, we have that the implication (Vni=1 CR(Pi; ')) ! ' holds.This implication, together with the conclusion of the induction proof, leads to the desiredresult. The completeness of the rule follows by noticing that if P1 k � � � kPn j= 2', then byde�nition of CR(�; ') we have P1 k � � � kPn j= 2(CR(P1; ') ^ � � � ^ CR(Pn; ')).To compute the predicate CR(P;') given P and ', we proceed in two steps. First, wecompute the predicate Ctr(P;') de�ning the set of states from which P is controllablewith respect to the safety property 2'. The predicate Ctr (P;') can be computed with astandard controllability algorithm [TW68, Bee80, RW87].Algorithm 1Input: Module P and predicate '.Output: Predicate Ctr(P;') over VP .Initialization: Let F = V'nVP and U0 = 9F : '.Repeat: For k � 0, let Uk+1 = Uk ^ 9(E 0P [F 0) : 8C0P : (TP ! (U 0k ^ '0)).Until: Uk+1 � Uk.Return: Uk.The algorithm computes a sequence U0; U1; U2; : : : of increasingly strong predicates. Fork � 0, predicate Uk de�nes the states from which it is possible to control P to satisfypredicate ' for at least k + 1 steps; note that the implication Uk ! 9F : ' holds for k � 0.At each iteration k � 0, the algorithm lets Uk+1 de�ne the set of states from which theenvironment can choose the next value for the external variables, so that for all choice ofthe controlled variables, the successor states of the transitions satisfy Uk. The followingalgorithm computes the predicate CR(P;'), using the previous algorithm as a subroutine.
9

Algorithm 2Input: Module P and predicate '.Output: Predicate CR(P;') over VP .Initialization: Let F = V'nVP , and V0 = IP ^ 9F : 8CP : �IP ! (Ctr (P;') ^ ')�.Repeat: For k � 0, letV 0k+1 = V 0k _ 9VP : hVk ^ TP ^ 9F 0 : 8C0P : �TP ! (Ctr 0(P;') ^ ')�i :Until: Vk+1 � Vk.Return: Vk.For each k � 0, the predicate Vk over VP de�nes the set of states of P that can be reachedin k or less steps when P is composed with an environment E such that P kE j= 2'. Tounderstand how this predicate is computed, note that the predicate 8CP :(IP ! (Ctr (P;')^')) de�nes the set of initial valuations for the variables in EP [F that are safe for theenvironment: if one such valuation is chosen by the environment, the system will start in acontrollable state that satis�es ', regardless of the valuation for the controlled variables inCP chosen by the module P . The iteration step follows a similar idea. If Vk de�nes the setof current states, then the formula K1 : 9VP :(Vk^TP) over C0P de�nes the valuations for thecontrolled variables that can be chosen by P for the following state. The environment mustchoose a valuation for the variables in E 0P [F 0 that ensures that, regardless of the valuationfor C0P chosen by the module, the successor state satis�es Ctr 0(P;') ^ '. If Vk de�nes theset of current states, the set of such valuations for E 0P [F 0 is de�ned by the formulaK2 : 9VP : 8C0P : �(Vk ^ TP)! (Ctr 0(P;') ^ ')�:It is then easy to see that the iteration step of Algorithm 2 can be written simply asV 0k+1 = K1 ^ 9F 0 : K2, so that K1 constrains the next valuation of the controlled variables,and 9F 0 : K2 constrains the next valuation of the external variables. Algorithms 1 and 2can be implemented enumeratively or symbolically, and they have running time linear injStates(VP [V')j. In the next example, we see how rule (6) can enable the erasure ofvariables that could not be erased with rule (5).Example 2 Consider the veri�cation problem P1 kP2 j= 2', where the invariant is' : :z1 ^ :z2. The modules have variables CPi = fxi; yi; zig and EPi = fx2�i; z2�ig, for1 � i � 2; all the variables are boolean. Module P1 has initial predicate IP1 : :x1^:y1^:z1,and has transition predicate TP1 : [x01 � z2]^ [(:x1^:x2)! (y01 � y1)]^ [:y1 ! (z01 � z1)].Module P2 is de�ned in a symmetrical fashion. Informally, module P1 behaves as follows.Initially, all variables are false. At each step, the new value for x1 is the old value of z2.If x1 _ x2 holds, then y1 can change value; otherwise, it retains its previous value. If y1 istrue, then z1 can change value; otherwise, it retains its previous value. It is easy to checkthat P1 kP2 j= 2' holds.Consider module P1. The states where z1=t or z2=t are obviously not controllable.The states where y1 = t are also not controllable, since from these states module P1 canreach a state where z1 = t regardless of the values of the external variables x2 and z2.Likewise, the states where x1=t or x2=t are not controllable, since from these states the10

module can reach a state where y1=t regardless of the values of the external variables. Theonly controllable (and reachable) state of P1 is thus de�ned by the predicate CR(P1; ') ::x1 ^:y1 ^:z1 ^:x2 ^:z2. Predicate CR(P2; ') is de�ned in a symmetrical fashion. Thereachability predicates are given simply by Reach(P1) : t and Reach(P2) : t.Rule (6) can be applied by taking W1 =W2 = fy1; y2g. In fact, the composite moduleP1 k (9W2:(P2&CR(P2; '))) admits only the initial traces consisting of repetitions of thestate [x1 = f; y1 = f; z1 = f; x2 = f; z2 = f]. This shows that the �rst premise holds;the case for the second premise is symmetrical. On the other hand, no variable can besuccessfully erased using rule (5). In fact, if we erase variable y2, then the right handside exhibits the initial trace s0; s1, where s0 : [x1 = f; y1 = f; z1 = f; x2 = f; z2 = f]and s1 : [x1 = f; y1 = f; z1 = f; x2 = f; z2 = t]. This trace is possible because the statet0 : [x1 = f; z1 = f; x2 = f; y2 = t; z2 = f] over VP2 is reachable, and hence it satis�esReach(P2), and agrees with s0 on the shared variables. The trace is then a consequence ofthe transition from t0 to t1 : [x1=f; z1=f; x2=f; y2=t; z2=t] in P2. A similar argumentshows that it is not possible to erase the variable x2.4 Implementation of the Veri�cation RulesWe have implemented the algorithms described in this paper in the veri�cation toolMocha[AHM+98]. Mocha is an interactive veri�cation environment and it enables, among otherthings, the veri�cation of invariants using both enumerative and symbolic techniques; forthe latter, it relies on the BDD package and image computation engine provided by VIS[BHSV+96], which we used in our implementation.One important technique we use in the implementation of the rules is that, insteadof computing the abstract modules explicitly, we compute them implicitly. The idea is asfollows: suppose we are computing the reachable states of (9WP :P) k (9WQ:Q). A straight-forward algorithm would be to �rst compute the two abstract modules, and then computethe reachable states of their composition. This is very ine�cient in terms of the usageof space. Transition relations are usually presented as a list of conjuncts rather than asa single, larger conjunct. The explicit computation of the abstract modules would implyconjoining all the transition relations and building a monolithic one: if represented as aBDD, such a monolithic conjunct would often be prohibitively large. Instead, we quantifyaway the erased variables of the abstract modules only when necessary, as for example in thecomputation of the reachable states. For instance, we use the following symbolic algorithmto compute the reachable states of the parallel composition of two abstract modules:Algorithm 3Input: Modules P and Q, and variables WP � VP nCQ and WQ � VQnCP .Output: Reach((9WP :P) k (9WQ:Q)).Initialization: Let U0 = 9(WP [WQ) : (IP ^ IQ).Repeat For k � 0, let U 0k+1 = U 0k _ 9(VP [VQ [W 0P [W 0Q) : (Uk ^ TP ^ TQ).Until Uk+1 � Uk.Return: Uk. 11

In the body of the loop, we rely on the early quanti�cation algorithm in VIS to keepthe intermediate BDDs small. With this scheme, a monolithic transition relation is neverbuilt. In particular, our implementation represents abstract modules as pairs consisting ofa concrete module and of a list of variables that have been erased from it; such pairs arecalled extended modules.In order to experiment with the veri�cation rules proposed in this paper, we implementeda simple script language, called sl, built on top of Mocha and based on the Tcl/Tk API.The algorithms and methodologies described in this paper provide the theoretical basis ofthe commands provided by sl. The veri�cation rules proposed in this paper can be imple-mented as sl scripts, and the language sl provides invaluable
exibility for experimentingwith alternative forms of the rules. An example of script is the following, which veri�es thecorrectness of the demarcation protocol using rule (5) (the demarcation protocol is describedin Section 5.1).read_module demarc.rmsl_em P Q Specsl_reach phi em_Spec ssl_reach rp em_P ssl_restrict Prest rp em_Psl_erase Pabs Prest P/xw P/xr P/req1 P/grant1 P/req2 \P/grant2 P/xlupd1 P/xlupd2 P/busysl_reach rq em_Q ssl_restrict Qrest rq em_Qsl_erase Qabs Qrest Q/xw Q/xr Q/req1 Q/grant1 Q/req2 \Q/grant2 Q/xlupd1 Q/xlupd2 Q/busysl_compose Rabs Pabs Qabssl_checkinv Rabs phi sThe command read module parses the �le demarc.rm, containing the declarations of themodules P and Q, composing the protocol, and Spec, whose reachable states constitutethe invariant. The command sl em P Q Spec builds the extended modules em P, em Q,and em Spec from P, Q, and Spec; of course, these extended modules have empty sets oferased variables. The command sl reach phi em Spec s computes the predicate phi =Reach(em Spec). The parameter s of this and other commands means \silent", i.e., nodiagnostic information is printed. The rest of the script checks that em P k em Q j= 2phiusing rule (5). First, the commands sl reach and sl restrict are used to compute rp =Reach(em P) and Prest = (em P& rp). Then, the command sl erase erases a speci�ed listof variables from Prest, producing the extended module Pabs. As discussed earlier, thecommand sl erase performs no actual computation, but simply adds the speci�ed variablesto the list of erased variables. The extended module Qabs is constructed in an analogousfashion. Finally, the command sl compose composes Pabs and Qabs into a single extendedmodule Rabs, which is checked against the speci�cation 2phi by command sl checkinv.Apart from these commands, we also have implemented commands includingsl wcontr and sl contrreach, which together compute the predicate CR(P;') given amodule P and a predicate '.
12

5 Experimental ResultsTo demonstrate the e�ectiveness of the proposed approach to modular veri�cation, wecompare the time and memory requirements of global state-space exploration with thoseof rule (5) and rule (6). We do not compare our approach with other modular veri�cationapproaches, since these approaches involve user intervention for the construction of theenvironments. By manually constructing the environments or the abstractions it is possibleto improve on our results.We consider three examples: a demarcation protocol used in distributed databases, atoken-ring arbiter, and a sliding-window protocol for data communication. All experimentshave been run on a 233 MHz Pentiumr
 II PC with 128MB memory running Linux. Wereport the memory usage by giving the maximum number of BDD nodes used in any �xpointcomputation or predicate; this is essentially the maximum number of BDD nodes used atany single time during veri�cation. We also report the total CPU time; this time doesnot include swap activity (swap activity was in any case very limited for all examplesreported). The automatic variable reordering heuristics ofMocha were enabled during theexperiments. We remark that di�erences in time or memory usage of up to a factor of 2 arenot signi�cant, since they can easily be produced by a variation in the automatic choice ofvariable ordering.5.1 Demarcation protocolThe demarcation protocol is a distributed protocol aimed at maintaining numerical con-straints between data residing in distributed copies of a database, while minimizing thecommunication requirements [BGM92]. We consider an instance of the protocol that en-sures that two databases, residing at sites 1 and 2, never sell more than the maximumavailable number of seats m aboard a plane. The variables x1 and x2 indicate the numberof seats that have been sold at sites 1 and 2. Each site can both sell seats, and receive seatsreturned due to cancellations. In order to minimize the communication between two sites,each site i = 1; 2 maintains a variable xli indicating the maximum number of seats it cansell autonomously. If a site wishes to sell more seats than this limit allows, the site cansend a request to the other site for more seats. Depending on the number of unsold seats,the other site has the option of rejecting the request, or of granting it in part or in full.We model each site i = 1; 2 by a module Pi; the speci�cation is 2[(x1 � xl1) ^ (x2 �xl2) ^ (xl1 + xl2 � m)]. Each of P1 and P2 controls 20 variables, of which 8 are usedfor communication with the other module or appear in the invariant, and 12 are internal.Rule (5) enable the erasure of 9 of these 12 variables in each of P1 and P2; all of thesevariables are in the cone of in
uence of the speci�cation. The table below compares thetime and space requirements of global state space exploration with those of rules (5) and (6),for various values of m. To check the robustness of rule (5) against changes in the systemmodel, we also wrote an alternative, somewhat more complex model for the demarcationprotocol. For m = 4, the veri�cation of the alternative model required 136156 BDD nodesand 2009 seconds with the global approach, and 18720 BDD nodes and 211 seconds withrule (5). 13

Global Rule (5) Rule (6)m BDD nodes seconds BDD nodes seconds BDD nodes seconds4 20881 97 2847 25 8695 756 64345 439 3338 40 20953 2188 179364 1671 8367 81 43915 51710 633102 8707 10475 112 65410 187812 space-out | 15923 174 93295 198014 space-out | 22205 300 145676 39135.2 Token ring arbiterThe second example is a synchronous token-ring arbiter. It involves a ring of m stations,around which a single token is passed unidirectionally through four-phase handshake pro-tocols. The invariant states that there is at most one token present in the stations. Astraightforward invariant would involve nearly all the variables in the system, and be rathertedious to write. Hence, we introduce observer modules that observe the number of tokensin the system. To enable the decomposition of the ring into two modules P1 and P2 rep-resenting the half-rings, we introduce two such observers, one for each half. We were ableto erase all the variables used for the internal communications and state of the half-rings,even though these variables clearly belong to the cone of in
uence of the invariant. Eachhalf ring controls 1+5m=2 variables; of these, all but 4 could be erased. Below we comparethe performance of global state-space exploration and of rules (5) and (6).Global Rule (5) Rule (6)m BDD nodes seconds BDD nodes seconds BDD nodes seconds16 657 8 979 7 608 820 466 10 1619 9 308 1224 1138 22 1297 26 473 2028 1300 39 3486 24 519 2932 1187 110 3190 143 772 14336 1323 611 8230 242 1346 1955.3 Sliding window protocolOur last example is a classical sliding windows protocol from [Hol91], whose encoding istaken from the Mocha distribution. The protocol uses send and receive windows of sizem, and it is composed of a sender module and a receiver module. Our invariant statesessentially that the windows are not over-run by the protocols. In both the sender and thereceiver, roughly half of the variables not used for communication with the other module canbe erased when applying our modular approach. The comparison between the performanceof global state-space exploration and rules (5) and (6) is presented below.
14

Global Rule (5) Rule (6)m BDD nodes seconds BDD nodes seconds BDD nodes seconds3 8992 35 776 12 2443 334 11831 99 1723 41 3740 425 36359 1911 3843 84 8503 1056 94684 4994 7048 156 18316 5007 95667 2630 8282 513 22289 7718 space-out | 26611 1582 47605 62455.4 DiscussionThe experimental results indicate that the proposed approach leads to a considerable re-duction in the time and space requirements for the veri�cation process.In the examples we considered, we identi�ed which variables could be erased in theapplication of rule (5) by a simple trial-and-error process. We can automate this process byproviding, for each module P , a list fx1; : : : ; xkg � CP of variables of P that are not part ofthe speci�cation, and that are not accessed by other modules. We list �rst the variables thatare more likely to be successfully erased: those that are more \internal" to the module, andthat interact with fewer other variables. We then apply rule (5) successively with the setsof erased variables fx1; : : : ; xkg, fx1; : : : ; xk�1g, fx1; : : : ; xk�2g, . . . , until the rule succeeds.This process is e�cient in practice. In fact, the more variables are erased, the smaller is thestate space of the abstract modules: hence if too many variables are erased, the rule willfail in a fraction of the time required for a successful proof.In the three examples considered, the stronger reachability predicates used to constructthe abstract modules in rule (6) did not enable the erasure of any additional variable. In thedemarcation protocol and in the sliding window protocol examples, the ability of rule (5)to erase variables on both sides of the parallel composition operator led to superior resultscompared with rule (6). In the token ring arbiter example, module Pi has many morereachable states in a completely general environment than in an environment compatiblewith the speci�cation, for i = 1; 2. Hence, the predicates Reach(Pi) are much weaker (andtake more time and space to compute) than the predicates CR(Pi; '), for i = 1; 2. For thisreason, rule (6) performs better than rule (5) in this example.If the premise of rule (5) does not hold, we can construct automatically a trace overthe variables in Sni=1(VPinWi), leading to a state that does not satisfy '. This trace isa trace over a partial set of system variables, and it does not necessarily correspond to acounterexample to the conclusion. If the �rst premise of rule (6) does not hold, then usingfacts about controllability we can reconstruct automatically a counterexample trace overthe complete set of system variables. On the other hand, if the second premise of rule (6)does not hold for some 1 � i � n, then we obtain a trace over a partial set of systemvariables that leads to a state ti where the predicate CR(Pi; ') does not hold. From ti,using facts about controllability we can again construct a trace over the complete set ofsystem variables that leads to a state where ' does not hold. When confronted with a traceover a partial set of variables, we have taken the na��ve approach of selectively un-erasingsome variables in the premises, until either the premises became valid, or the design errorcould be identi�ed. 15

References[AH96] R. Alur and T.A. Henzinger. Reactive modules. In Proc. 11th IEEE Symp.Logic in Comp. Sci., 1996.[AHM+98] R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, andS. Tasiran. Mocha: modularity in model checking. In Computer Aided Ver-i�cation, LNCS 1427, pages 521{525. Springer-Verlag, 1998.[AL95] Mart��n Abadi and Leslie Lamport. Conjoining speci�cations. ACM Trans. Prog.Lang. Sys., 17(3):507{534, 1995.[Bee80] C. Beeri. On the membership problem for functional and multivalued dependen-cies in relational databases. ACM Transactions on Database Systems, 5:241{259,1980.[BGM92] D. Barbara and H. Garcia-Molina. The demarcation protocol: a technique formaintaining linear arithmetic constraints in distributed database systems. InEDBT'92: 3rd International Conference on Extending Database Technology,LNCS 580, pages 373{388. Springer-Verlag, 1992.[BHSV+96] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz,S. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. Ranjan,S. Sarwary, T. Shiple, G. Swamy, and T. Villa. VIS: A system for veri�cationand synthesis. In Computer Aided Veri�cation, LNCS 1102, pages 428{432.Springer-Verlag, 1996.[CC99] P. Cousot and R. Cousot. Re�ning model checking by abstract interpretationAutomated Software Engineering Journal, 6(1):69{95, 1999.[CES83] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of �nitestate concurrent systems using temporal logic. In Proc. 10th ACM Symp. Princ.of Prog. Lang., 1983.[Dam96] D. Dams. Abstract Interpretation and Partition Re�nement for Model Checking.PhD thesis, Technical University of Eindhoven, 1996.[GS97] S. Graf and H. Sa��di. Construction of abstract state graphs with PVS. InComputer Aided Veri�cation, LNCS. Springer-Verlag, 1997.[Hol91] G.J. Holzman. Design and Validation of Computer Protocols. Prentice Hall,1991.[HQRT98] T.A. Henzinger, S. Qadeer, S.K. Rajamani, and S. Tasiran. An assume-guarantee rule for checking simulation. In Proceedings of the Second Inter-national Conference on Formal Methods in Computer-Aided Design (FMCAD1998), LNCS 1522, pages 421{432. Springer-Verlag, 1998.[Kur94] R.P. Kurshan. Computer-aided Veri�cation of Coordinating Processes: TheAutomata-Theoretic Approach. Princeton University Press, 1994.16

[McM97] K.L. McMillan. A compositional rule for hardware design re�nement. In Com-puter Aided Veri�cation, LNCS 1254, pages 24{35. Springer-Verlag, 1997.[RW87] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-event processes. SIAM Journal of Control and Optimization, 25:206{230, 1987.[Sta85] E.W. Stark. A proof technique for rely/guarantee properties. In Proc. of 5thConference on Foundations of Software Technology and Theoretical ComputerScience, LNCS 206, pages 369{391. Springer-Verlag, 1985.[TW68] J.W. Thatcher and J.B. Wright. Generalized �nite-automata theory with anapplication to a decision problem of second-order logic. Mathematical SystemsTheory, 2:57{81, 1968.

17

