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Abstract

One approach to pattern classification is to match a structural description of a pattern to models which
describe the structural properties of pattern classes. The central problem in structural pattern matching is to
determine the correspondence between the symbols which comprise a model and symbols which describe a
pattern. The difficulty of determining this correspondence depends critically on the representation that is
used to describe patterns.

This paper presents a probabilistic representation for structural models of pattern classes. Both pattern
descriptions and models for pattern classes arc based on symbols which represent gray-scale information at
multiple resolutions. A pattern description is given by a tree of symbols with attribute values. Structural
models are represented by a tree of symbols with probabilistic attributes. The position and scale (resolution)
of the symbols, as well as other "features," arc represented by these attributes.

An algorithm is presented for determining the correspondence between symbols in a description of a pattern
and symbols in a model of a pattern class. This algorithm uses the connectivity between symbols at different
scales to constrain die search for correspondence. An interactive training program for learning models of
pattern classes is described, and some conclusions from the work are presented.



1 Introduction

This paper describes a system for classifying two dimensional gray scale patterns which is based on
structural pattern matching using a multiple resolution representation. The mathematical basis for this
representation is the "Difference of Low Pass" (DOLP) transform [3J. The DOLP transform is defined,
followed by the definition of a symbolic structure which Is used to represent patterns. A matching algorithm
is described which exploits the multiple resolution structure to efficiently match a model for a pattern class to
an observed pattern. A training algorithm for deriving pattern models from observation sets is also presented.

1.1 The Structural Pattern Recognition Problem

Hie purpose of a pattern recognition system is to label a pattern as an instance of a predefined class. One
approach to pattern classification is structural pattern matching. In this approach, a structural description of a
pattern is matched to a set of models which describe predefined pattern classes. A similarity measure is
computed for the match for each pattern class. The pattern is then classified as an instance of the class for
which the similarity measure is maximized.

The most important aspects in the design of a structural pattern matching system are

• the representation which is used for the pattern and models,

• the matching algorithm, and

• the similarity measure.

This paper describes the use of a multiple resolution representation for pattern descriptions and object
models. It then presents a matching algorithm which uses the results of matching at low resolution to guide
and simplify the matching at higher resolutions. A similarity measure is presented based on the logarithm of
the probability that each symbol in the description is an instance of the corresponding symbol in the model.

1.2 Summary of Solution

A structural description for patterns typically has the form of a network of symbols. In the system describes
below each symbol has an associated set of attributes. We call such a description an "attributed graph" [12].
This paper describes an attributed graph representation for image patterns in which the symbols are derived
from peaks and ridges in the Difference of Low Pass (DOLP) transform [3].

A structural model of a pattern represents the ensemble of descriptions of patterns in the training set Thus,
while a model has the same form as a description, symbols in the model are assigned a probability of
occurrence and the symbol attributes are described by probability distributions. In its general form, such a
pattern model is a "probabilistic graph model."1 In this paper we describe techniques for learning and
representing probabilistic graph pattern models from examples of multiple resolution descriptions of patterns.
These technique are restricted to a subset of the multiple resolution representation described in [3], given by
local peaks. This subset has the form of a multiple resolution tree. Thus, in this paper we will describe a
structural modeling technique based on a "Probabilistic Tree Model"

lKlm ailed « "Random Gnph MotelM



Matching a pattern description to a model is a problem of determining die most likely correspondence
between symbols in the pattern description and symbols in each model. One of the properties of a multiple
resolution representation is that it permits the matching process to be decomposed into a sequence of very
small matching problems, That is, matching may begin with a small number of low resolution symbols. The
connectivity of symbols at adjacent resolutions permits die correspondence at low resolutions to be used to
constrain the possible correspondences at higher resolutions. This paper describes such a matching algorithm.

The most likely correspondence provides the basis for a similarity measure. In this paper we describe a
similarity measure based on the log likelihood that the most likely corresponding symbol is an instance of die
model symbol. The sum of the log likelihoods is used as a global similarity measure for the match between
the description and the model. The pattern is assigned the label of the class for which the match produces the
largest similarity measure above a threshold

1.3 The Multiple Resolution Representation of Patterns

Earlier papers [3] have described a representation for shape based on peaks and ridges in the DOLP
transform. A description of a pattern expressed in this representation was shown to retain its structure despite
changes in size or orientation, and such a description was shown to degrade gracefully when boundaries are
blurred and when the image is corrupted by various forms of image noise [2]. Experiments have been
performed in matching motion stereo images using the DOLP transform. An algorithm for matching rows
from co-planar stereo images has recently been described using a one dimensional form of DOLP transform
[4]. A fast computation technique for the DOLP transform has also been defined [5].

The representation presented in this paper is based on connected sequences of peaks called "Peak Paths"
and on connected sequences of ridges called "ridge paths." This paper described a matching algorithm that
only makes use of Peak Paths. Extending this algorithm to use ridge paths is believed to be straight forward.
Each such symbol has a set of attributes associated with it These symbols are connected through the
resolution levels by connectivity relations which give it the form of a tree. Using these higher level symbols
further decreases the complexity of the pattern description, and thus simplifies the matching problem.

2 The Difference of Low-Pass Transform

This representation is based on a reversible transform referred to as the "Difference of Low-Pass" (DOLP)
transform pj . The DOLP transform is a reversible transform which converts an image (or signal) into a set of
band-pas images (or signals). Each band-pass image is equivalent to a convolution of the original image with
a band-pa® filter, b^ Each band-pass filter is formed by a difference of two size scaled copies, of a low-pass
filter, ghl and g^

bk = %-; ~ %
Each low-pass filter gk is a copy of the low pass filter ghl scaled laiger in size. These band-pass images
comprise a three space (the DOLP space) in which the third dimension is scale (or resolution).

The DQLP transform expresses the mage information at a discrete set of resolutions in a manner which
preserves all of the toiage Information. This transform separates local forms from more global forms in a
manner that makes no assumptions about the scales at which significant information occurs. The DOLP filters
overlap in the frequency domain; thus there is a smooth variation from each band-pass level to the next This



"smoothness" makes size-independent matching of forms possible and makes it possible to use the symbols
from one band-pass level to constrain the correspondence of symbols at the next ( higher resolution ) level.

2.1 Definition of the DOLP Transform

The DOLP transform expands an N = M x M image signal p(x.y) into K band-pass images, *&k(x,y). Bach
band-pass image is equivalent to a convolution of the image p(x.y) with a band-pass impulse response bJx.y).

<&Jx,y) = p(x.y) * hk(xy) (1)

For k = 0, the band-pass filler is formed by subtracting a circularly symmetric low-pass filter gQ(x,y) from a
unit sample positioned over die center coefficient at the point (0,0).

= S(x,y) - go(x,y) (2)

The filter bo(xyy) gives a high-pass image, c$>o(x%y). This image is equivalent to the result produced by the
edge detection technique known as "unsharp masking" [10].

= p(x,y) * ( 5(x,y) - go(x,y)) (3)
- (p(x,y) * go(x.y))

For band-pass levels 1 < k < K the band-pass filter is formed as a difference of two size-scaled copies of the
low-pass filter.

bk(x,y) = gh/x,y) - grfxj) (4)

In order for the configuration of peaks in a DO IP transform of a form to be invariant to the size and
orientation of a form, it is necessary that each low-pass filter, gJx,y) be a copy of the circularly symmetric
low-pass filter go(xyy) scaled larger in size by a scale factor raised to the k power. [2]. Thus for each k, the
band-pass impulse response, b^x.y), is a size scaled copy of the band-pass impulse response, bkI(x,y). For
two-dimensional circularly-symmetric filters which arc defined by sampling a continuous function, size
scaling increases the density of sample points over a fixed domain of the function. The change in scale
between filter g/x,y) and filter 8k+/**>') is denoted by the the scale factor, denoted Sg. For Gaussian filters,
S is the ratio of the standard deviations for the k* and die (k+if1 filters.

It is possible to define a DOLP transform with any scale factor for which the difference of low-pass filter
provides a useful pass band. Marr, for example, argues that a scale factor of Sg = 1.6 is optimum for a
difference of Gaussian filters [9]. We have found that a scale factor Ss = \/2* yields effectively the same
band-pass filter and provides two other interesting properties [2].

In principle the DOLP transform can be defined for any number of band-pass levels K. A convenient value
ofKls

Where RQ is the radius of go(xfy). With a scale factor of Ss, lMgsj,N) is the level at which the original
distance between filter samples becomes equal to the width of the image. Subtracting J?© gives the level at
which the filter gg(x9y) becomes larger than the image.



The DOI.V transform is reversible which proves (hat no information is lost. The original image may be
recovered by adding all of the band-pass images, plus a low-pass residue. This low pass residue, which has not
been found to be useful for describing the image, is the convolution of the lowest frequency (largest) low-pass
filter, ,*> (\\y) with the image.

- (p(x,y) * g/xtyj) + ]T <
k-o

2.2 Fast Computation Techniques: Resampling and Cascade Convolution

A full DOLP transform of an image composed or N samples, produces K = Logs(N) band-pass images of
N samples each, and requires 0(N2) multiplies and additions. Two techniques can be used to reduce the
computational complexity of the DOLP transform: "resampling" and "cascaded convolution with expansion"
[3]. Combining these two techniques gives an algorithm which will compute a DOLP transform of an N

sample signal in 0(N) multiplies, producing 3N sample points.

2 .3 An Example of a DOLP Transform

Figure I: A simpled DOI I* transform of an image with tvm holts

Figure ! shem a DOhf ttn^hnn of jn linage of two h»\u that was produced using ihc fast comput;«ion
twhniqucs de^ubftj above. In this figure tite m^\^ at i\v: bwci rijht is the high frajuenty image, i^Jxyi

The upper left cower shims t'jc ?evd ! haul »«i^ iuwi\\ '&{%t\% %!n!e i\v< upjvr right liainl 4 orncr contains
the level 2 hanJ-pjss mugc, 'A/*, j A i juier\\mi ibc k u i 1 f/vnd pass nn.^c ,?rc knets 3 and 4, ihen 5 and 6,
etc.
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Figure 2: An enlargement of band-pass levels 5 through 11

Figure 2 shows an enlarged view of band-pass levels 5 through 13. 'This enlargement illustrates the unique
peaks in the low frequency images that occur for each gray-scale form. Examples will be given below using
the symbolic description which was produced from this image.

3 A Multiple Resolution Representation for Gray Scale Patterns

The amount of information required to represent the structure of a pattern may be greatly reduced by
encoding a symbolic description of the DOLP band-pass images. We have developed two levels of symbolic
representation for patterns based on the peaks and ridges from the DOLP transform. The first level is
composed of symbols derived directly from the individual DOLP samples. These are DOLP samples which
arc found to be local positive maxima or negative minima in one, two or three dimensions within a DOLP
band-pass image. The second level symbols exploit a connectivity between peak and ridge samples which is
inherent in the DOLP transform. Sequences of connected peaks and ridges arc grouped to form symbols
called "Peak Paths" and "Ridge Paths." rfTie$e two levels of symbols are described below.

3,1 Definition and the Symbols Set

The "local neighborhood" of a DOLP sample includes ihc nearest eight neighbors on the sample grid at its
band-pass level A "peak" (or P-nodc) is a local positive maximum or negative minimum within a two-
dimensional band-pass image. A "ridge-node" (or R-nodc) is a local one-dimensional positive maximum or
negative minimum within a two-dimensional band-pass image.



The 1)01 P shape representation is based on four types ofsymbols. Two of these arc detected in each 1)01 P
Band-Pass image. These are:

R-nodcs: 1)01.P samples which are on a ridge (1-D maxima or negative minima within u band-pass
image).

P-nodcs: DOI/P samples which are local 2-D maxima or negative minima within a band-pass image.
These are R-nodcs which are a maxima in every direction.

The other two symbols arc detected within the three dimensional space (x, y, k) defined by the DOLP
transform.

M-nodes: P-Nodcs which have a DOLP sample of larger magnitude than P-nodcs at adjacent
positions in adjacent band-pass images.

L-nodcs: DOLP samples which are on a ridge across levels (i.e. in the three space (x,y,k)). These are
R-nodcs which arc larger than their neighbors at adjacent band-pass levels above and
below in die DOLP space.

The symbol set provides the basis for structural representation of gray-level shapes in images. To complete
the representation, each symbol, P, M, L, R, retains four attributes, (x,y,k,d):

(x,y) the image coordinates of the symbol;

k the bandpass level of the symbol;

d the intensity of the 1)01 P image at the sample.

These attributes attach quantitative information to each symbol. The attributes are used to improve the
efficiency of matching by constraining possible structural correspondences, as well as improvement in
matching accuracy and reliability.

Let us define the the first level symbols as a list of nodes {vj, which arc connected between levels by a set
of links, {c. .}. A node consists of a type from the set {P, R, M, L} and a set of attributes {x, y, k, d}.

A ink, c, is made between node v. at level k and node v. at level k-1 if and only if

L v. and v. have DOLP values of the same sign, and

2. v, and v. arc at adjacent band-pass levels and arc within a predefined distance of each other. The
neighborhood ske is approximately equal to the inner positive lobe of the larger DOLP filter.

We have implemented peak linking with an algorithm that starts at the highest resolution level (1), and
steps up through the baml-pav* images to the lowest resolution level (K-l). For each peak at level k, a search
is made over a 5 by 5 sample region in level k-f 1. The peak at lc\cl k is linked to the nearest peak at level
k+1 within this region.

The node types of R and I* AIC assigned based on the \;iluc of a lX'MP sample relative to its local



Figure 3: Subset relations of node types

neighborhood. A DOLP band-pass sample which is a local 1-D positive maximum or negative minimum
within an band-pass image is labeled as an R. A node of type R which is a positive maximum or negative
minimum in all four directions in an image is labeled as a P.

The node types of L and M are assigned based on the relative values of the DOLP sample attributes to
linked nodes of type R or P. A node at level k of type R may be labeled as a node of type L if it is connected
to nodes at level k 4-1 of type R which have a smaller DOLP sample, and it is not connected to a node at level
k-1 of type R with a larger DOLP sample. Similarly, a node of type P may be labeled as a node of type M if it
is connected to nodes at level k +1 of type P which have a smaller 13OLP sample, and it is not connected to a
node at level k-1 of type P with a larger DOLP sample.

Thus the node types can be grouped into subsets, based on context, as shown in figure 3. All nodes arc type
R. Some nodes of type R can be type L. Some nodes of type R or L can also be type P. Some nodes which are
both type P and type L can also be type M.

Figure 4: Circle representation of the negative peaks from levels 11 through 4
of the larger bolt from figure I. Darker circles represent

M-nodes, lighter circles represent P-nodes.

An example of the use of peaks to represent a gray scale pattern is given in figures 4 and 5. Figure 4 shows
the negative peaks from band-pass levels 11 through 4 for the larger bolt in the DOLP transform image shown



Level

-60 P
(96,128)

-105 P
(80,112)

-106 M
(88,112)

-65 P "78 M
(72, 104) (96, 104)

-59 P
(62, 94)

-48 P
(62, 94)

-91 M
(88, 144)

-67 M -76 P
(64, 100) (100, 100)

-87 P
(84, 152)

-65 P -70 P
(64, 96) (100, 96)

-69 P
(84, 156)

-67 P
(102, 94)

-57 M
(88, 158)

-59 P
(104, 92)

-53 P
(80, 158)

-56 M
(92, 156)

-48 P
(94, 158)

Figure 5: The negative peaks from levels of 11 through 4 which
describe the larger bolt from figure 1

in figures 1 and 1 For simplicity, only negative P-nodes over this bolt at the low resolution levels are shown.
Figure 5 shows some of the attributes of these peaks. At the top of each symbol, the DOLP sample value, and
the symbol type (M or P) are shown. In the second row, the coordinates are shown in parentheses as (x, y).
L-nodes and R-nodes, and the opposite signed peaks are not shown in these figure.

3.2 Peak Paths

In general, when a DOLP filter has a high correlation with an image pattern, a peak node will occur at
similar locations in the set of adjacent band-pass images. These peaks will be assigned a connectivity as
described above. Except in rare cases, the magnitude of DOLP sample attributes of these peaks will rise
monotoncalSy through die levels lo a local maximum and then decrease. It is possible to use this regularity to



group collections of connected peaks into a second level symbol called a Peak Path. Hiis second level
encoding can greatly reduce the complexity of p;ittcrn description.

A connected set of P-nodcs form a tree which spans from low resolution to high resolution. Peak Paths
represent branches in this tree. A connected set of P-nodes from level i to level j (i > j) arc grouped into a
Peak Path whenever:

• a P-node at level j is a local minimum along a Peak Path, or
i

• a P-nodc at level j has more than one P-nodc at level j-1 attached to it

I When a Peak Path is formed by cutting a connected set of peaks with one of these rules, die top (low*
j resolution) Peak Path Is said to be a Parent Peak Path, while the bottom (high resolution) Peak Path is said to
j be a child T?cak Path. Peak Paths formed in this manner retain their connections. These connections are the
I basis for the tree structure of both the shape descriptions and probabilistic models described in this paper.

A Peak Path, Pn, is defined by

if a vector of attributes,

/ a set of connections to the parent and children Peak Paths, if they exist

The attributes for a Peak Path arc the set

a"= {top, x, y, k, d, t, I c}

These attributes are sometimes referred to as aQ through a?. As defined above, every Peak Path contains an
M node. The M-node plays a crucial role in defining the attributes of a Peak Path. The attributes (x, y, k4 d)
are simply the attributes of the M-node. The attributes t and 1 reflect the length of the Peak Path, while the
attribute c describes the number of children.

Top A boolean which is true if the Peak Path is not the child of a lower resolution Peak Paih.

(x, y) The image coordinates of the M-node of the Peak Path.

k The band-pass level of the M-node.

d The DOLP amplitude of the M-node.

t The distance (in band-pass levels) from the top most node in the Peak Path to the M-node.

1 The number of band-pass levels spanned by the Peak Path.

c The number of children Peak Paths which descend from this Peak Path.

The connections, 1, include a connection to a parent Peak Path if It exists, and a connection to each of the
children Peak Paths.
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It is also possible to define path structures for R nodes and for L nodes. A ridge path, "R-Pathlf is a
sequence of ridges of the same sign from adjacent locations in the same band-pass image. R-Paths are
characteristic of boundary segments at a given resolution level R-paths were used in the shape matching
technique described in [2]. An "L-Pathff is a connected sequence of L-Nodes of the same sign connected to
adjacent locations at the same or adjacent band-pass levels. L-Paths are characteristic of elongated shapes.
An L-Path usually terminates in an M-Nodc. In the near future we will extend die training and matching
techniques described below to include L-paths. Inclusion of L-paths into descriptions and models will create
a network structure between the branches of the Peak Path trees.

Figure 6: A circle representation of the M-nodes of the
Peak Paths for the larger bolt in figure 1.

The scale of the M-Nodc is represented by the radius of the
circle. The radius is chosen to approximate the radius of

the inner positive lobe of the Difference of Gaussian filter.
The position of the M-node is represented by the position

of the circle.

-106 n <9>
(88,112)

-67 M <7>
(64, 100)

-78 M <8>
(96, 104)

-91 M <8>
( 8 8 . 144)

-57 M <5>
(88 , 158)

-56 M <5>
(92 , 156)

figure 7: The M-node attributes of the lowest resolution negative
Peak-Paths in the larger bolt shown in figure 5

Figures 6 and 7 sliows the Peak Pate that result from the peaks shown in figure 5. Figure 6 shows a circle
repre«Etaii0ft from the M-nodes from the low resolution Peak Paths. Figure 7 shows the connectivity
between Peak Paths and the attributes of DOI.? sample intensity and level for the M-node, and the locations
of the M-nodes. Only the negative Peak Patlis at the lower resolution levels (levels 11 through 4) are shown.
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4 Probabilistic Models of Gray Scale Patterns

A pattern model serves as a definition for a class of patterns. In structural pattern recognition, die pattern
model defines the symbols, attributes and connectivity that have been observed in an ensemble of training
samples. In most cases the members of a training set will exhibit some variability in structure. This variability
may be expressed in a pattern model by attaching a probability of occurrence to each symbol, and expressing
the attributes of each symbol as a probability distribution.

The probability of occurrence and the attributes for each symbol are learned by "training" on a sample set
for each class. In those cases where the structure of the training samples arc the same, the probability of
occurrence for the symbols will be high, and the attributes will be expressed by a narrow probability
distribution. In those cases where the structure varies, the probability of occurrence for each symbol will be
decreased and the attributes will be expressed by probability distributions with a large variance. A training
process for multiple resolution probabilistic graph models is described in section 6. This section defines a
technique for representing a probabilistic graph model based on Peak Paths. The extension of this to L paths
has not been performed as of this writing, but is thought to be straight forward.

4.1 Definition of Model Symbols

A multiple resolution probabilistic graph model, M, is composed of a position transformation (or "pose") T,
and a list of labeled Peak Paths, *• for n = 1, . . . , N, with probabilistic attributes and with connections to
other Peak Paths. Each Peak Path, wn, contains:

L a label from the set {PP, TP, CP} (described below),

2. a probability of occurrence, PC^),

3. a set of attribute probabilities, "a , and,

4. a connection to a parent Peak Path (if it exists) and a set of connections to children Peak Paths X .

Each attribute probability is represented by a Gaussian probability density function. The mean and
standard deviation of the density function are determined incrementally during training. In principle, the
connections, X , can be implemented with a probability attribute. In die techniques described in this paper
this is not done.

It is desirable to be able to represent classes of objects which can undergo transformations such as scaling,
translation, rotation, various forms of stretching, and articulation of rigid components. The probabilistic
models defined here are designed to accommodate such transformations. This is accomplished by defining
the position, orientation and scale of each symbol relative to a parent symbol Only a root symbol, called the
"Principal Peak Path" has attributes in absolute coordinates. For other Peak Paths in the model the absolute
attributes at a particular pose are obtained by following the tree structure from the Principal Peak Path.

Thus, for example, in the training samples when a part of a pattern occurs scaled or rotated with respect to
the rest of the pattern, the probability distributions for position or scale of the lowest resolution symbol which
describes that part is given a larger variance, but the distributions for higher resolution children symbols are
kept small Defining attribute probabilities relative to parent symbols requires die definition of labels for
Peak Paths-
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4.2 Peak Path Labels in a Model

Peak-Paths arc divided into three classes according to their position in the model:

• Principal Peak-Paths (PP) contain the lowest resolution M-Node in the model. It is the only Peak
Path whose attribute probabilities arc expressed in absolute coordinates.

• Top Peak-Paths ('IP), other than the Principal Peak Path, have no parent peak-paths (i.e., are not
children). Attribute probabilities of TP symbols are defined with respect to the PP.

• Child Peak-Paths (CP) arc directly connected to lower-resolution "parent" Peak Paths. The
attribute probabilities arc defined with respect to the attributes of the parents.

4.3 Attribute Probabilities and Likelihoods

Matching a description to a model requires finding the correspondence mapping which maximizes the joint
Bayesian probability that each description symbol is an instance of the corresponding model symbol. In the
techniques below, the matching algorithm is designed to maximize the sum of the log likelihood of the
conditional probability [6].

The probability that an observed description Peak Path, Pp is an instance of model Peak Path, 7rn, is given
by Bayes law to be

Hie probability of the description Peak Path, I\ Pj\ is constant for all possible model Peak Paths, and thus
may be ignored in a search for a maximum. The probability that a model symbol' exists, Pin^ is the
probability of occurrence. Thus, the model symbol which has the highest probability of being an instance of a
description symbol may be found by finding the model symbol, 7in, for which similarity, SJJ[y is maximized.

The expression P(Pj\vtt) may be evaluated as the probability of obtaining the attribute vector, aj of
given the the attribute probabilities, a, of the model Peak Paths w^

I

This equation assumes that each of the attributes are independent While this may not be strictly true, it
significantly simplifies the implementation of the probability calculations, without seriously affecting the
performance of the system.

The probability distribution for each attribute «. is represented by the mean, j * . t and the variance, o\ of a
Gaussian distribution* Thus, given the assumption that the attributes have a covariance which is the identity
matrix, the probability of observing an attribute value, &, given a probabilistic attribute, cr, is given by
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1 2

e
Note that -n in tliis equation refers to the well known constant

Representing these probabilities with a Gaussian distribution provides the opportunity to replace the
calculation of a probability for each attribute, with the calculation of a computationally cheaper log
likelihood.

The term

scales the probability distribution of each attribute so that it has an area of one. This term is constant for a
given model Peak Path attribute, and is not needed when searching for the description Peak Path with the
highest likelihood of correspondence. It is, however, needed for the global similarity measure.

Thus, the likelihood, l^n, that an observed description Peak Path, Pj, is an instance of a model Peak Path wM

\s given by

C «
This fonnula replaces the use of true probabilities widi a log likelihood measure which returns a negative

value near 0 for attributes near the mean and a more negative number for less likely values. Because the
logarithm is a monotonic function, the sorted order and the maximum of the log likelihoods will be the same
as for probabilities. The log likelihood is also considerably less expensive to compute.

4.4 Probabilistic Attr ibutes in the Model

For Principal Peak Paths, the attribute set is identical to those used for description, except that each
attribute has a random variable with an associated probability distribution in place of a value.

For TP and CP Peak Paths, the attribute probabilities used in the model divide into two classes:

1. attributes which are dependent on the parent Peak Path,

2 attributes which are Independent of the parent Peak Path*

The dependent attributes are:

ax 6: the angle of the vector from the parent Peak Path. The Principal Peak Path is the parent
for Peak Paths of type TP.
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a~ R: the distance from the parent Peak Path

ou Ak: the difference of level from the parent Peak Path

a Ad: the ratio of the DOLP sample intensity of die M node of this Peak Path to the parent Peak
Path

Model independent attributes have been defined by

a5 t: the number of levels between the M node and the top-most peak in the path,

a6 1: the number of levels between the top most and die bottom-most peak in the path,

a? c: the number of children Peak Paths.

4.5 The No-Match Likelihood

A lower bound on the log likelihood measure, called the "no-match" likelihood, Ln n is provided by the
probability of occurrence of a model Peak Path. This is the likelihood that will be used in a global similarity
measure if no correspondence is found For a model Peak Path.

The term fiM is a constant determined from the attribute distributions in order to scale, likelihoods of
observed and unobserved symbols.

4.6 Model Transformation

Except for the Principal Peak Path, each calculation of a log likelihood function requires that description
Peak Path attributes which correspond to model dependent attributes be converted to a "relative" coordinate
system. The attributes of distance, R, scale, Ak, and intensity, Ad, can be computed relative to the attributes
of a parent Peak Path. However, orientation requires additional information. This information is supplied by
the "pose" of the model.

During matching, the pose of the model is given by a "transformation/1 T, which is hypothesized to
translate, scale, and rotate the model Peak Paths so that they can best correspond to description Peak Paths.
The first step in maiching is to determine the position, 'scale and intensity parts of T from the Peak Path in the
description which is hypothesized to match to the Principal Peak Path in the model. The second step Is to
determine an estimated orientation from the correspondence of the model Peak Paths of type IP to the
description Peak Paths of type IP.

5 Multiple Resolution Probabilistic Matching

Matching a probabilistic graph or tree model to a structural description is a problem of Finding a
contspondencc relation between the symbols In the model and the symbols In the description which
maximizes some global similarity measure. In the algorithm described here, the global similarity measure is
the sum of the log likelihoods of the individual Peal Path correspondences.
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This algorithm uses the hierarchical structure of the multiple resolution description and model to
successively constrain possible correspondences. Thus the algorithm assumes that the lowest resolution Peak
Path can be reliably found in the data. This may not be an appropriate assumption in situations where the
2-D image of a 3-D object can have a significant variation in form due to changes in 3-D orientation or
photometric effects.

The match ing algorithm consists of the following steps:

1. Determine an initial "Pose" which translates, scales the model onto the description.

2. Determine a correspondence between the list of Peak Paths of type TP in die model and the Peak
Paths in the description. This correspondence provides die orientation part of the pose.

3. Determine the correspondence for the list of Peak Paths of type CP.

As each new correspondence is obtained, a likelihood estimate is updated. This partial estimate may be used
to halt the matching if "reasonable" correspondences are not being found.

5.1 Finding the Pose

The matching process begins with a hypothesis that a low resolution Peak Path, Pj> in a description is an
instance of the Principal Peak Path, TJ\, from the model. The similarity measure, S , is initialized by
evaluating the absolute attributes of Pj with the sum of die log likelihoods for the Principal Peak Path, <w , for
the set of attributes i = 2 to I. The orientation attribute, a,, is not meaningful for the Principal Peak Path.

a\x a

If this initial estimate is above a threshold, then matching may continue.

Accepting the hypothesis for the Principal Peak Path specifies an estimate of the position, intensity, and
scale for matching. It does not provide any information about the orientation. In our initial matching
algorithm die orientation estimate is determined from the correspondence for a Second Peak Path. In the
section below we describe an algorithm in which a set of possible orientations are hypodiesized as die first
stage in a search for the best correspondence mapping.

The Peak Paths of type TP in the model are sorted by probability of occurrence, resolution level, and
distance from the Principal Peak Path. Our initial matching algorithm, uses the Peak Path at the top of this
list to determine the orientation of the Pose. This Peak Path is sometimes referred to as the "Second Peak
Path.*" The log likelihood similarity measure for the Second Peak Path is computed for each Peak Path of
type TP in the description, using attributes a2 through aT The Peak Path that maximizes this similarity
measure is chosen as the corresponding description Peak Path. The pose orientation is determined by the
difference in angle of the vector to this Peak Path in the model and in the description.
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5.2 Matching Top Peak Paths

Given a pose, the matching problem becomes a problem of finding a correspondence mapping for the Top
(type TP) Peak Paths that maximizes some global measure of similarity. This is perhaps the most important
and most difficult stage of the matching process. The similarity function for a correspondence between an
individual model Peak Path and a description Peak Path is measured by the log likelihood of obtaining the
description Peak Path's attributes given the model Peak Path and the current pose. A normalized sum of such
likelihoods is used as a global similarity measure.

If there arc NM model Top Peak Paths and ND description Top Peak Paths then there arc as many as
N M N D log likelihoods to be evaluated. Such a correspondence problem has become a classic problem in
machine vision, for which a variety of approaches have been investigated and reported. Some examples
include the maximal cliques algorithm [1], relaxation labeling [15], pose clustering [13], hypothesis of rigid
transformation [8] and [7] and heuristic search [14]. Most of these algorithms could be adapted for this task,
although in some cases it would be difficult or expensive to incorporate a generalized similarity measure.

A crucial aspect in the application of any correspondence matching algorithm is the representation in which
the information is expressed. We initially believed that the expressive power of the Peak Path representation
would permit us to determine the best correspondence without backtracking. In particular we sought to use
die lowest resolution Peak Paths to determine the pose transformation for the model, instead of using a long
search process. Thus we implemented a very simple correspondence matching matching algorithm which we
have come to call the "greedy algorithm/'

The greedy algorithm is sequential, and does not guarantee an optimal match. The algoritiim is based on the
idea of forming the list of N M N D possible correspondences and sorting this list based on the likelihood value
for each pair. Correspondences arc then assigned in the order of the likelihoods with no possibility of
multiple matches. To keep the problem small, we only include Top Peak Paths within 6 resolution levels (a
factor of 8 in scale) of the Principal Peak. For our bolts images, this typically limited the number of Top Peak
Paths to less than 10.

Stated more precisely, the greedy algorithm operates as follows:

1. For all model Peak Paths of type TPt irR, for n = 1 to N, and for all description Peak Paths, Pm ,
for m = 1 to M, construct the triple (n, m, L^ m ) , where L^ m is the likelihood that wn is an
instance of P m .

1 Sort this list of triples on the field L
^ m .

3. Starting with the top of the sorted list, retrieve the triple, (n, m, L 1

a If the correspondence for vn or for Pffl has been found, then discard this triple and advance
to the next

b. If neither correspoadcice has been found, then mark both symbols and save the
concsfmnitmt*

c Acid the likelihood to the partial similarity estimate, Le. S = S + L .



17

d. If at least one model symbol remains with no correspondence, and at least one description
symbol remains with no correspondence, and the most recent likelihood measures retrieved
from the sorted list is above a threshold, then continue retrieving triples from the list

4. If the partial estimate Se is below a threshold, halt

The principal benefit of the greedy algorithm is that it is fast; it has a computational complexity of
O(NMND Log(NMND)), It is also very easy to implement

Although, the greedy algorithm has been found to work well in most cases, there are some situations in
which it fails. Most of these situations fall into the following three categories:

The comb effect: If a pattern contains a sequence of identical small patterns spaced at close regular intervals,
then if die correspondence for one is not correctly assigned, die correspondence for all its
neighbors is also affected.

Noise Effects: If there are spurious Peak Paths of type TP in the description, these can sometimes block
the correspondence of a model Peak Path to the correct description Peak Path. In this case,
there is usually no correspondence or a very poor correspondence for the children Peak
Paths in the model, and the overall likelihood is severely degraded. The biggest source of
noise was middle resolution photometric effects (highlights and shadows).

Low Resolution Photometric Effects:
The position attributes of the Peak Paths of type TP arc specified with respect to the
principal peak path. If-highlights or shadows arc large enough and severe enough to
interfere widi the Principal Peak Path in a description, then die pose transformation will be
incorrect In this situation, the log likelihoods for all the TP Peak Paths will be distorted
and frequent mismatches will occur.

Most of our experience with this matching algorithm was obtained with an interactive training algorithm
described below. With this training program, each match was displayed graphically, and we were able to
intervene by hand to reject an incorrect correspondence. The most frequent error (-5%) m our training
examples, was an incorrectly chosen correspondence for the Second Peak Path which results in an incorrect
model orientation. Given the fact that the matching can fail completely if the wrong orientation is selected*
we now believe that this orientation part of the pose is best determined by evaluating the correspondence of
Top Peak Paths at a set of hypothesized model orientations.

The consequences of both noise in the description Peak Paths and the Comb Effect can be minimized by
only seeking a match for the model Peak Paths, and by permitting more than one model Peak Path to
correspond to die same description Peak Path. This prevents an error in one correspondence from creating
errors in other correspondences. Alternatively it is possible to determine the set of correspondences which are
globally best using a heuristic search algorithm.

The problems caused by low resolution photometric effects are fundamental to using one or two lowest
resolution Peak Paths to define the model transformation or pose. Any error in the position or scale of the
Principal Peak Path will degrade the correspondence likelihoods for all the Peak Paths of type IP, anil thus
increase the possibility of mismatch- We could avoid this problem only by abandoning Che use of a "Principal
Peak Path" and using one of the other matching techniques listed above.
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5.3 Determining the Pose by Pairwise Search

The comb effect and the effects of middle resolution noise can be minimized by only seeking a match for
each model Peak Path and by permitting more than one model Peak Path to correspond to the same
description Peak Path. The catastrophic results of an incorrectly chosen Principal Peak path or Second Peak
Path can be avoided by hypothesizing a set of possible pose transformations based on pairs of Top Peak Paths.
This idea is a generalization of the "hypothesis of rigid transformations" technique used by [7] and [8]. These
two ideas are embodied in an algorithm which hypothesizes rigid transformations for the Top Peak Paths in
the model based on the correspondences of pairs of Peak Paths, and then evaluates the global similarity for a
subset of "most likely" transformations. Such an algorithm would work as follows.

For Top Peak Paths in the model, the pose dependent attributes (aL through «4), which were previously
computed with respect to a Principal Peak Path, are each augmented with a list of attribute vectors, computed
for a set of other Top Peak Paths. This set can be kept small by only computing relative attributes for Top
Peak Paths with a probability of occurence of 1.0 and by restricting each list to the closest Np Peak Paths.

Matching then begins by forming a list of possible correspondences between pairs of Peak Paths from the
Model and pairs of Peak Paths from the description. Each correspondence of pairs defines a pose hypothesis.
For each such correspondence, the log likelihood is computed using the appropriate attribute vector, as well
as the pose independent attributes. The list of pair-wise correspondences arc sorted by log likelihood, l l i e
members at the top of the list provide a set of "most likely" poses. A subset of the "best N" or "all above a
threshold tolerance" can be selected as candidates. The model Peak Paths of type TP are then rigidly
transformed by the each hypothesized pose and a global similarity is computed.

For each hypothesized pose, the algorithm computes a global similarity as follows. For each model Peak
Path of type TP» a list is made of the likelihood of correspondence for each description Peak Path of type TP,
given the pose. The best log likelihood is selected for inclusion in the global similarity. If the best log
likelihood is more negative than the "no-match" likelihood, Ln , then the no-match likelihood is used in
its place. For each pose, the sum of the best log likelihoods are computed. The pose which yields the highest
sum of log likelihoods will provide both the pose and the correspondence mapping for Peak Paths of type TP.

The computational complexity for this algorithm need not be prohibitive. If each model Peak Path is
restricted to a list of Np pairwise attribute vectors, then the total number of pairwise combinations in the
model will be N M N p Pairing each description Peak Path with its nearest Np neighbors will give N D N p pairs.
Thus the number of log likelihoods to be evaluated in -this stage is N M N ^ N ~ For each pose hypothesis,
computing a global similarity requires N ^ N ^ likelihoods. If we restrict the search to the N best poses, then
the total number of likelihoods to be computed Nc is

5.4 Watching Children Peafc Paths

If the partial estimate remains above a threshold after finding the best correspondence for the model Peak
P«hs of type TP, then matching continues for the children Peak Paths (Peak Paths of type CP). Finding the
correspondence for the Peal Paths of type CP is organized as a hierarchical sequence of correspondence
matelies among a very small number of candidates. The organization of this process stems directly from the
structure of the Peal Path hierarchy. Thai is, a model Peak Path can only correspond to a description Peak
Path if their parents correspond.
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Each step in the matching process for child Peak Paths starts with the correspondence of a model Peak Path,
7rn to a description Peak Path, Pm. This correspondence provides a list of children from both the model and
the description. The log likelihoods For all possible correspondences are then computed. For N model Peak
Padis and M description Peak Paths, this gives MN likelihoods. As M and N are small (typically 2, and
maximum 4), it is not unreasonable to consider all possible sets of correspondences. The set of
correspondences for which die sum of likelihoods is maximum is selected. Any correspondence in this set for
which the likelihood falls below a threshold are rejected.

For each accepted correspondence, the global similarity measure is updated by adding the likelihood.
Se = Se + km-

For each model Peak Path for which no correspondence was found, or for which the best correspondence
was below the no-match likelihood, the global similarity is updated by adding the no-match likelihood,

e "~ e ^n»none

The matching algorithm is then applied recursively to each of the correspondences above the rejection
threshold.

Matching of Child Peak Paths proceeds through the Top Peak Path in the model in sorted order. For each
Top Peak Path, the matching proceeds recursively "depth" first If the partial similarity measure ever
becomes less than the rejection threshold, the process is halted.

5.5 Similarity Measure

The final result of matching is a correspondence list and a numerical measure of the similarity of the model
and the description. The log likelihood values arc rarely exactly zero. Hence every Peak Path in the model
decreases the overall log likelihood, even if it has a close match. The log likelihoods for different models can
not be compared unless they are normalized to remove this effect We normalize the model similarity by
dividing by, N, the total number of correspondences included in the similarity measure. Thus the similarity
of model of a pattern class to a description of a pattern is given by

N

6 Training

The probabilistic graph models described in section 4 are learned by a training process. An ensemble of
observations, called the "training set," is used to derive the structural components and attributes for a
"composite" model of the training samples. Training is performed on a set of "clean" images; that is, the
images contain only an example of the pattern class to be learned. The presence of spurious forms in the
training images is minimized. This helps to assure that only the "important" Peak Paths are found in the
model.
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6.1 The Training Algorithm

The training process begins with an empty model and repeats the following stages for each sample image in
the training set:

1. rITie next image from the training set is expressed as a tree of Peak Paths in absolute image
coordinates.

2. A "pose* is obtained which places the model at the position, orientation, and scale of the pattern
in the sample image. This pose is hypothesized by the system and confirmed by the human
supervisor.

3. For each model Peak Path of type TP, the correspondence to the most likely Peak Path in the
description is determined and displayed. In our experimental implementation, the human
supervisor may intervene and examine the log likelihoods of alternate matches.

4. As each correspondence is found, the mean and standard deviation of the probability distributions
for the attributes are incrementally determined, and the probability of occurrence for the Peak
Path is updated.

5. The most likely correspondences are then found for the Peak Paths of type CP, and their
probability distributions and probability of occurrence are also updated.

6. Any Peak Path in the description for which there was no corresponding Peak Path in the model,
and which is within the appropriate bounds of resolution and position, is added to the model as a
Peak Path of type TP. When a new Peak Path is added to the model, the value of each attribute is
assigned to the mean, and a default value is assigned to the standard deviation.

7. The Peak Paths of type TP are sorted with the following precedence: probability of occurrence
(highest to lowest), average level of the M-node (lowest resolution to highest), average distance
from the Principal Peak Path (furthest to closest).

6.2 The Training Program

Trainiag is currently done with an interactive program that uses a raster graphics monitor. Our philosophy
has been to begin with a program in which the user must verify each step, and to incrementally automate the
training process as confidence and experience are gained with each stage.

The screen of the monitor is divided into three windows. In 'the upper left is a "model" window, in which a
copy of the first training sample is shown. In the near future we plan to display a "synthesized" image of the
model in this window. This synthesized, image win be created by summing the impulse response' of the DOLP
filters for the mean value and location of the M-node of each Peak Path, The image of the current training
sample is shown in the upper right window. At the bottom of the scrcea a set of text field are maintained that
provide information about taming.

Most of aaining involves specifying Peak Paths that match. Peak Paths in both the model and the
description arc indicated by drawing circles in the overlay plane, over the the model window or the training
images window,. These circle act as a cursor. The radius of the circle Is given by the M-node level of the Peak
Path. It is the radius of the Inner ^positive*1 lobe for the DGLP filter at that level In the DOLP transform.
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Figure 8: The interactive training program. The upper left window
contains die model image (currently the first training sample).
The upper right window contains the current training sample.

The circles indicate the location and scale of the principal Peak Path.
The lower window is used for text messages.

rrhe position of the circle is given by the mean of the position for die M-nodc in the Peak Path. Examples of
the screen of the training program arc shown in figures 8,9 and 10.

A cursor support mechanism permits die user to step the "current" cursor through the description or the
model in a number of ways. The cursor may be stepped through the list of TP Peak Paths, up or down a Peak
Path tree, or through the list of siblings at a given level.

6.3 Correspondence Matching in Training

As with structural matching, the basic problem in training is to find a correspondence between symbols in a
description and symbols in the model The problem is caster than the general structural matching problem
because it is known a-priori that the training sample is an instance of die model, and because restrictions caa
be made about the ''cleanness" of the images used for training. 'Hie problem is harder, however, because
during training the model is only partially constructed and may not be useful in finding the best
correspondence.

Our initial implementation of the tniiiiing process is biised on the assumption that the training images are
"clean," that is, the example of Hie pattern It) be leurned is the only thing in the irmige. In this way, the
Principal Peak Path (PP) and the second TPcan be easily found by finding ihe lowest resolution M node. The
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Figure 9: The interactive training program. The pose orientation
is determined from the correspondence of the "second" Peak Path,

displayed graphically for approval.

user Is asked to approve this correspondence. The correspondence for the Principal Peak Path specifies the

position and scale of the pose.

Determining the orientation of the pose requires finding the correspondence for a Second Peak Path. The
model Peak Path which acts as the Second Peak Path is che Peak Path at the top of the sorted list A search is
made for the description Peak Path which is most likely to correspond to this Second Peak Path, based on all
of the attributes except orientation. This search uses the similarity function described in the previous section.
The user is asked to verify this correspondence, l,Tic angle to this Peak Path is then used to determine the
orientation of the pose. An example of determining the Second Peak Path is shown in figure 9.

Given the pose, the training program advances through the list of model Peak Paths of type I P . The
"current" model Peak Path is illustrated by a circle drawn over the model image. For each model Peak Path
of type TP, the system locates the description Peak Path of type TP with the highest correspondence
likelihood, l l ic likelihood calculation Is based on the mean and standard deviation obtained incrementally in
previous training, Hie description Peak Path with the highest correspondence likelihood is also presented to
the user as a circle over the training sample image. An example of this is shown in figure 10. Tlie user has the
option to accept ihc match, select a different description Peak Path, or abort the search for a match to the
current model Peak Path, facts time the user indicates the selection of a match, die statistics of the model
Peak Path are updated and the correspondence Is saved.

After specifying the correspondence for all of the model Peak Paths of type 'IP, the search is made for the
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Figure 10: The interactive training program.
The correspondence of top level Peak Paths are

displayed graphically for approval.

correspondence for the model symbols of type CP. This search is made "depth-first," from the children Peak
Paths from each TP Peak Paths. The matching process proceeds as with model Peak Paths of type TP, except
that the user is forbidden to specify a match in a case where the parents do not match. That is, a model Peak
Path of type CP can only be matched to a description Peak Path of type CP if their parents were matched.
The model path of type CP may, however, be matched to a previously unmatched description Peak Path of
type TP.

If a model Peak Path has children, but the corresponding description Peak Path does not, then the user is
informed. The user may elect to not match those Peak Paths, or to search among the unmatched model Peak
Paths of type TP.

After all of the model Peak Paths have been processed, the description Peak Paths which remain are added
to the model Each Peak Path is shown to the user before it is added to the model If a model Peak Path
which has no children is matched to a description Peak Path which has children, these children are added as
children of the model Peak Path to which their parent was matched

7 Conclusions
This paper has presented a multiple resolution representation technique for gray scale patterns based on the

DOI-P transform. A description in tills representation has ilie form of a connected tree of symbols with
attributes. Information about the position and scale of a symbol are encoded in die attribute liht along with
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other features. While the connectivity relation is based on position and scale, this information is not explicitly
encoded in the connectivity.

A representation for a probabilistic model was presented, based on the multiple resolution description. In
the model, the attributes of symbols are replaced by probability distributions. The connectivity structure of
the model has the form of a tree of trees. In the implementation described here, the top layer is a tree with 2
levels and a large branching factor. All symbols are encoded relative to a "principal" symbol, given by the
lowest resolution Peak Path. The "pose dependent" attributes of all of the second level symbols are relative to
the principal symbol. At the second level each top level symbol is the root of a strict tree structure of
symbols. At this level, the tree may have an arbitrary depth, but the maximum branching factor is 4.

The connectivity information in the model and the description provides a structure for controlling the
search for correspondence between model symbols and description symbols. In the matching technique
presented here, the correspondences between a model and a description arc found first for the principal
symbol and this correspondence is used to determine.a "pose" for further matching. Correspondence arc
then found for the symbols at the top level, and finally for the tree under each top level symbols.

If the correct "principal11 Peak Path docs not occur in the description, then this matching algorithm fails,
'ITiis weakness can be avoided by structuring the top layer as a graph. However, this introduces a much more
difficult control problem for the search for correspondence. Indeed, one of the interesting aspects of this
representation is that the hierarchical structure greatly simplifies the correspondence matching process.
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