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Abstract

Experimentation is ubiquitous in the field of psychology and fundamental to the advancement
of its science, and one of the biggest challenges for researchers is designing experiments that
can conclusively discriminate the theoretical hypotheses or models under investigation. The
recognition of this challenge has led to the development of sophisticated statistical methods that
aid in the design of experiments and that are within the reach of everyday experimental scientists.
This tutorial paper introduces the reader to an implementable experimentation methodology,
dubbed Adaptive Design Optimization, that can help scientists to conduct “smart” experiments
that are maximally informative and highly efficient, which in turn should accelerate scientific
discovery in psychology and beyond.

1 Introduction

Imagine an experiment in which each and every stimulus was custom tailored to be maximally
informative about the question of interest, so that there were no wasted trials, participants, or
redundant data points. Further, what if the choice of design variables in the experiment (e.g.,
stimulus properties and combinations, testing schedule, etc.) could evolve in real-time as data were
collected, to take advantage of information about the response the moment it is acquired (and
possibly alter the course of the experiment) rather than waiting until the experiment is over and
then deciding to conduct a follow-up?

The ability to fine-tune an experiment on the fly makes it possible to identify and capitalize
on individual differences as the experiment progresses, presenting each participant with stimuli that
match a particular response pattern or ability level. More concretely, in a decision making experi-
ment, each participant can be given choice options tailored to her or his response preferences, rather
than giving every participant the same, pre-selected list of choice options. As another example, in
an fMRI experiment investigating the neural basis of decision making, one could instantly analyze
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and evaluate each image that was collected and adjust the next stimulus accordingly, potentially
reducing the number of scans while maximizing the usefulness of each scan.

The implementation of such idealized experiments sits in stark contrast to the current prac-
tice in much of psychology of using a single design, chosen at the outset, throughout the course of
the experiment. Typically, stimulus creation and selection are guided by heuristic norms. Strate-
gies to improve the informativeness of an experiment, such as creating all possible combinations
of levels of the independent variables (e.g., three levels of task difficulty combined with five levels
of stimulus duration), actually work against efficiency because it is rare for all combinations to be
equally informative. Making matters worse, equal numbers of participants are usually allotted to
each combination of treatments for statistical convenience, even the treatments that may not be
informative. Noisy data are often combatted in a brute-force way by simply collecting more of
them (this is the essence of a power analysis). The continued use of these practices is not the most
efficient use of time, money, and participants to collect quality data.

A better, more efficient way to run an experiment would be to dynamically alter the design
in response to observed data. The optimization of experimental designs has a long history in
statistics dating back to the 1950s (e.g., Lindley, 1956; Box and Hill, 1967; Atkinson and Federov,
1975; Atkinson and Donev, 1992; Berry, 2006). Psychometricians have been doing this for decades
in computerized adaptive testing (e.g., Weiss and Kingsbury, 1984), and psychophysicists have
developed their own adaptive tools (e.g., Cobo-Lewis, 1997; Kontsevich and Tyler, 1999). The major
hurdle in applying adaptive methodologies more broadly has been computational: Quantitative
tools for identifying the optimal experimental design when testing formal models of cognition have
not been available. However, recent advances in statistical computing (Doucet et al., 2001; Robert
and Casella, 2004) have laid the groundwork for a paradigmatic shift in the science of data collection.
The resulting new methodology, dubbed adaptive design optimization (ADO, Cavagnaro et al.,
2010), has the potential to more broadly benefit experimentation in cognitive science and beyond.

In this tutorial, we introduce the reader to adaptive design optimization. The tutorial is
intended to serve as a practical guide to apply the technique to simple cognitive models. As such,
it assumes a rudimentary level of familiarity with cognitive modeling, such as how to implement
quantitative models in a programming or graphical language, how to use maximum likelihood esti-
mation to determine parameter values, and how to apply model selection methods to discriminate
models. Readers with little familiarity with these techniques might find Section 3 difficult to fol-
low, but should otherwise be able to understand most of the other sections. We begin by reviewing
approaches to improve inference in cognitive modeling. Next we describe the technical details of
adaptive design optimization, covering the computational and implementation details. Finally, we
present an example application of the methodology for designing experiments to discriminate sim-
ple models of memory retention. Readers interested in more technical treatments of the material
should consult (Myung and Pitt, 2009; Cavagnaro et al., 2010).

2 Why Optimize Designs?

2.1 Not All Experimental Designs Are Created Equal

To illustrate the importance of optimizing experimental designs, suppose that a researcher is in-
terested in empirically discriminating between formal models of memory retention. The topic of
retention has been studied for over a century. Years of research have shown that a person’s ability
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to remember information just learned drops quickly for a short time after learning and then levels
off as more and more time elapses. The simplicity of this data pattern has led to the introduction
of numerous models to describe the change over time in the rate at which information is retained in
memory. Through years of experimentation with humans (and animals), a handful of the models
have proven to be superior to the rest of the field (Wixted and Ebbesen, 1991), although more
recent research suggests that they are not complete (Oberauer and Lewandowsky, 2008). These
models describe the probability p of correctly recalling a stimulus item as a function of the time t
since study. Two particular models that have received considerable attention are the power model,
p = a(t + 1)−b, and the exponential model, p = ae−bt. Both models predict that memory recall
decays gradually as the lag time between study and test phases increases.

Figure 1 shows predictions of power and exponential models obtained under restricted
ranges of parameter values (i.e., 0.65 < a < 0.85 and 0.75 < b < 0.95 for the power model, and
0.80 < a < 1.00 and 0.10 < b < 0.20 for exponential model). Suppose that the researcher conducts
an experiment to compare these model predictions by probing memory at different lag times, which
represent values of a design variable in this experiment. Visual inspection of the figure suggests that
lag times between 15 and 20 seconds would be bad designs to use because in this region predictions
from both models are virtually indistinguishable from each other. In contrast, times between 1
and 5 seconds, where the models are separated the most, would make good designs for the model
discrimination experiment.

In practice, however, the problem of identifying good designs is a lot more complicated than
the idealized example in Figure 1. It is more often the case that the researchers have little infor-
mation about the specific ranges or values of model parameters under which experimental data are
likely to be observed. Further, the models under investigation may have many parameters so visual
inspection of their predictions across designs would be simply impossible. This is where quanti-
tative tools for optimizing designs can help identify designs that make experiments more efficient
and more effective than what is possible with current practices in experimental psychology. In the
remainder of this tutorial, we will describe how the optimization of designs can be accomplished.
For an illustrative application of the methodology for discriminating the aforementioned models of
retention, the reader may skip ahead to Section 4.

2.2 Optimal Design

In psychological inquiry, the goal of the researcher is often to distinguish between competing expla-
nations of data (i.e., theory testing) or to estimate characteristics of the population along certain
psychological dimensions, such as the prevalence and severity of depression. In cognitive modeling,
these goals become ones of model discrimination and parameter estimation, respectively. In both
endeavors, the aim is to make the strongest inference possible given the data in hand. The scien-
tific process is depicted inside in the rectangle in Figure 2a: first, the values of design variables
are chosen in an experiment, then the experiment is carried out and data are collected, and finally,
data modeling methods (e.g., maximum likelihood estimation, Bayesian estimation) are applied to
evaluate model performance at the end of this process.

Over the last several decades, significant theoretical and computational advances have been
made that have greatly improved the accuracy of inference in model discrimination (e.g., Burnham
and Anderson, 2010). Model selection methods in current use include the Akaike Information
Criterion (Akaike, 1973), the Bayes factor (Jeffreys, 1961; Kass and Raftery, 1995), and Minimum
Description Length (Rissanen, 1978; Grünwald, 2005), to name a few. In each of these methods, a
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model’s fit to the data is evaluated in relation to its overall flexibility in fitting any data pattern, to
arrive at a decision regarding which model of two competing models to choose (Pitt et al., 2002).
As depicted in in Figure 2a, data modeling is applied to the back end of the experiment after data
collection is completed. Consequently, the methods themselves are limited by the quality of the
empirical data collected. Inconclusive data will always be inconclusive, making the task of model
selection difficult no matter what data modeling method is used. A similar problem presents itself
in estimating model parameters from observed data, regardless of whether maximum likelihood
estimation or Bayesian estimation is used.

Because data modeling methods are not foolproof, attention has begun to focus on the
front end of the data collection enterprise, before an experiment is conducted, developing methods
that optimize the experimental design itself. Design optimization (DO, Myung and Pitt, 2009)
is a statistical technique, analogous to model selection methods, that selectively chooses design
variables (e.g., treatment levels and values, presentation schedule) with the aim of identifying
an experimental design that will produce the most informative and useful experimental outcome
(Atkinson and Donev, 1992). Because experiments can be difficult to design, the consequences of
design choices and the quality of the proposed experiment are not always predictable, even if one is
an experienced researcher. DO can remove some of the uncertainty of the design process by taking
advantage of the fact that both the models and some of the design variables can be quantified
mathematically.

How does DO work? To identify an optimal design, one must first define the design space,
which consists of the set of all possible values of design variables that are directly controlled by the
experimenter. The researcher must define this set by considering the properties of the variables
being manipulated. For example, a variable on an interval scale may be discretized. The coarser
the discretization, the fewer the number of designs. Given five design variables, each with ten levels,
there are 100,000 possible designs.

In addition, the model being evaluated must be expressed in formal, mathematical terms,
whether it is a model of visual processing, recognition memory, or decision making. A mathematical
framework provided by Bayesian decision theory (Chaloner and Verdinelli, 1995) offers a principled
approach to design optimization. Specifically, each potential design is viewed as a gamble whose
payoff is determined by the outcome of an experiment conducted with that design. The payoff
represents some measure of the goodness or the utility of the design. Given that there are many
possible outcomes that an experiment could produce, one estimates the expected utility (i.e., pre-
dicted utility) of a given design by computing the average payoffs across all possible outcomes that
could be observed in an experiment carried out with the chosen design. The design with the high-
est expected utility is then identified as the optimal design. To conceptualize the problem slightly
differently, if one imagines a distribution representing the utility of all designs, ordered from worst
to best, the goal of DO is to identify the design at the extreme (best) endpoint of the distribution.

2.3 An Adaptive Approach to Experimentation: Adaptive Design Optimization

DO is a one-shot process. An optimal design is identified, applied in an experiment, and then
data modeling methods are used to aid in interpreting the results, as depicted in Figure 2a,. This
inference process can be improved by using what is learned about model performance in the data
modeling stage to optimize the design still further. Essentially, these two stages are connected as
shown in Figure 2b, yielding adaptive design optimization (ADO).

ADO is an integrative approach to experimentation that leverages, on-line, the complemen-
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tary strengths of design optimization and data modeling. The result is an efficient and informative
method of scientific inference. In ADO, the optimal experimental design is updated at intervals
during the experiment, which we refer to as stages. It can be as frequent as after every trial or
after a number of trials (e.g., a mini experiment). Factors such as the experimental methodology
being used will influence the frequency of updating. As depicted in Figure 2b, updating involves
repeating data modeling and design optimization. More specifically, within a Bayesian framework,
adaptive design optimization is cast as a decision problem where, at the end of each stage, the most
informative design for the next stage (i.e., the design with the highest expected utility) is sought
based on the design and outcomes of the previous stage. This new stage is then carried out with
that design, and the resulting data are analyzed and modeled. This is followed by identifying a new
design to be used in the next stage.1 This iterative process continues until an appropriate stopping
criterion is reached.

Various additional (pragmatic) decisions arise with ADO. In particular, one must decide
how many mini experiments will be carried out, either in succession within a single testing session
(e.g., one hour). A critical factor, which is likely only determined with piloting, is how many stages
are necessary to obtain decisive model discrimination or stable parameter estimation. It may be
that testing would be required across days, but to date we have not found this to be necessary.

By using all available information about the models and how the participant has responded,
ADO collects data intelligently. It has three attractive properties that make it particularly well
suited for evaluating computational models. These pertain to the informativeness of the data
collected in the experiment, the sensitivity of the method to individual differences, and the efficiency
of data collection. We briefly elaborate on each.

As noted above, design optimization and data modeling are synergistic techniques that
are united in ADO to provide a clear answer to the question of interest. Each mini-experiment
is designed, or each trial chosen, such that the evidence pertaining to the question of interest,
whether it be estimating a participant’s ability level or discriminating between models, accumulates
as rapidly as possible. This is accomplished by using what is learned from each stage to narrow in
on those regions of the design space that will be maximally informative in some well-defined sense.

The adaptive nature of the methodology, by construction, controls for individual differences
and thus makes it well suited for studying the most common and often largest source of variance
in experiments. When participants are tested individually using ADO, the algorithm adjusts (i.e.,
optimizes) the design of the experiment to the performance of that participant, thereby maximizing
the informativeness of the data at an individual participant level. Response strategies and group
differences can be readily identified. This capability also makes ADO ideal for studies in which few
participants can be tested (e.g., rare memory or language disorders).

Another benefit of using an intelligent data collection scheme is that it speeds up the exper-
iment, possibly resulting in a substantial savings of time, fewer trials and participants, and lower
cost. This savings can be significant when using expensive technology (e.g., fMRI) or numerous sup-
port staff (e.g., developmental or clinical research). Similarly, in experiments using hard-to-recruit
populations (children, elderly, mental patients), application of ADO means fewer participants, all
without sacrificing the quality of the data or the quality of the statistical inference.

The versatility and efficiency of ADO has begun to attract attention in various disciplines.

1Adaptive design optimization is conceptually and theoretically related to active learning in machine learning
(Cohn et al., 1994, 1996) and also to policy iteration in dynamic programming (Sutton and Barto, 1998; Powell,
2007).
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It has been used recently for designing neurophysiology experiments (Lewi et al., 2009), adaptive
estimation of contrast sensitivity functions of human vision (Kujala and Lukka, 2006; Lesmes et al.,
2006, 2010; Vul and Bergsma, 2010), designing systems biology experiments (Kreutz and Timmer,
2009), detecting exoplanets in astronomy (Loredo, 2004), conducting sequential clinical trials (e.g.,
Wathen and Thall, 2008), and adaptive selection of stimulus features in human information acqui-
sition experiments (Nelson, 2005; Nelson et al., 2011). Perhaps the most well-known example of
ADO, albeit a very different implementation of it, is computerized adaptive testing in psychology
(e.g., Hambleton et al., 1991; van der Linden and Glas, 2000). Here, an adaptive sequence of test
items, which can be viewed in essence as experimental designs, is chosen from an item bank taking
into account an examinee’s performance on earlier items so as to accurately infer the examinee’s
ability level with the fewest possible items.

In our lab, we have used ADO to adaptively infer a learner’s representational state in
cognitive development experiments (Tang et al., 2010), to discriminate models of memory retention
(Cavagnaro et al., 2010, 2011), and to optimize risky decision making experiments (Cavagnaro
et al., 2013a,b). These studies have clearly demonstrated the superior efficiency of ADO to the
alternative non-ADO methods, such as random and fixed designs (e.g., Cavagnaro et al., 2010,
2013a, Fig. 3 & Fig. 7, respectively).

3 The Nuts and Bolts of Adaptive Design Optimization

In this section we describe the theoretical and computational aspects of ADO in greater detail. The
section is intended for readers who are interested in applying the technique to their own cognitive
modeling. Our goal is to provide readers with the basic essentials of implementing ADO in their
own experiments. Figure 3 show a schematic diagram of the ADO framework that involves a series
of steps. In what follows we discuss each step in turn.

3.1 Preliminaries

Application of ADO requires that each model under consideration be formulated as a statistical
model defined as a parametric family of probability distributions, p(y|θ, d)’s, each of which specifies
the probability of observing an experimental outcome (y) given a parameter value (θ) and a design
value (d). That is, the data vector y is a sample drawn from the probability distribution (often
called the sampling distribution) for given values of the parameter vector θ and of the design vector
d.

To be concrete, consider the exponential model of memory retention, defined by p = ae−bt,
that describes the probability of correct recall of a stimulus item (e.g., word or picture) as a function
of retention interval t and parameter vector θ = (a, b) where 0 < a < 1 and b > 0. In a typical
experiment, there is a study phase in which participants learn a list of words. After a retention
interval, which can range from fractions of a second to minutes, participants are tested on their
memory for the list of words. Data are scored as the number of correctly recalled items (y) out of
a fixed number of independent Bernoulli trials (n), all given at a single retention interval t. Note
that the retention interval is the design variable whose value is being experimentally manipulated,
i.e., d = t.

Under the assumption that the exponential model describes retention performance, the
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experimental outcome would follow the binomial probability distribution of the form

p(y|θ = (a, b), t) =
n!

(n− y)! y!

(
ae−bt

)y (
1− ae−bt

)n−y
, (1)

where y = 0, 1, ..., n. When retention performance is probed over multiple time points of the design
variable, d = (t1, ..., tq), the data are summarized into a discrete vector y = (y1, ..., yq) with each
yi ∈ {0, ..., n}, and the overall probability distribution of the outcome vector y is then given by

p(y|θ = (a, b), d) =

q∏
i=1

n!

(n− yi)! yi!

(
ae−bti

)yi (
1− ae−bti

)n−yi
. (2)

ADO is formulated in a Bayesian statistical framework. It is beyond the scope of this tutorial
to review this vast literature, and instead, the reader is directed to consult Bayesian textbooks
(e.g., Robert, 2001; Gelman et al., 2004; Gill, 2007; Kruschke, 2010). The Bayesian formulation of
ADO requires specification of priors for model parameters, denoted by p(θ). There are a plethora
of methods proposed in the Bayesian literature for choosing appropriate priors, whether they are
subjective, objective, or empirical priors (Carlin and Louis, 2000, for a review). Practically speaking,
however, what is important to note is that ADO results might strongly depend upon the particular
form of the prior employed so it must be chosen with careful thought and proper justification.

As a concrete example, for the above two parameters, a and b, of the exponential model
of retention, one might choose to employ the following prior defined by the product of a Beta
probability density for parameter a and an exponential probability density for parameter b

p(θ = (a, b)) =
Γ(α+ β)

Γ(α)Γ(β)
aα−1(1− a)β−1 λe−λb, (3)

for α = 4, β = 2, and λ = 10, for instance. Combining the prior distribution in the above equation
with the probability distribution of the outcome vector in Eq. (2) by Bayes rule yields the posterior
distribution as

p(θ = (a, b)|y, d) =
p(y|θ = (a, b), d) p(θ = (a, b))∫ ∫
p(y|θ = (a, b), d) p(θ = (a, b)) dadb

. (4)

Having specified a model’s probability distribution and the prior and posterior distributions
of model parameters, we now discuss the details of the ADO framework

3.2 Design Optimization

As mentioned earlier, ADO is a sequential process consisting of a series of optimization-experimentation
stages. An optimal design is sought on the basis of the present state of knowledge, which is coded in
the prior. Next, data are collected with the optimal design. The observed outcomes are then used
to update the prior to the posterior, which in turn becomes the prior on the next iteration of the
ADO process. As such, the design is optimized in each ADO stage, and this design optimization
(DO) step involves solving an optimization problem defined as

d∗ = argmax
d

U(d), (5)
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for some real-valued function U(d) that is a metric of goodness or utility of design d.
Formally and without loss of generality, we define the utility function U(d) to be optimized

as

U(d) =
∑
m

p(m)

∫ ∫
u(d, θm, ym) p(ym|θm, d) p(θm) dym dθm, (6)

where m = {1, 2, ...,K} is one of a set of K models being considered, and ym is the outcome
vector resulting from a hypothetical imaginary experiment, in lieu of a real one, conducted with
design d under model m, and θm is a parameter vector of model m (e.g., Chaloner and Verdinelli,
1995; Myung and Pitt, 2009; Nelson et al., 2011). In the above equation, p(m) denotes the prior
model probability of model m. The “local” utility function, u(d, θm, ym), measures the utility of
an imaginary experiment carried out with design d when the data generating model is m, the
parameters of the model take the value θm, and the outcome ym is produced.

On the left side of the above equation is what is sometimes referred to as the global utility
function U(d) (so as to distinguish it from the local utility function defined above), and is defined as
the expectation of u(·) averaged over the models, parameters, and observations, taken with respect
to the model prior p(m), the parameter prior p(θm), and the probability distribution p(ym|θm, d),
respectively.

To evaluate the global utility U(d) in Eq. (6), one must provide explicit specifications for
three functions: (1) the model and parameter priors, p(m) and p(θm); (2) the probability distribu-
tion given parameter θm and design d, p(ym|θm, d); and (3) the local utility function u(d, θm, ym).
These are shown on the left side of Figure 3, which is a schematic illustration of ADO. The first
two functions were discussed in the preceding section. We discuss the specification of the third, the
local utility function, next.

3.3 Local Utility Function

From Eq. (5), it can be seen that the global utility being optimized is nothing but an average value
of the local utility over all possible data samples and model parameters, weighted by the likelihood
function and the model and parameter priors. As such, selection of a local utility function in ADO
determines the characteristics of what constitutes an optimal design. One should therefore choose
a local utility function that is appropriate for the specific goal of the experiment.

Generally speaking, the cognitive modeler conducts an experiment with one of two goals in
mind: parameter estimation or model discrimination. In parameter estimation, given a model of
interest, the goal is to estimate the values of the model’s parameters as accurately as possible with
the fewest experimental observations. On the other hand, in model discrimination, given a set of
multiple candidate models, the goal is to identify the one that is closest in some defined sense to
the underlying data generating model, again using the fewest number of observations. Below we
discuss possible forms of the local utility function one can use for either goal.

A simple and easy-to-understand local utility function for parameter estimation is of the
following form:

u(d, θ = (θ1, ..., θk), y) =
k∑
i=1

E(θi)

SD(θi)
, (7)

where k is the number of parameters, and E(θi) and SD(θi) stand for the mean and standard
deviation, respectively, of the posterior distribution of parameter θi, denoted as p(θi|y, d). Note
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that by construction, K in Eq. (6) is equal to 1 in parameter estimation so the subscript m is
skipped in Eq. (7). The above local utility function is defined as a sum of “inverse” standard
deviations of parameters weighted by their means so that the function value does not depend upon
the unit in which each parameter is measured. Note that a larger value of u(d, θ, y) is translated into
less parameter variability overall, which in turn implies a more accurate estimate of the parameters.
One may also consider other variations of the above form, each suitably chosen taking into account
the particular purpose of the experiment at hand.

Sometimes, the choice of a local utility function can be driven by the principled choice
of a global utility function. Perhaps the most commonly employed global utility function in the
literature is the following, motivated from information theory:

U(d) = I(Θ;Y |d) (8)

which is the mutual information between the parameter random variable Θ and the outcome random
variable Y conditional upon design d, i.e., Y |d. The mutual information is defined in terms of two
entropic measures as I(Θ;Y |d) = H(Θ) −H(Θ|Y, d) (Cover and Thomas, 1991). In this equation
H(Θ) = −

∫
p(θ) log p(θ) dθ is the Shannon entropy (i.e., uncertainty) of the parameter random

variable Θ and H(Θ|Y, d) = −
∫
p(θ|y, d) log p(θ|y, d) dθ is the conditional entropy of Θ given the

outcome random variable Y and design d (Note that the expression log throughout this tutorial
denotes the natural logarithm of base e.). As such, U(d) in Eq. (8) measures the reduction in
uncertainty about the values of the parameters that would be provided by the observation of an
experimental outcome under design d. In other words, the optimal design is the one that extracts
the maximum information about the model’s parameters.

The information theoretic global utility function in Eq. (8) follows from setting the local
utility function as

u(d, θ, y) = log
p(θ|y, d)

p(θ)
, (9)

which is the log ratio of posterior to prior probabilities of parameters. Thus, the local utility
function is set up to favor the design that results in the largest possible increase in certainty about
the model’s parameters upon an observed outcome of the experimental event.

Turning the discussion from parameter estimation to model discrimination, we can also
devise a corresponding pair of information theoretic utility functions for the purpose of model
discrimination. That is, the following global and local utility functions have an information theoretic
interpretation (Cavagnaro et al., 2010, p. 895)

U(d) = I(M ;Y |d), (10)

u(d, θm, ym) = log
p(m|y, d)

p(m)
,

where I(M ;Y |d) is the mutual information between the model random variable M and the outcome
random variable conditional upon design d, Y |d. In the above equation, p(m|y, d) is the posterior
model probability of model m obtained by Bayes rule as p(m|y, d) = p(y|m, d)p(m)/p(y|d), where
p(y|m, d) =

∫
p(y|θm, d)p(θm) dθm and p(y|d) =

∑
m p(y|m, d)p(m). Note the similarity between

these two mutual information measures and those in Eq. (8) and Eq. (9); the parameter random
variable Θ is replaced by the model random variable M . This switch makes sense when the goal of
experimentation is to discriminate among a set of models, not among possible parameter values of
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a single model.
The mutual information I(M ;Y |d) is defined as H(M)−H(M |Y, d), where H(M) is the en-

tropy of the model random variable M , quantifying the uncertainty about the true, data-generating
model, and H(M |Y, d) is the conditional entropy of M given Y and d. As such, the global utility
function U(d) in Eq. (10) is interpreted as the amount of information about the true, data-
generating model that would be gained upon the observation of an experimental outcome under
design d; thus, the optimal design is the one that extracts the maximum information about the
data-generating model. The corresponding local utility function u(d, θm, ym) in the same equation
is given by the log ratio of posterior to prior model probabilities. Accordingly, the design with
the largest possible increase in certainty about model m upon the observation of an experimental
outcome with design d is valued the most. Finally, it is worth noting that by applying Bayes rule,
one can express the log ratio in an equivalent form as log p(m|y,d)

p(m) = log p(y|m,d)
p(y|d) .

3.4 Bayesian Updating of the Optimal Design

The preceding discussion presents a framework for identifying a single optimal design. It is straight-
forward to extend it to the sequential process of ADO. This is done by updating the model and
parameter priors, as depicted in Figure 3. To extend it formally, let us introduce the subscript
symbol s = {1, 2, ...} to denote an ADO stage, which could be a single trial or a sequence of tri-
als comprising a mini-experiment, depending on how finely the experimenter wishes to tune the
design. Suppose that at stage s the optimal design d∗s was obtained by maximizing U(d) in Eq.
(6) on the basis of a set of model and parameter priors, ps(m) and ps(θm) with m = {1, 2, ...,K},
respectively. Suppose further that a mini-experiment with human participants was subsequently
carried out with design d∗s, and an outcome vector zs was observed. The observed data are used to
update the model and parameter priors to the posteriors by Bayes rule (e.g., Gelman et al., 2004;
Cavagnaro et al., 2010) as

ps+1(m) =
p1(m)∑K

k=1 p1(k)BF(k,m)(zs|d∗s)
, (11)

ps+1(θm) =
p(zs|θm, d∗s) ps(θm)∫
p(zs|θm, d∗s) ps(θm) dθm

,

where m = {1, 2, ...,K}. In this equation, BF(k,m)(zs|d∗s) denotes the Bayes factor defined as the
ratio of the marginal likelihood of model k to that of model m, specifically,

BF(k,m)(zs|d∗s) =

∫
p(zs|θk, d∗s) ps(θk) dθk∫
p(zs|θm, d∗s) ps(θm) dθm

(12)

The resulting posteriors in Eq. (11) are then used as the “priors” to find an optimal design d∗s+1

at the next stage of ADO, again using the same equation in (6) but with s = s+ 1.
To summarize, each ADO stage involves the execution of the design optimization, exper-

iment, and Bayesian updating steps in that order, as illustrated in Figure 3. This adaptive and
sequential ADO procedure continues until an appropriate stopping criterion is met. For example,
the process may stop whenever one of the parameter posteriors is deemed to be “sufficiently peaked”
around the mean in parameter estimation, or in model discrimination, whenever a posterior model
probability exceeds a pre-set threshold value (e.g., p(m) > 0.95).
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3.5 Computational Methods

To find the optimal design d∗ in Eq. (5) on each stage of ADO entails searching for a solution in
high dimensional design space. Since the equation cannot be solved analytically, the search process
involves alternating between proposing a candidate solution and evaluating the objective function
for the given solution. The optimization problem is further exacerbated by the fact that the global
utility function, which is defined in terms of a multiple integral over the data and parameter spaces,
has in general no easy-to-evaluate, closed-form expression, requiring the integral to be evaluated
numerically. This is a highly nontrivial undertaking, computationally speaking. We discuss two
numerical methods for solving the design optimization problem.

3.5.1 Grid Search

Grid search is an intuitive, heuristic optimization method in which the design space is disretized
into a finite number of mutually disjoint partitions of equal volumes. The global utility function is
evaluated for each partition one at a time, exhaustively, and the partition with the largest global
utility value is chosen as the optimal design.

The global utility is estimated numerically using a Monte Carlo procedure. To show how,
suppose that we wish to evaluate the utility function at design dg. Given a particular design dg,
this is done by first drawing a large number of Monte Carlo triplet samples, (k, θk, yk)’s, from
the model prior, parameter prior, and sampling distribution, respectively, and then estimating the
global utility in Eq. (6) as a sample average of the local utility as

Û(dg) ≈
1

N

N∑
i=1

u
(
dg, θk(i)(i), yk(i)(i)

)
, (13)

for large N (e.g., N = 104). In the above equation, k(i) (= {1, 2, ...,K}) is the ith model index
sampled from the model prior p(m), θk(i)(i) is the ith sample drawn randomly from the param-
eter prior p(θk(i)) of model k(i), yk(i)(i) is the i-th data sample from the probability distribution
p(yk(i)|θk(i)(i), dg) of model k(i) given parameter θk(i)(i) and design dg.

This way, the approximate numerical estimate in Eq. (13) is evaluated for each de-
sign in the discretized design space. To be concrete, consider a five-dimensional design vector
d = (d1, d2, ..., d5), where each di is a point in the [0, 1] interval. The design space can be
discretized into a finite grid consisting of ten equally spaced values for each dimension (e.g.,
d1 = {0.05, 0.15, ..., 0.95}. This yields 105 design points on which the computation in Eq. (13)
must be performed. An algorithmic sketch of the grid search algorithm is shown in Figure 4.

It is important to note that integral forms of the local utility function, such as the form
in Eq. (10), cannot be evaluated directly in general. In such cases, each value of the local utility
function u

(
dg, θk(i)(i), yk(i)(i)

)
in Eq. (13) must itself be estimated by another Monte Carlo method,

thereby introducing an additional computational cost.
To summarize, grid search, though simple and intuitive, is an expensive optimization algo-

rithm to apply, especially for higher dimensional problems. This is because as the dimensionality
of the design increases, the number of discretized points necessary to evaluate grows exponentially,
which is a problem in statistics known the curse of dimensionality (Bellman, 2003).
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3.5.2 Sequential Monte Carlo Search

The grid search based optimization algorithm discussed in the preceding section requires an exhaus-
tive and systematic search of the design space for an optimal design, and thus becomes increasingly
computationally intractable as the dimension of the space grows large. For large design spaces, it is
preferable to use an “intelligent” optimization algorithm that mitigates the curse of dimensionality
by exploring the space selectively and efficiently, focusing the search on the most promising regions
that are likely to contain the optimal solution. In this section we introduce one such method known
as sequential Monte Carlo (SMC) search.

SMC, or particle filtering (Doucet et al., 2001), is a Monte Carlo method for simulating a
high-dimensional probability distribution of arbitrary shape. SMC is a sequential analogue of the
Makov chain Monte Carlo (MCMC) algorithm in statistics (Robert and Casella, 2004) and consists
of multiple MCMC chains, called particles, that are run in parallel with information exchange
taking place among the particles periodically. Further, the interactions between the individual
particles evolve over time in a nature-inspired, genetic algorithmic process.

SMC can be adapted to solve the design optimization problem in Eqs. (5 - 6), as shown
in Müller et al. (2004) and Amzal et al. (2006). The basic idea of SMC-based design optimization
is to regard the design variable d as a random variable, treat U(d) as a probability distribution,
and then recast the problem of finding the optimal design as a simulation-based sampling problem
with U(d) as the target probability distribution. The optimal design is then obtained as the design
value (d∗) that corresponds to the highest peak of the target probability distribution.

Figure 5 illustrates the SMC-based search method for design optimization. To show how
the method works, let us pretend that the solid curve in the top graph of the figure represents
the probability distribution U(d) plotted against the span of designs d. The plot shows that the
optimal design d∗ corresponding to the highest peak of U(d) is located at about 150. Now, suppose
that we draw random samples from the distribution. This is where SMC is necessary. It allows
us to generate random samples from virtually any distribution without having to determine its
normalizing constant. Shown also in the top panel is a histogram of 2000 such random samples.
Note that the histogram closely approximates the target distribution, as it should.

We have not yet solved the design optimization problem. Note that with SMC, we only
collect random samples of the design variable, but without their corresponding utility values. Con-
sequently, the challenge is to identify, from the collected SMC samples, the one with the highest
utility as the optimal design. One simple way to solve this challenge is to have all or most of
the random samples clustered around the optimal design point. This is done by “sharpening” the
distribution U(d) using simulated annealing (Kirkpatrick et al., 1983). That is, instead of sampling
from the distribution U(d), we would sample from an augmented distribution U(d)J for some pos-
itive integer J > 1. The solid curve in the middle panel of Figure 5 is one such distribution, with
J = 5. Notice how much more peaked it is than the original distribution U(d). Shown under the
curve is a histogram of 2000 random samples drawn from U(d)5, again using SMC. As the logic
goes, if we keep raising the value of J , which is often called the inverse annealing temperature (i.e.,
J = 1/T ) in the literature, then for some large J , the corresponding augmented distribution U(d)J

would have just one, most-prominent peak. This is indeed what is shown in the bottom panel of the
figure for J = 35. Note that the only peak of the distribution is above the optimal point d∗ = 150,
and further, that virtually all of the 2,000 samples drawn from the augmented distribution are now
clustered around the optimal design. Once we get to this point, we can then estimate the optimal
design point as a simple average of the sampled design values, for example.
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In practice, it could be prohibitively difficult to sample directly from U(d) or its augmented
distributions U(d)J in the algorithm described above. This is because the application of SMC
necessarily requires the ability to routinely and quickly calculate the value of U(d) for any value of
the design variable d. The global utility function, however, takes the form of a multiple integral,
which is generally not amenable to direct calculation.

To address this challenge, Müller has proposed an ingenious computational idea that makes
it possible to draw random samples from U(d) in Eq. (6) using SMC, but without having to evaluate
the multiple integral directly (Müller, 1999). The key idea is to define an auxiliary probability
distribution h(·) of the form

h(d, {m}, {ym}, {θm}) = α

[
K∑
m=1

p(m)u(d, θm, ym)

][
K∏
m=1

p(ym|θm, d) p(θm)

]
(14)

where α (> 0) is the normalizing constant of the auxiliary distribution. Note that for the trick to
work, the local utility function u(d, θm, ym) must be non-negative for all values of d, θm, and ym so
that h(·) becomes a legitimate probability distribution. It is then straightforward to show that by
construction, the global utility function U(d) is nothing but (up to a proportionality constant) the
marginal distribution h(d) that is obtained by marginalizing h(d, {m}, {ym}, {θm}) with respect to
all of its variables, except for the design variable d (see Cavagnaro et al., 2010, p. 892), in other
words, U(d) = 1

αh(d).
Having defined the auxiliary distribution h(·) in Eq. (14), let us return to the SMC

based optimization method. This revised method works much the same way except for one sig-
nificant modification: instead of simulating U(d), we simulate the whole auxiliary distribution
h(d, {m}, {ym}, {θm}). This means that using SMC along with simulated annealing, we first collect
a large number (e.g., 105) of random draws {d, {m}, {ym}, {θm}}’s from the auxiliary distribution,
and then, from the sample, we empirically estimate the desired distribution U(d) by keeping only
d’s but discarding all the rest (i.e., {m}’s, {ym}’s, {θm}’s). This way, instead of directly simulating
the target distribution U(d), which is generally not possible, we achieve the same goal indirectly
by way of the auxiliary distribution h(d, ·), which is much easier to simulate. The SMC search
algorithm is shown in Figure 6.2

Before closing this section, we briefly discuss a few technical aspects of implementing the
SMC based design optimization algorithm.

First, regarding the inverse annealing temperature J , generally speaking, the inverse tem-
perature (J) should be raised rather slowly over a series of SMC iteration steps (e.g., Bölte and
Thonemann, 1996). For example, one may employ an annealing schedule function of the form
ρ(t) = a log(b ∗ t + c) (a, b, c > 0), where t denotes the SMC iteration number, and a, b and c are
the scaling parameters to be tuned for the given design optimization problem.

Second, in SMC search, the decision as to when to stop the search process must be made.
This can often be achieved through visual inspection of the current SMC sample of designs. If almost
all of the sampled designs are highly clustered around one another, this may be an indication that
the SMC search process has converged to a solution. Formally, one can base the decision on some
quantitative criterion. For example, one may define a “peakedness” measure, δ(S), that assesses
the extent to which a sample of random draws d’s, denoted by S, is judged to be drawn from a

2The C++ source code that implements the SMC search algorithm is available for download from the web
http://faculty.psy.ohio-state.edu/myung/personal/do.html.
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highly peaked and unimodal probability distribution, appropriately defined. By construction, one
may define δ(S) to be non-negative and real-valued such that the higher its value, the more peaked
the underlying distribution.

For further implementation details of SMC, the interested reader is directed to Andrieu
et al. (2003), an excellent tutorial on SMC in particular and MCMC in general. The reader may
also find it useful to consult Myung and Pitt (2009, Appendix A), which provides greater detail
about the iterative steps of SMC-based design optimization.

3.6 Implementation of ADO-based Experiments

While ADO takes much of the guesswork out of designing an experiment, implementation of an
ADO-based experiment still requires several decisions to be made. One such decision is the length
of each mini-experiment. At one extreme, each mini-experiment could consist of just one trial. In
this case, model and parameter estimates would be updated after each trial, and the DO step after
each trial would consist in finding the design for the next trial. At the other extreme, the entire
experiment could be one mini-experiment. In this case, a set of jointly optimal stimuli would be
found prior to collecting any data, and Bayesian updating would only be done after all data were
collected.

There are several, practical tradeoffs involved in deciding on the length of each mini-
experiment. One on hand, more frequent Bayesian updating means that information gained from
each observation is utilized more quickly and more efficiently. From that standpoint, it would be
best to make each mini-experiment as short as possible. On the other hand, since each DO step
only looks forward as far as the next mini experiment, the shorter each mini-experiment is, the
more myopic the DO step is. For example, if the next mini-experiment consists of just one trial then
the DO step considers designs for the next trial independently of any other future trials that may
occur. In contrast, when the next mini-experiment includes several trials, the DO step considers
the designs for those trials simultaneously, and finds designs that are jointly optimal for the next
mini-experiment. One should also consider that this joint optimization problem is more computa-
tionally demanding, and hence slower, than the single-design optimization problem. This tradeoff
is illustrated more concretely in the next section, with two examples of ADO-based experiments.

Another important decision to make before implementing ADO is which prior distributions
to use. The ideal approach would be to use informative priors that accurately reflect individual
performance. Such priors could potentially be derived from pilot testing, general consensus in
the field, or the results of other experiments in the literature. The prior drives the selection of
stimuli in the initial stages of the experiment, but since the parameter distributions are updated
sequentially, the data will quickly trump all but the most pathological prior distributions. There-
fore, using informative priors is helpful but not essential to implementing ADO. In the absence of
reliable information from which to construct an informative prior, a vague, noninformative prior
that does not give appreciably different densities to those regions of the parameter space where
there is a reasonable fit may be used instead. In this regard, the reader is directed to Kass and
Wasserman (1996) which provides an excellent review of the state of the art on the construction of
noninformative priors.

One way to assess the adequacy of the prior assumptions is through simulation experiments.
In a simulation experiment with ADO, optimal designs are derived from the global utility function
based parameter estimates as usual, but rather than collecting data from human subjects at those
designs, the data are simulated from one of the models under consideration. More precisely, the
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simulation starts with equal model probabilities and some form of prior parameter estimates (either
informative or uninformative), and an optimal design is sought for the first mini-experiment. After
data are generated, model probabilities and parameter estimates are updated, and the process is
repeated. The idea of the simulation is to verify that ADO can correctly identify the data-generating
model in a reasonable amount of time (in terms of both the number of trials, and computation time).
Separate simulations should be run with each model under consideration as the data-generating
model to verify that the true, data-generating model can always be uncovered. Biases in the priors
may then be assessed by examining the posterior model probabilities. For example, if the posterior
probability of that model rises rather sharply in the initial stages of the experiment even when it is
not the true data-generating model, this might be an indication that the priors are biased toward a
particular model. If the bias is strong enough then it may be impossible to overcome in a reasonable
number of trials. Besides helping to diagnose biases in the priors on the model parameters, such
simulations are also helpful for planning how many trials are likely to be necessary to achieve the
desired level of discrimination among the models under consideration.

One other practical consideration in implementing an ADO-based experiment is how to
program it. Since the ADO algorithm is computationally intensive, speed is paramount. Therefore,
it is recommended to use an efficient, low-level programming language such as C++. Our lab
group found a 10-fold speed increase upon translating the code from Matlab to C++.3 However,
the entire experiment does not need to be programmed in the same language. We have found it
effective to program the graphical user interface (GUI) in a higher level language such as PERL
or Matlab, and have the GUI call on a C++ executable to do the computational heavy lifting of
the DO step and the Bayesian updating. One advantage of this split is that it is easily adapted
to different hardware architectures. For example, the GUI can be run simultaneously on several
client machines, each of which send their data to a dedicated server, which then sends the optimal
designs back to the clients.

4 Illustrative Example

To further illustrate how ADO works, we will demonstrate its implementation in a simulation
experiment intended to discriminate between power and exponential models of retention. The
effectiveness of ADO for discriminating between these models has been demonstrated in simulation
(Cavagnaro et al., 2010) and in experiments with human participants (Cavagnaro et al., 2009, 2011).
The intention of this demonstration is provide an easy to understand companion to the technical
and theoretical details of the previous section.

The power and exponential functions of retention, as given earlier, are p = a(t + 1)−b and
p = ae−bt respectively, where p is the probability of correct recall given the time t between study and
test and a and b are non-negative parameters. The power and exponential models of retention are
defined by equipping these decay functions with the binomial likelihood function that was defined
in Eq. (2).4 Many experiments have been performed to discriminate between these models, but
the results have been ambiguous at best (see Rubin and Wenzel, 1996, for a thorough review).

3Since the conversion, many of Matlab’s base functions have been vectorized, so the speed-up may be less dramatic
now.

4Although more sophisticated models have been shown to give fuller accounts of retention (e.g., Oberauer and
Lewandowsky, 2008), the simplicity of the power and exponential functions along with the difficulty of discriminating
between them provides an ideal setting in which to illustrate ADO.
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Models of retention aim to describe retention rates across a continuous time interval (e.g.,
between zero and forty seconds), but due to practical limitations, experimenters can only test
retention at a select handful of specific times. In a typical experiment, data are collected through
a sequence of trials, each of which assesses the retention rate at a single time point, called the lag
time. The lag time, as a design variable in the experiment, is the length of time between the study
phase, in which a participant is given a list of words to memorize, and the test phase, in which
retention is assessed by testing how many words the participant can correctly recall from the study
list. In the retention literature, the number of lag times and their spacing have varied between
experiments. Some have used as few as 3, others as many as 15. Some have used uniform spacing
(e.g., d = {1,2,3,4,5}), but most use something close to geometry spacing (e.g., d = {1,2,4,8,16}).
The use of a geometric spread of retention intervals is an informed choice that has evolved through
many years of first-hand experience and trial-and-error.

Since the lag times are numerical and they fit directly into the likelihood functions of the
models under investigation, they are an ideal candidate to be optimized by ADO. Unlike what has
been done in the majority of studies in the literature, an experiment using ADO does not rely on
a predetermined spacing of the lag times. Rather, the lag times are derived on-the-fly, for each
participant individually, based on each participant’s performance at the preceding lag times.

To illustrate, we will walk through a simulation experiment in which ADO is used to select
lag times for discriminating between power and exponential models of retention. The simulation will
consist of ten adaptive stages, each consisting of 30 trials, where each trial represents an attempt to
recall one study item after a specified lag time. The lag will be selected by ADO, and will be fixed
across trials within the same stage. To match the practical constraints of an actual experiment,
only integer-valued lag times between 1 and 40 seconds will be considered. Recall of study items
at the lag times selected by ADO will be simulated by the computer. Specifically, the computer
will generate the number of correctly recalled study items by simulating 30 Bernoulli trials with
probability of success p = 0.80(t + 1)−0.40. In other words, the data-generating model will be the
power model with a = 0.80 and b = 0.40.

The data-generating model is depicted in Figure 7. Since the model is probabilistic, even
with fixed parameters, it is depicted with a heat map in which darker colors indicate regions of
higher probability. For example, the heat map shows that at a lag time of 40 seconds, the model is
most likely to generate 6 or 7 correct responses out of 30 trials, and the model is extremely unlikely
to generate less than 3 or more than 10 correct responses.

Foreknowledge of the data-generating model will not be programmed into the ADO part of
the simulation. Rather, ADO must learn the data-generating model by testing at various lag times.
Thus, ADO will be initialized with uninformative priors that will be updated after each stage based
on the data collected in that stage. If the data clearly discriminate between the two models then
the posterior probability of the power model should rise toward 1.0 as data are collected, indicating
increasing confidence that the data-generating process is a power model. On the other hand, if the
data do not clearly discriminate between the two models then the model probabilities should both
remain near 0.5, indicating continued uncertainty about which model is generating the data.

The initial predictions of ADO about the data-generating process can be seen in Figure
8. The figure shows heat maps for both the power model (left) and exponential model (right), as
coded in the following priors: a ∼ Beta(2,1), b ∼ Beta(1,4) for the former, and a ∼ Beta(2,1),
b ∼ Beta(1,80) for the latter. Since ADO does not know which model is generating the data, it
assigns an initial probability of 0.5 to each one. In addition, since ADO begins with uninformative
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priors on parameters, the heat maps show that almost any retention rate is possible at any lag
time. As data are collected in the experiment, the parameter estimates should become tighter and
the corresponding heat maps should start to look as much like that of the data-generating model
as the functional form will allow.

With the framework of the experiment fully laid out, we are ready to begin the simulation.
To start, ADO searches for an optimal lag time for first stage. Since there are only 40 possible lag
times to consider (the integers 1 to 40), the optimal one can be found by directly evaluating Eq.
(10) at each possible lag time.5 Doing so reveals that the lag time with the highest expected utility
is t = 7, so it is adopted as the design for the first stage. At t = 7, the power model with a = 0.8
and b = 0.4 yields p = 0.348 (i.e., a 34.8% chance of recalling each study item) so 30 Bernoulli trials
are simulated with p = 0.348. This yields the first data point: n = 12 successes out of 30 trials.
Next, this data point is plugged into Eqs (11) and (12) to yield posterior parameter probabilities
and posterior model probabilities, respectively, which will then be used to find the optimal design
for the 30 trials in the second stage.

Another perspective on this first stage of the ADO experiment can be seen in Figures 8
and 9. In Figure 8, the optimal lag time lag time (t = 7) is highlighted with a blue rectangle on
each of the heat maps. One indication as to why ADO identified this lag time as optimal for this
stage is that t = 7 seems to be where the heat maps of the two models differ the most: the most
likely number of correct responses according to the power model is between 10 and 15 while the
most likely number of correct responses under the exponential model is between 20 and 25. When
data were generated at t = 7, the result was 12 correct responses, which is more likely under the
power model than under the exponential model. Accordingly, the posterior probability of the power
model rises to 0.642, while the posterior probability of the exponential model drops to 0.358. These
probabilities are shown in Figure 9, which gives a snapshot of the state of the experiment at the
start of the second stage. The white dot in each of the heat maps in Figure 9 depicts the data point
from the first stage, and the heat maps themselves show what ADO believes about the parameters
of each model after updating on that data point. What’s notable is that both heat maps have
converged around the observed data point. Importantly, however, this convergence changes both
models’ predictions across the entire range of lag times. The updated heat maps no longer differ
much at t = 7, but they now differ significantly at t = 1. Not coincidentally, ADO finds that t = 1
is the optimal lag time for the next stage of the experiment.

The simulation continued for ten ADO stages. In a real experiment, the experimenter
could review a snapshot like Figure 9 after each stage in order to monitor the progress of the
experiment. The experimenter could also add a human element to the design process by choosing
a different design than that recommended by ADO for the next stage. For now, we will skip to a
snapshot of the experiment after all ten stages have been completed. In Figure 10, the blue dots
represent the ten data points that were observed, and the heat maps represent the best estimates
of each model based on those ten data points. It is clear from the heat maps that the exponential
model can not match the observed data pattern well, even at its best fitting parameters. On the
other hand, the power model can fit the data perfectly (as it should, since it generated the data).
Accordingly, the posterior probability of the power model is greater than 0.999, indicating that the

5For a more complex design space (e.g., sets of 3 jointly optimal lag times) one would need to use a more advanced
search algorithm such as the SMC search described in Section 3.5.2. For example, Cavagnaro et al. (2009) used SMC
to find jointly optimal sets of three lag times in each stage of testing in their implementation of ADO in a retention
experiment.
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data clearly identify it as the data generating model. Moreover, the heat map estimate of the power
model closely resembles the heat map of the data-generating model in Figure 7, indicating that
the parameters have converged to the correct values. Figure 11 shows a typical posterior model
probability curve obtained from the ADO simulation experiment.

5 Limitations

While ADO has the potential to significantly improve the efficiency of data collection in psycho-
logical sciences, it is important that the reader is aware of the assumptions and limitation of the
methodology. First of all, not all design variables in an experiment can be optimized in ADO. They
must be quantifiable in such a way that the likelihood function depends explicitly on the values of
the design variables being optimized (Myung and Pitt, 2009, p. 511). Consequently, ADO is not
applicable to variables such as type of experimental task (word reading vs. lexical decision) and
nominal variables (e.g., words vs. pictures). No statistical methodology currently exists that can
handle such non-quantitative design variables.

Another limitation of the ADO methodology is the assumption that one of the models
under consideration is the true, data-generating model. This assumption, obviously, is likely to be
violated in practice, given that our models are merely imperfect representations of the real process
under study.6 Ideally, one would like to optimize an experiment for an infinite array of models
representing a whole spectrum of realities; no implementable methodology currently exists that
can handle the problem of this scope.

The ADO algorithm is myopic in the sense that the optimization at each stage of exper-
imentation is performed as if the current experiment is the last one to be conducted. In reality,
however, the global optimality of the current designs depend upon the outcomes of future experi-
ments, as well as those of the previous experiments. This sequential dependency of optimal designs
is not considered in the present ADO algorithm, due to the huge computational resources needed
to take into account the effect. Recent advances in approximate dynamic programming offers a
potentially promising solution to overcome this challenge (e.g., Powell, 2007).

Perhaps the most challenging problem is extending the ADO framework to a class of
simulation-based models (e.g., Reder et al., 2000; Polyn et al., 2009) that are defined in terms
of a series of steps to be simulated on computer without explicit forms of likelihood functions –
a prerequisite to implement the current ADO algorithm. Given the popularity of these types of
models in cognitive science, ADO will need to be expanded to accommodate them, perhaps using
a likelihood-free inference scheme known as Approximate Bayesian Computation (e.g., Beaumont
et al., 2009; Turner and Van Zandt, 2012).

6 Conclusions

In this article, we provided a tutorial exposition of adaptive design optimization (ADO). ADO
allows users to intelligently choose experimental stimuli on each trial of an experiment in order
to maximize the expected information gain provided by each outcome. We began the tutorial by

6A violation of this assumption, however, may not be critical in light of the predictive interpretation of Bayesian
inference. That is, it has been shown that the model with the highest posterior probability is also the one with
the smallest accumulative prediction error even when none of the models under consideration is the data-generating
model (Kass and Raftery, 1995; Wagenmakers et al., 2006; van Erven et al., 2012).
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contrasting ADO against the traditional, non-adaptive heuristic approach to experimental design,
then presented the nuts and bolts of the practical implementation of ADO, and finally, illustrated
an application of the experimental technique in simulated experiments to discriminate between two
retention models.

Use of ADO requires becoming comfortable with a different style of experimentation. Al-
though the end goal, whether it be parameter estimation or model discrimination, is the same as
traditional methods, how you get there differs. The traditional method is a group approach that
emphasizes seeing through individual differences to capture the underlying regularities in behavior.
This is achieved by ensuring stable performance (parameters) through random and repeated pre-
sentation of stimuli and testing sufficient participants (statistical power). Data analysis compares
the strength of the regularity against the amount of noise contributed by participants. There is
no escaping individual variability, so ADO exploits it by presenting a stimulus whose information
value is likely to be greatest for that given participant and trial, as determined by optimization
of an objective function. This means that each participant will likely receive a different subset of
the stimuli. In this regard, the price of using ADO is some loss of control over the experiment;
the researcher turns over stimulus selection to the algorithm, and places faith in it to achieve the
desired ends. The benefit is a level of efficiency that cannot be achieved without the algorithm. In
the end, it is the research question that should drive choice of methodology. ADO has many uses,
but at this point in its evolution, it would be premature to claim it is always superior.

In conclusion, the advancement of science depends upon accurate inference. ADO, though
still in its infancy, is an exciting new tool that holds considerable promise in improving inference.
By combining the predictive precision of the computational models themselves and the power of
state of the art statistical computing techniques, ADO can make experimentation informative and
efficient, thereby making the tool attractive on multiple fronts. ADO takes full advantage of the
design space of an experiment by probing repeatedly, in each stage, those locations (i.e., designs)
that should be maximally informative about the model(s) under consideration. In time-sensitive
and resource-intensive situations, ADO’s efficiency can reduce the cost of equipment and personnel.
This potent combination of informativeness and efficiency in experimentation should accelerate
scientific discovery in cognitive science and beyond.
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Figure 1: Sample power (POW) and exponential (EXP) functions, generated from a narrow range of model pa-

rameters (see text). The time intervals between 1 and 5 seconds, where the models are the most discriminable, are

indicated by the blue circles. In contrast, the green elliptic circles indicate the time intervals (i.e., 15 - 20 seconds)

that offer the least discriminability.
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Figure 2: Schematic illustration of the traditional experimentation versus adaptive experimentation paradigm.

(a) The vertical arrow on the left represents optimization of the values of design variables before data collection.

The vertical arrow on the right represents the analysis and modeling of the data collected, using model selection

or parameter estimation methods, for example. (b) In the adaptive experimentation paradigm, the three parts of

experimentation (design optimization, experiment, and data modeling) are closely integrated to form a cycle of

inference steps in which the output from one part is fed as an input to the next part.
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Figure 3: Schematic illustration of the steps involved in adaptive design optimization (ADO).
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Grid Search

• Initialize positive integers M and N, and a Mx1 vector U = 0

• for 1 ≤ g ≤M do

• Select the g-th design point, dg, from the discretized design space

• for 1 ≤ i ≤ N do

• Sample model index k(i) from the model prior p(m)

• Sample parameter θk(i)(i) from the parameter prior p(θk(i))

• Sample data yk(i)(i) from the probability distribution p(yk(i)|θk(i)(i), dg)

• Calculate u
(
dg, θk(i)(i), yk(i)(i)

)
• Set U(g)← U(g) + u

(
dg, θk(i)(i), yk(i)(i)

)
/N

• end for

• end for

• Identify optimal design d∗ as the design associated with max
g

U(g)

Figure 4: The grid search algorithm.
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Figure 5: Illustration of sequential Monte Carlo search design optimization with simulated annealing.
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Sequential Monte Carlo (SMC) Search

• Given a simulated annealing schedule function ρ(t), a peakedness measure

δ(S), and a threshold ε (> 0):

• Initialize N, I = 1, and δ(S) = 0

• While δ(S) < ε do

• Set J ← ρ(I)

• Use an SMC sampling procedure to generate a sample S of N random

• draws, {d, {m}, {ym}, {θm}}’s, from the auxiliary distribution h(·)J

• Evaluate δ(S)

• Set I ← I + 1

• end while

• Identify optimal design d∗ as the mean (or alternatively, median or mode)

of all d’s in the current sample S

Figure 6: The SMC search algorithm.
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Figure 7: Heat map of the data-generating model in the ADO simulation. Darker colors indicate regions of higher

probability.
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Figure 8: Heat maps of the Power model (left) and Exponential model (right) representing ADO’s prior estimates

of each model. Darker colors indicate regions of higher probability. The lag time of t = 7 (blue rectangle) is chosen

for testing in the first stage because it is the place where the two models differ the most, based on the priors.

Figure 9: Heat maps of the Power model (left) and Exponential model (right) representing ADO’s estimates of

each model after the first stage of testing (prior to the second stage). Estimates have converged around the observed

data point (white dot in each heat map). ADO selects t = 1 (blue rectangle) for testing in Stage 2 because it is the

place where the two models differ the most, based on these updated estimates.
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Figure 10: Heat maps of the Power model (left) and Exponential model (right) representing ADO’s estimates of

each model after the ten stages of testing. Both models try to fit the observed data points (white dots) as well as

possible, but the exponential model cannot do so as well as the power model. The difference is so extreme that the

power model is over 1000 times more likely to generate this pattern of data than the exponential model.
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Figure 11: Posterior model probability curve from a sample run of the ADO simulation experiment. The data were

generated from the power model with parameters a = 0.80 and b = 0.40. See the text for additional details of the

simulation.
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