
A computational study on different penalty approaches for solving

constrained global optimization problems with the

electromagnetism-like method

M.M. Aliay, Mohsen Golalikhanib*y and Jun Zhuangby

aSchool of Computational and Applied Mathematics, Witwatersrand University, Wits –
2050, Johannesburg, South Africa; bDepartment of Industrial and Systems Engineering,
University at Buffalo, The State University of New York, Buffalo, NY 14260, USA

(Received 13 January 2009; final version received 2 January 2012)

In this article, the application of the electromagnetism-like method (EM)
for solving constrained optimization problems is investigated. A number of
penalty functions have been tested with EM in this investigation, and their
merits and demerits have been discussed. We have also provided motiva-
tions for such an investigation. Finally, we have compared EM with two
recent global optimization algorithms from the literature. We have shown
that EM is a suitable alternative to these methods and that it has a role to
play in solving constrained global optimization problems.

Keywords: electromagnetism-like method; constrained optimization prob-
lems; penalty functions

1. Introduction

Constrained optimization (CO) problems can be mathematically formulated as the

following: given a real objective function f defined on a feasible set ��R
n, find a

point x*2� and the corresponding value f* such that

f � ¼ f ðx�Þ ¼ min f ðxÞ
��8x2�

� �
: ð1Þ

The set � is bounded by the box X and pþ q constraints, i.e.

� ¼ x2R
n
��x2X and giðxÞ � 0 for i ¼ 1, 2, . . . p; hiðxÞ ¼ 0, i ¼ 1, 2, . . . q

� �
: ð2Þ

We define the following problem

ðPÞ

min f ðxÞ,

such that giðxÞ � 0, i ¼ 1, 2, . . . ,m, m ¼ pþ 2q,

x2X,

8><
>:

*Corresponding author. Email: mohsengo@buffalo.edu
yThe authors’ names are in the alphabetical order.

� 2012 Taylor & Francis

http://dx.doi.org/10.1080/02331934.2012.655691

Optimization, 2014
Vol. 63, No. 3, 403–419,

D
ow

nl
oa

de
d

by
 [

M
oh

se
n

G
ol

al
ik

ha
ni

]
at

 1
7:

08
 0

7
Ju

ne
 2

01
4

where all equality constraints, hi(x), have been converted into inequality constraints
using

jhiðxÞj � � � 0: ð3Þ

This means that the point x will be treated as a feasible point for the i-th inequality
constraint if (3) holds. The value �¼ 10�3 and 10�2 were used for the numerical
experiment. We therefore redefine the feasible set, �̂, as

�̂ ¼ X \ x2R
n
�� giðxÞ � 0, i ¼ 1, 2, . . . ,m

� �
: ð4Þ

Furthermore, we assume the full dimensionality of �̂, i.e. its Lebesgue measure
mð�̂Þ4 0.

In principle, the CO problem (P) can be solved using deterministic or
stochastic methods. However, deterministic methods, such as feasible direction
and generalized gradient descent, usually make strong assumptions on the
continuity and differentiability of the objective function f(x) [11,12,17]. Thus,
there is an ongoing interest for stochastic algorithms that can tackle more general
CO problems.

The most common approach to solve CO problems by using a stochastic
algorithm is based on penalty functions [18,19,26]. In this approach, penalty terms
are added to the objective function to penalize the objective function value of any
infeasible solution that violates the constraints in (4). Thus, the penalty techniques
transform a constrained problem into an unconstrained problem by penalizing the
objective function when constraints are violated, and then minimize this penalized
objective function using methods for unconstrained problems. The penalty approach
has been applied to various stochastic algorithms, such as particle swarm
optimization (PSO) [7,21], differential evolution (DE) [15] and genetic algorithm
[8,9,10,13,28]. Besides penalty function approaches, the multi-objective approach has
been applied to solve CO problems. We have also applied this approach to the
electromagnetism-like method (EM) [1]. The multi-objective approach gives rise to
an additional parameter which we found highly sensitive (see Ali and Golalikhani
[1]). Indeed, Runarsson and Yao [24] demonstrated that the penalty function
approach is better than the multi-criteria approach in constraint handling.

The EM [5] has been tested using a simple static penalty approach only for
solving problem (P) [1,4,22]. In this penalty approach a penalty term with its
parameter is added to the objective function f(x). The author [4] used an interval for
the parameter without significant investigations. Results reported in the above
studies are less than satisfactory. It is therefore imperative to test EM using other
penalty approaches and compare the results with those of other global optimization
methods. This is what we aim to achieve with this article. A further motivation of this
study is given in Section 3. We use four different types of penalty functions with EM
for solving problem (P). Furthermore, we compare the computational results
obtained through different types of penalty functions, and we explain their merits
and demerits. We also compare our results with those results reported in the
literature in order to show the performance of EM.

The rest of this article is organized as follows: Section 2 introduces the EM
method and presents statements of it convergence. Section 3 presents various penalty
functions and the numerical results of EM obtained with them. Section 4 provides
sensitivity analysis for some important parameters of the penalty functions when

2 M.M. Ali et al.404

D
ow

nl
oa

de
d

by
 [

M
oh

se
n

G
ol

al
ik

ha
ni

]
at

 1
7:

08
 0

7
Ju

ne
 2

01
4

they are used in EM. Section 5 compares the performance of EM with the PSO [2]
and DE algorithm [21]. Finally, Section 6 provides the conclusions of this article.

2. The EM

Initially designed for bound CO problems, EM [4] utilizes N, n-dimensional points
xi,k, i¼ 1, 2, . . . ,N, as a population to search the feasible set

X ¼ x2Rn
��li � x � ui, i ¼ 1, 2, . . . , n

� �
:

The index k denotes the iteration (or generation) number of the algorithm. The
initial population,

Sk ¼ x1,k, x2,k, . . . , xN,k

� �
, ð5Þ

where k¼ 1, is taken to be uniformly distributed in the search region, X. We denote
the population set at the k-th iteration by Sk as the members of the set Sk change
with k. After the initialization of Sk, EM continues its iterative process until a
stopping condition (e.g. maximum number of iterations) is met. An iteration of EM
consists of two steps. In the first step, each point in Sk moves to a different location
by using the attraction–repulsion mechanism of the electromagnetism theory. In the
second step, points moved by the electromagnetism theory are further moved locally
by a local search which then become the members of Skþ1 in the (kþ 1)-th iteration.
Both the attraction–repulsion mechanism and the local search in EM are responsible
for driving the members, xi,k, of Sk to the close proximity of the global minimizer.

As with the electromagnetism theory for charged particles, each point xi,k2Sk in
the search space X is assumed as a charged particle where the charge of a point
relates to its the objective function value. Points with better objective function value
have more charges than other points, and the attraction–repulsion mechanism is a
process in EM by which points with more charge attract other points in Sk, and
points with less charge repulse other points. Finally, a total force vector, Fk

i , exerted
to a point, e.g. the i-th point xi,k, is calculated by adding these attraction–repulsion
forces and each xi,k2Sk is moved to the direction of its total force to the location yi,k.
A local search is used to explore the vicinity of each yi,k by shifting yi,k to zi,k. The
members, xi,kþ12Skþ1, of the (kþ 1)-th iteration are then found by:

xi,kþ1 ¼
yi,k if f ð yi,kÞ � f ðzi,kÞ,

zi,k otherwise:

�
ð6Þ

Algorithm 1 shows the general scheme of EM. We also provide the description of
each step following the algorithm.

Algorithm 1 EM(N, MAXITER, LSITER, �)

1. Input parameters: Input the maximum number of iteration MAXITER, the
values for the local search parameters such as LSITER and �, and the size N of
the population.

2. Initialize: Set the iteration counter k¼1, initialize the members of Sk uniformly in
X, and identify the best point in Sk.

3. while k5MAXITER do

Optimization 3405

D
ow

nl
oa

de
d

by
 [

M
oh

se
n

G
ol

al
ik

ha
ni

]
at

 1
7:

08
 0

7
Ju

ne
 2

01
4

4. Fk
i CalcF(Sk)

5. Move(xi,k,F
k
i)

6. Local(LSITER, �, yi,k)
7. Select(Skþ1, yi,k, zi,k)
8. k¼ kþ 1
9. end while

Input parameter values (Line 1): the EM algorithm is run for MAXITER

iterations. In the local search phase, n�LSITER is the maximum number of

locations zi,k, within � distance of yi,k, for each i.
Initialize (Line 2): The points xi,k, k¼1, are selected uniformly in X, i.e.

xi,1�Unif(X), i¼ 1, 2, . . . ,N, where Unif represents the uniform distribution. The

objective function values f(xi,k), i¼ 1, 2, . . . ,N, are computed, and the best point

xbk ¼ arg min
xi,k 2Sk

f ðxi,kÞ
� �

ð7Þ

is identified.
Calculate force (Line 4): In this step, a charged-like value (qi,k) is assigned to each

point (xi,k). The charge qi,k of xi,k is dependent on f(xi,k), and points with better

objective function have more charge than others. The charges are computed as

follows:

qi,k ¼ exp �n
f ðxi,kÞ � f ðxbkÞPN

j¼1ð f ðxj,kÞ � f ðxbkÞÞ

 !
: ð8Þ

Then, the force, Fk
i,j, between two points, xi,k and xj,k, is calculated by

Fk
i,j ¼

ðxj,k � xi,kÞ
qi,kqj,k

kxj,k � xi,kk
2

if f ðxi,kÞ4 f ðxj,kÞ,

ðxi,k � xj,kÞ
qi,kqj,k

kxj,k � xi,kk
2

if f ðxi,kÞ � f ðxj,kÞ:

8>><
>>: ð9Þ

The total force, Fk
i , corresponding to xi,k is now calculated as

Fk
i ¼

XN
j¼1,j6¼i

Fk
i,j: ð10Þ

In the revised EM proposed in [6] there were some modifications in this step of

the algorithm to preclude the premature convergence. In particular, Birbil et al. [6]

selected one of the points in the population other than the current best point as

the ‘perturbed point’, and they modified the method for calculating the force that

was exerted on the perturbed point. After applying these modifications they

proved that the new revised algorithm exhibits global convergence with probability

one. Following [6] we implement these modifications in our numerical study. In

this modification a perturbed point, say x
p
k , is selected to be the farthest point

from the current best, xbk. The component force vector, calculated via (9), Fk
i,p

corresponding to x
p
k is modified as �Fk

i,p, ��Unif(0, 1). In addition, the direction

of the total force vector F
p
k , corresponding to x

p
k , is reversed with a small

probability, say �¼ 0.1.

4 M.M. Ali et al.406

D
ow

nl
oa

de
d

by
 [

M
oh

se
n

G
ol

al
ik

ha
ni

]
at

 1
7:

08
 0

7
Ju

ne
 2

01
4

Move point xi,k along Fk
i (Line 5): In this step, each point xi,k, except for x

b
k, are

moved along the total force vector Fk
i using:

xi,k ¼ xi,k þ �
Fk
i

kFk
i k
ðRNGÞ, i ¼ 1, 2, . . . ,N; i 6¼ b, ð11Þ

where ��Unif(0, 1) for each coordinate of xi,k, and RNG denotes the allowed

range of movement towards the lower or upper bound for the corresponding

dimension.
Local search (Line 6): For each yi,k a maximum of LSITER points are generated

in each coordinate direction in the � neighbourhood of yi,k. This means that the

process of generating local points is continued for each yi,k until either a better zi,k is

found or n�LSITER trial is reached.
Selection for the next iteration (Line 7): In this step, members xi,kþ12Skþ1 are

selected from yi,k and zi,k using (6), and the best point is identified using (7).

3. Penalty functions and their numerical assessment

The penalized objective function F(x) to be minimized is defined as:

FðxÞ ¼ f ðxÞ þ �ðxÞ, ð12Þ

where �(x) is the penalty term. The success of an underlying global optimization

algorithm depends on the choice of �(x). This is due to the fact that a choice of �(x)
and parameters therein may results in under penalization (may produce solution

outside �̂) and over penalization (optimal solution in the boundary, @�̂, of �̂ may

never be found). Various functional forms of �(x) have been studied with a number

of population-based search methods, see [15,20]. The algorithm we study here

fundamentally differs from the ones studied in [15,20]. For example, EM generates

trial points using force vectors while the other population-based methods [15,20]

generates trial points by ordinary vector operations [16,27], by geometry-based

operations, e.g. using simplex geometry [3], and by model-based operations [14]. In

the model-based approach a model of the objective function is optimized. It is

therefore necessary to see how EM reacts to various penalty functions. First, we have

studied the effect of a switching strategy suggested in [14] using static penalty with

four different parameter values. However, the results obtained in each case were

inferior to those obtained using simple static penalty [15,29]. Hence, these results are

not reported here. Next, we report on the performances of EM on various penalty

functions. We consider below four penalty functions for this study [15,18,19,29].

These penalty functions, among other functions, are easy to implement and thus

would be preferred by many practitioners.

Death penalty: This simple approach rejects infeasible solutions from the popula-

tion by setting �(x) to be þ1 for any infeasible x. In this case, there will never be any

infeasible solutions in the population. Our numerical experiments have shown that

EM and other methods work generally well with this penalty if �̂ or a reasonable

part of it is convex. A similar finding is also reported in [18,29].

Optimization 5407

D
ow

nl
oa

de
d

by
 [

M
oh

se
n

G
ol

al
ik

ha
ni

]
at

 1
7:

08
 0

7
Ju

ne
 2

01
4

Static penalty: In this approach, the penalty function is defined as

�ðxÞ ¼ d
Xm
i¼1

maxf0, giðxÞg½ �, ð13Þ

where d is the penalty parameter which does not depend on the current generation
(iteration) of the algorithm that employs the function. For other penalty functions,
we denote the penalty parameter by d(k) as it depends on the iteration counter k of
the underlying algorithm. For the test problems considered in our numerical study,
we have observed that EM performs poorly with under penalization i.e. when d
is small.

Dynamic and adaptive penalties: The general functional form of these two penalty
functions is as follows:

�ðx, kÞ ¼ dðkÞHðxÞ, ð14Þ

where

HðxÞ ¼
Xm
i¼1

�ð�iðxÞÞ�iðxÞ
	ð�iðxÞÞ, ð15Þ

and d(k) is a continuous function of the iteration counter of the algorithm. The
function �i(x) is given by �i(x)¼max{0, gi(x)}, �(�i(x)) is the assignment function and
	(�i(x)) is the power of penalty function. The functional forms of �(�i(x)) and 	(�i(x))
for both the penalties are presented in the following section.

Although both penalties have the same functional form, �(x, k), what makes
them different is the way they choose the function d(k). For example, the dynamic
penalty uses continuous d(k) such as

d ðkÞ ¼ k0:1, ð16Þ

while the adaptive penalty implements the following (updating) strategy [27]:

d ðkþ 1Þ ¼

1d ðkÞ if Case 1,

2d ðkÞ if Case 2,

d ðkÞ otherwise,

8><
>: ð17Þ

where
24
1. The Case 1 is when all of the best individuals in the last k generations
are feasible, and the Case 2 is when they are not feasible. In other words, if all best
individuals of last k generations are feasible, penalty term d(kþ 1) decreases. If all of
them are infeasible, penalty term is increased. Otherwise, if the best individuals in the
last k generations consist of both feasible and infeasible solutions, the penalty term
does not change.

3.1. A computational study of penalty functions with EM

To evaluate the performance of EM with various penalty methods, we have used 16
test problems. The first 13 problems, denoted by G1–G13, are from [23]. The last
three problems are denoted by P1, P2 and P3, respectively. The problems P1 and P2

6 M.M. Ali et al.408

D
ow

nl
oa

de
d

by
 [

M
oh

se
n

G
ol

al
ik

ha
ni

]
at

 1
7:

08
 0

7
Ju

ne
 2

01
4

are taken from [15], while the problem P3 is collected from [25]. The details of these
three problems are given in the appendix. Here, we have conducted our numerical
experiments of EM with the penalty functions and compared the results due to
various penalty functions.

For each test problem, we have run EM, with each penalty function, 20 times to
get average results. We have recorded the best achieved result, the average of 20
results, the sum of constraints violations and the number of best-achieved results
with violated constraints. A constraint gi(x) (including the converted constraints in
(3)) is assumed to be violated if and only if

giðxÞ4 "̂, ð18Þ

where "̂¼ 2.00E�5. Algorithms are coded in Visual Basic, the size, N, of population
is set to be 10 and EM algorithm stops after 350,000 objective function evaluations
(fevals) for all test problems except for the low-dimensional problems G8, G11 and
G12. For these problems, we use 100,000 fevals to stop EM. For the second set of
problems, P1, P2 and P3, EM stops after 300,000 function evaluations.

A simple local search suggested in [5] has been implemented in Algorithm 1 of the
EM. The local search iteration, see LSITER in Algorithm 1, has been set to be 30.
We have also used the local search parameter �¼ 0.1 for G1, G2, G4, G7, G8, G10,
P1 and P2. For the other test problems we have used the local search parameter to be
�¼ 0.01.

3.2. EM with death penalty

Results of EM with death penalty are presented in Table 1, where Prob. represents
problem, n denotes problem dimension, T denotes average number of trial points to
generate initial N feasible solutions, f ðxbkÞ denotes the optimal function value
obtained after the execution of EM, mf ðxbkÞ denotes the average of f ðxbkÞ, #xbk =2 �̂

Table 1. Results for the death penalty approach.

Prob. n f(x*) T f ðxbkÞ mf ðxbkÞ #xbk =2 �̂ CV

G1 13 �15 4,806,354 �14.9899 �14.3998 0 0
G2 20 �0.803619 10 �0.738893 �0.689201 0 0
G3 5 �1 12,933 �1.0023 �1.0008 0 0
G4 5 �30665.539 34 �30654.882 �30619.700 0 0
G5 4 5126.4981 –
G6 2 �6961.81388 136,892 �6961.0406 �6960.7572 0 0
G7 10 24.3062091 10,852,815 27.56396 30.73161 0 0
G8 2 �0.095825 1246 �0.095825 �0.095825 0 0
G9 7 680.630057 1849 680.9928 682.9098 0 0
G10 8 7049.3307 1,762,744 7126.1215 7254.9930 0 0
G11 2 0.75 10,348 0.749 0.749 0 0
G12 3 �1 221 �1 �1 0 0
G13 5 0.0539498 –
P1 6 �310.0 92 �309.78 �303.79 0 0
P2 10 �47.7648 –
P3 2 �5.5080 22 �5.5079 �5.5072 0 0

Optimization 7409

D
ow

nl
oa

de
d

by
 [

M
oh

se
n

G
ol

al
ik

ha
ni

]
at

 1
7:

08
 0

7
Ju

ne
 2

01
4

denotes the number of infeasible optima out of 20 runs and CV is the amount of total
constraint violation over 20 runs. In the death penalty approach the initial N¼10
solutions have to be feasible. If the algorithm is unable to produce initial N feasible
solutions after 1Eþ 8 random trials then this has been denoted by ‘�’ in Table 1. In
this case the algorithm is terminated immediately. One positive aspect of the death
penalty approach is that it assures feasibility of results so that no infeasible solution
is generated during the execution of EM. Another advantage is that the death
penalty does not have any parameter and is easy to implement. However, in some
problems (e.g. G1, G7 and G10) this penalty approach needs tedious computations
for generating the first random population of the problem. It makes this penalty
approach not suitable for problems in which the constraints are difficult to be
satisfied.

3.3. EM with static penalty

Results of this implementation are summarized in Table 2, where the values of the
parameter, d, are also given. We have performed numerical experiments to identify
the appropriate values for d, and these values are larger than those used in [4].
Table 2 shows that in spite of larger d, in many test problems (i.e. G3, G4, G5, G6
and G10) there are still constraint violations. We could use even larger values for d to
avoid infeasible solutions for these problems. However, in that case the static penalty
approach will be similar to the death penalty approach. A comparison between
Tables 1 and 2 shows that the static penalty returns better optimal values than the
death penalty.

3.4. EM with dynamic penalty

We have studied a number of functional forms for the functions �(), 	() and d(k).
In particular, we have found that the functional form of �() is highly sensitive

Table 2. Results for the static penalty approach.

Prob. n f(x*) d f ðxbkÞ mf ðxbkÞ #xbk =2 �̂ CV

G1 13 �15 1.00Eþ05 �14.9920 �14.0660 1 1.70E�05
G2 20 �0.803619 1.00Eþ05 �0.739588 �0.691339 0 0
G3 5 �1 1.00Eþ05 �1.0022 �1.0009 0 0
G4 5 �30665.539 1.00Eþ06 �30659.105 �30641.834 8 2.66E�03
G5 4 5126.4981 1.00Eþ06 5126.382 5266.908 3 3.19E�02
G6 2 �6961.81388 1.00Eþ06 �6961.7663 �6961.7387 6 1.23E�04
G7 10 24.3062091 1.00Eþ06 26.4876 29.6904 1 2.10E�05
G8 2 �0.095825 1.00Eþ05 �0.095825 �0.095825 0 0
G9 7 680.630057 1.00Eþ05 680.7103 682.4962 0 0
G10 8 7049.3307 1.00Eþ07 7089.2883 7240.2423 3 7.32E�03
G11 2 0.75 1.00Eþ06 0.749 0.749 0 0
G12 3 �1 1.00Eþ06 �1 �1 0 0
G13 5 0.0539498 1.00Eþ06 0.122379 2.059540 1 5.30E�05
P1 6 �310.0 1.00Eþ06 �310.0 �309.91 9 1.49E�03
P2 10 �47.7648 1.00Eþ05 �46.8835 �45.1767 11 1.11E�03
P3 2 �5.5080 1.00Eþ05 �5.5080 �5.5069 0 0

8 M.M. Ali et al.410

D
ow

nl
oa

de
d

by
 [

M
oh

se
n

G
ol

al
ik

ha
ni

]
at

 1
7:

08
 0

7
Ju

ne
 2

01
4

to problem. We have numerically tested �() using various forms such as linear,
quadratic and other non-linear form such as �ðxÞ ¼

ffiffiffi
x
p

. Results obtained are inferior
in all cases even for 	(x)¼ constant. However, introduction of an additional
parameter, �, in the following functional form of �(x) has produced much superior
results which we report in this section. Our numerical investigations have suggested
that the following scheme is a suitable choice. We have used

	ð�iðxÞÞ ¼
1 if �iðxÞ5 1,

2 otherwise,

�
ð19Þ

�ð�iðxÞÞ ¼

� if �iðxÞ5 10�5,

10� if 10�5 � �iðxÞ5 10�3,

100� if 10�3 � �iðxÞ5 1,

1000� if �iðxÞ4 1,

8>>><
>>>:

ð20Þ

and d(k)¼ k0.1. The values of � are given in Table 3 where we have summarized the
results. Results obtained by the dynamic penalty approach are very encouraging as
this penalty approach produces the best results among different penalty functions for
a majority of the test problems.

3.5. EM with adaptive penalty

The implementation of this penalty requires the initialization of d(1) which we have
presented in Table 4 along with the summarized results. We have used
1¼ 0.95 and

2¼ 1.1 in (17). In Table 4, y denotes the case where more than 16 infeasible final
solutions were found out of 20 runs. Table 4 shows that the results are quite
encouraging although the algorithm returns infeasible results for some problems
(i.e. G5, G6 and G10). One advantage of this kind of penalty function is that in this

Table 3. Results for the dynamic penalty approach.

Prob. n f(x*) � f ðxbkÞ mf ðxbkÞ #xbk =2 �̂ CV

G1 13 �15 100 �14.9974 �14.4074 0 0
G2 20 �0.803619 1000 �0.748726 �0.704819 0 0
G3 5 �1 100 �1.0024 �1.0014 0 0
G4 5 �30665.539 100 �30654.668 �30637.301 0 0
G5 4 5126.4981 2000 5126.765 5258.158 7 1.88E�02
G6 2 �6961.81388 1000 �6961.1305 �6960.800 0 0
G7 10 24.3062091 1000 25.5581 29.4959 0 0
G8 2 �0.095825 100 �0.095825 �0.095825 0 0
G9 7 680.630057 100 680.8541 682.5100 0 0
G10 8 7049.3307 100 7099.7691 7195.4998 2 9.60E�04
G11 2 0.75 100 0.749 0.749 0 0
G12 3 �1 100 �1 �1 0 0
G13 5 0.0539498 1000 0.058757 1.88808 0 0
P1 6 �310.0 1000 �310.0 �309.25 0 0
P2 10 �47.7648 100 �46.9232 �45.1583 0 0
P3 2 �5.5080 100 �5.5080 �5.5068 0 0

Optimization 9411

D
ow

nl
oa

de
d

by
 [

M
oh

se
n

G
ol

al
ik

ha
ni

]
at

 1
7:

08
 0

7
Ju

ne
 2

01
4

approach the starting penalty parameter d(1) is insensitive and the final value of d(k)
which usually converges to a suitable value. We have shown this fact in following
section.

4. Sensitivity analysis of parameter values

In this section, we have provided a sensitivity analysis for some of the important
parameters of the penalty functions investigated. In particular, the penalty parameter
d is used in static and adaptive penalties, and the parameter p in d(k)¼ kp is used in
dynamic penalty. The death penalty does not have any parameter and thus we have
excluded this from the analysis in this section. We begin with the parameter d of the
static penalty function and show its effects on the average optimal value and the total
constraint violation in Figure 1. The average values and the total constraint
violations are based on 10 independent runs on both G3 and G10. As expected,
Figure 1 shows that the objective value improves with the increase of d. Moreover, it
can be seen that the feasibility increases with the increase of d.

Next, we study the initial value of the parameter d(k), namely d(1) in the adaptive
penalty. We use four functions, namely G3, G4, G5 and G8. Our study has shown
that the final value of d(k) is largely independent of the initial choice of d(1). For
example, the final value d(k) for G4 diverges to1 (respectively converges to zero for
G3) regardless of the initial choice of d(1). In Figure 2, we have shown this trend for
all four functions. Results presented in Figure 2 are averages on 10 independent runs.
Clearly, the final d(k) is problem dependent and not on the initial choice of d(1). This
characteristic can be considered as an advantage of adaptive penalty function.

Finally, we study the parameter p in d(k)¼ kp for the dynamic penalty. We use
the functions G1 and G10 for this study. The values for the other parameter, �, are
fixed to the values presented in Table 3. Again the results are based on 10
independent runs. The function d(k) is a monotonically increasing continuous

Table 4. Results for the adaptive penalty approach.

Prob. n f(x*) d(1) f ðxbkÞ mf ðxbkÞ #xbk =2 �̂ CV

G1 13 �15 100 �14.9949 �14.2491 0 0
G2 20 �0.803619 1000 �0.748726 �0.712199 0 0
G3 5 �1 100 �1.0022 �1.0014 0 0
G4 5 �30665.539 100 �30663.835 �30639.754 10 1.72E�03
G5 4 5126.4981 2000 y

G6 2 �6961.81388 1000 y

G7 10 24.3062091 1000 26.6337 29.2485 0 0
G8 2 �0.095825 100 �0.095825 �0.095825 0 0
G9 7 680.630057 100 681.0428 382.3096 0 0
G10 8 7049.3307 100 y

G11 2 0.75 100 0.749 0.749 0 0
G12 3 �1 100 �1 �1 0 0
G13 5 0.0539498 1000 0.11782 2.1318 0 0
P1 6 �310.0 1000 �310.0 �309.78 11 4.61E�03
P2 10 �47.7648 100 �45.1583 �0.712199 1 2.70E�05
P3 2 �5.5080 100 �5.5080 �5.5076 0 0

10 M.M. Ali et al.412

D
ow

nl
oa

de
d

by
 [

M
oh

se
n

G
ol

al
ik

ha
ni

]
at

 1
7:

08
 0

7
Ju

ne
 2

01
4

Figure 2. Effects of initial d(1) in adaptive penalty: (a) test problem G3, (b) test problem G4,
(c) test problem G5 and (d) test problem G8.

Figure 1. Effects of d in static penalty: (a) optimal objective value for problem G3, (b) total
constraint violation for problem G3, (c) optimal objective value for problem G10 and (d) total
constraint violation for problem G10.

Optimization 11413

D
ow

nl
oa

de
d

by
 [

M
oh

se
n

G
ol

al
ik

ha
ni

]
at

 1
7:

08
 0

7
Ju

ne
 2

01
4

function of the iteration counter k. Figure 3 shows that the average of optimal
solution increases (improves), and also the feasibility increases with the increase of
the iteration counter, as expected.

Therefore, the most critical factor for setting penalty parameters is finding
suitable values which are not so small (for a small value the results may be
infeasible), and also not so big (for a large value the results may have large deviation
from optimal objective function values). We have chosen the parameter values for
the parameters d, p and � based on the above observation. Results reported in this
article are based on suitable choices for these parameters, but their small variations
also produced similar results.

5. Comparison of EM with PSO and DE

In this section, we compare the performance of EM with the PSO [21] and a recent
version of DE [2]. To do this, we use the static penalty function (12) and (13) in EM.
We have chosen this penalty function due to the fact that it has only one parameter
and therefore in our view the comparison will be less biased by the parameter value.
Indeed, for a number of problems the comparison would favour EM more if we have
used the results of EM based on the dynamic penalty function, but we have avoided
this since the dynamic penalty has two parameters. We have used the same stopping
condition for all algorithms, Section 3.1. Table 5 compares the results obtained by
these methods. Table 5 shows that some average mf ðxbkÞ values are better than the
known global minimizer, see G3. This is due to the use of "̂ tolerance in (18).

Figure 3. Effects of the parameter p of the continuous d(k): (a) optimal objective value for
problem G1, (b) total constraint violation for problem G1, (c) optimal objective value for
problem G10 and (d) total constraint violation for problem G10.

12 M.M. Ali et al.414

D
ow

nl
oa

de
d

by
 [

M
oh

se
n

G
ol

al
ik

ha
ni

]
at

 1
7:

08
 0

7
Ju

ne
 2

01
4

T
a
b
le

5
.
C
o
m
p
a
ri
so
n
b
et
w
ee
n
E
M
,
P
S
O

a
n
d
D
E
.

E
M

P
S
O

D
E

P
ro
b
.

m
f
ðx

b k
Þ

#
x
b k
=2

�̂
C
V

m
f
ðx

b k
Þ

#
x
b k
=2

�̂
C
V

m
f
ðx

b k
Þ

#
x
b k
=2

�̂
C
V

G
1

�
1
4
.0
6
6
0

1
1
.7
0
E
�
0
5

�
1
2
.6
8
2
3

0
0

�
1
4
.8
7
6
1

0
0

G
2

�
0
.6
9
1
3
3
9

0
0

�
0
.5
8
4
0
6
4

0
0

�
0
.7
6
0
4

0
0

G
3

�
1
.0
0
0
9

0
0

�
1
.0
0
2
5

0
0

�
1
.0
0
0
1

0
0

G
4

�
3
0
6
4
1
.8
3

8
2
.6
6
E
�
0
3

�
3
0
6
6
5
.7
1

2
0

1
.2
1
E
�
0
2

�
3
0
6
6
5
.4
9
9
3

4
3
.0
2
E
�
0
4

G
5

5
2
6
6
.9
0
8

3
3
.1
9
E
�
0
2

5
4
2
9
.2
8
8

3
3
.4
0
E
�
0
5

5
2
1
7
.5
6
0
1

5
1
.4
0
E
�
3

G
6

�
6
9
6
1
.7
3
8

6
1
.2
3
E
�
0
4

�
6
9
5
5
.4
7
2

5
1
.4
4
E
�
0
3

�
6
9
6
1
.7
6
3
2

5
6
.2
2
E
�
6

G
7

2
9
.6
9
0
4

1
2
.1
0
E
�
0
5

2
5
.0
4
3
9

1
1
.8
0
E
�
0
5

2
4
.5
7
6
5

2
1
.2
2
E
�
5

G
8

�
0
.0
9
5
8
2
5

0
0

�
0
.0
9
5
8
2
5

0
0

�
0
.0
9
5
8
2
5

0
0

G
9

6
8
2
.4
9
6
2

0
0

6
8
0
.6
6
2
8

0
0

6
8
2
.5
5
0
1

0
0

G
1
0

7
2
4
0
.2
4
2
3

3
7
.3
2
E
�
0
3

7
4
6
4
.0
0
7
1

5
3
.3
3
E
�
0
3

7
1
8
8
.7
2
8
6

4
5
.6
3
E
�
0
3

G
1
1

0
.7
4
9

0
0

0
.7
4
9

0
0

0
.7
4
9

0
0

G
1
2

�
1

0
0

�
1

0
0

�
1

0
0

G
1
3

2
.0
5
9
5

1
5
.3
0
E
�
0
5

0
.7
4
8
8
9
6

1
1
.1
E
�
0
5

0
.2
7
8

0
0

P
1

�
3
0
9
.9
1

9
1
.4
9
E
�
0
3

�
2
9
8
.8
0

2
0

1
.4
3
E
�
0
3

3
0
9
.6
6
5

6
6
.4
4
E
�
5

P
2

�
4
5
.1
7
6
7

1
1

1
.1
1
E
�
0
3

�
4
1
.3
1
8
4

1
4

2
.7
8
E
�
0
3

�
4
6
.7
6

7
1
.3
7
E
�
3

P
3

�
5
.5
0
6
9

0
0

�
5
.5
0
8
0

0
0

�
5
.5
0
8
0

0
0

Optimization 13415

D
ow

nl
oa

de
d

by
 [

M
oh

se
n

G
ol

al
ik

ha
ni

]
at

 1
7:

08
 0

7
Ju

ne
 2

01
4

Note that the penalty parameter d used in EM is in accordance with Table 2. We

have used the parameters of PSO [21] and DE [2] as suggested in the respective

references. The summarized results in Table 5 are taken from 20 independent runs on

each problem. Table 5 shows that PSO, on average, is the worst performer amongst

all three algorithms. For example, PSO has produced only the best mf ðxbkÞ for G9

and P3. It has also produced 69 infeasible final solutions, i.e. #xbk =2 �̂, which is the

highest number of the three.
A comparison between EM and DE shows that DE is superior to EM with

respective to #xbk =2 �̂, scoring 33 infeasible final solutions against 43 for EM. In

terms of the average results, mf ðxbkÞ, EM and DE are comparable except for

problem G13. The success rate of DE on G13 is 39%. The DE algorithm often

failed on this problems due to the fact that it got stuck to the corresponding local

minimizer. The local minimum value found for G13 was 0.4388. It is important to

note that EM with dynamic penalty has produced a better success rate than DE

on G13. The success rate of EM on G13 is 44%. Although Table 3 shows a

higher mf ðxbkÞ for EM than that of DE in Table 5, it is due to the fact that a few

runs of EM ended at higher function values than 0.4388. During our numerical

study we observed that all algorithms located two different global minimizers

of G11.
Finally, we compare the average computational times for this study using Table 6

which clearly shows that in most problems EM is the best followed by PSO. DE is

the worse performer with respect to the computational time except for G12. The

comparison clear shows that EM has a role to play in the field of global

optimization.

6. Conclusion

We have used different kinds of penalty functions in order to solve CO problems

with the EM. We have demonstrated that the convergence property of EM holds for

solving constrained problems.
We have studied the performance of the EM with a number of penalty functions

and have shown the good performance of the method using the static and dynamic

penalties. Finally, we have compared the performance of the EM using the static

penalty function with two recent algorithms, namely a PSO and a DE algorithm.

With this comparison, we have established that the EM can be used as a suitable

alternative to many existing methods for solving constrained global optimization

problems.

Table 6. CPU times s.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 P1 P2 P3

EM 3 10 2 2 2 1 4 51 3 3 51 39 2 2 2 51
PSO 6 16 3 4 4 2 7 51 5 5 51 32 4 5 6 2
DE 4 11 6 4 8 2 6 2 4 3 51 24 9 3 6 3

14 M.M. Ali et al.416

D
ow

nl
oa

de
d

by
 [

M
oh

se
n

G
ol

al
ik

ha
ni

]
at

 1
7:

08
 0

7
Ju

ne
 2

01
4

Acknowledgements

We thank the anonymous associate editor and two anonymous referees for their helpful
comments. We also thank Ms Elizabeth Newell from the University at Buffalo for her editorial
comments which improved the presentation of this article.

References

[1] M.M. Ali and M. Golalikhani, An electromagnetism-like method for non-linearly

constrained global optimization, Comput. Math. Appl. 60 (2010), pp. 2279–2285.
[2] M.M. Ali and Z. Kajee-Bagdadi, Local exploration based differential evolution algorithm

for constrained global optimization, Appl. Math. Comput. 208 (2009), pp. 31–48.
[3] M.M. Ali and A. Törn, Population set-based global optimization algorithms: some

modifications and numerical studies, Comput. Oper. Res. 31 (2004), pp. 1703–1725.
[4] S.I. Birbil, Stochastic global optimization techniques, Ph.D. thesis, North Carolina State

University, Raleigh, NC, 2002.
[5] S.I. Birbil and S.-C. Fang, An electromagnetism-like mechanism for global optimization,

J. Global Optim. 25 (2002), pp. 263–282.
[6] S.I. Birbil, S.-C. Fang, and R.-L. Sheu, On the convergence of a population-based global

optimization algorithm, J. Global Optim. 30 (2005), pp. 301–318.
[7] G. Coath and S.K. Halgamuge, A comparison of constraint-handling methods for the

application of particle swarm optimization to constrained non-linear optimization

problems, Proceedings of the 2003 IEEE Conference on Evolutionary Computation,

Vol. 4, Canberra, Australia, 2003, pp. 2419–2725.

[8] D.W. Coit, A.E. Smith, and D.M. Tate, Adaptive penalty methods for genetic optimization

of constrained combinatorial problems, INFORMS J. Comput. 8 (1996), pp. 173–182.

[9] M. Gen and R. Cheng, A survey of penalty techniques in genetic algorithms, Proceedings of

the 1996 International Conference on Evolutionary Computation, Nagoya, Japan, 1996,

pp. 804–809.
[10] A.B. Hadj-Alouane and J.C. Bean, A Genetic algorithm for the multiple-choice integer

program, Oper. Res. 45 (1997), pp. 92–101.
[11] D.M. Himmelblau, Applied Nonlinear Programming, McGraw-Hill, New York, 1972.

[12] R. Horst and P.M. Pardalos, Handbook of Global Optimization, Kluwer Academic

Publishers, Dordrecht, 1995.

[13] J. Joines and C. Houck, On the use of non-stationary penalty functions to solve non-linear

constrained optimization problems with gas, Proceedings of the first IEEE Conference on

Evolutionary Computation, Orlando, Florida, 1994, pp. 579–584.
[14] P. Kaelo and M.M. Ali, Some variants of the controlled random search algorithm for global

optimization, J. Optim. Theory and Appl. 130 (2006), pp. 253–264.
[15] Z. Kajee-Bagdadi, Differential evolution algorithms for constrained global optimization,

M.Sc. thesis, School of Computational and Applied Mathematics, University of the

Witwatersrand, South Africa, 2007.
[16] H. Lu and W. Chen, Self adaptive velocity particle swarm optimization for constrained

optimization problems, J. Global Optim. 41 (2008), pp. 427–445.
[17] D.G. Luenberger, Introduction to Linear and Nonlinear Programming, Addison Wesley,

Boston, MA, 1973.
[18] Z. Michalewicz, D. Dasgupta, R. Le Riche, and M. Schoenauer, Evolutionary algorithms

for constrained engineering problems, Comput. Ind. Eng. 30 (1996), pp. 851–870.
[19] Z. Michalewicz and M. Schoenauer, Evolutionary algorithms for constrained parameter

optimization problems, Evol. Comput. 4 (1996), pp. 1–32.

Optimization 15417

D
ow

nl
oa

de
d

by
 [

M
oh

se
n

G
ol

al
ik

ha
ni

]
at

 1
7:

08
 0

7
Ju

ne
 2

01
4

[20] K. Miettinen, M. Makela, and J. Toivanen, Numerical comparison of some penalty based

constraint handling techniques in genetic algorithm, J. Global Optim. 27 (2003),

pp. 427–446.
[21] K.E. Parsopoulos and M.N. Vrahatis, Particle swarm optimization method for constrained

optimization problems, Front. Artif. Intell. Appl. Ser. 76 (2002), pp. 214–220.
[22] A.M.A.C. Rocha and E.M.G.P. Fernandes, Feasibility and Dominance Rules in the

Electromagnetism-like Algorithm for Constrained Global Optimization, Lecture Notes in

Computer Science, Vol. 5071, Springer-Verlag, Berlin-Heidelberg, 2008, pp. 768–783.
[23] T.P. Runarsson and X. Yao, Stochastic ranking for constrained evolutionary optimization,

IEEE Trans. Evol. Comput. 4 (2000), pp. 284–294.
[24] T.P. Runarsson and X. Yao, Search biases in constrained evolutionary optimization, IEEE

Trans. Syst. Man Cyber. Part C 35 (2005), pp. 223–243.
[25] W.F. Sacco, Private communication, Faculdade de Matematica, Universidade Federal do

Oeste do Para, Brazil, 2011.
[26] A.E. Smith and D.W. Coit, Constraint Handling Techniques – Penalty Functions,

Handbook of Evolutionary Computation, Oxford University Press and Institute of Physics

Publishing, Oxford, 1997.

[27] R. Storn and K. Price, Differential evolution – a simple and efficient heuristic for global

optimization over continuous spaces, J. Global Optim. 11 (1997), pp. 341–359.

[28] J.M. Yang, Y.P. Chen, J.T. Horng, and C.Y. Kao, Applying Family Competition to

Evolution Strategies for Constrained Optimization, Lecture Notes in Computer Science,

Vol. 1213, Springer-Verlag, Berlin-Heidelderg-New York, 1997, pp. 201–211.
[29] O. Yeniay, Penalty function methods for constrained optimization with genetic algorithms,

Math. Comput. Appl. 10 (2005), pp. 45–56.

Appendix

P1: min f ðxÞ ¼ �25ðx1 � 2Þ2 � ðx2 � 2Þ2 � ðx3 � 1Þ2 � ðx4 � 4Þ2 � ðx5 � 1Þ2 � ðx6 � 4Þ2,

subject to

ðx3 � 3Þ2 þ x4
 4,

ðx5 � 3Þ2 þ x6
 4,

x1 � 3x2 � 2,

�x1 þ x2 � 2,

x1 þ x2 � 6,

x1 þ x2
 2,

0 � x1 � 6,

0 � x2 � 6,

1 � x3 � 5,

0 � x4 � 6,

1 � x5 � 5,

0 � x6 � 10:

Optimal solution: f(x*)¼�310, x*¼ (5, 1, 5, 0, 5, 10).

P2: min f ðxÞ ¼
X10
i¼1

xj ci þ ln
xj

x1 þ 	 	 	 þ x10

� �
, subject to

16 M.M. Ali et al.418

D
ow

nl
oa

de
d

by
 [

M
oh

se
n

G
ol

al
ik

ha
ni

]
at

 1
7:

08
 0

7
Ju

ne
 2

01
4

h1ðxÞ ¼ x1 þ 2x2 þ 2x3 þ x6 þ x10 � 2 ¼ 0,

h2ðxÞ ¼ x4 þ 2x5 þ x6 þ x7 � 1 ¼ 0,

h3ðxÞ ¼ x3 þ x7 þ x8 þ 2x9 þ x10 � 1 ¼ 0,

0 � xi � 10, i ¼ 1, . . . , 10:

c¼ ð�6:089,�17:164,�34:054,�5:914,�24:721,�14:986,�24:1,�10:708,�26:662,�22:179Þ

Optimal solution: f(x*)¼�47.764888,

x� ¼ ð0:04066, 0:1477212, 0:7832057, 0:001414339, 0:48529363,

0:000693183, 0:074052, 0:017950966, 0:0373268186, 0:09688446Þ:

P3: min f ðxÞ ¼ �x1 � x2, subject to

g1ðxÞ ¼ x2 � 2x1
4 þ 8x1

3 � 8x1
2 � 2 � 0,

g2ðxÞ ¼ x2 � 4x1
4 þ 32x1

3 � 88x1
2 þ 96x1 � 36 � 0,

0 � x1 � 3,

0 � x2 � 4:

Optimal solution: f(x*)¼-5.5080, x*¼ (2.32952, 3.17849).

Optimization 17419

D
ow

nl
oa

de
d

by
 [

M
oh

se
n

G
ol

al
ik

ha
ni

]
at

 1
7:

08
 0

7
Ju

ne
 2

01
4

