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Figure 1: Curve-based representations of image contours computed by the proposed approach(middle) and by more traditional methods (right). The edge representation on the right hasbeen computed by using the Canny's algorithm implementation of the Matlab's image processingtoolbox.1 IntroductionMany computer vision systems require the estimation of image contours to represent theedges between areas of the image with signi�cantly di�erent intensity values (Fig. 1). Thestandard theory of edge estimation [5, 12, 29] represents edges by means of a collectionof points which are characterized as the maxima of the gradient magnitude of the imageintensity in the direction of the gradient. Although several methods have been proposed tolink these point-like descriptors of edges into curvilinear descriptors [35, 28, 11, 33], a provablycorrect algorithm for the curvilinear representation of edges has never been proposed. By\provably correct" we mean that the algorithm should generate a list of curves such thatevery contour in the image satisfying a suitable data model is approximated by a curve inthe computed list. In a probabilistic framework, this performance requirement has to besatis�ed with high probability.Provably-correct curve-based edge estimation is more di�cult than its point-based coun-terpart since the size of the hypothesis space (i.e. the \volume" of the set of all possibleedge descriptors) is exponential in the image area if curve descriptors are used whereas itis only linear if point descriptors are used. Thus, developing an e�cient (i.e. linear time)provably-correct estimation algorithm for curve-based edge representation is a challenging2



problem. One important assumption that is needed to tackle this problem is that the modelwhich relates image contours to the brightness data is local. More speci�cally, it will beassumed that this model guarantees that every image contour \locally maximizes", in anoise-robust sense, an edginess function �(p; �; s) which can be computed in linear timefrom the brightness image by means of a local and spatially homogeneous procedure. Here,p; �; s denote image location, orientation and scale respectively. The function �(p; �; s) canbe viewed as a generalization of the intensity gradient. More concretely, an image contourneeds to have su�ciently high contrast with respect to the noise amplitude and needs tohave a \well-de�ned" orientation and scale in order to \locally maximize" �(p; �; s). Whenthese detectability conditions occur, the image contour is said to be supported by �.The proposed algorithm for contour estimation is based on a local-to-global strategy inwhich local (i.e. point-like) contour hypotheses are formulated, locally evaluated and �nallycomposed into curvilinear descriptors. These computations are carried out by using a graphdata-structure, called edgel-graph, whose nodes are edgel-vectors, that is triples of the form(p; �; s), (location, orientation and scale). The crucial property to develop a linear timealgorithm is �-compressibility of the edgel-graph. A graph is �-compressible, or compressiblewith accuracy �, if the Hausdor� distance between any two regular paths with the sameend-points is less than �.A more precise description of the proposed algorithm is as follows. 1) Compute an edgel-graph dense enough to contain at least one approximating path near every image contourwith high probability. Typically, since the edgel-graph is computed by means of a localprocedure, this requirement results in an exponential number of approximating paths foreach image contour. 2) For every node of the graph, compute the edginess function �(p; �; s)and the uncertainty functions w(p; �; s), wsc(p; �; s), wor(p; �; s), which, with high probability,provide upper bounds to the contour position, scale and orientation errors (only w(p; �; s) andwsc(p; �; s) are used in the current version of the algorithm). These functions are computedby comparing an intensity model of an ideal edge with the intensity data. 3) Reduce theedgel-graph to an �-compressible one by removing certain arcs where �(p; �; s) is locallyminimum. 4) Finally, compute a complete set of maximally long paths in the reduced graphsuch that any two vertices are connected by exactly one computed path. It can be proven3



that the computed set of paths approximates every image contour with high probabilityaccording to the directed Hausdor� distance.The paper, which focusses on the last two parts of the algorithm just described, is orga-nized as follows. Section 2 reviews related work. Section 3 contains notations and de�nitionsused throughout the paper. Section 4 gives su�cient conditions for compressibility. Section5 contains the de�nition of the algorithm. Section 6 introduces the detectability conditionsand discusses the performance of the algorithm in a probabilistic setting. Section 7 describessome details about the implementation of the algorithm and reports some experimentalresults. The appendices contain material used to prove the theoretical results.2 Previous workThe theoretical analysis of the proposed algorithm is based on an error distance de�ned ona curve representation of contours. Previous work modeled a contour as a set of small inde-pendent fragments which, essentially, reduces edge detection to a one dimensional problem.Optimal linear operators for the estimation of the discontinuity point along the gradienthave been developed for step edges [5, 12], and more complicated brightness models [29].Surface �tting methods have also been proposed [16] which are essentially equivalent tolinear convolution schemes. Substantial work has been done to assess analytically the onedimensional estimation performance of these local edge detectors [32, 31, 18]. However, sincemost of this performance analysis is carried out for point-based models of contours only, thestage of constructing a curve representation from these edge-point fragments is most of thetime rather heuristic, with very little theoretical analysis of the overall performance of thealgorithm. In the end, performance of the algorithm is usually assessed by means of humanjudgment [17].Several other statistical approaches have been proposed for contour estimation and imageanalysis in general [14, 26, 15, 34]. Most of these methods di�er from our statistical approachin that they are based on Bayes' formula. That is, the problem speci�cation must provide aprior density de�ned on the desired representation and a conditional density of the data giventhis representation. Estimation consists then in maximizing the a-posteriori probability of4



the representation given the data. These methods can incorporate global information quitee�ectively but often result in hard optimization problems. Moreover, these approaches do notusually provide information about the probability distribution of the errors. Most variationaland regularization approaches [3, 27, 30, 4] and methods based on criteria such as MinimumDescription Length [22] can also be viewed within this statistical framework.Recently, a statistical approach based on multiscale recursive estimation on trees has beenproposed which yields e�cient algorithms as well as information about the covariance of theerrors [1]. This method has been successfully applied to texture modeling and segmentation.Wavelets provide an important tool to analyze a multiscale signal [24] and wavelet-basedrepresentations can also be used to model non-stationary processes [21].The importance of multiscale representations for contour estimation has been acknowl-edged for a long time. Some multiscale algorithms for edge detection proceed in a coarse to�ne fashion [25, 2, 30] whereas others are more similar to the approach proposed here in thatthey emphasize the importance of detecting all the relevant scales [23], with priority givento the lowest one [13].The proposed algorithm exploits the curvilinear nature of contours to augment the infor-mation provided by brightness variation. Relaxation labeling has also been used successfullyfor this purpose [28] as well as \snake" and curve evolution methods [19, 20, 10].Some of the results in this paper have already been reported and proven within a nonprobabilistic framework, and under the assumption that the scale of the contours is �xedand known [8]. The compressibility condition introduced here is very similar to the stabilityproperty discussed in [7, 8]. The new results presented here generalize the notion of e�cientand reliable curve tracking in a graph so that multiple curves can intersect in the imageplane, provided that they can be separated by some other slowly varying feature (such asscale). The image contour representation obtained by the proposed algorithm can be usedto e�ciently hypothesize corners and junctions [6]. It can also be used as an intermediatestage of a more general hierarchical scheme for edge estimation [9].
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1 23singularityFigure 2: A Y-junction (left) gives rise to three image contours (right). The shaded areasindicate the domains of the image contours, namely the areas of the image where the data isa�ected by the presence of the contour (see Section 6.4). Note that the three domains aredisjoint.3 Notation, terminology and de�nitionsFor our purpose, an image contour is a curvilinear edge in the image which is su�cientlyfar away from singularities such as corners and junctions and which has su�ciently strongbrightness contrast with respect to the noise amplitude (see Fig. 2).An image contour is denoted  and its trace (a subset of R2) is denoted �(). A setof image contours is denoted �. A at contour is an ideal image contour whose trace �()is an in�nite straight line. The noise-less brightness model of a at contour is translationinvariant along the contour. The orientation of a at contour  is denoted :� and the scaleof its brightness model is denoted :s.A contour point hypothesis is represented by a triple v = (p; �; s), called an edgel-vector,where p 2 R2 is a candidate location in the image plane; � 2 [0; 2�] is a candidate contourorientation; and s > 0 is a candidate contour scale. A pair of edgel-vectors a = (v1; v2),called an edgel-arc, represents a contour fragment hypothesis. A set of edgel-vectors, A,is an edgel-graph and its vertices are denoted V (A). A path in an edgel-graph, called anedgel-path, is denoted � and represents a curvilinear contour hypothesis.
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� wsc(v) � wsc(p; �; s): scale uncertainty� Wmax(�) = max fw(v) : v 2 V (�)g: maximum position uncertainty on a path� Wmax(A) = max fw(v) : v 2 V (A)g maximum position uncertainty in the graph� �() � R2 : trace of an image contour� �(a) � R2 : straight line segment between a:v1:p and a:v2:p� �(�) � R2 : the polygonal line with vertices �:v0; : : : ; �:vl� û(v) = (cos v:�; sin v:�): unit versor along v� û?(v) = (sin v:�;� cos v:�): unit versor perpendicular to v� û(a): unit versor parallel to �(a)� p�(v) = v:p� w(v) � û?(v): edgel location displaced to the left� p+(v) = v:p+ w(v) � û?(v): edgel location displaced to the right� �(v) � R2 : straight line segment between p�(v) and p+(v)� � i(a) = �(a:vi), i = 1; 2� pi(a) = a:vi:p; �i(a) = a:vi:�; wi(a) = w(a:vi); etc. i = 1; 2� ��(a) � R2 : lateral (left) segment with end points p�(a:v1), p�(a:v2)� �+(a) � R2 : lateral (right) segment with end points p+(a:v1), p+(a:v2)� �(a) = ��(a) [ �+(a)� �(�) = �(a1) [ : : : [ �(al)� R(a): closed quadrilateral region with vertices p�(a:v1), p�(a:v2),p+(a:v2), p+(a:v1)� R(�) = R(�:a1) [ : : : [R(�:al): attraction basin of �� L�, ��, S�: smoothness parameters of a valid edgel-graph (Def. 5 below)8
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Figure 4: An irregular edgel-path.� X0, �0, �0: accuracy parameters of a covering edgel-graph (Def. 6 below)� X1, X2, �1, �2, S1, S2: parameters used to de�ne the detectability condition (De�ni-tions 10 and 11)� Aj: arcs in A near to  (see Def. 6)� Ldiv = max fdiam(�(a) [ �(a0)) : (a; a0) violate compressibility conditiong3.2 De�nitionsDe�nition 1 (Simple path) A path � is simple if the polygonal line �(�) is homeomorphicto a straight line segment (i.e., if it does not self-intersect).De�nition 2 (Regular path) An edgel-path � is regular if it is simple and if �(�) \�(�:vi) = f�:vi:pg, i = 0; : : : ; l. An edgel-graph is regular if all paths in it are regular.Fig. 4 shows an irregular edgel-path. Notice that an edgel-cycle (or any edgel-path withrepeating vertices) is irregular because �:v0 = �:vl and therefore�(�) \ �(�:v0) = �(�) \ �(�:vl) � f�:v0:p; �:vl:pg :De�nition 3 (Hausdor� distance) For any two sets U1; U2 � R2 , the directed Hausdor�distance from U1 to U2, denoted d(U1 ! U2) is given byd(U1 ! U2) = supp12U1 d(p1 ! U2) = supp12U1 infp22U2 jjp1 � p2jj: (1)The undirected Hausdor� distance is given by:d(U1; U2) = max fd(U1 ! U2); d(U2 ! U1)g : (2)9



De�nition 4 (Compressibility) An edgel-graph A is compressible with accuracy �, or �-compressible, if for any two regular edgel-paths �1, �2 having the same initial vertex and thesame last vertex we have d(�(�1); �(�2)) < �:
De�nition 5 (Valid arc) Let L� > 0, �� 2 [0; �=2], S� > 0 be constants such thatS� < wsc(v); 8v 2 V (A): (3)An edgel-arc a is said to be valid, denoted a 2 validarc(L�;��; S�), ifû(a:v1) � û(a:v2) > cos��; (4)û(a) � û(a:vi) > 0; i = 1; 2; (5)ja:v1:s� a:v2:sj < S�; (6)jja:v1:p� a:v2:pjj < L�; (7)�(a:v1) \ �(a:v2) = ;: (8)A set of arcs A is said to be valid, denoted A 2 validgraph(L�;��; S�), ifa 2 validarc(��; S�; L�); 8a 2 A:
De�nition 6 (Covering graph) Let  be a at contour. Let X0 > 0, �0 2 [0; �=2],S0 > 0 be constants. The graph A is said to cover  with accuracies X0;�0; S0, if thereexists a regular path � in A such thatd(�()! �(�)) < X0; (9)and, for 0 � i � l, d(�:vi:p! �()) < X0; (10)d(�:vi:�; :�) < �0; (11)j�:vi:s� :sj < S0: (12)10



If A covers , the covering sub-graph of , denoted Aj, is given by the set of arcs whosetwo vertices v1 and v2 satisfy (10)-(12).De�nition 7 (Divergent arcs) Let a and a0 be edgel-arcs. We say that a0 is non-divergentin space from a, denoted a0 k a, if �(a) \ �(a0) = ;. If not, then a0 is said to be divergent inspace from a, denoted a0 6 ka.3.3 Notation and de�nitions in scale-spaceFor the following notation refer to Fig. 5.� s�(v) = v:s� wsc(v)� s+(v) = v:s+ wsc(v)� s�i (a) = s�(a:vi), i = 1; 2� s+i (a) = s+(a:vi), i = 1; 2� �sc(v) = [s�(v); s+(v)]� � isc(a) = �sc(a:vi), i = 1; 2� �sc(a) = [a:v1:s; a:v2:s]� Rsc(a) = � 1sc(a) \ � 2sc(a)� �sc(a); ��sc(a); �+sc(a) are de�ned as follows:�sc(a) = 8><>:(� 1sc(a) [ � 2sc(a)) nRsc(a) if Rsc(a) 6= ;R if Rsc(a) = ;: (13)If Rsc(a) is not empty, then �sc(a) is composed of two disjoint connected components,denoted ��sc(a), �+sc(a) and given by:��sc(a) = [min�s�1 (a); s�2 (a)	 ;max�s�1 (a); s�2 (a)	];�+sc(a) = [min�s+1 (a); s+2 (a)	 ;max�s+1 (a); s+2 (a)	];If Rsc(a) = ;, then let ��sc(a) = �+sc(a) = R.11
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Figure 5: Left: Space entities of an edgel-arc a. Right: scale entities of a.De�nition 8 (Divergent arcs) Let a; a0 be two arcs in A. Then� a0 is non-divergent in space from a, denoted a0 k a, if�(a0) \ �(a) = ;; (14)� a0 is non-divergent in scale from a, denoted a0 ksc a, if�sc(a0) \ �sc(a) = ;; (15)De�nition 9 (Overlapping arcs) Let a; a0 be two arcs in A. Then� a0 overlaps a in space, denoted a0 � a, if[a0:v1:p 2 R(a)] _[a0:v2:p 2 R(a)] _��(a0) \ � 1(a) 6= ; ^ �(a0) \ � 2(a) 6= ;� ; (16)� a0 overlaps a in scale, denoted a0 �sc a, if�sc(a0) � Rsc(a) [ �sc(a): (17)

4 Su�cient conditions for compressibilityA compressible graph is one where all paths between two vertices are close to each other.In a compressible graph it is possible to compute, in linear time, a set of paths whichapproximate (according to the directed Hausdor� distance) every other path. This is possible12
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Figure 6: The relationship of a with a01, a02 and a03 is described in the table on the right.For instance, a and a01 are space divergent, space non-overlapping, scale divergent and scalenon-overlapping: a0 6 ka ^ a01 6 �a ^ a0 6 ksca ^ a01 6 �sca.because multiple paths between two vertices in a compressible graph can always be safely\compressed" down to a single path.It turns out that compressibility is a local property of a graph. That is, there exist su�-cient conditions for compressibility which depend only on the geometric relationship of pairsof neighboring arcs. In the �xed scale case, where the scale dimension is projected out, twoarcs are compatible (meaning that they do not violate the compressibility condition) if theyare non-divergent in space (Theorem 2). This rules out the possibility of estimating distinctcontours passing through the same neighborhood. Thus junctions can not be recovered froma compressible graph.In the scale-space generalization (Theorem 4), two arcs are compatible if they are non-divergent in space whenever they overlap in scale (i.e. they have similar scales) and if theyare non-divergent in scale whenever they overlap in space. This makes it possible to estimatedistinct contours passing through the same neighborhood as long as they can be \separated"by using the scale dimension.Whereas the proof of the �xed scale case is simple, the proof of the scale-space general-ization is quite involved and is reported in Appendix B. The following proposition is neededto prove both theorems.Proposition 1 Let � be a regular path in A and let p 2 R(�). Then,d(p! �(�)) < Wmax(�):Theorem 2 (Su�cient condition for compressibility) Let A be a valid edgel-graph. Ifa0 k a; 8(a; a0) 2 A� A; (18)13



then, for any two regular paths �1, �2 in A with the same initial vertex and �nal vertex wehave d(�(�1); �(�2)) < minfWmax(�1);Wmax(�2)g :Corollary 3 If a0 k a, 8(a; a0) 2 A� A, then A is compressible with accuracy Wmax(A).Theorem 4 (Su�cient condition for compressibility, multiscale generalization)Let A be a valid edgel-graph. Ifa0 �sc a =) a0 k a; 8(a; a0) 2 A� A; (19)a0 � a =) a0 ksc a; 8(a; a0) 2 A� A; (20)then, for any two regular paths �1, �2 in A with the same initial vertex and �nal vertex,d(�(�1); �(�2)) < minfWmax(�1);Wmax(�2)g :Corollary 5 If (19), (20) hold then A is compressible with accuracy Wmax(A).Proof of Theorem 2. From (18) we have �(�1) \ �(�2) = ; and �(�2) \ �(�1) = ;. Letv� and vla be the �rst and last vertex of �1 and �2 and let��(�i) = �(�i) n fv�:p; vla:pg ; i = 1; 2:Since the paths �i, i = 1; 2 are regular, we have��(�i) \ �(v�) = ��(�i) \ �(vla) = ;; i = 1; 2:Thus, since the boundary of R(�i) is given by @R(�i) = �(�i) [ �(v�) [ �(vla), we have��(�1) \ @R(�2) = ��(�2) \ @R(�1) = ;:Then, for i = 1; 2, ��(�i) is contained in either R(�i) (where i = i + 1(mod 2)) or inthe complement of R(�i) in R2 . Since A is a valid edgel-graph, from (5) it follows that��(�i) \ R(�i) 6= ;, i = 1; 2, so that ��(�1) � R(�2) and ��(�2) � R(�1). The result thenfollows from Proposition 1. �14
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Figure 7: The three steps of the algorithm (�xed scale case).5 AlgorithmThe proposed algorithm takes as input an edgel-graph A, an edginess function �(p; �; s), alocation uncertainty function w(v) � w(p; �; s) and a scale uncertainty function wsc(v) �wsc(p; �; s). Its output is a set of polygonal lines represented by paths in A. These lines,under appropriate assumptions, approximate all the image contours with high probability(see Theorem 9). The three steps of the algorithm are illustrated in Fig. 7.Step I The �rst step of the algorithm consists in evaluating the four relations k , ksc , � ,�sc on all pairs of edgel-arcs. For each edgel-arc, only nearby edgel-arcs need to be checkedso that this step can be carried out in linear time in the number of arcs (assuming an upperbound on the density of arcs per image area).
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Step II In each pair of arcs violating the compressibility condition, the arc with minimumedginess is marked for removal. The reduced graph, denoted �(A), can easily be shown tobe compressible. This step can also be done in linear time. More precisely, let�(a) = minf�(a:v1); �(a:v2)g (21)and div(a) = fa0 2 A : a0 6 ka ^ a0 �sc ag [ fa0 2 A : a6 ka0 ^ a �sc a0g ; (22)divsc(a) = fa0 2 A : a0 6 ksca ^ a0 � ag [ fa0 2 A : a6 ksca0 ^ a � a0g : (23)Then, the reduced compressible graph �(A) is given by:�(A) = A n Ay; Ay = fa 2 A : 9a0 2 div(a) [ divsc(a); �(a) � �(a0)g : (24)In the �xed scale version of the algorithm we have (compare with Theorem 2):�(A) = A n Ay; Ay = fa 2 A : 9a0 2 div0(a); �(a) � �(a0)g (25)where div0(a) = fa0 2 A : a0 6 ka _ a6 ka0g : (26)Step III A recursive procedure is used to extract, in linear time, one path between anytwo connected pairs of terminal vertices of �(A) (a vertex is terminal if either its out-degreeor its in-degree is zero). By assuming that �(A) is regular, (and hence it does not containany cycle), it is easy to prove that the resulting set of paths, denoted �(�(A)), approximatesevery path in �(A) with accuracyWmax(A) according to the directed Hausdor� distance (seeTheorem 7).More precisely, let Q(v) be the set of paths in �(A) with initial vertex v given by thefollowing recursive equation (assuming that �(A) is regular and does not contain any cycle):Q(v) = 8>>><>>>:fnilg if Aout(v) = ;compress0@ [a2Aout(v) [�2Q(a:v2) a � �1A if Aout(v) 6= ;16



where Aout(v) is the set of arcs incident from v; a�� denotes the path obtained by prependingthe arc a to �; compress(P ), for any set of paths P , is a subset of P obtained by selectinga unique representative among all paths with the same end-points. Then let�(�(A)) = [v2V0(�(A))Q(v); (27)where V0(�(A)) denotes the set of vertices in �(A) with zero in-degree. The set �(�(A))can be further compressed by choosing the longest path in each collection of paths havingone end-point in common.5.1 ResultsProposition 6 �(A) is compressible with accuracy Wmax(A).Proof. For simplicity, we prove the result in the �xed scale case. The more general proofis similar. Let a; a0 be two edgel-arcs in A such that a0 2 div0(a), i.e. a0 6 ka _ a6 ka0. Let usassume, without loss of generality, that �(a) � �(a0). Since a0 2 div0(a), from (25) we havea 2 Ay and therefore a =2 �(A). Hence, for every pair of edgel-arcs a; a0 2 �(A), a0 k a,that is, �(a) \ �(a0) = ;. Then from Corollary 3, it follows that �(A) is compressible withaccuracy Wmax(A). �Theorem 7 If �(A) is regular then for any path � in �(A) there exists a path �̂ 2 �(�(A))such that d(�(�)! �(�̂)) < Wmax(A).Proof. Let � be a path in �(A). Since �(A) is regular and does not contain any cycle,� is a sub-path of some maximal regular path �0 in �(A) whose end-points v�, vla, areterminal vertices. By de�nition, �(�(A)) contains one path �̂ from v� to vla. Since �(A)is compressible with accuracy Wmax(A) we have d(�(�0); �(�̂)) < Wmax(A). Then, from�(�) � �(�0), it follows that d(�(�)! �(�̂)) < Wmax(A). �
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6 Performance analysis6.1 Assumption on the edgel-graph AIn order for the proposed algorithm to be able to estimate a set � of image contours, theedgel-graph A must satisfy two requirements:� it has to be valid (see Def. 5);� it must cover every image contour  2 � (see Def. 6).These two requirements involve six parameters: L�, ��, S�, X0, �0, �0. The �rst one, L�,is the maximum allowed distance in the image plane between two consecutive vertices in apath. Similarly, �� and S� are the maximum orientation change and the maximum scalechange between two consecutive vertices. The other three parameters, X0, �0 and �0 arethe accuracies with which the image contours � are covered by A.In principle, one can construct an edgel-graph A satisfying these requirements by sam-pling densely enough the space of edgel-vectors R2�[0; 2�]�[0;1] and by connecting all pairsof edgel-vectors which form a valid edgel-arc. This construction yields a valid edgel-graphwhich covers all image contours with bounded curvature whose scale parameter changesslowly enough along the contour. Such an edgel-graph will be said to be fully dense.In practice, to reduce computational costs, a much smaller edgel-graph A, derived fromthe brightness image, has to be used. It will be assumed that A is rich enough to cover eachimage contour  2 � with high probability. Clearly, a trade-o� exists between the complexityof A and the probability of covering the contours �. More precisely, we are going to assumethat the probability that A covers � with accuracies X0, �0, �0 is given byexp�� `(�)�(X0;�0;�0)� (28)where `(�) is the total length of the contours in �. This formula states that the violationof the covering condition is a Poisson process indexed by the arc-length of each contour andthat the image contours in � are independent from each other. This latter assumption issatis�ed if we assume that image contours are su�ciently distant from each other, namelyif their domains are disjoint. 18



6.2 The detectability conditionAn important result of the work presented here is the de�nition of a su�cient conditionwhich guarantees that image contours can be recovered in linear time from a given edginessfunction �(p; �; s). Roughly speaking, this su�cient condition requires that �(p; �; s) belocally maximum near image contours in a sense which takes into account the fact thatthe location of the maxima of �(p; �; s) uctuate around their ideal position due to noise.Furthermore, the uncertainty functions w(p; �; s) and wsc(p; �; s) must provide su�cientlyaccurate upper bounds to the amount of uctuation of these maxima. An image contourwhich locally maximizes � is the above sense is said to be supported by �. The precisede�nition of this detectability condition requires the introduction of more parameters : X1,X2, �1, �2, S1, S2, which must satisfy certain constraints (see (29)-(31) and (45)-(46)).Roughly speaking, the detectability condition is as follows:� The edginess function �(p; �; s) is larger in the X0-neighborhood of  than it is at asuitable range of distances from , denoted [X1; X2]. A similar property is needed inthe orientation and scale dimensions. That is, �(p; �; s) must be su�ciently low when� 2 [�1;�2] and when s 2 [S1; S2].� The uncertainty estimates w(p; �; s) and wsc(p; �; s) are upper bounds on the displace-ment of the maxima of �(p; �; s) from the true position and scale parameter of thenearest image contour.More precisely, in �xed scale case, the condition is as follows:De�nition 10 (detectability condition) Let X1; X2;�1 be such that�0 < �1; (29)X0 < X1 < cos �12 Wmin(A); (30)X2 > X1 +max fL�;Wmax(A)g : (31)
19



An image contour  is said to be supported by the edginess function �(p; �; s) if for anyp; �; s and p0, �0, s0 we have �(p; �; s) > �(p0; �0; s0) wheneverd(p! �()) � X0; (32)d(�; :�) � �0; (33)js� :sj � S0; (34)jjp0 � pjj � Ldiv; (35)and at least one of the two following conditions hold trued(p0 ! �()) 2 [X1; X2]; (36)d(p0; �()) � X1 ^ d(�0; :�) 2 [�1; 2�]: (37)
6.3 Results on the detectability of image contoursFrom Theorem 7, it follows that an image contour  covered by A is going to be detectedcorrectly if the reduced compressible graph �(A) also covers . The following results guaran-tees that the condition introduced in Def. 10 is su�cient for this to happen. The multiscalegeneralization is given by Theorem 10 in Section 6.5.Let Ldiv be the maximum distance between any two points p 2 �(a), p0 2 �(a0), over allarc pairs (a; a0) 2 (A� A) which violate the compressibility condition.Theorem 8 (Preservation of covering arcs) Let A 2 validgraph(L�;��; S�). Let  bea at contour covered by A and supported by � according to Def. 10. Let �(A) be given by(25). Then Aj � �(A).Proof. Let  be a at contour which satis�es the detectability condition. From (25), wehave to prove that �(a) > �(a0) for every a 2 Aj and a0 2 div0(a). Let then a 2 Aj anda0 2 div0(a). One needs to prove that for every i 2 f1; 2g there exists j 2 f1; 2g such that�(pi(a); �i(a); si(a)) > �(pj(a0); �j(a0); sj(a0)):20



A stronger statement will be proven, namely that there exists j 2 f1; 2g for which thisinequality holds for both i 2 f1; 2g. Let us make the following substitutions in (32)-(37):p = pi(a); � = �i(a); s = si(a); p0 = pj(a0); �0 = �j(a0); s0 = sj(a). Notice that since a 2 Ajwe have that (32)-(34) hold with the above substitutions for i = 1; 2. Furthermore, fori = 1; 2 and j = 1; 2, we have jjpi(a)� pj(a0)jj � Ldiv from the de�nition of Ldiv. Thus, bothvertices of a satisfy (32)-(35). It remains to prove that at least one of the two vertices of a0satis�es either (36) or (37). First, let us assume thatd(pj(a0)! �()) � X1 =) d(�j(a0); :�) < �1; j = 1; 2; (38)so that condition (64) of Proposition 12 (in Appendix A) holds true. Then, from Proposition12 it follows that one of the two vertices of a0 satis�es (36). Let then assume that (38) is false,namely that there exists j 2 f1; 2g such that d(pj(a0)! �()) � X1 and d(�j(a0); :�) � �1.Then (37) is satis�ed by a0:vj. �6.4 Probability of mis-detectionTo �nd an expression for the probability of mis-detecting a set of image contours, let usconsider the �xed scale case and let us assume that the uncertainty function w is constant,w(p; �; s) � W . Let us assume that the edginess function �(p; �; s) � �(p; �) in the neigh-borhood of a at image contour is given by:�(p; �) =  (d(p! �()); d(�; :�)) + �(p; �); (39)where  : [0;1] � [0; �] ! R is a monotonically decreasing function of both variables and�(p; �) is noise. Let (p; �) be an edgel-vector which satis�es conditions (32) and (33) ofTheorem 8 (condition (34) can be ignored). Let x denote the distance from p to �() and let� = d(�; :�). See Fig. 8 for the notation. A violation of the detectability condition occursif there exists (p0; �0) such that �(p0; �0) � �(p; �); jjp0 � pjj � Ldiv and either x0 2 [X1; X2]or x0 < X1 ^ �0 > �1, where x0 = d(p0 ! �()) and �0 = d(�0; :�). By using (39),�(p0; �0) � �(p; �) can be rewritten as�(p0; �0)� �(p; �) �  (x; �)�  (x0; �0): (40)21



p0�0�0p0
X0 X1 X2px x0�x0

Figure 8: Violation of the detectability condition. One instance of (p0; �0) is such that x0 2[X1; X2]. The other one satis�es x0 < X1 and �0 > �1.Since  is a decreasing function and x < X0, � < �0, we have  (x; �) >  (X0;�0). Similarly,x0 2 [X1; X2] =)  (x0; �0) <  (X1; 0) and x0 < X1 ^ �0 > �1 =)  (x0; �0) <  (0;�1).Let P xerr(X1) be the probability that there exists p0; �0 such that�(p0; �0)� �(p; �) �  (X0;�0)�  (X1; 0):Similarly, let P �err(�1) be the probability that there exists p0; �0 such that�(p0; �0)� �(p; �) �  (X0;�0)�  (0;�1):Then, the probability that the detectability condition is violated at a speci�c point along thecontour is upper bounded by P xerr(X1)+P �err(�1). Notice that, since  (X0;�0)� (X1; 0) > 0and  (X0;�0)�  (0;�1) > 0, in the limit where the variance of the noise goes to zero, theerror probability P xerr(X1)+P �err(�1) also goes to zero. Thus, in the noise-free limit case, thealgorithm correctly detects all the image contours covered by A.Recall that the Theorem 8 holds for anyX1; X2;�1 satisfying (29)-(31). Since we assumedthat the uncertainty function w is constant let us substitute Wmin(A) = Wmax(A) = W in(29)-(31). Furthermore, let us assume that L� is chosen small enough so that L� < W .Then, for any �xed X2 and W , let us minimize P xerr(X1) + P �err(�1) over all X1 and �1satisfying (29)-(31) and let Perr(W;X2) be the optimal error upper bound. Notice that W isthe accuracy error with which contours are reconstructed (compare with Theorem 7) and X2is the maximum distance from the contour �() at which the edginess function is requiredto obey the contour model (39). The X2-neighborhood of �() is the domain of .22
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Figure 9: Three di�erent ways a T-junction might be approximated by the algorithm.If the image contains a set of image contours �, then the domains of these contours mustbe disjoint so that the edginess function inside each domain is inuenced by exactly onecontour model (compare with Fig. 2). Such a set of contours is said to be independent.We assume that the violation of the detectability condition is a Poisson process indexedby the contour's arc-length. Thus, if � is a set of independent contours covered by the inputedgel-graph A, an upper bound to the probability of violating the detectability condition(and of mis-detecting �) is given by:1� exp�� `(�)Lcorr logPerr(W;X2)� ; (41)where Lcorr is a \correlation length" parameter.By putting together Theorem 7 and Theorem 8, and assuming that the probabilities ofviolating the covering condition and the su�cient condition of Theorem 8 are given by (28)and (41) respectively, we have the following theorem, which holds under all the assumptionsmade in this section.Theorem 9 Let � be an independent set of image contours in the image. If �(A) is regularthen, with probability at leastexp�� `(�)�(X0;�0;�0) � `(�)Lcorr logPerr(W;X2)� ;for every  2 � there exists �̂ 2 �(�(A)) such that d(�()! �(�̂)) < X0 +W .Notice that in the noise-free limit case, and if A is fully dense, then the above probabilityestimate converges to one. Notice also that since the directed Hausdor� distance has beenused to measure the error, the approximating path �̂ can be longer than the actual imagecontour  (see Fig. 9). 23



6.5 Detectability in scale-spaceThe following result is a generalization of Theorem 8 to the multiscale case. LetLdiv = maxa2A maxa02div(a)[divsc(a) maxi;j2f1;2g jjpi(a)� pj(a0)jj; (42)S3 = max maxa2Aj maxa02div(a) maxi2f1;2g jsi(a0)� :sj; (43)X3 = max maxa2Aj maxa02divsc(a) maxi2f1;2g d(pi(a0)! �()): (44)De�nition 11 (detectability condition, multiscale generalization) Let S1; S2 be pos-itive constants such that S1 � Wminsc (A)� S� � S0; (45)S2 � Wmaxsc (A) + S� + S0; (46)and let X1; X2;�1 be such that (29)-(31) hold. An image contour  is said to be supportedby the edginess function �(p; �; s) if for any p; �; s and p0; �0; s0 we have �(p; �; s) > �(p0; �0; s0)whenever d(p! �()) � X0; (47)d(�; :�) � �0; (48)js� :sj � S0; (49)jjp0 � pjj � Ldiv; (50)and at least one of the following three sets of conditions holdd(p0 ! �()) 2 [X1; X2]; (51)js0 � :sj � S3; (52)js0 � :sj 2 [S1; S2] (53)d(p0 ! �()) � X3; (54)d(p0 ! �()) � X1; (55)d(�0; :�) 2 [�1; 2�]; (56)js0 � :sj � S3: (57)24



Theorem 10 (Preservation of covering arcs, multiscale generalization) Let A 2validgraph(L�;��; S�). Let  be a at contour covered by A and supported by � accordingto Def. 11. Let �(A) be given by (24). Then Aj � �(A).Proof. The proof is similar to the proof of Theorem 8. Let  be a at contour for which themultiscale detectability condition is satis�ed. From (24), we have to prove that �(a) > �(a0)for every a 2 Aj and a0 2 div(a) [ divsc(a). Let then a 2 Aj and a0 2 div(a) [ divsc(a).One needs to prove that for every i 2 f1; 2g there exists j 2 f1; 2g such that�(pi(a); �i(a); si(a)) > �(pj(a0); �j(a0); sj(a0)):Notice that (47)-(50) are identical to (32)-(35) of Theorem 8. If a0 2 div(a) (and thereforea0 2 div0(a)) then the results follows immediately from Theorem 8 because (52) and (57) fol-low from (43) and therefore the trigger condition (51)^(52) implies (36) and (55)^(56)^(57)implies (37). Let then a0 2 divsc(a). It is su�cient to prove that for each vertex i of a thereexists a vertex j of a0 which satis�es the trigger condition (53)^(54). (54) follows immedi-ately from (44) for j = 1; 2. From a0 2 divsc(a) it follows that a0 6 ksca _ a6 ksca0. Hence, fromthe corollary of Lemma 18 in Appendix C, we have that for each i there exists j such thatjsi(a)� sj(a0)j 2 [wminsc (a; a0)� S�; wmaxsc (a; a0) + S�] � [Wminsc � S�;Wmaxsc + S�]:Since a 2 Aj, we have that jsi(a)� s:j < S0, i = 1; 2, and thereforejsj(a0)� :sj 2 [Wminsc � S� � S0;Wmaxsc + S� + S0]:From (45) and (46) it follows then that jsj(a0)� :sj 2 [S1; S2]. �7 Implementation details and experiments7.1 Computation of an edgel-graphOne possible method to compute an edgel-graph A which covers contours with high prob-ability is to use a traditional point-based edge detector run at several scales and with verypermissive thresholds. The speci�c method used in our implementation is a variant of the25



facet-model edge detector [16] and is based on a cubic polynomial approximation, �̂(x), ofthe brightness model across a contour, �(x), which is assumed to be a step discontinuitysmoothed with a gaussian �lter of variance s:�(x) = b1 + (b2 � b1) � 1p2� Z x=s�1 e� 12u2du; (58)where x denotes the signed distance from the contour. Initially, for each region, a linearbrightness model is used to estimate the local orientation of the contour. Then, a cubicbrightness model, representing the Taylor expansion of (58), is �tted to a larger rectangularregion (aligned to the estimated orientation of the contour) to re�ne the estimate of thelocation of the contour and to estimate the scale s and the brightness intensities b1; b2. Therectangular regions used for the cubic �t are three pixel long in the direction of the contourand 2l? wide across the contour. Three values of the parameter l? have been used: 2, 4 and6. Then, every pair of valid edgel-vectors is connected with an arc. The second column ofFig. 11 shows two examples of an edgel-graph computed in this way.7.2 Edginess functionThe edginess function �(p; �; s) is computed by least-square �tting the 2D generalization ofthe brightness contour model (58), denoted �(p0jp; �; s; b1; b2), to the observed image I(�) ina rectangular region R(p; �; s) centered at p, with orientation �, height equal to 3 pixels andwidth equal to 4s. Then, �(p; �; s) is de�ned as minus the residual of the optimal �t:�(p; �; s) = �minb1;b2 1jR(p; �; s)j �ZR(p;�;s)(I(p0)� �(p0jp; �; s; b1; b2))2dp0� 12 : (59)Since �(p0jp; �; s; b1; b2) is a linear function of b1 and b2, the minimization in (59) canbe performed by linear convolution with two appropriate �lters, which depend on � and s.Notice that, if a gaussian noise model is assumed, and the proper normalization is chosen,then the quantity in (59) is proportional to the likelihood that a contour with orientation �and scale s passes through the point p, maximized over the nuisance parameters b1 and b2.The behavior of �(p; �; s) near a contour in the absense of noise is illustrated in Fig. 10.26
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log sFigure 10: Sections of the function  (x; 0; s), where:  (x; �; s) denotes the edginess functionevaluated near a at contour  such that :� = 0, :s = 1 and whose brightness model is givenby (58) with b1 = �1, b2 = 1; x denotes the distance to . Left:  (x; 0; s) as function of x.Right:  (x; 0; s) as a function of log s.7.3 Experimental resultsFig. 11 shows the polygonal lines obtained by the �xed scale version of the proposed al-gorithm. The results are compared with the output of Canny's algorithm, as implementedby Matlab's image processing toolbox. The function w(v) has been set to 0:75 pixels ev-erywhere. After experimenting with several images, we found, quite surprisingly, that thisvalue is nearly optimal for most images we tested on. Since the observed value of X0 is asmall fraction of a pixel, the bound on the localization error (see Theorem 9) is about onepixel. Computation time for the current implementation is a few milliseconds per pixel.8 Conclusions and future workE�cient computation of a curvilinear representation of the edges in an image is a challengingproblem from a theoretical perspective because of the exponential size of the hypothesisspace. An approach based on the notion of compressibility of a graph has been proposed todeal with curve estimation in a theoretically sound way and a speci�c contour model together27



Data A �(�(A)) Canny's edgesFigure 11: Polygonal approximations of image contours. The gray value intensity in �(�(A)) isproportional to the local brightness contrast. The blur scale parameter used in each experimenthas been chosen to maximize the quality of the result (columns 3 and 4).
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with an estimation algorithm have been proposed to solve the problem in a multiscale setting.Probabilistic analysis of the performance has been carried out under certain probabilisticassumptions on the detectability condition. In the noise-free limit case, the image contours inthe model class are recovered with probability one with an upper bound on the approximationerror, measured by the directed Hausdor� distance.On the experimental side, the results are mixed. In fact, whereas on some images theperformance of the proposed algorithm compares favorably with existing methods, the extracomplication of the algorithm needed to make it theoretically sound does not seem to payo� at the experimental level. However, the multiscale algorithm has not yet been fully im-plemented and therefore it is premature to draw a de�nitive conclusion. A possible situationwhere there might be some practical gains is when an automatic scale selection mechanism isneeded. In fact, the proposed algorithm includes curvilinear constraints in the determinationof the scale of the contours.
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A Result needed for the proof of Theorem 8For any at contour  and X > 0, let NX() be the neighborhood of  of radius X:NX() = �p 2 R2 : d(p! �()) � X	 :The following proposition has been proven in [8] (see Lemma 1 in [8]).Proposition 11 Let  be a at contour; let a 2 A be such thatpi(a) 2 NX1(); i = 1; 2; (60)d(�i(a); :�) < �1; i = 1; 2 (61)2X1cos�1 < wi(a); i = 1; 2; (62)X2 �X1 > wi(a); i = 1; 2: (63)Then, �+(a) [ ��(a) � NX2() nNX1().By using this proposition, one can prove the following result. The proof is similar to theproof of Proposition 4 in [8].Proposition 12 Let  be a at contour and let a 2 Aj. Let a0 2 div0(a) be such thatd(pi(a0)! �()) � X1 =) d(�i(a0); :�) < �1; i = 1; 2: (64)If �0 < �1; (65)X0 < X1 < cos�12 �minfw1(a); w2(a); w1(a0); w2(a0)g ; (66)X2 > X1 +max fjjp2(a0)� p1(a0)jj; w1(a); w2(a); w1(a0); w2(a0)g ; (67)then there exists p0 2 fp1(a0); p2(a0)g such thatd(p0 ! �()) 2 [X1; X2]: (68)30
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Figure 12: An edgel-path � composed of three arcs a1; a2; a3. Left: the edgel-path's entities inthe image plane. Right: the edgel-path's entities on the scale axis.B Proof of Theorem 4De�nition 12 A graph for which (19) and (20) hold is said to be separated.More explicitly, a graph is separated whenever the following conditions are satis�ed:(S1) If p1(a0) 2 R(a) or p2(a0) 2 R(a) then �sc(a0) \ �sc(a) = ;:(S2) If �(a0) \ � 1(a) 6= ; and �(a0) \ � 2(a) 6= ; then �sc(a0) \ �sc(a) = ;:(S3) If �sc(a0) � Rsc(a) [ �sc(a) then �(a0) \ �(a) = ;:For any regular edgel-path � with arcs (a1; : : : ; an) let��sc(�) = n[i=1��sc(a);�+sc(�) = n[i=1�+sc(a);and let �sc(�) = ��sc(�) [ �+sc(�). Notice that ��sc(�) and �+sc(�) are connected sets (see Fig.12).Proposition 13 (Fig. 12) Let � be a regular edgel-path with arcs (a1; : : : ; an), n � 1, andlet a0 = (v01; v02) be an edgel-arc such that �sc(a0) \ �sc(�) = ; andfv01:s; v02:sg \ n[i=1Rsc(ai) 6= ;:31



Then, �sc(a0) � n\i=1Rsc(ai): (69)Proof. Without loss of generality, let v01:s 2 [ni=1Rsc(ai) and let k be such that v01:s 2Rsc(ak), 1 � k � n. Since ��sc(ak) � Rsc(ak), namely all the real numbers in ��sc(ak) are lessor equal to any real number in Rsc(ak), from v01:s 2 Rsc(ak) it follows that ��sc(ak) � v01:s.Thus, since v01:s 2 �sc(a0) and �sc(a0) \ ��sc(ak) = ;, we have ��sc(ak) < �sc(a0). Therefore,since ��sc(ak) � ��sc(�) and ��sc(�) is a connected set, from �sc(a0) \ ��sc(�) = ; it follows that��sc(�) < �sc(a0). Similarly, �sc(a0) < �+sc(�). Thus ��sc(ai) < �sc(a0) < �+sc(ai), i = 1; : : : ; n,that is, �sc(a0) 2 Rsc(ai), i = 1; : : : ; n. �The following notation will be used when dealing with properties and assumptions holdingfor sets of integers. The set of integers i such that i � k and i � k is denoted fk; : : : ; lg.If l < k then this set is empty and therefore a property which holds true 8i 2 fk; : : : ; lgis always true if l < k. The notation i = k; : : : ; l is equivalent to k � i � l and thereforerequires that k � l.Proposition 14 (Fig. 13) Let � be a regular path with arcs (a1; : : : ; an), n � 1, in a sepa-rated edgel-graph A and let a0 = (v01; v02) 2 A be an arc such that v01:p 2 R(a1), v01:s 2 Rsc(a1)and (Fig. 13(a)) �(a0) \ �h(ai) 6= ;; h = 1; 2; 8i 2 f2; : : : ; n� 1g : (70)Then, �sc(a0) � n�1\i=1 Rsc(ai): (71)Furthermore, if v02:p 2 R(an) (Fig. 13(b)),�sc(a0) � n\i=1Rsc(ai): (72)Proof. From the separation condition (S1) and v01:p 2 R(a1) we have�sc(a0) \ �sc(a1) = ;: (73)32
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Figure 13: Proposition 14.If n � 3, from (70) and the separation condition (S2) we have�sc(a0) \ �sc(ai) = ;; i = 2; : : : ; n� 1 (74)which, together with (73), yields�sc(a0) \ �sc(ha1; : : : ; an�1i) = ;; n � 2; (75)where ha1; : : : ; an�1i denotes the edgel-path with arcs a1; : : : ; an�1. Then, (71) follows from(75) and Proposition 13.To prove the second part, let v02:p 2 R(an). Then, from the separation condition (S1)we get �sc(a0) \ �sc(an) = ; and therefore, by combining this with (75), it follows that�sc(a0) \ �sc(�) = ; which, by Proposition 13 implies (72). �For any regular edgel-path � and any p 2 R(�) let R�sc(p) = Rsc(a); where a is the uniquearc in � such that p 2 R(a).Proposition 15 (Fig. 14) Let �, �0 be regular paths in a separated edgel-graph A such that�(�0) � R(�) and v01:s 2 R�sc(v01:p) where v01 is the �rst vertex of �0. thenv0:s 2 R�sc(v0:p)for every vertex v0 of �0.Proof. First, let's assume that �0 consists of one arc a0 = (v01; v02). Let a1; : : : ; an be the arcsof �. Let k; l be such that v01:p 2 R(ak) and v02:p 2 R(al). Without loss of generality, let's33



ak alv01 �0v02 �R(ak)
Figure 14: Proposition 15.assume that l � k (otherwise, interchange v01 with v02 in the argument). Notice that, since�(�0) � R(�), �(a0) \ �h(ai) 6= ;; h = 1; 2; 8i 2 fk + 1; : : : ; l � 1g :Thus, from the second part of Proposition 14 applied to the edgel-path hak; : : : ; ali,�sc(a0) � Rsc(al)from which v02:s � Rsc(al) = R�sc(v02:p):For paths with more than arc the result follows by recursion. �Proposition 16 (Fig. 15) Let � be a regular path with arcs (a1; : : : ; an), ai = (vi; vi+1) ina separated edgel-graph A. Let a0 = (v01; v02) 2 A. If v01:p 2 R(�) and v01:s 2 R�sc(v01:p) then�(a0) \ �(�) = ;.Proof. Let k be such that v01:p 2 R(ak). For the purpose of contradiction, let �(a0)\�(�) 6= ;and let al be the �rst exit arc for �(a0). That is, �(a0) \ �(al) 6= ; and�(a0) \ �(ai) = ;; 8i 2 fk; : : : ; l � 1g ; (76)where we have assumed for simplicity that k � l. From the separation condition (S3), it issu�cient to prove that �sc(a0) � Rsc(al) [ �sc(al): (77)34
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alR(ak)

�+(al)� vlvl�1 al�1 vl+1a0
Figure 15: Proposition 16. The shown geometric con�guration, namely �(a0) \ �(�) 6= ;, isprohibited by the proposition.Note that from v01:s 2 R�sc(v01:p) = Rsc(ak) and the separation condition (S1) it follows that�sc(a0) � Rsc(ak): (78)Thus (77) holds if k = l. If l � k + 1, we will �rst prove that�sc(a0) � Rsc(al�1): (79)If l = k + 1 then (79) follows immediately from (78). If l � k + 2 then from (76) we have�(a0) \ �h(ai) 6= ;; h = 1; 2; i = k + 1; : : : ; l � 1which, together with the �rst part of Proposition 14, proves (79) for l � k + 2. Then, sinceRsc(al�1) = �sc(vl�1) \ �sc(vl), from (79) we have�sc(a0) � Rsc(al�1) � �sc(vl) � (�sc(vl) [ �sc(vl+1)) = Rsc(al) [ �sc(al): �For any edgel-path �, let �(�) � �(v�) [ �(vla) where v� and vla and the �rst and lastvertex of �. Let R�(�) denote the interior of R(�) and let ��(�) denote the interior of thepolygonal line �(�), namely �(�) less its two end-points.Proposition 17 (Fig. 16) Let �, �0 be paths in a separated edgel-graph A such that v0:p 2R(�) and v0:s 2 R�sc(v0:p) where v0 is a vertex of �0. If ��(�0)\�(�) = ; and �(�0)\R�(�) 6= ;,then �(�0) � R(�)and v0i:s 2 R�sc(v0i:p) for all the vertices v0i of �0.35



� ajv0 v0k a0k�+(�)�0 �(�)�(�)
Figure 16: Proposition 17. The situation shown, namely �(�0) 6� R(�), is prohibited by theproposition.Proof. For the purpose of contradiction let us assume that �(�0) 6� R(�). Since R(�) is aclosed set, then ��(�0) must contain a point outside R(�). Then, since ��(�0) \ R�(�) 6= ;,it follows that ��(�0) must intersect the boundary of R(�), which is given by �(�) [ �(�).Since ��(�0) \ �(�) = ; we must have ��(�0) \ �(�) 6= ; and therefore �(�0) \ �(�) 6= ;. Forsimplicity let us assume that v0 is the �rst vertex of �0, and that �(a01) \ R�(�) 6= ;. Let a0kbe the �rst arc in the path �0 such that �(a0k) \ �(�) 6= ;. First, let us prove thatv0k:s 2 R�sc(v0k:p): (80)If k = 1 then this follows immediately from v01:s 2 R�sc(v01:p). If k > 1 we have �(�00) � R(�)where �00 is the subpath with arcs a01; : : : ; a0k�1 and vertices v01; : : : ; v0k. Then (80) followsfrom Proposition 15. From (80) we have v0k:s 2 Rsc(aj) where j is such that v0k:p 2 R(aj).Then, by substituting a0k = (v0k; v0k+1) for (v01; v02) in Proposition 16 one gets �(a0k)\�(�) = ;which is a contradiction.Proof of Theorem 4. Let v� and vla be the �rst and last vertex of �1 and �2. Clearly,v�:p 2 R(�1) and v�:s 2 R�1sc (v�:p). Since �1 and �2 are regular paths, it follows that��(�2)\�(�1) = ;, where �(�1) denotes �(v�)[�(vla). From (5) we have that �(a01)\R�(�1) 6=; where a01 is the �rst arc of �2. Then, from Proposition 17,�(�2) � R(�1):Similarly, by interchanging �1 with �2 in the above argument,�(�1) � R(�2):The result then follows from Proposition 1. �36



w1s2(a) = t2 ss1(a) = t1 �+sc(a)��sc(a) z
�2sc(a) �1sc(a) �sc(a0)�sc(a)w2

Figure 17: Some notation for the proof of Lemma 18. z denotes a point in �sc(a0) \ �sc(a).C Lemma for Section 6.5For any a = (v1; v2) 2 A letwminsc (a) = minfwsc(v1); wsc(v2)g ; (81)wmaxsc (a) = max fwsc(v1); wsc(v2)g : (82)Lemma 18 (Fig. 17) Let a; a0 2 A be such that a0 6 ksca andjs1(a)� s2(a)j < S�; (83)js1(a0)� s2(a0)j < S�: (84)Then, 8j 2 f1; 2g ; 9i 2 f1; 2g ; jsj(a0)� si(a)j 2 [wminsc (a)� S�; wmaxsc (a) + S�] (85)8i 2 f1; 2g ; 9j 2 f1; 2g ; jsj(a0)� si(a)j 2 [wminsc (a)� S�; wmaxsc (a) + S�] (86)Proof. From a0 6 ksca it follows that �sc(a0) \ �sc(a) 6= ;;that is, �sc(a0) \ �(� 1sc(a) [ � 2sc(a)) n (� 1sc(a) \ � 2sc(a))� 6= ;:Therefore, there exists z 2 �sc(a0) such that z belongs to one of the two intervals � isc(a) butnot to the other. Without loss of generality, let then z 2 � 1sc(a), z =2 � 2sc(a) (see Fig. 17), thatis, by letting t1 = s1(a), t2 = s2(a),jz � t1j � w1sc(a); jz � t2j � w2sc(a); (87)37



from which, jz � t1j � wmaxsc (a); jz � t2j � wminsc (a): (88)Since jt1 � t2j < S� by assumption, (88) yields, by letting w1 = wminsc (a), w2 = wmaxsc (a),w1 � S� < jz � t1j � w2;w1 � jz � t2j < w2 + S�: (89)Let's introduce the two functions �i(s0) = js0 � tij, i = 1; 2. We havew1 � S� < �1(z) � w2; (90)w1 � �2(z) < w2 + S�: (91)Notice that j�i(x)� �i(x0)j < jx� x0j; 8x; x0 2 R; i = 1; 2; (92)Also, since jt1 � t2j < S�, j�1(x)� �2(x)j < S�; 8x 2 R: (93)To prove (85) let's �x t0k 2 ft01; t02g = fs1(a0); s2(a0)g. Since jt01 � t02j < S� and z 2�sc(a0) = [t01; t02], we have jt0k � zj < S� and therefore, from (92),j�1(t0k)� �1(z)j < S�; (94)j�2(t0k)� �2(z)j < S�: (95)These, together with (90) and (91) yield�1(t0k) < w2 + S�; (96)w1 � S� < �2(t0k): (97)These two inequalities and j�1(t0k)� �2(t0k)j < S� (which comes from (93)), imply that �1(t0k)and �2(t0k) can not be both outside the interval [w1 � S�; w2 + S�], which proves (85).To prove the second part, let's �x tk 2 ft1; t2g = fs1(a); s2(a)g. If k = 1, then let t0lbe the point in ft01; t02g where the function �1 is greater or equal to �1(z) (one of the two38



w1 st2 zt0lt2 + S� t2+w1�2(z)S� <S�Figure 18: Lemma 18: existence of t0l such that �2(t0l) � �2(z).points has this property because z 2 [t01; t02]; notice that t0l is the point in ft01; t02g furthestaway from t1). Thus, �1(z) � �1(t0l) < �1(z) + S� (the second inequality follows from(92) and jz � t0lj � jt1 � t2j < S�). Then, from (90) we have that �1(t0l) is in the interval[w1 � S�; w2 + S�].Let now k = 2. From (91) and (3) we have �2(z) = jz � t2j � w1 > S�. Thus, sincez 2 [t01; t02] and jt01 � t02j < S�, by moving on the real axis from z towards t2 so that �2decreases, either t01 or t02 is reached before t2. Let t0l be this point. Clearly, �2(t0l) � �2(z).Hence, from z 2 [t01; t02] and jt01 � t02j < S�, it follows that �2(z)� S� < �2(t0l) � �2(z). Thus,from (91), �2(t0l) 2 [w1 � S�; w2 + S�]. �Corollary 19 If (83) and (84) hold and a0 6 ksca _ a6 ksca0 then8i 2 f1; 2g ; 9j 2 f1; 2g ; jsj(a0)� si(a)j 2 [wminsc (a; a0)� S�; wmaxsc (a; a0) + S�]:
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