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Abstract

A large portion of image contours is characterized by local properties such as sharp vari-
ations of the image intensity across the contour. However, the integration of local image
descriptors estimated by using these local properties into curvilinear descriptors is a diffi-
cult problem from a theoretical perspective because of the combinatorially large number of
possible curvilinear descriptors. An approach, based on the notion of compressibility of a
graph, is proposed to deal with this issue. A linear-time multiscale algorithm is proposed
which provably recovers contours with an upper bound on the approximation error. In the
noise-free limit case, all contours are recovered with probability one.
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Figure 1: Curve-based representations of image contours computed by the proposed approach
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(middle) and by more traditional methods (right). The edge representation on the right has
been computed by using the Canny’s algorithm implementation of the Matlab's image processing

toolbox.

1 Introduction

Many computer vision systems require the estimation of image contours to represent the
edges between areas of the image with significantly different intensity values (Fig. 1). The
standard theory of edge estimation [5, 12, 29] represents edges by means of a collection
of points which are characterized as the maxima of the gradient magnitude of the image
intensity in the direction of the gradient. Although several methods have been proposed to
link these point-like descriptors of edges into curvilinear descriptors [35, 28, 11, 33|, a provably
correct algorithm for the curvilinear representation of edges has never been proposed. By
“provably correct” we mean that the algorithm should generate a list of curves such that
every contour in the image satisfying a suitable data model is approximated by a curve in
the computed list. In a probabilistic framework, this performance requirement has to be
satisfied with high probability.

Provably-correct curve-based edge estimation is more difficult than its point-based coun-
terpart since the size of the hypothesis space (i.e. the “volume” of the set of all possible
edge descriptors) is exponential in the image area if curve descriptors are used whereas it
is only linear if point descriptors are used. Thus, developing an efficient (i.e. linear time)

provably-correct estimation algorithm for curve-based edge representation is a challenging
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problem. One important assumption that is needed to tackle this problem is that the model
which relates image contours to the brightness data is local. More specifically, it will be
assumed that this model guarantees that every image contour “locally maximizes”, in a
noise-robust sense, an edginess function ¢(p,6,s) which can be computed in linear time
from the brightness image by means of a local and spatially homogeneous procedure. Here,
p, 0, s denote image location, orientation and scale respectively. The function ¢(p, 0, s) can
be viewed as a generalization of the intensity gradient. More concretely, an image contour
needs to have sufficiently high contrast with respect to the noise amplitude and needs to
have a “well-defined” orientation and scale in order to “locally maximize” ¢(p,f,s). When
these detectability conditions occur, the image contour is said to be supported by ¢.

The proposed algorithm for contour estimation is based on a local-to-global strategy in
which local (i.e. point-like) contour hypotheses are formulated, locally evaluated and finally
composed into curvilinear descriptors. These computations are carried out by using a graph
data-structure, called edgel-graph, whose nodes are edgel-vectors, that is triples of the form
(p,0,s), (location, orientation and scale). The crucial property to develop a linear time
algorithm is e-compressibility of the edgel-graph. A graph is e-compressible, or compressible
with accuracy e, if the Hausdorff distance between any two regular paths with the same
end-points is less than e.

A more precise description of the proposed algorithm is as follows. 1) Compute an edgel-
graph dense enough to contain at least one approximating path near every image contour
with high probability. Typically, since the edgel-graph is computed by means of a local
procedure, this requirement results in an exponential number of approximating paths for
each image contour. 2) For every node of the graph, compute the edginess function ¢(p, 6, s)
and the uncertainty functions w(p, 0, s), ws.(p, 0, s), wor(p, 0, s), which, with high probability,
provide upper bounds to the contour position, scale and orientation errors (only w(p, 6, s) and
wsc(p, 0, ) are used in the current version of the algorithm). These functions are computed
by comparing an intensity model of an ideal edge with the intensity data. 3) Reduce the
edgel-graph to an e-compressible one by removing certain arcs where ¢(p,0,s) is locally
minimum. 4) Finally, compute a complete set of maximally long paths in the reduced graph

such that any two vertices are connected by exactly one computed path. It can be proven
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that the computed set of paths approximates every image contour with high probability
according to the directed Hausdorff distance.

The paper, which focusses on the last two parts of the algorithm just described, is orga-
nized as follows. Section 2 reviews related work. Section 3 contains notations and definitions
used throughout the paper. Section 4 gives sufficient conditions for compressibility. Section
5 contains the definition of the algorithm. Section 6 introduces the detectability conditions
and discusses the performance of the algorithm in a probabilistic setting. Section 7 describes
some details about the implementation of the algorithm and reports some experimental

results. The appendices contain material used to prove the theoretical results.

2 Previous work

The theoretical analysis of the proposed algorithm is based on an error distance defined on
a curve representation of contours. Previous work modeled a contour as a set of small inde-
pendent fragments which, essentially, reduces edge detection to a one dimensional problem.
Optimal linear operators for the estimation of the discontinuity point along the gradient
have been developed for step edges [5, 12], and more complicated brightness models [29].
Surface fitting methods have also been proposed [16] which are essentially equivalent to
linear convolution schemes. Substantial work has been done to assess analytically the one
dimensional estimation performance of these local edge detectors [32, 31, 18]. However, since
most of this performance analysis is carried out for point-based models of contours only, the
stage of constructing a curve representation from these edge-point fragments is most of the
time rather heuristic, with very little theoretical analysis of the overall performance of the
algorithm. In the end, performance of the algorithm is usually assessed by means of human
judgment [17].

Several other statistical approaches have been proposed for contour estimation and image
analysis in general [14, 26, 15, 34]. Most of these methods differ from our statistical approach
in that they are based on Bayes’ formula. That is, the problem specification must provide a
prior density defined on the desired representation and a conditional density of the data given

this representation. Estimation consists then in maximizing the a-posteriori probability of
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the representation given the data. These methods can incorporate global information quite
effectively but often result in hard optimization problems. Moreover, these approaches do not
usually provide information about the probability distribution of the errors. Most variational
and regularization approaches [3, 27, 30, 4] and methods based on criteria such as Minimum
Description Length [22] can also be viewed within this statistical framework.

Recently, a statistical approach based on multiscale recursive estimation on trees has been
proposed which yields efficient algorithms as well as information about the covariance of the
errors [1]. This method has been successfully applied to texture modeling and segmentation.

Wavelets provide an important tool to analyze a multiscale signal [24] and wavelet-based
representations can also be used to model non-stationary processes [21].

The importance of multiscale representations for contour estimation has been acknowl-
edged for a long time. Some multiscale algorithms for edge detection proceed in a coarse to
fine fashion [25, 2, 30] whereas others are more similar to the approach proposed here in that
they emphasize the importance of detecting all the relevant scales [23], with priority given
to the lowest one [13].

The proposed algorithm exploits the curvilinear nature of contours to augment the infor-
mation provided by brightness variation. Relaxation labeling has also been used successfully
for this purpose [28] as well as “snake” and curve evolution methods [19, 20, 10].

Some of the results in this paper have already been reported and proven within a non
probabilistic framework, and under the assumption that the scale of the contours is fixed
and known [8]. The compressibility condition introduced here is very similar to the stability
property discussed in [7, 8]. The new results presented here generalize the notion of efficient
and reliable curve tracking in a graph so that multiple curves can intersect in the image
plane, provided that they can be separated by some other slowly varying feature (such as
scale). The image contour representation obtained by the proposed algorithm can be used
to efficiently hypothesize corners and junctions [6]. It can also be used as an intermediate

stage of a more general hierarchical scheme for edge estimation [9].
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Figure 2. A Y-junction (left) gives rise to three image contours (right). The shaded areas
indicate the domains of the image contours, namely the areas of the image where the data is
affected by the presence of the contour (see Section 6.4). Note that the three domains are

disjoint.
3 Notation, terminology and definitions

For our purpose, an image contour is a curvilinear edge in the image which is sufficiently
far away from singularities such as corners and junctions and which has sufficiently strong
brightness contrast with respect to the noise amplitude (see Fig. 2).

An image contour is denoted v and its trace (a subset of R?) is denoted o(y). A set
of image contours is denoted I'. A flat contour is an ideal image contour whose trace o(7)
is an infinite straight line. The noise-less brightness model of a flat contour is translation
invariant along the contour. The orientation of a flat contour 7 is denoted ~.0 and the scale
of its brightness model is denoted 7.s.

A contour point hypothesis is represented by a triple v = (p, 0, s), called an edgel-vector,
where p € R? is a candidate location in the image plane; 6 € [0, 27] is a candidate contour
orientation; and s > 0 is a candidate contour scale. A pair of edgel-vectors a = (vq,v2),
called an edgel-arc, represents a contour fragment hypothesis. A set of edgel-vectors, A,
is an edgel-graph and its vertices are denoted V(A). A path in an edgel-graph, called an

edgel-path, is denoted 7 and represents a curvilinear contour hypothesis.



Figure 3: Left: A valid edgel-arc a = (vy,vy). Right: an edgel-path 7 with vertices vy, ... , ;.

The shaded area indicates the attraction basin R(r).

3.1 Notation

For the following notation refer to Fig. 3.

e u.p, v.0, v.s: the components of v

® a.v1, a.vy: the vertices of the arc a

e m.1y,...,m.u;: the vertices of the path 7
e m.ay,...,m.a;: the arcs of the path 7

e V(A): vertices of the edgel-graph A

e o(v) = &(p,0,s): edginess function

e w(v) = w(p,0,s): position uncertainty



W (V) = wec(p, 0, 5): scale uncertainty

Wma(r) = max {w(v) : v € V(m)}: maximum position uncertainty on a path
Wma(A) = max {w(v) : v € V(A)} maximum position uncertainty in the graph
o(vy) C R%: trace of an image contour

o(a) C R?: straight line segment between a.v;.p and a.vq.p

o(m) C R%: the polygonal line with vertices 7.vg, ... , 7.y

w(v) = (cosv.0,sinv.f): unit versor along v

Gy (v) = (sinwv.0, — cosv.0): unit versor perpendicular to v

@(a): unit versor parallel to o(a)

pt(v) =v.p — wv) -4, (v): edgel location displaced to the left

pT(v) =v.p+w(v) -4, (v): edgel location displaced to the right

7(v) C R?: straight line segment between p*(v) and p*(v)

(a) = 7(a.v;), 1=1,2

pi(a) = a.wv;.p; 0;(a) = a.v;.0; wi(a) = w(a.v;); ete. 1 =1,2

B+(a) C R?: lateral (left) segment with end points p*(a.v;), pt(a.vy)

f*(a) C R?: lateral (right) segment with end points p*(a.v;), p*(a.vy)

Bla) = B (a) U 57 (a)

B(r) = Ba) U...U B(a)

R(a): closed quadrilateral region with vertices p*(a.v1), p*(a.vy),p*(a.v2), p*(a.v;)

R(m) = R(m.a1) U ... U R(7.q;): attraction basin of =

LA, ©Oa, Sa: smoothness parameters of a valid edgel-graph (Def. 5 below)
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Figure 4: An irregular edgel-path.

Xy, Ou, Ag: accuracy parameters of a covering edgel-graph (Def. 6 below)

X1, Xy, O1, Oy, 51, Sy: parameters used to define the detectability condition (Defini-

tions 10 and 11)

Alv: arcs in A near to v (see Def. 6)

Lgiy = max {diam (o(a) Uo(d')) : (a,a’) violate compressibility condition}

3.2 Definitions

Definition 1 (Simple path) A path 7 is simple if the polygonal line () is homeomorphic

to a straight line segment (i.e., if it does not self-intersect).

Definition 2 (Regular path) An edgel-path © is regular if it is simple and if o(7) N
T(mv;) = {mw;.p}t, i =0,....1. An edgel-graph is regular if all paths in it are regular.

Fig. 4 shows an irregular edgel-path. Notice that an edgel-cycle (or any edgel-path with

repeating vertices) is irregular because m.vy = 7.v; and therefore
o(m)N7(m.wy) =o(r) N7 (wy) D {m.ve.p, 70,0} .

Definition 3 (Hausdorff distance) For any two sets Uy, U, C R?, the directed Hausdorff
distance from Uy to U,, denoted d(Uy — Uy) is given by
d(U, — Uy) = sup d(p; — Uy) = sup inf |[p; — poll. (1)
p1ely p1eU; P2€U2
The undirected Hausdorff distance is given by:

AUy, Uy) = max {d(U, — Uy),d(Us — U,)} . 2)
9



Definition 4 (Compressibility) An edgel-graph A is compressible with accuracy €, or e-
compressible, if for any two reqular edgel-paths 71, w9 having the same initial vertex and the
same last vertex we have

d(o(m),o(m)) < €.

Definition 5 (Valid arc) Let La > 0, O € [0,7/2], Sa > 0 be constants such that
Sa < Wse(v), Vo € V(A). (3)

An edgel-arc a is said to be valid, denoted a € validarc(La, ©Oa, Sa), if

a(a.vy) - a(a.vg) > coSOn; (4)
a(a) - a(a.v;) > 0, i=1,2; (5)
a.v1.5 — a.v9.8| < Sa; (6)
|a.v1.p — a.we.p|| < La; (7)
(a.v1) N7(a.vy) = 0. (8)

A set of arcs A is said to be valid, denoted A € validgraph(La,©na, Sa), if

a € validarc(Oa, Sa, La), VYa € A.

Definition 6 (Covering graph) Let v be a flat contour. Let Xq > 0, ©q € [0,7/2],
So > 0 be constants. The graph A is said to cover v with accuracies Xg, ©g, Sy, if there

exists a regular path m in A such that

d(o(y) = o(m)) < X, (9)

and, for 0 <i <I,
dimvip = o(y)) < X (10)
d(m.v;.0,7.0) < Oy; (11)

\W.?)i.s—la.ﬂ < 5. (12)



If A covers vy, the covering sub-graph of v, denoted Alv, is given by the set of arcs whose

two vertices v1 and vy satisfy (10)-(12).

Definition 7 (Divergent arcs) Let a and o' be edgel-arcs. We say that o’ is non-divergent

in space from a, denoted a' || a, if o(a) N G(a’) = 0. If not, then o' is said to be divergent in

space from a, denoted a' fa.

3.3 Notation and definitions in scale-space

For the following notation refer to Fig. 5.

o st (v) = v.5 — we(v)

o sT(v) = 0.8 + w(v)

o 57 (a) =st(aw;), i=1,2
o s (a)=s"(av;), i=12
o Tec(v) = [s7(v), 57 (v)]

o 7l (a) = 1c(aw;), i=1,2

e oy (a) = [a.vy.8,a.vq.5]

g Rsc(a) = 7—slc(a) N 7—S2C(a)

o Bs(a), Bi(a), B (a) are defined as follows:

ﬂsc(a) =
R

(Tslc(a) U TSQC(a)) \ Rsc(a) if Rsc(a) # 0

(13)
if Rec(a) =

If Rec(a) is not empty, then Gy (a) is composed of two disjoint connected components,

denoted (L (a), B (a) and given by:

sC

SC

c(a) = [min{si(a),

sy ()}, max {si (a), 55 (a) }],

L) = [min{s(a), 5§ ()}, max {sf (), 55 (a)}].

If Ry(a) = 0, then let 8L (a) = B

{R.



Figure 5: Left: Space entities of an edgel-arc a. Right: scale entities of a.
Definition 8 (Divergent arcs) Let a,a’ be two arcs in A. Then
e a' is non-divergent in space from a, denoted a' || a, if
o(a’) N Ba) = 0;
e a' is non-divergent in scale from a, denoted o' ||sc a, if

Osc(a,) N ﬂsc(a) = @

Definition 9 (Overlapping arcs) Let a,d’ be two arcs in A. Then
e a overlaps a in space, denoted a' o a, if

[a".v1.p € R(a)] V
[a".ve.p € R(a)]V

[o(@)yN7'(a) ZDAo(d)N7*(a) #0];
e o overlaps a in scale, denoted a' o4 a, if

0sc(a') C Rye(a) U Bsc(a).

4  Sufficient conditions for compressibility

(14)

(15)

(16)

(17)

A compressible graph is one where all paths between two vertices are close to each other.

In a compressible graph it is possible to compute, in linear time, a set of paths which

approximate (according to the directed Hausdorff distance) every other path. This is possible
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because multiple paths between two vertices in a compressible graph can always be safely
“compressed” down to a single path.

It turns out that compressibility is a local property of a graph. That is, there exist suffi-
cient conditions for compressibility which depend only on the geometric relationship of pairs
of neighboring arcs. In the fixed scale case, where the scale dimension is projected out, two
arcs are compatible (meaning that they do not violate the compressibility condition) if they
are non-divergent in space (Theorem 2). This rules out the possibility of estimating distinct
contours passing through the same neighborhood. Thus junctions can not be recovered from
a compressible graph.

In the scale-space generalization (Theorem 4), two arcs are compatible if they are non-
divergent in space whenever they overlap in scale (i.e. they have similar scales) and if they
are non-divergent in scale whenever they overlap in space. This makes it possible to estimate
distinct contours passing through the same neighborhood as long as they can be “separated”
by using the scale dimension.

Whereas the proof of the fixed scale case is simple, the proof of the scale-space general-
ization is quite involved and is reported in Appendix B. The following proposition is needed

to prove both theorems.
Proposition 1 Let 7 be a reqular path in A and let p € R(n). Then,
dlp = o(r)) < W (7).
Theorem 2 (Sufficient condition for compressibility) Let A be a valid edgel-graph. If

a || a, V(g,a') € A x A, (18)

s



then, for any two reqular paths m, w9 in A with the same initial vertex and final verter we

have

d(o(m),o(me)) < min {W™ (), WP (79) } .
Corollary 3 Ifd' || a, Y(a,d') € A X A, then A is compressible with accuracy W™ (A).

Theorem 4 (Sufficient condition for compressibility, multiscale generalization)

Let A be a valid edgel-graph. If

adoca = d|a, V(a,d') € Ax A, (19)

adoa = dla, V(a,a') € A x A, (20)
then, for any two regular paths 7, my in A with the same initial vertex and final vertex,
d(o(m),o(m)) < min {W™* (), W (79)} .
Corollary 5 If (19), (20) hold then A is compressible with accuracy W™**(A).

Proof of Theorem 2. From (18) we have o(m;) N B(m2) = 0 and o(m3) N f(m) = 0. Let

vg and v, be the first and last vertex of m; and ms and let
o°(m;) = o(m;) \ {vs-p, via-p} , i=1,2.
Since the paths m;, + = 1,2 are regular, we have
o°(m) N7(vg) = o°(m;) N 7(va) = 0, i=1,2.
Thus, since the boundary of R(m;) is given by OR(m;) = f(m;) U T(vg) U 7(v1a), we have
o°(m) NOR(my) = 0°(my) NOR(my) = 0.

Then, for ¢ = 1,2, 0°(m;) is contained in either R(m;) (where i = i + 1(mod 2)) or in
the complement of R(m;) in R?. Since A is a valid edgel-graph, from (5) it follows that
o°(m) N R(m;) # 0, i = 1,2, so that 0°(m) C R(my) and 0°(my) C R(m). The result then

follows from Proposition 1. O]
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Figure 7:  The three steps of the algorithm (fixed scale case).

5 Algorithm

The proposed algorithm takes as input an edgel-graph A, an edginess function ¢(p, 0, s), a
location uncertainty function w(v) = w(p,0,s) and a scale uncertainty function wg(v) =
wsc(p, 0, s). Tts output is a set of polygonal lines represented by paths in A. These lines,
under appropriate assumptions, approximate all the image contours with high probability

(see Theorem 9). The three steps of the algorithm are illustrated in Fig. 7.

Step I The first step of the algorithm consists in evaluating the four relations ||, |[sc, <,
osc on all pairs of edgel-arcs. For each edgel-arc, only nearby edgel-arcs need to be checked
so that this step can be carried out in linear time in the number of arcs (assuming an upper

bound on the density of arcs per image area).
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Step II In each pair of arcs violating the compressibility condition, the arc with minimum

edginess is marked for removal. The reduced graph, denoted ¥(A), can easily be shown to

be compressible. This step can also be done in linear time. More precisely, let
¢(a) = min{¢(a.v1), p(a.vy)}
and

divia) = {d €A : dfland ogcalU{d €A : alla Naoyd};

divee(a) = {d' €A : dJj,and oa}U{d €A : alff d Nacad}.

Then, the reduced compressible graph X(A) is given by:

S(A)=A\ Al Al ={ac A : 3d € div(a) Udive(a), d(a) < ¢(a’)}.

In the fixed scale version of the algorithm we have (compare with Theorem 2):
Y(A) = A\ AT, Al={a€ A : 3d € divo(a), p(a) < ¢(d')}
where

divo(a) ={d' € A : d'Jla vV alfd'}.

(21)

(24)

(25)

(26)

Step IIT A recursive procedure is used to extract, in linear time, one path between any

two connected pairs of terminal vertices of ¥(A) (a vertex is terminal if either its out-degree

or its in-degree is zero). By assuming that X(A) is regular, (and hence it does not contain

any cycle), it is easy to prove that the resulting set of paths, denoted I1(X(A)), approximates

every path in X(A) with accuracy W™#(A) according to the directed Hausdorff distance (see

Theorem 7).

More precisely, let Q(v) be the set of paths in ¥(A) with initial vertex v given by the

following recursive equation (assuming that X(A) is regular and does not contain any cycle):

{nil} if Aout(v) =0

Qv) =
compress U U aom | if Agui(v) # 0
a€Aout (v) ﬂEl%(a-vz)



where Ay, (v) is the set of arcs incident from v; ao7 denotes the path obtained by prepending
the arc a to m; compress(P), for any set of paths P, is a subset of P obtained by selecting

a unique representative among all paths with the same end-points. Then let

nE@) = |UJ e, (27)

veEVH(X(A))

where V;(X(A)) denotes the set of vertices in ¥(A) with zero in-degree. The set TI(X(A))
can be further compressed by choosing the longest path in each collection of paths having

one end-point in common.

5.1 Results

Proposition 6 Y(A) is compressible with accuracy W™ (A).

Proof. For simplicity, we prove the result in the fixed scale case. The more general proof
is similar. Let a,a’ be two edgel-arcs in A such that o' € divy(a), i.e. a'flaV afa’. Let us
assume, without loss of generality, that ¢(a) < ¢(a’). Since @’ € divy(a), from (25) we have
a € A" and therefore a ¢ ¥(A). Hence, for every pair of edgel-arcs a,a’ € X(A), d' || a,
that is, o(a) N B(a") = 0. Then from Corollary 3, it follows that X(A) is compressible with
accuracy Wma(A). O

Theorem 7 If X(A) is regular then for any path m in X(A) there exists a path = € TI(X(A))
such that d(o(m) — o(7)) < W™*(A).

Proof. Let m be a path in ¥(A). Since X(A) is regular and does not contain any cycle,
7 is a sub-path of some maximal regular path 7' in X(A) whose end-points vg, vj,, are
terminal vertices. By definition, IT1(3(A)) contains one path 7 from vg to vy,. Since X(A)
is compressible with accuracy W™>*(A) we have d(o(n'),o(7)) < W™>*(A). Then, from
o(m) C o(n'), it follows that d(o(7) — o(7)) < W™**(A). O

17



6 Performance analysis

6.1 Assumption on the edgel-graph A

In order for the proposed algorithm to be able to estimate a set I' of image contours, the

edgel-graph A must satisfy two requirements:
e it has to be valid (see Def. 5);
e it must cover every image contour v € I' (see Def. 6).

These two requirements involve six parameters: La, Oa, Sa, Xo, O, Ag. The first one, La,
is the maximum allowed distance in the image plane between two consecutive vertices in a
path. Similarly, © and Sa are the maximum orientation change and the maximum scale
change between two consecutive vertices. The other three parameters, Xy, O and A are
the accuracies with which the image contours I' are covered by A.

In principle, one can construct an edgel-graph A satisfying these requirements by sam-
pling densely enough the space of edgel-vectors R? x [0, 2] x [0, oo] and by connecting all pairs
of edgel-vectors which form a valid edgel-arc. This construction yields a valid edgel-graph
which covers all image contours with bounded curvature whose scale parameter changes
slowly enough along the contour. Such an edgel-graph will be said to be fully dense.

In practice, to reduce computational costs, a much smaller edgel-graph A, derived from
the brightness image, has to be used. It will be assumed that A is rich enough to cover each
image contour v € I" with high probability. Clearly, a trade-off exists between the complexity
of A and the probability of covering the contours I'. More precisely, we are going to assume

that the probability that A covers ' with accuracies Xy, Oy, Ag is given by

(5w enay) )

where /(I") is the total length of the contours in I'. This formula states that the violation
of the covering condition is a Poisson process indexed by the arc-length of each contour and
that the image contours in I' are independent from each other. This latter assumption is
satisfied if we assume that image contours are sufficiently distant from each other, namely

if their domains are disjoint. 18



6.2 The detectability condition

An important result of the work presented here is the definition of a sufficient condition
which guarantees that image contours can be recovered in linear time from a given edginess
function ¢(p,#,s). Roughly speaking, this sufficient condition requires that ¢(p,6,s) be
locally maximum near image contours in a sense which takes into account the fact that
the location of the maxima of ¢(p, 0, s) fluctuate around their ideal position due to noise.
Furthermore, the uncertainty functions w(p,,s) and ws(p, 6, s) must provide sufficiently
accurate upper bounds to the amount of fluctuation of these maxima. An image contour
which locally maximizes ¢ is the above sense is said to be supported by ¢. The precise
definition of this detectability condition requires the introduction of more parameters : X,
Xy, O1, Oy, Si, Sy, which must satisfy certain constraints (see (29)-(31) and (45)-(46)).

Roughly speaking, the detectability condition is as follows:

e The edginess function ¢(p, 0, s) is larger in the Xy-neighborhood of v than it is at a
suitable range of distances from v, denoted [X;, X5]. A similar property is needed in
the orientation and scale dimensions. That is, ¢(p, 0, s) must be sufficiently low when

0 € [01,0,] and when s € [S;, Sy).

e The uncertainty estimates w(p, , s) and ws(p, 0, s) are upper bounds on the displace-
ment of the maxima of ¢(p,0,s) from the true position and scale parameter of the

nearest image contour.
More precisely, in fixed scale case, the condition is as follows:

Definition 10 (detectability condition) Let X, X5, ©; be such that

O, < @1, (29)
Xo < X; < S®Oppming g (30)
Xo > X, +max{La, W™(A)}. (31)
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An image contour v is said to be supported by the edginess function ¢(p,0,s) if for any
p,0,s and p', 0, s" we have ¢(p,0,s) > ¢(p', 0, s") whenever

dip=o(7)) < Xo, (32)
d(0,7.0) < O, (33)
s vsl < So (34)
lp" =pll < Lai, (35)

and at least one of the two following conditions hold true

d(p’ = o(7)) € [X1, Xo]; (36)

dip',o(v)) < Xy A d(#',~.0) € [©,,27]. (37)

6.3 Results on the detectability of image contours

From Theorem 7, it follows that an image contour v covered by A is going to be detected
correctly if the reduced compressible graph 3(A) also covers . The following results guaran-
tees that the condition introduced in Def. 10 is sufficient for this to happen. The multiscale
generalization is given by Theorem 10 in Section 6.5.

Let Lgi, be the maximum distance between any two points p € o(a), p’' € o(a’), over all

arc pairs (a,a’) € (A x A) which violate the compressibility condition.

Theorem 8 (Preservation of covering arcs) Let A € validgraph(La,©na, Sa). Let 7 be
a flat contour covered by A and supported by ¢ according to Def. 10. Let 3(A) be given by
(25). Then Aly C X(A).

Proof. Let v be a flat contour which satisfies the detectability condition. From (25), we
have to prove that ¢(a) > ¢(a') for every a € Ay and a' € divg(a). Let then a € A|y and
a' € divg(a). One needs to prove that for every i € {1,2} there exists j € {1,2} such that

d(pi(a), 0:(a), si(a)) >,0(p;(a"), 0;(a"). 5;(a’)).



A stronger statement will be proven, namely that there exists j € {1,2} for which this
inequality holds for both i € {1,2}. Let us make the following substitutions in (32)-(37):
p=pi(a),0 =6;(a),s = si(a); p' =p,(d),0 =6;(d),s = sj(a). Notice that since a € A|y
we have that (32)-(34) hold with the above substitutions for i = 1,2. Furthermore, for
i=1,2and j = 1,2, we have ||p;(a) — pj(a’)|| < Laiy from the definition of Lg;,. Thus, both
vertices of a satisfy (32)-(35). It remains to prove that at least one of the two vertices of o'

satisfies either (36) or (37). First, let us assume that
d(p;(a’) = o(7)) < Xy = d(0;(a),7.0) <Oy, j=12 (38)

so that condition (64) of Proposition 12 (in Appendix A) holds true. Then, from Proposition
12 it follows that one of the two vertices of o’ satisfies (36). Let then assume that (38) is false,
namely that there exists j € {1, 2} such that d(p;(a’) — o(7)) < X; and d(§,(a’),~v.0) > ©;.
Then (37) is satisfied by a’.v;. O

6.4 Probability of mis-detection

To find an expression for the probability of mis-detecting a set of image contours, let us
consider the fixed scale case and let us assume that the uncertainty function w is constant,
w(p,0,s) = W. Let us assume that the edginess function ¢(p,,s) = ¢(p,0) in the neigh-

borhood of a flat image contour is given by:

¢(p,0) = Y(d(p — o(7)),d(0,7.0)) +v(p,0), (39)

where 9 : [0, 00] X [0,7] — R is a monotonically decreasing function of both variables and
v(p, ) is noise. Let (p,f) be an edgel-vector which satisfies conditions (32) and (33) of
Theorem 8 (condition (34) can be ignored). Let x denote the distance from p to o(~) and let
a =d(0,7v.0). See Fig. 8 for the notation. A violation of the detectability condition occurs
if there exists (p',0') such that ¢(p',0') > ¢(p,0); ||p" — p|| < Lgiy and either ' € [X;, X5
or ' < X; Ad' > 0Oy, where 2’ = d(p' — o(y)) and o = d(#',~v.0). By using (39),
o(p',0') > é(p,0) can be rewritten as

v(p' 0") —v(p,0) = d(z, o) — (2, o). (40)
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Figure 8: Violation of the detectability condition. One instance of (p',#') is such that 2’ €

[X1, X3]. The other one satisfies 2’ < X; and o > O,

Since 1) is a decreasing function and x < Xy, a < Oy, we have (z, a) > »(Xy, ©p). Similarly,
e [ X1, Xy] = ¢(a/, ) < ¢(X1,0) and 2’ < X3 A/ >0, = ¢(a, ') < (0,0,).
Let PZ (X1) be the probability that there exists p/, 6 such that

err

v(p',0") —v(p,0) > 1(Xo,00) — ¥(X1,0).

Similarly, let P? (©) be the probability that there exists p’,#’ such that

v(p,0') = v(p,0) 2 (X0, O0) — (0, 01).

Then, the probability that the detectability condition is violated at a specific point along the

contour is upper bounded by P (X;)+ P’ (6,). Notice that, since ¢(Xg, Oy) —(X;,0) > 0

err err

and 1(Xy,0p) — ¥(0,0;) > 0, in the limit where the variance of the noise goes to zero, the
error probability P (X;)+ P!

err err

(01) also goes to zero. Thus, in the noise-free limit case, the
algorithm correctly detects all the image contours covered by A.

Recall that the Theorem 8 holds for any X, Xy, ©; satisfying (29)-(31). Since we assumed
that the uncertainty function w is constant let us substitute W™n(A) = W™(A) = W in
(29)-(31). Furthermore, let us assume that L is chosen small enough so that Ly < W.
Then, for any fixed Xy and W, let us minimize PZ (X;) + P%.(0;) over all X; and ©,
satisfying (29)-(31) and let P...(WW, X5) be the optimal error upper bound. Notice that W is
the accuracy error with which contours are reconstructed (compare with Theorem 7) and X,
is the maximum distance from the contour o(7) at which the edginess function is required

to obey the contour model (39). The XQ—neiggborhood of o(7) is the domain of ~.



8l

SN N AN N

Figure 9: Three different ways a T-junction might be approximated by the algorithm.

If the image contains a set of image contours I, then the domains of these contours must
be disjoint so that the edginess function inside each domain is influenced by exactly one
contour model (compare with Fig. 2). Such a set of contours is said to be independent.

We assume that the violation of the detectability condition is a Poisson process indexed
by the contour’s arc-length. Thus, if ' is a set of independent contours covered by the input
edgel-graph A, an upper bound to the probability of violating the detectability condition

(and of mis-detecting ') is given by:

- exXp <_§(F) lOg Perr(VV: X2)> ’ (41)

corr
where L¢o, is a “correlation length” parameter.

By putting together Theorem 7 and Theorem 8, and assuming that the probabilities of
violating the covering condition and the sufficient condition of Theorem 8 are given by (28)
and (41) respectively, we have the following theorem, which holds under all the assumptions

made in this section.

Theorem 9 Let I' be an independent set of image contours in the image. If ¥(A) is regular

then, with probability at least

/(T) /(T)

— - 1 Perr WX )
eXp( N(Xo, 00 Bg)  Tgn 08 Ferl ”)

for every v € T’ there exists © € TI(X(A)) such that d(o(y) = o(7)) < Xo+ W.

Notice that in the noise-free limit case, and if A is fully dense, then the above probability
estimate converges to one. Notice also that since the directed Hausdorff distance has been
used to measure the error, the approximating path 7 can be longer than the actual image

contour vy (see Fig. 9). 53



6.5 Detectability in scale-space

The following result is a generalization of Theorem 8 to the multiscale case. Let

L4y, = max max max  ||p;(a) — p;(a’)]l;

a€A  a’ediv(a)Udivee(a) i,j€{1,2}

S3 = max max max max |s;(a’) —7y.s[;

Y a€Aly a'ediv(a) i€{1,2}

X3 = max max max max d(p;(a’) = o(7)).

Y a€A|ly dedivsc(a) i€{1,2}

Definition 11 (detectability condition, multiscale generalization) Let Si, Sy be pos-

itiwe constants such that

S

IN

Sy > WI*(A) + Sa + So,

W™ (A) — Sa — S

(45)
(46)

and let X1, Xo, 01 be such that (29)-(31) hold. An image contour 7y is said to be supported

by the edginess function ¢(p, 0, s) if for any p,0,s and p',0', s" we have ¢(p,0,s) > ¢(p', ¢, s')

whenever
dlp = o(y)) < X,
d(6,~7.0) < O,
s —7.5] < S,
lp"=pll < La,

and at least one of the following three sets of conditions hold

dp' = o(7)) € [Xi, Xy,

|s" —v.s] < S3;

s — .5 € [S,5,)

dp) = o(7)) < X

dp' —»o(v)) < X,
d(0',v.0) € [Oy,2n],

s —y.s] < S5
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Theorem 10 (Preservation of covering arcs, multiscale generalization) Let A €
validgraph(La,©a, SA). Let v be a flat contour covered by A and supported by ¢ according
to Def. 11. Let ¥(A) be given by (24). Then Aly C X(A).

Proof. The proof is similar to the proof of Theorem 8. Let v be a flat contour for which the
multiscale detectability condition is satisfied. From (24), we have to prove that ¢(a) > ¢(a’)
for every a € A|y and o' € div(a) U divs(a). Let then a € Aly and o' € div(a) U divs(a).

One needs to prove that for every ¢ € {1, 2} there exists j € {1,2} such that

o(pi(a),0i(a), si(a)) > é(p;(a), 0;(a"), s5(a’)).

Notice that (47)-(50) are identical to (32)-(35) of Theorem 8. If ' € div(a) (and therefore
a' € divg(a)) then the results follows immediately from Theorem 8 because (52) and (57) fol-
low from (43) and therefore the trigger condition (51)A(52) implies (36) and (55)A(56)A(57)
implies (37). Let then o' € divs(a). It is sufficient to prove that for each vertex i of a there
exists a vertex j of a’ which satisfies the trigger condition (53)A(54). (54) follows immedi-
ately from (44) for j = 1,2. From o' € divs(a) it follows that o' f[.a V a )|, .a’. Hence, from

the corollary of Lemma 18 in Appendix C, we have that for each i there exists j such that

si(a) — s;(a)] € [wi™(a,a’) — Sa, wi¥™(a,a’) + Sa] C [WE™ — Sx, WD 4+ S4].

SC SC

Since a € A, we have that [s;(a) — s.7| < Sp, i = 1,2, and therefore
sj(a') = 7.5 € V™ — Sa — 8o, W™ + Sa + S,

From (45) and (46) it follows then that |s;(a’) — v.s| € [S1, Sal. O

7 Implementation details and experiments

7.1 Computation of an edgel-graph

One possible method to compute an edgel-graph A which covers contours with high prob-
ability is to use a traditional point-based edge detector run at several scales and with very

permissive thresholds. The specific method Bged in our implementation is a variant of the



facet-model edge detector [16] and is based on a cubic polynomial approximation, B(r), of
the brightness model across a contour, #(x), which is assumed to be a step discontinuity
smoothed with a gaussian filter of variance s:

1 /s

\/271' loo

where x denotes the signed distance from the contour. Initially, for each region, a linear

B(x) = by + (b — by) - et2’ du, (58)

brightness model is used to estimate the local orientation of the contour. Then, a cubic
brightness model, representing the Taylor expansion of (58), is fitted to a larger rectangular
region (aligned to the estimated orientation of the contour) to refine the estimate of the
location of the contour and to estimate the scale s and the brightness intensities by, by. The
rectangular regions used for the cubic fit are three pixel long in the direction of the contour
and 2/, wide across the contour. Three values of the parameter /| have been used: 2, 4 and
6. Then, every pair of valid edgel-vectors is connected with an arc. The second column of

Fig. 11 shows two examples of an edgel-graph computed in this way.

7.2 Edginess function

The edginess function ¢(p, 6, s) is computed by least-square fitting the 2D generalization of
the brightness contour model (58), denoted 5(p'|p, 0, s, b1, bs), to the observed image I(-) in
a rectangular region R(p, 0, s) centered at p, with orientation 6, height equal to 3 pixels and

width equal to 4s. Then, ¢(p, 0, s) is defined as minus the residual of the optimal fit:

1

.0, :min7</ I(p) — BW'p, 0, ,b1,b 2dp’) . 59
(0] =l [R(p, 0, 5)] R(M’s)(( ) — B0 1:02)) (59)

Since B(p'|p, 0, s, b1, by) is a linear function of b; and be, the minimization in (59) can
be performed by linear convolution with two appropriate filters, which depend on # and s.
Notice that, if a gaussian noise model is assumed, and the proper normalization is chosen,
then the quantity in (59) is proportional to the likelihood that a contour with orientation 6
and scale s passes through the point p, maximized over the nuisance parameters b; and b,.

The behavior of ¢(p,#, s) near a contour in the absense of noise is illustrated in Fig. 10.
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X log s

Figure 10:  Sections of the function 1(x, 0, s), where: 1)(x, 6, s) denotes the edginess function
evaluated near a flat contour 7 such that 7.0 = 0, v.s = 1 and whose brightness model is given
by (58) with b; = —1, by = 1; = denotes the distance to 7. Left: ¢(x,0,s) as function of x.

Right: ¢(x,0,s) as a function of log s.

7.3 Experimental results

Fig. 11 shows the polygonal lines obtained by the fixed scale version of the proposed al-
gorithm. The results are compared with the output of Canny’s algorithm, as implemented
by Matlab’s image processing toolbox. The function w(v) has been set to 0.75 pixels ev-
erywhere. After experimenting with several images, we found, quite surprisingly, that this
value is nearly optimal for most images we tested on. Since the observed value of Xj is a
small fraction of a pixel, the bound on the localization error (see Theorem 9) is about one

pixel. Computation time for the current implementation is a few milliseconds per pixel.

8 Conclusions and future work

Efficient computation of a curvilinear representation of the edges in an image is a challenging
problem from a theoretical perspective because of the exponential size of the hypothesis
space. An approach based on the notion of compressibility of a graph has been proposed to

deal with curve estimation in a theoretically sound way and a specific contour model together
27
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Figure 11: Polygonal approximations of image contours. The gray value intensity in TI(3(A)) is
proportional to the local brightness contrast. The blur scale parameter used in each experiment

has been chosen to maximize the quality of the result (columns 3 and 4).

28



with an estimation algorithm have been proposed to solve the problem in a multiscale setting.
Probabilistic analysis of the performance has been carried out under certain probabilistic
assumptions on the detectability condition. In the noise-free limit case, the image contours in
the model class are recovered with probability one with an upper bound on the approximation
error, measured by the directed Hausdorff distance.

On the experimental side, the results are mixed. In fact, whereas on some images the
performance of the proposed algorithm compares favorably with existing methods, the extra
complication of the algorithm needed to make it theoretically sound does not seem to pay
off at the experimental level. However, the multiscale algorithm has not yet been fully im-
plemented and therefore it is premature to draw a definitive conclusion. A possible situation
where there might be some practical gains is when an automatic scale selection mechanism is
needed. In fact, the proposed algorithm includes curvilinear constraints in the determination

of the scale of the contours.
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A Result needed for the proof of Theorem 8

For any flat contour v and X > 0, let Nx(v) be the neighborhood of 7 of radius X:
Ny(7) = {p € B : d(p— o()) < X}.

The following proposition has been proven in [8] (see Lemma 1 in [8]).

Proposition 11 Let v be a flat contour; let a € A be such that

pila) € Nx,(v), i=12, (60)
2X, )

(a), i=12, 62

0@ <V (a), i (62)

Xo—Xi > wi(a), i=1,2. (63)

Then, 5*(a) U 8+ (a) C Nx,(7) \ Nx,(7)-

By using this proposition, one can prove the following result. The proof is similar to the

proof of Proposition 4 in [8].

Proposition 12 Let v be a flat contour and let a € Aly. Let a' € divy(a) be such that

d(pi(a') = o(7)) < X; = d(6;(d),7.0) <Oy, i=1,2. (64)
If
Oy < Oy, (65)
Xy < X; < cos & -min {wy(a), wy(a), wi(a"), wq(a")}, (66)
Xy > X+ max{||p2(a’) — pi(a')|], w1 (a), ws(a), wi(a"), wy(a’)}, (67)

then there exists p' € {pi(a’),p2(a’)} such that

d(p’ — 0(7)) € [X1, Xo]. (68)
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Ba () M Rsc(a;) Bk ()

Figure 12: An edgel-path m composed of three arcs ay, as, az. Left: the edgel-path’s entities in

the image plane. Right: the edgel-path’s entities on the scale axis.

B  Proof of Theorem 4

Definition 12 A graph for which (19) and (20) hold is said to be separated.

More explicitly, a graph is separated whenever the following conditions are satisfied:
(S1) If p1(a’) € R(a) or pa(a’) € R(a) then oy (a’) N Bsc(a) = 0.

(S2) If o(a’) N7l (a) # 0 and o(a’) N 7%(a) # 0 then oy (a’) N Bsc(a) = 0.

(S3) If o (a') C Ryc(a) U fBsc(a) then o(a’) N B(a) = 0.

For any regular edgel-path 7 with arcs (aq,... ,a,) let

L) = UJsita),

) = Jsita),

and let By (m) = B.i(m) U BE(m). Notice that B.L(m) and BE(m) are connected sets (see Fig.

12).

Proposition 13 (Fig. 12) Let w be a regular edgel-path with arcs (ay, ... ,a,), n > 1, and

let @' = (v, v}) be an edgel-arc such that og(a’) N Bsc(m) =0 and

{v].s,v5.5} N U Ry (a;) # 0.
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Then,

n

osc(a’) C () Reclai). (69)

i=1
Proof. Without loss of generality, let v].s € Ul Rs(a;) and let k£ be such that vi.s €
Rec(ay), 1 < k < n. Since fi(ag) < Re(ay), namely all the real numbers in 3 (ay) are less
or equal to any real number in Re(ag), from v}.s € Re(ay) it follows that 8k (ay) < vi.s.
Thus, since v}.s € oy (a') and oy (a’) N Be(a) = 0, we have Be(ay) < o« (a’). Therefore,
since B(ay) C BL(m) and BL(7) is a connected set, from oy (a') N BL(7) = 0 it follows that
L (1) < 0 (a’). Similarly, os.(a') < BE (7). Thus Bi(a;) < osc(a') < BE(a;), i =1,... ,n,
that is, o (a') € Rec(ai), i=1,... ,n. O
The following notation will be used when dealing with properties and assumptions holding

for sets of integers. The set of integers 7 such that ¢ > k and i < k is denoted {k,... [}
If I < k then this set is empty and therefore a property which holds true Vi € {k,... [}
is always true if [ < k. The notation ¢+ = k,...,[ is equivalent to k£ < i < [ and therefore

requires that k£ <.

Proposition 14 (Fig. 13) Let © be a regular path with arcs (aq,...,a,), n > 1, in a sepa-
rated edgel-graph A and let o' = (v}, v4) € A be an arc such that vi.p € R(ay), v}.s € Rs(a1)
and (Fig. 13(a))

oldYN7"(a;) #0, h=1,2, Vie{2,...,n1}. (70)

Then,

nll

o (a') C ﬂ Rec(a;). (71)

Furthermore, if vh.p € R(a,) (Fig. 13(b)),

n

osc(a’) C () Rec(as). (72)

i=1

Proof. From the separation condition (S1) and v}.p € R(a;) we have

os(a) N gﬁ‘(”‘l) = 0. (73)



a
-\ 7_1 (0’2) | ’
vy a

R(a) R(a)

Figure 13: Proposition 14.
If n > 3, from (70) and the separation condition (S2) we have
osc(a') N Bsc(a;) =0, i=2,...,n—1 (74)
which, together with (73), yields

Osc(a,) N ﬂsc(<a1: .. :anJ_1>) - (Z]: n Z 2: (75)

where (ai, ... ,a, 1) denotes the edgel-path with arcs a;,...,a, 1. Then, (71) follows from
(75) and Proposition 13.

To prove the second part, let v).p € R(a,). Then, from the separation condition (S1)
we get og(a') N Gsc(a,) = 0 and therefore, by combining this with (75), it follows that
0sc(a’) N Bsc(m) = O which, by Proposition 13 implies (72). O

For any regular edgel-path 7 and any p € R(7) let RE(p) = Rs(a), where a is the unique
arc in 7 such that p € R(a).

Proposition 15 (Fig. 1/) Let m, ©' be reqular paths in a separated edgel-graph A such that

o(n') C R(m) and vi.s € RIL(v].p) where v} is the first vertex of ©'. then
v'.s € RI(v'.p)
for every vertex v' of 7',

Proof. First, let’s assume that 7’ consists of one arc o' = (v}, v}). Let aq, ... ,a, be the arcs

of . Let k,l be such that v}.p € R(ay) andgg’g.p € R(a;). Without loss of generality, let’s
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Figure 14: Proposition 15.

assume that | > k (otherwise, interchange v] with v} in the argument). Notice that, since

o(r') C R(m),
o(a) N 7"(a;) # 0, h=1,2; Vie{k+1,...,1-1}.
Thus, from the second part of Proposition 14 applied to the edgel-path (ay, ..., a),

Osc (a,) C Rsc (Cll)

from which

vy.8 C Ryc(a)) = RE(v9.p).
For paths with more than arc the result follows by recursion. O
Proposition 16 (Fig. 15) Let w be a regular path with arcs (ay, ... ,an), a; = (v;,vi11) in

a separated edgel-graph A. Let o' = (v},v}) € A. If vi.p € R(w) and v}.s € RE (v].p) then
(') 1 () = 0.

Proof. Let k be such that v].p € R(ay). For the purpose of contradiction, let o(a’)N3(m) # 0
and let a; be the first exit arc for o(a’). That is, o(a’) N B(a) # O and

o(@) N Ba) =0, Vie{k,...,1—1}, (76)

where we have assumed for simplicity that £ < [. From the separation condition (S3), it is

sufficient to prove that

0sc(a') C Rec(ay) U Bsc(ay). (77)
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Figure 15: Proposition 16. The shown geometric configuration, namely o(a’) N B(7) # 0, is

prohibited by the proposition.
Note that from v}.s € R (v].p) = Rs(ax) and the separation condition (S1) it follows that
osc(a') C Rec(ag). (78)
Thus (77) holds if k = 1. If | > k + 1, we will first prove that
osc(a') C Rec(ar11). (79)
If | =k + 1 then (79) follows immediately from (78). If [ > k + 2 then from (76) we have
o(a) N 1"(a;) # 0, h=1,2 i=k+1,...,1-1

which, together with the first part of Proposition 14, proves (79) for [ > k + 2. Then, since

Rec(a;11) = Tsc(vi11) N 7sc(vy), from (79) we have

Usc(al) C Rsc(alLl) - 7_sc(”l) C (Tsc(vl) U Tsc (7)l+1)) - Rsc(al) U ﬂsc(al)-

U
For any edgel-path 7, let 7(7) = 7(vg) U 7(v1a) where vg and v}, and the first and last
vertex of 7. Let R°(m) denote the interior of R(m) and let 0°(7) denote the interior of the

polygonal line o(7), namely o(7) less its two end-points.

Proposition 17 (Fig. 16) Let m, ©' be paths in a separated edgel-graph A such that v'.p €
R(m) andv'.s € RI(v'.p) wherev' is a vertex of ', If o°(x")N71(w) = 0 and o (7" )NR° (1) # 0,
then

o(r') C R(m)

and v}.s € Rl (v;.p) for all the vertices v of 7§i5



Figure 16: Proposition 17. The situation shown, namely o(7n') ¢ R(w), is prohibited by the

proposition.

Proof. For the purpose of contradiction let us assume that o(7') ¢ R(7). Since R(7) is a
closed set, then o°(7') must contain a point outside R (7). Then, since o°(x') N R°(7) # 0,
it follows that o°(7') must intersect the boundary of R(7), which is given by 7(m) U S(m).
Since o°(7") N 7(7) = O we must have o°(n") N B(7) # O and therefore o(n') N G(7) # 0. For
simplicity let us assume that v’ is the first vertex of 7', and that o(a}) N R°(7) # 0. Let aj,
be the first arc in the path 7' such that o(a}) N G(w) # 0. First, let us prove that

vy..s € RE(vg.p). (80)

If £ = 1 then this follows immediately from v].s € RT (vi.p). If k > 1 we have o(n") C R(r)
where 7" is the subpath with arcs af,... ,a} ; and vertices v{,... ,v;. Then (80) follows
from Proposition 15. From (80) we have v;.s € Rs(a;) where j is such that v,.p € R(a;).
Then, by substituting aj, = (v}, vj_,) for (v}, v}) in Proposition 16 one gets o(ay) N G(7) = 0
which is a contradiction.

Proof of Theorem 4. Let v; and vy, be the first and last vertex of 7; and my. Clearly,
vg.p € R(m) and vs.s € RI(vg.p). Since m and 7y are regular paths, it follows that
o°(m)N7(m) = 0, where 7(m1) denotes 7(vg) UT(v},). From (5) we have that o(a})NR°(m) #

() where a} is the first arc of my. Then, from Proposition 17,
o(my) C R(my).

Similarly, by interchanging 7; with 75 in the above argument,
o(m) C R(my).

The result then follows from Proposition 1. O
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Figure 17: Some notation for the proof of Lemma 18. z denotes a point in og.(a') N s (a).

C Lemma for Section 6.5

For any a = (v, v3) € A let

wi™(a) = min {we(v1), wee(v2)}, (81)

wi™(a) = max {ws(v1), ws(vo)} . (82)

Lemma 18 (Fig. 17) Let a,a’ € A be such that a' f[.a and

|s1(a) = s2(a)] < Sa, (83)
[s1(a’) — s2(a)| < Sa. (84)

Then,
Vie{l,2},3ie{l.2},  [s;(a) — si(a)] € [wg™(a) — Sa, wg™(a) + Sal (85)
Vie{l,2},3j€{1,2},  |[s;(a) = si(a)| € [wi™(a) — Sa, wg™(a) + Sa]  (86)

Proof. From a' [ a it follows that

Usc(al) M ﬁsc(a‘) 7"é Q)a

that is,
0se(a) N ((7ee (@) Urie(a)) \ (7ee(@) N 7ec(a))) # 0.
Therefore, there exists z € o (a’) such that z belongs to one of the two intervals 7/ (a) but

not to the other. Without loss of generality, let then z € 7 (a), 2z ¢ 72(a) (see Fig. 17), that

sC

is, by letting ¢, = s1(a), to = sa(a),

2 hl < wkla), . |z~ ts] > wi(a). (87)

37



from which,

1z —t1| < wl®™(a), 2 — ty] > Wi (a). (88)

SC SC

Since |t; — ty| < Sa by assumption, (88) yields, by letting w; = wX™(a), wy = w2*(a),

sC

w; — Sa < |Z—t1| < ws,

(89)
w; < |z—ty] < wy+ Sa.
Let’s introduce the two functions 6;(s') = |s' — ¢;|, i = 1,2. We have
w; — Sa < 01(2) < wy, (90)
wy; < 09(z) < wg + Sa. (91)
Notice that
10;(z) — 0;(2")] < |z — 2|, Vi, o' e R, i=1,2, (92)
Also, since [t; — ta| < Sa,
101 (x) — da(x)| < Sa, Vo € R (93)

To prove (85) let’s fix t;, € {t|,th} = {s1(a’),s2(a’)}. Since |t} —t,] < Sa and z €

osc(a') = [t),t,], we have |t, — z| < Sa and therefore, from (92),
1) Y2 k

G1(ty) = 0u(z)] < Sa, (94)
85(t),) — 0a(2)| < Sa. (95)

These, together with (90) and (91) yield

01(t,) < wao+ Sa, (96)

wy, — SA < 62(t;€> (97)

These two inequalities and |6, (#},) — d2(}.)| < Sa (which comes from (93)), imply that §,(#})
and 0y(t}) can not be both outside the interval [w; — Sa, wy + Sa], which proves (85).
To prove the second part, let’s fix ty € {t1,t2} = {s1(a),s2(a)}. If & = 1, then let ¢

be the point in {#,%,} where the function %]8 is greater or equal to d;(z) (one of the two
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Figure 18: Lemma 18: existence of ¢} such that d,(t])) < d2(2).

points has this property because z € [t},t}]; notice that ¢, is the point in {¢},¢,} furthest
away from ¢,). Thus, 6,(z) < 6:(t) < 61(2) + Sa (the second inequality follows from
(92) and |z —t;] < |[t; —ta] < Sa). Then, from (90) we have that §;(#]) is in the interval
[wy — Sa,wy + Sal

Let now k£ = 2. From (91) and (3) we have dy(z) = |z — ta| > w; > Sa. Thus, since
z € [t),th] and [t} — t)] < Sa, by moving on the real axis from z towards ¢, so that d;
decreases, either #] or ¢, is reached before t5. Let ¢} be this point. Clearly, do(#)) < da(2).
Hence, from z € [t}, 1] and [t] — t,| < Sa, it follows that dy(2) — Sa < da(t]) < d2(2). Thus,
from (91), 05(¢]) € [wy — Sa, wy + Sal. 0

Corollary 19 If (83) and (84) hold and a' Jj.a V ajf,.a’ then

Vie {1,2},35 € {1,2}, |s;(a') — si(a)| € [wh™(a,a’) — Sa, wi*™(a,a’) + Sal.
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