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Abstract— In this work we propose a decentralized algorithm
for balancing a strongly connected weighted digraph. This
algorithm relies on the decentralized estimation of the left
eigenvector associated to the zero structural eigenvalue of the
Laplacian matrix. The estimation is performed through the
distributed computation of the powers of the Laplacian matrix
itself. This information can be locally used by each agent to
modify the weights of its incoming edges so that their sum is
equal to the sum of the weights outgoing this agent, i.e., the
weighted digraph is balanced. Simulation results are proposed
to corroborate the theoretical results.

I. INTRODUCTION

In the past decades, multi-agent systems have gained an

increasing interest within the control theory community. A

multi agent system consists of a set of agents which collab-

orate for a common objective. It can be effectively used to

model for instance wireless sensor networks, teams of robots

or social dynamics, [1]–[3]. Several interesting problems

arise in the context of multi-agent systems, ranging from

distributed estimation [4] to collaborative data fusion [5].

A common assumption in the multi-agent literature is to

model the communication among the agents as an undi-

rected communication graph (see [6], [7] and the refer-

ences therein). This is founded on the assumptions that the

communication is isotropic, i.e., the employed antenna is

supposed to have the same radiation in all directions and

that its range is the same for all the agents in the network.

Therefore, if an agent can communicate to another one, the

opposite is possible as well. However, these assumptions

might not be adequate for some application scenarios due

to several phenomena as varying interference and different

power transmission levels.

In this work we propose a decentralized algorithm for

balancing a strongly connected weighted digraph (SCWD).

In particular, first we introduce a technique to estimate the

left eigenvector associated to the zero eigenvalue of the

Laplacian matrix encoding the communication digraph. Then
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we discuss how this information, locally available to each

agent, can be used by the agents themselves to independently

adjust the weights of their incoming edges without any prior

knowledge of the out-neighborhood so that the weighted

digraph is balanced.

To the best of the authors knowledge, little is available in

the literature regarding the estimation of the left eigenvector

associated with the zero eigenvalue of the Laplacian matrix

for digraphs. The work by Qu et al. [8] possibly represents

the best approach in this field. In this work, the authors

propose a distributed approach for the estimation of the

left eigenvector associated to the weight matrix and the

expected consensus value. The estimate is then used in a

control algorithm to improve the network convergence rate.

However, the continuous time nature of the algorithm makes

its implementation in a real world scenario particularly

challenging.

In the context of cooperative control, where the agents are

required to share information among themselves in order to

achieve a common goal [9]–[12], the consensus algorithm

represents an effective solution. The key idea is to let each

agent update its value by performing a weighted linear

combination of the previous values of its one-hop neighbors

and its previous value in order to achieve an agreement. The

Laplacian matrix represents the state matrix of the continuous

time consensus protocol [13], [14]. In the case of undirected

graphs, the Laplacian matrix is symmetric and sums up to

zero both on the rows and the columns. This statement does

not hold in the case of general digraphs due to the non-

symmetric nature of their adjacency matrices.

Recently, a few works have appeared dealing with the

problem of weight balancing a SCWD. In [15], the authors

introduce two algorithms, a centralized and a decentralized

one, to balance a weighted strongly connected digraph.

However, within this work, the out-neighborhood of each

agent is assumed to be explicitly known. In [16] a distributed

algorithm to make the adjacency matrix doubly stochastic is

presented. It relies on balancing the out and the in degrees

of each node by adjusting the weights on the outgoing

edges. However, this approach requires each agent to be

able to send individual messages to the agents belonging

to its out-neighborhood. Thus, a specific mechanism for the

identification of the out-neighborhood is required. In [17], a

doubly stochastic weight matrix is computed by an iterative

procedure that adjusts the outgoing weights of each node. In

fact, each agent computes a linear combination of its value

and the ones from its neighbors. This approach relies on the

assumption that each agent is able to choose a time invariant



weight which sums to one together with the time invariant

weights of its out-neighbors. In other terms, each agent is

required to know its out-degree.

In this work, we release the assumption of having any

prior knowledge of the out-neighborhood of an agent. This

paves the way for the application of algorithms based on

weight balanced digraphs for which the adopted communi-

cation scheme forbids to collect any information about the

out-going edges.

Summarizing, the main contributions of this work are the

following:

• A novel distributed algorithm for the estimation of

the left eigenvector associated to the zero structural

eigenvalue of the Laplacian Matrix of a SCWD.

• A procedure to let each agent adjust the weights of its

incoming edges so that the resulting SCWD is balanced.

The rest of the paper is organized as follows. In Section II

some preliminary tools coming from the algebraic graph

theory are reviewed. In Section III the proposed algorithm

for the estimation of the left eigenvector of a Laplacian

matrix encoding a SCWD is described. In Section IV, a

procedure to balance the SCWD is introduced. In Section

V, some simulations to corroborate the theoretical results

are provided. Finally, in Section VI conclusions are drawn.

II. PRELIMINARIES

A. Notation

Let us consider a set of n agents whose communica-

tion network is described by a digraph G(V , E) where

V = {1, · · · , n} is the set of nodes and E ⊆ V ×V is the set

of directed edges, i.e., ordered pairs of nodes. Let us define

the weighted adjacency matrix A(G) ∈ R
n×n as follows:

Aij(G) =

{

Aij(G) > 0 if (j, i) ∈ E ,
0 otherwise.

(1)

Note that Aij(G) > 0 if the agent i can receive data from the

agent j. In general, the existence of (j, i) ∈ E does not imply

the existence of (i, j) ∈ E . It is assumed that no self loops

exist in the network, i.e., (i, i) /∈ E . The in-degree and the

out-degree of a node k are given by din(k) =
∑

j Akj(G) and

dout(k) =
∑

j Ajk(G) respectively. The Laplacian matrix is

defined as follows:

L(G) = D(G) −A(G),

with D(G) the diagonal in-degree matrix defined as

D(G) =







din(1)
. . .

din(n)






,

and Dij(G) = 0 whenever i 6= j. For the sake of readability,

the dependency on the graph G will be omitted in the rest

of the paper. Let us now review some important properties

of the Laplacian matrix for a directed graph. Generally

speaking, the Laplacian matrix is a non-symmetric weakly

diagonal dominant matrix. It has a zero structural eigenvalue

for which the corresponding right eigenvector is the vector

of ones of appropriate size, i.e., L1 = 0. Let us denote with

Q ≥ 0, a nonnegative matrix, i.e., a matrix for which all

elements are strictly nonnegative. Note that, a nonnegative

matrix is not the same as a positive semidefinite matrix.

The following definitions will be used throughout the rest

of the paper. For further details and proofs, the reader is

referred to [18].

Definition 2.1: A digraph is called strongly connected if

and only if any two distinct nodes in the vertex set can be

connected by a path which follows the direction of the edges

of the digraph.

Definition 2.2: A weighted digraph is said to be balanced

if:

din(k) = dout(k), ∀k ∈ {1, . . . , n} .
Note that, this definition can be equivalently expressed in

terms of the Laplacian matrix as follows: L1 = 0 and

1
TL = 0

T .

Definition 2.3: A non negative matrix Q ∈ R
r×r, with

r ≥ 2, is reducible if there exists a permutation matrix

P ∈ R
r×r such that PTQP is an upper triangular matrix.

Otherwise the matrix is said to be irreducible.

The link between the definition of an irreducible matrix

and digraphs is given by the following proposition.

Proposition 2.1: The adjacency matrix A is an irreducible

matrix if and only if its associated graph G is strongly

connected.

Definition 2.4: A nonnegative matrix Q is said to be

primitive if there exist a positive integer k s.t. Qk > 0.

In the following, a proposition representing a sufficient

condition for a matrix to be primitive is reported:

Proposition 2.2: If a nonnegative irreducible matrixQ has

at least one positive diagonal element, then Q is primitive.

Eventually, from the Perron-Frobenius theorem it follows

that for any primitive matrix Q the following holds:

lim
k→∞

(

Q

ρ

)k

=
v wT

wT v
> 0. (2)

where v is the right eigenvector and wT is the left eigenvector

both associated with the spectral radius ρ.

B. Assumptions

Let the following assumptions be satisfied throughout the

rest of the paper:

A1 The network topology of the considered multi-agent

system is described by a static SCWD.

A2 The knowledge of the out-degree is not required by the

agents.

A3 A unique identifier is associated to each agent i of the

network, e.g., the IP address.

A4 Each agent can store n variables.

In A1, we assume that there is always a path from an agent

towards another one. This allows the information to flow



among all the agents. In A2, it is stated that each agent is

not required to know the number of its out neighbors. In A3,

we assume that each agent can distinguish the information

coming from the other agents according to the identifier of

the sender. Eventually, in A4 it is assumed that each agent

has enough storage size for the values coming from its in-

neighbors.

III. LEFT EIGENVECTOR ESTIMATION

A. Decentralized Estimation of the Left Eigenvector

In this section, a decentralized algorithm for the estimation

of the left eigenvector of a SCWD is proposed. To this aim,

a distributed algorithm for the computation of the powers of

a matrix is reviewed. Further details can be found in [19],

[20].

Let us now introduce the concept of matrix compatibility

with a digraph.

Definition 3.1: A matrix Q ∈ R
n×n is compatible with a

digraph G if Qij = 0 iff (j, i) /∈ E and j 6= i.
Loosely speaking, this definition of compatibility guarantees

that Qij is equal to 0 whenever the agent i cannot receive

any data from the agent j.

Let each agent i have a variable

δi(k) = [δi1(k) . . . δin(k)]
T with initial values

δij(0) =

{

1 if i = j,

0 otherwise
(3)

and let Q = [Qij ] be a weighted matrix which is compatible

with the communication graph. At each iteration, the agents

update their variables as follows:

δij(k + 1) =
∑

j′∈Ni∪i

Qij′δj′j(k), (4)

with Ni the in-neighborhood of agent i. Update rule (4) can

be put in vectorial form as

∆(k + 1) = Q∆(k),

with:

∆(k) =







δ1(k)
T

...

δn(k)
T






.

Let us denote with I ∈ R
n×n the identity matrix. Noting that

∆(0) = I, it is easy to see that at iteration k, the variable

δi(k) contains exactly the value of the ith row of the matrix

Qk. Let us remark that the algorithm is fully distributed, in

the sense that each agent only uses its previous value and

the data sent by its in-neighbors to update the variable δi(k).
For the estimation of the left eigenvector associated to

the zero eigenvalue of the Laplacian, the following matrix C
compatible with the graph is used:

C = I − β L, 0 < β <
1

Ψ
, (5)

where Ψ = maxi{
∑

j 6=iAij}. The matrix C is commonly

referred to as the Perron matrix.

The eigenvalues λC of the matrix C and the eigenvalues

of the Laplacian matrix λL are related as follows:

λCi
= 1− β λLi

,

where λCi
and λLi

are the ith eigenvalues of the C and

L matrices respectively. It follows that the two matrices

also share the same set of eigenvectors. In particular for the

eigenvalue of maximum modulus, namely λC1
, the following

holds:
C 1 = λC1

1,

wT C = λC1
wT ,

with wT the left eigenvector associated to λC1
and λL1

.

The following proposition proves the convergence to the

normalized left eigenvector:

Proposition 3.1: Assume that an initial value δij(0), as

defined in (3), is associated to each agent i. Then if the agents

apply the update rule in (4) using the compatible with the

graph matrix C, as defined in (5), then

lim
k→∞

∆(k) =
1 wT

wT1
(6)

or, in other terms, δi(k) will tend to the normalized left

eigenvector w of the Laplacian matrix encoding the digraph.

Proof: Using Proposition 2.2, it is possible to state

that the matrix C is primitive. Then, the proof follows from

the application of the Perron-Frobenius theorem reported in

Section II-A.

Algorithm 1 shows the pseudo-code of the left eigenvector

estimation algorithm. Note that the algorithm requires the

digraph to be strongly connected. This ensures the Perron

matrix built according to (5) to be irreducible and diagonally

positive. Regarding the pseudo-code, the variable max iter
represents the predefined maximum value of the algorithm’s

iterations. The matrix ∆(max iter) is the output of the

algorithm; each row i represents the estimation performed

by the ith agent. Line 1 describes the variables initialization.

Each agent sets its corresponding component to 1 and the

other components to 0. In the second step, the Perron matrix

is computed according to its definition in (5). Lines 3-5

represent an implementation of the update rule introduced

in (4).

Algorithm 1 Left Eigenvector Estimation Algorithm

Require: G SCWD,L, 0 < β <
1

Ψ
, max iter

Ensure: ∆i(max iter)→ 1w
T

1: δij(0) = 1 if i = j, δij(0) = 0 otherwise

2: C ← I − βL
3: for k = 0, . . . ,max iter do

4: δij(k + 1) =
∑

j′∈Ni∪i Cij′δj′j(k)
5: end for



IV. BALANCING THE STRONGLY CONNECTED

WEIGHTED DIGRAPH

In this section, we describe how each agent can use its

estimate of the left eigenvector to modify the weights of the

incoming edges to make the SCWD balanced. To this end,

let us consider a SCWD composed of n nodes and let us

denote with L ∈ R
n×n the related Laplacian matrix defined

as:

L =











l11 l12 . . . l1n
l21 l22 . . . l2n
...

...

ln1 ln2 . . . lnn











. (7)

Let us recall that by definition the rows of the Laplacian

matrix L sum to zero, that is

n
∑

j=1

lij = 0, i = 1, . . . , n.

Let w be the left eigenvector related to the zero eigenvalue

λL1
= 0. Therefore by definition we have:

wT L = λL1
wT = 0T ,

which can be written with respect to each column

li = [l1i l2i . . . lni]
T of the Laplacian matrix as:

w1 l1i + w2 l2i + . . .+ wn lni = 0.

Let us now introduce a modified Laplacian matrix L̄ where

the ith row is obtained by multiplying the ith row of the

original Laplacian matrix by the ith component of the left

eigenvector w, as follows:

L̄ =











w1 l11 w1 l12 . . . w1 l1n
w2 l21 w2 l22 . . . w2 l2n

...
...

wn ln1 wn ln2 . . . wn lnn











. (8)

Note that this matrix can always be obtained in a distributed

fashion as each row i can be computed by the ith agent once

the estimation of the ith coefficient of the left eigenvector

is available to it. Recall that the ith row is simply the set

of coefficients used by the ith agent to weight the incoming

edges from its neighbors.

Proposition 4.1: The Laplacian matrix L̄ sums to zero

also on the columns, that is:

1T L̄ = 0T .

Proof: for each column i of the Laplacian matrix L̄:

1
T l̄i = l̄1i + l̄2i + . . .+ l̄ni

= w1 l1i + w2 l2i + . . .+ wn lni

= 0

where l̄i is the i-th column of the matrix L̄.

Let us point out again the equivalence between the result

of Proposition 4.1 and the definition of balancedness for

a weighted digraph given in Definition 2.2. Note that the

result stated in Proposition 4.1 could be equivalently derived

by proving that the hypothesis required in [16, Theorem 3.2]

hold true. However, Proposition 4.1 suffices for the objective

of this paper and does not burden the reader with additional

details. Algorithm 2 shows the pseudo-code of the algorithm

to let the Laplacian matrix of any strongly connected digraph

sum up to zero both on the rows and the columns. The input

Algorithm 2 Weight Balancing the SCWD

Require: n,L, C

Ensure: L̄1 = 0, 1
T L̄ = 0

T

1: Compute Cmax iter using Algorithm 1.

2: for i = 1 . . . n do

3: L̄i = Li · Cmax iter
ii

4: end for

for the algorithm is the number of agents n, the Laplacian

matrix L and the Perron matrix C. Note that if n is not

available to the agents, a labeling technique as the one in [20]

can be used. The result of this algorithm is L̄ as defined in

(8). Line 1 describes how the computation of the powers of

the Perron matrix are carried out in a distributed fashion

exploiting the algorithm given in Section III-A. Lines 2-

4 show the computation of the ith row of the modified

Laplacian matrix L̄ locally carried out by the ith agent.

V. SIMULATIONS

In this section two simulations with an increasing number

of agents are proposed. In each simulation, all the agents first

estimate the eigenvector associated to the zero eigenvalue of

the Laplacian matrix, then perform a consensus using the

modified Laplacian matrix. Let us assume that an initial value

xi(0) ∈ R is associated to each agent and xi(0) to be a scalar

for the sake of simplicity and without loss of generality. Let

us also denote with x(0) = [x1(0) . . . xn(0)]
T

the vector

containing all the initial values associated to the agents. It

is worthy to point out that using the modified Laplacian

matrix, the consensus value coincides with the average of

the initial conditions, i.e., µ = 1

n

∑

i

xi(0), while using the

original Laplacian it converges to µ1 =
∑

i

wixi(0). The

first simulation involves 6 six agents performing the average

consensus algorithm after the estimation process of the left

eigenvector of the Laplacian matrix. The second simulation

involves 20 agents. In this case, only the estimation of the left

eigenvector performed by a single agent is shown along with

the iterations of the consensus algorithm. Let us consider the

network topology to be described by the graph in Fig. 2(a).

It is composed by six agents and the corresponding directed

edges. The initial conditions of the agents are:

x(0) = [43 93 95 6 31 80]T ,

while µ = 58. In Fig. 1 the estimation process of the left

eigenvector associated to the zero eigenvalue of the Laplacian

matrix is illustrated. For every agent, the estimation process



of each element of the vector is plotted. It can be noticed

that the agents asymptotically achieve the same values. In

Fig. 2(b) the execution of the consensus algorithm with the

original Laplacian matrix in (7) is shown. It is worthy to

notice that in this case the agents can achieve a consensus

because the graph is a SCD, but the consensus value is

different from µ. Instead, in Fig. 2(c) the execution of the

consensus protocol using the modified Laplacian matrix is

given. In this case, all the agents obtain µ as their consensus

value. The same simulation, but considering 20 agents, is

depicted in Fig. 3 and the following random initial conditions

are used:

x(0) = [99 78 4 33 89 25 61 12 68

81 8 4 89 91 94 24 67 61 99 86]T ,

while µ = 58.65. Note that also in this case the average

0 200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

Estimation of the left eigenvector

Fig. 4. Left eigenvector estimation in the case of 20 agents.

consensus is reached. In Fig. 4, the corresponding left eigen-

vector estimation process is illustrated for a single agent. The

agents achieve the same values of the estimated components

of the left eigenvector wT . Multiplying each row of the

original Laplacian matrix by the corresponding element of

the estimated left eigenvector leads to the executions of the

consensus protocol in Fig. 3(c).

VI. CONCLUSION

In this work a decentralized algorithm to estimate the left

eigenvector associated to the zero eigenvalue of the Laplacian

matrix has been presented. In particular, first an algorithm for

the computation of the powers of the Laplacian matrix which

converges to a matrix where each row is the aforementioned

left eigenvector has been proposed; successively a local

policy to let each agent independently adjust the weights of

its incoming edges so that the resulting weighted digraph

is balanced has been described. A theoretical analysis of

the proposed algorithm has been carried out along with

simulations to corroborate the theoretical results. Future work

will be mainly focused on the definition of a necessary and

sufficient condition for the verification of the strongly con-

nectivity of the digraph. Noting that the proposed approach

requires the estimation algorithm and the digraph balancing

policy to run sequentially, a modified version of this approach

where the algorithm can run in parallel is currently under

investigation.
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Fig. 1. Left Eigenvector Estimate for the 6 agents.
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(b) Consensus protocol using the original Lapla-
cian matrix with six agents. The dotted line repre-
sents the average value.
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(c) Consensus protocol using the modified Lapla-
cian matrix with six agents. The dotted line repre-
sents the average value.

Fig. 2. Iterations of the consensus protocol both with the original Laplacian matrix and the modified one with six agents.
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(a) The underlying communication graph
describing the interaction among the
twenty agents.
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(b) Consensus protocol using the original Lapla-
cian matrix with twenty agents. The dotted line
represents the average value.
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(c) Consensus protocol using the modified Lapla-
cian matrix with twenty agents. The dotted line
represents the average value.

Fig. 3. Iterations of the consensus protocol both with the original Laplacian matrix and the modified one with twenty agents.


