
2194 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 5, JUNE 2011

Caching Strategies Based on Information Density
Estimation in Wireless Ad Hoc Networks

Marco Fiore, Member, IEEE, Claudio Casetti, Member, IEEE, and Carla-Fabiana Chiasserini, Senior Member, IEEE

Abstract—We address cooperative caching in wireless networks,
where the nodes may be mobile and exchange information in a
peer-to-peer fashion. We consider both cases of nodes with large-
and small-sized caches. For large-sized caches, we devise a strategy
where nodes, independent of each other, decide whether to cache
some content and for how long. In the case of small-sized caches,
we aim to design a content replacement strategy that allows nodes
to successfully store newly received information while maintaining
the good performance of the content distribution system. Under
both conditions, each node takes decisions according to its per-
ception of what nearby users may store in their caches and with
the aim of differentiating its own cache content from the other
nodes’. The result is the creation of content diversity within the
nodes neighborhood so that a requesting user likely finds the de-
sired information nearby. We simulate our caching algorithms in
different ad hoc network scenarios and compare them with other
caching schemes, showing that our solution succeeds in creating
the desired content diversity, thus leading to a resource-efficient
information access.

Index Terms—Data caching, mobile ad hoc networks.

I. INTRODUCTION

P ROVIDING information to users on the move is one of the
most promising directions of the infotainment business,

which rapidly becomes a market reality, because infotainment
modules are deployed on cars and handheld devices. The ubiq-
uity and ease of access of third- and fourth-generation (3G
or 4G) networks will encourage users to constantly look for
content that matches their interests. However, by exclusively
relying on downloading from the infrastructure, novel appli-
cations such as mobile multimedia are likely to overload the
wireless network (as recently happened to AT&T following
the introduction of the iPhone [1]). It is thus conceivable
that a peer-to-peer system could come in handy, if used in
conjunction with cellular networks, to promote content sharing
using ad hoc networking among mobile users [2]. For highly
popular content, peer-to-peer distribution can, indeed, remove

Manuscript received June 14, 2010; revised October 12, 2010 and
January 19, 2011; accepted March 18, 2011. Date of publication April 5, 2011;
date of current version June 20, 2011. This work was supported in part by the
Regione Piemonte through the Monitoraggio Aree Sensibili e Protette Project.
The review of this paper was coordinated by Prof. J. Misic.

M. Fiore is with the Institut National de Recherche en Informatique et en
Automatique (INRIA)–Centre of Innovation in Telecommunications and
Integration of Services (CITI) Laboratory, Institut National des Sciences
Appliquées (INSA) Lyon, 69621 Villeurbanne Cedex, France (e-mail:
marco.fiore@insa-lyon.fr).

C. Casetti and C.-F. Chiasserini are with the Dipartimento di Elettronica e
Telecomunicazioni, Politecnico di Torino, 10129 Torino, Italy (e-mail: claudio.
casetti@polito.it; carla.chiasserini@polito.it).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2011.2136363

bottlenecks by pushing the distribution from the core to the
edge of the network.

In such an environment, however, a cache-all-you-see ap-
proach is unfeasible, because it would swamp node storage
capacity with needless data that were picked up on the go. Thus,
several techniques of efficiently caching information in wireless
ad hoc networks have been investigated in the literature; for
example, see the surveys in [3] and [4] and the related work
discussed in Section II.

The solution that we propose, called Hamlet, aims at creating
content diversity within the node neighborhood so that users
likely find a copy of the different information items nearby
(regardless of the content popularity level) and avoid flooding
the network with query messages. Although a similar concept
has been put forward in [5]–[8], the novelty in our proposal
resides in the probabilistic estimate, run by each node, of the
information presence (i.e., of the cached content) in the node
proximity. The estimate is performed in a cross-layer fashion
by overhearing content query and information reply messages
due to the broadcast nature of the wireless channel. By lever-
aging such a local estimate, nodes autonomously decide what
information to keep and for how long, resulting in a distributed
scheme that does not require additional control messages. The
Hamlet approach applies to the following cases.

• Large-sized caches. In this case, nodes can potentially
store a large portion (i.e., up to 50%) of the available
information items. Reduced memory usage is a desirable
(if not required) condition, because the same memory may
be shared by different services and applications that run at
nodes. In such a scenario, a caching decision consists of
computing for how long a given content should be stored
by a node that has previously requested it, with the goal
of minimizing the memory usage without affecting the
overall information retrieval performance;

• Small-sized caches. In this case, nodes have a dedicated
but limited amount of memory where to store a small
percentage (i.e., up to 10%) of the data that they retrieve.
The caching decision translates into a cache replacement
strategy that selects the information items to be dropped
among the information items just received and the infor-
mation items that already fill up the dedicated memory.

We evaluate the performance of Hamlet in different mobile
network scenarios, where nodes communicate through ad hoc
connectivity. The results show that our solution ensures a high
query resolution ratio while maintaining the traffic load very
low, even for scarcely popular content, and consistently along
different network connectivity and mobility scenarios.

0018-9545/$26.00 © 2011 IEEE

FIORE et al.: CACHING STRATEGIES BASED ON INFORMATION DENSITY ESTIMATION IN AD HOC NETWORKS 2195

The remainder of this paper is organized as follows. First, we
discuss the related literature in Section II and outline the system
characteristics and assumptions in Section III. The Hamlet
framework is then described in Section IV. The simulation
scenarios considered for the performance evaluation of Hamlet
are detailed in Section V, whereas the results are presented
in Sections VI and VII for large- and small-sized caches,
respectively. Finally, Section VIII draws some conclusions and
highlights future research directions.

II. RELATED WORK

Several papers have addressed content caching and content
replacement in wireless networks. In the following sections, we
review the works that are most related to this paper, highlighting
the differences with respect to the Hamlet framework that we
propose.

A. Cooperative Caching

In [9], distributed caching strategies for ad hoc networks are
presented according to which nodes may cache highly popular
content that passes by or record the data path and use it to
redirect future requests. Among the schemes presented in [9],
the approach called HybridCache best matches the operation
and system assumptions that we consider; we thus employ
it as a benchmark for Hamlet in our comparative evaluation.
In [10], a cooperative caching technique is presented and shown
to provide better performance than HybridCache. However, the
solution that was proposed is based on the formation of an over-
lay network composed of “mediator” nodes, and it is only fitted
to static connected networks with stable links among nodes.
These assumptions, along with the significant communication
overhead needed to elect “mediator” nodes, make this scheme
unsuitable for the mobile environments that we address. The
work in [11] proposes a complete framework for information
retrieval and caching in mobile ad hoc networks, and it is built
on an underlying routing protocol and requires the manual
setting of a networkwide “cooperation zone” parameter. Note
that assuming the presence of a routing protocol can prevent
the adoption of the scheme in [11] in highly mobile networks,
where maintaining network connectivity is either impossible
or more communication expensive than the querying/caching
process. Furthermore, the need of a manual calibration of
the “cooperation zone” makes the scheme hard to configure,
because different environments are considered. Conversely,
Hamlet is self contained and is designed to self adapt to network
environments with different mobility and connectivity features.

One vehicular ad hoc network scenario is addressed in [12],
where the authors propose both an information retrieval tech-
nique that aims at finding the most popular and relevant data
matching a user query and a popularity-aware data replacement
scheme. The latter approach ensures that the density of different
content is proportional to the content’s popularity at the system
steady state, thus obeying the square-root rule proposed in [13]
for wired networks. We point out that the square-root rule
does not consider where copies of the data are located but
only how many copies are created. It is thus insufficient in

network environments whose dynamism makes the positioning
of content of fundamental importance and renders steady-state
conditions (as assumed in [13]) hard to be achieved.

B. Content Diversity

Similar to Hamlet, in [6], mobile nodes cache data items
other than their neighbors to improve data accessibility. In
particular, the solution in [6] aims at caching copies of the same
content farther than a given number of hops. Such a scheme,
however, requires the maintenance of a consistent state among
nodes and is unsuitable for mobile network topologies. The
concept of caching different content within a neighborhood is
also exploited in [7], where nodes with similar interests and
mobility patterns are grouped together to improve the cache hit
rate, and in [8], where neighboring mobile nodes implement
a cooperative cache replacement strategy. In both works, the
caching management is based on instantaneous feedback from
the neighboring nodes, which requires additional messages.
The estimation of the content presence that we propose, instead,
avoids such communication overhead.

C. Caching With Limited Storage Capability

In the presence of small-sized caches, a cache replacement
technique needs to be implemented. Aside from the scheme
in [8], centralized and distributed solutions to the cache place-
ment problem, which aim at minimizing data access costs when
network nodes have limited storage capacity, are presented
in [14]. Although centralized solutions are not feasible in ad hoc
environments, the distributed scheme in [14] makes use of
cache tables, which, in mobile networks, need to be maintained
similar to routing tables. Hamlet does not rely on cache tables,
and thus, it does not incur the associate high communication
penalty. In [15], a content replacement strategy that aims at
minimizing energy consumption is proposed. To determine
which content should be discarded, the solution exploits the
knowledge of data access probabilities and distance from the
closest provider—an information that is typically hard to obtain
and is not required by Hamlet.

A content replacement scheme that addresses storage limita-
tions is also proposed in [16]. It employs a variant of the last
recently used (LRU) technique, which favors the storage of the
most popular items instead of the uniform content distribution
targeted by Hamlet. In addition, it exploits the cached item IDs
provided by the middleware to decide on whether to reply to
passing-by queries at the network layer, as well as link-layer
traffic monitoring to trigger prefetching and caching. In [17],
the popularity of content is taken into account, along with its
update rate, so that items that are more frequently updated are
more likely to be discarded. Similarly, in [18], cache replace-
ment is driven by several factors, including access probability,
update frequency, and retrieval delay. These solutions thus
jointly address cache replacement and consistency, whereas in
this paper, we specifically target the former issue. However,
as will be pointed out, Hamlet can easily be coupled with a
dedicated cache consistency scheme, e.g., [19] and [20].

2196 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 5, JUNE 2011

D. Data Replication

Although addressing a different problem, some approaches
to data replication are relevant to the data caching solution
that we propose. One technique of eliminating information
replicas among neighboring nodes is introduced in [21], which,
unlike Hamlet, requires knowledge of the information access
frequency and periodic transmission of control messages to
coordinate the nodes’ caching decisions. In [5], the authors
propose a replication scheme that aims at having every node
close to a copy of the information and analyze its convergence
time. However, unlike Hamlet, the scheme implies a signifi-
cant overhead and an exceedingly high convergence time, thus
making it unsuitable for highly variable networks. Finally, the
work in [22] adopts a cross-layer approach to data replication
in mobile ad hoc networks, where network-layer information on
the node movement path helps to trigger the replication before
network partitioning occurs.

III. SYSTEM OUTLINE AND ASSUMPTIONS

Hamlet is a fully distributed caching strategy for wireless
ad hoc networks whose nodes exchange information items in
a peer-to-peer fashion. In particular, we address a mobile ad
hoc network whose nodes may be resource-constrained devices,
pedestrian users, or vehicles on city roads. Each node runs an
application to request and, possibly, cache desired information
items. Nodes in the network retrieve information items from
other users that temporarily cache (part of) the requested items
or from one or more gateway nodes, which can store content or
quickly fetch it from the Internet.

We assume a content distribution system where the following
assumptions hold: 1) A number I of information items is
available to the users, with each item divided into a number C
of chunks; 2) user nodes can overhear queries for content and
relative responses within their radio proximity by exploiting the
broadcast nature of the wireless medium; and 3) user nodes
can estimate their distance in hops from the query source and
the responding node due to a hop-count field in the messages.
Although Hamlet can work with any system that satisfies the
aforementioned three generic assumptions, for concreteness,
we detail the features of the specific content retrieval system
that we will consider in the remainder of this paper.

The reference system that we assume allows user applica-
tions to request an information item i (1 ≤ i ≤ I) that is not
in their cache. Upon a request generation, the node broadcasts
a query message for the C chunks of the information item.
Queries for still missing chunks are periodically issued until
either the information item is fully retrieved or a timeout
expires.

If a node receives a fresh query that contains a request for
information i’s chunks and it caches a copy of one or more
of the requested chunks, it sends them back to the requesting
node through information messages. If the node does not cache
(all of) the requested chunks, it can rebroadcast a query for the
missing chunks, thus acting as a forwarder. The exact algorithm
that is followed by a node upon the reception of a query
message is detailed in the flowchart in Fig. 1(a).

Fig. 1. Flowcharts of the processing of (a) query and (b) information mes-
sages at user nodes. We denote the address of the node that generated the query
as asrc, the query identifier as id, the address of the last node that forwarded
the query message as alast, and the set of queried chunks as c̄. The functional
blocks that are the focus of this paper are highlighted in (b).

Once created, an information message is sent back to the
query source. To avoid a proliferation of information copies
along the path, the only node that is entitled to cache a new copy
of the information is the node that issued the query. Information
messages are transmitted back to the source of the request in a
unicast fashion, along the same path from which the request
came. To this end, backtracking information is carried and
updated in query messages. Nodes along the way either act as
relays for transit messages (if they belong to the backtracking
node sequence) or simply overhear their transmission without
relaying them. Fig. 1(b) depicts the flowchart of the operations
at a node that receives a message that contains an information
chunk.

A node that receives the requested information has the option
to cache the received content and thus become a provider for
that content to the other nodes. Determining a strategy of taking
such caching decisions is the main objective of this paper, and
as such, the corresponding decision blocks are highlighted in
Fig. 1(b).

FIORE et al.: CACHING STRATEGIES BASED ON INFORMATION DENSITY ESTIMATION IN AD HOC NETWORKS 2197

We point out that Hamlet exploits the observation of query
and information messages that are sent on the wireless channel
as part of the operations of the content-sharing application, e.g.,
the previously outlined approach. As a consequence, Hamlet
does not introduce any signaling overhead.

Furthermore, several optimizations can be introduced to im-
prove the aforementioned basic scheme for the discovery of
content. Although our focus is not on query propagation, it is
important to take the query process into account, because it di-
rectly determines the network load associated with the content
retrieval operation. While deriving the results, we consider the
following two approaches to query propagation.

1) Mitigated flooding. This approach limits the propagation
range of a request by forcing a time to live (TTL) for the
query messages. In addition, it avoids the forwarding of
already-solved requests by making the nodes wait for a
query lag time before rebroadcasting a query;

2) Eureka [23]. This approach extends mitigated flooding by
steering queries toward areas of the network where the
required information is estimated to be denser.

Note that this paper focuses on cooperative caching and we
do not tackle information consistency; thus, we do not take into
account different versions of the content in the system model.
We note, however, that the previous version of this paper [24]
jointly evaluated Hamlet with a basic scheme for weak cache
consistency based on an epidemic diffusion of an updated
cache content and we showed that weak consistency can be
reached, even with such a simple approach, with latencies on
the order of minutes for large networks. If prompter solutions
are sought, Hamlet lends itself to be easily integrated with one
of the existing consistency solutions found in the literature (e.g.,
[19], [20], [25], and [26]). In particular, these works propose
push, pull, or hybrid approaches to achieve different levels of
cache consistency. In the case of Hamlet, a push technique can
be implemented through the addition of invalidation messages
broadcast by gateway nodes, whereas information providers
can pull an updated content (or verify its freshness) before
sending the information to querying nodes. In either case, no
major modification of the Hamlet caching scheme is required:
the only tweaking can consist of resetting the estimation of
the information presence upon the notification/detection of an
updated version to ease the diffusion of the new information.

IV. HAMLET FRAMEWORK

The Hamlet framework allows wireless users to take caching
decisions on content that they have retrieved from the network.
The process that we devise allows users to take such deci-
sions by leveraging a node’s local observation, i.e., the node’s
ability to overhear queries and information messages on the
wireless channel. In particular, for each information item, a
node records the distance (in hops) of the node that issues the
query, i.e., where a copy of the content is likely to be stored,
and the distance of the node that provides the information.
Based on such observations, the node computes an index of the
information presence in its proximity for each of the I items.
Then, as the node retrieves content that it requested, it uses
the presence index of such an information item to determine

Fig. 2. Q and P denote, respectively, a node that issues a query and a node
that provides the requested content. Node R in the lower plot is a relay node,
overhearing the exchanged messages. The upper and lower plots, respectively,
represent the case 1 hQ value for the provider node P and the case 2 hQ and
hP values for the relay node R with respect to the query source Q and the
provider P .

whether a copy of the content should be cached, for how long,
and possibly which content it should replace. By doing so, a
node takes caching decisions that favor high content diversity
in its surroundings, inherently easing the retrieval of data in the
network. Note that our technique works on a per-item basis, and
its results apply to all chunks that belong to the same content.

In the following sections, we first detail how a node estimates
the presence of information chunks in its proximity. Next, we
separately describe the role of the information presence index in
caching decisions for nodes with large- and small-sized caches.
In the former case, the information presence index determines
the cache content drop time, whereas in the latter case, it drives
the cache content replacement.

A. Information Presence Estimation

We define the reach range of a generic node n as its distance
from the farthest node that can receive a query generated by
node n itself. As an example, in an ideal setting in which all
nodes have the same radio range, the reach range is given by the
product of the TTL and the node radio range. Next, we denote
by f the frequency at which every node estimates the presence
of each information item within its reach range, and we define
as 1/f the duration of each estimation step (also called time
step hereafter).

A node n uses the information that was captured within
its reach range during time step j to compute the following
two quantities: 1) a provider counter by using application-layer
data and 2) a transit counter by using data that were collected
through channel overhearing in a cross-layer fashion. These
counters are defined as follows.

• Provider counter dic(n, j). This quantity accounts for
the presence of new copies of information i’s chunk c,
delivered by n to querying nodes within its reach range,
during step j. Node n updates this quantity every time it
acts as a provider node (e.g., node P in the upper plot of
Fig. 2).

• Transit counter ric(n, j). This quantity accounts for the
presence of new copies of information i’s chunk c, trans-
ferred between two nodes within n’s reach range and

2198 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 5, JUNE 2011

received (or overheard) by n, during step j. Node n thus
updates this quantity if it receives (or overhears) an infor-
mation message,1 e.g., node R in the lower plot of Fig. 2;
thus, the transit counter is the only data structure that needs
cross-layer access, i.e., the number of information copies
whose transit the node has overheard at lower layers (and
subsequently inspected).

The provider and transit counters are updated through the hop
count information that is included in the query and information
message header. The exact procedure is as detailed follows.

1) If node n generates a reply information message that
contains chunks of information item i, as an answer to
a query for some chunk c that it owns, then a new copy of
such chunks is possibly cached at the node that generated
the query. Node n must therefore account for the presence
of such a new copy at a distance hQ, which is equal to the
number of hops that were covered by the query (see the
upper plot of Fig. 2). The provider counter is updated by a
quantity that is inversely proportional to the distance hQ

as follows:

dic(n, j) = dic(n, j) +
1

hQ
. (1)

Note that the larger the hQ, i.e., the farthest the new chunk
copy, the lesser the added contribution.

2) If node n receives or overhears a new transit information
i message, which contains a chunk c whose query status
was pending, it must then account for the presence of the
following copies: 1) a new copy of the chunk that will
be cached by a node at a distance of hQ hops and 2) an
existing copy that is cached at a distance of hP hops (see
Fig. 2, lower plot). Thus, following the approach in (1),
the transit counter is updated as follows:

ric(n, j) = ric(n, j) +
1

hP
+

1
hQ

. (2)

Again, the larger hP is, i.e., the farthest the information
provider is, the lesser the contribution of the existing copy
becomes.

3) The last case accounts for the reception or overhearing
of an information message whose contribution must not
(or cannot) be related to a corresponding query. This
condition may happen for the following two reasons:
1) The corresponding query was already solved (hence,
the message is considered duplicated information), or
2) node n had not received the corresponding query
(e.g., node n just moved within the radio range of nodes
in the return path of the information message and missed
the query). In either case, only the contribution due to the
presence of the copy at the provider is considered, hence

ric(n, j) = ric(n, j) +
1

hP
. (3)

1If the chunk is segmented into more than one Internet Protocol (IP) packet,
overhearing the first segment provides access to the chunk header and the
needed information.

Based on the aforementioned quantities, node n can compute
a presence index of chunk c of information i, as observed during
step j within node n’s reach range. We refer to such a value as
pic(n, j) and define it as

pic(n, j) = min {1, dic(n, j) + ric(n, j)} . (4)

According to (4), pic(n, j) comprises the range [0, 1]. A zero-
value means that the presence of chunk c of information i was
not sensed by n during time step j. Instead, if the chunk is
cached one hop away from n, pic(n, j) is equal to one; this case
is the “best,” where the chunk would directly be available to n if
needed. Intermediate values between 0 and 1 are recorded when
n observes chunks that are cached more than one hop away.
Note that multiple contributions of the last kind can sum up to a
maximum information presence pic(n, j) = 1, because we rate
the dense presence of chunks a few hops away as valuable as a
single chunk at a one-hop distance. The information presence
index thus computed plays a crucial role in taking caching
decisions in both large- and small-sized caches, as described
in the next sections.

B. Large-Sized Caches: Computation of the Content
Drop Time

We first consider the case in which nodes have a large-sized
cache, enough to potentially store a large portion (i.e., 50%
or more) of the content that they request. As aforementioned,
consuming all the storage resources of a node to cache the
retrieved data is not desirable, because the same memory may
be shared by different services and applications that run at
nodes. Thus, here, we exploit the aforementioned information
presence estimate to determine a cache drop time after which
the retrieved information items are removed from the memory:
the goal is to reduce the cache utilization without affecting the
performance of the content distribution system.

We denote by χi(n, j) the cache drop time that node n
computes at the end of time step j for information item i. Such a
drop time applies to all chunks, belonging to information item
i, that will be received during time step (j + 1). To compute
χi(n, j), node n estimates an overall probability of information
presence, by composing the presence indices pic(n, j) of all
chunks of information i, as follows.

Because pic(n, j) are samples of the chunk presence, node
n first needs to quantify the amount of time for which these
samples are meaningful. If all nodes run Hamlet, the best guess
that node n can take to determine the presence index is to use
its local estimate of the cache drop time χi(n, j − 1), assuming
that it is not very different from its neighbors’.

Consistent with this reasoning, the contribution of a presence
index computed at step k should only be considered for a time
χi(n, k − 1). However, discarding contributions exactly after
a time χi(n, k − 1) leads to an ON/OFF behavior and yields
discontinuities in the caching decision process. Moreover, a
hard contribution removal threshold is inconsistent with the
uncertainty in the knowledge of the neighbors’ caching times;
the value χi(n, k − 1) used by node n may differ from the

FIORE et al.: CACHING STRATEGIES BASED ON INFORMATION DENSITY ESTIMATION IN AD HOC NETWORKS 2199

Fig. 3. Filter impulse responses wi(n, k, j) for different values of χi(n, k −
1), where k = 1, α = 0.9, and W = 0.5. For k = 1, the time axis marks the
time steps since the chunk has been cached.

cache drop time computed by the nodes within n’s reach range,
particularly if they are several hops away.

To account for these factors, we smooth the contributions
through an ad hoc filter. At time step j (whose duration is 1/f),
node n weighs each past index pic(n, k), k < j by a smoothing
factor wi(n, k, j), which is defined as

wi(n, k, j) =
{

1, if j − k ≤ Δ(n, k)
αj−k−Δ(n,k), otherwise

with Δ(n, k) = �fχi(n, k − 1) − logα W � . (5)

This case means that, at time step j, contribution pic(n, k)
maintains its value unchanged if no more than Δ(n, k) time
steps have passed, because the presence index was recorded.
Otherwise, the filter forces an exponential decrease of the index
value. In (5), the exponential decrease factor is denoted by α,
whereas Δ(n, k) is such that, after a time χi(n, k − 1), the
smoothed presence index retains a fraction W of its original
value.2 In addition, wi(n, k, j) depends only on the information
identifier i, i.e., it has the same value for all chunks c that belong
to information i, because the caching time is determined on a
per-item basis. For clarity, examples of filter impulse responses
for different values of χi(n, k − 1) are shown in Fig. 3.

Next, let us consider time step j and the tagged node n. Node
n estimates how complete a single information item i is in its
surroundings, due to the contributions measured during a given
step k, by summing up presence indices pic(n, k) that refer to
all chunks c of i and smoothing them by the factor wi(n, k, j) to
account for the likelihood that some content has been dropped.
We have

φi(n, k, j) = wi(n, k, j)
1
C

C∑
c=1

pic(n, k). (6)

In other words, (6) reflects the degree of completeness of
information i that node n can expect at time step j, only
considering contributions that were collected during time step
k. We stress that 0 ≤ φi(n, k, j) ≤ 1.

The overall presence index for information item i, as shown
by node n at time step j, can be computed by summing up the

2Note that multiplying the time interval χi(n, k − 1) by f allows us to
express Δ(n, k) in a number of time steps.

contributions φi(n, k, j) over all steps k as

pi(n, j) = min

⎧⎨
⎩1,

j∑
k=j−τ

φi(n, k, j)

⎫⎬
⎭ . (7)

Note that, in (7), τ is the filter memory and contributions that
are older than τ time steps are ignored. Thus, to compute (7),
a node has to store at most 2τ + 1 values for each information
item, i.e., the sum in (6) and χi(n, k) for τ + 1 and τ different
time steps, respectively. As specified in the performance eval-
uation, τ can be set to a very small value so that the presence
index computation requires minimal memory usage.

Finally, by denoting the maximum cache drop time by MC ,
the caching time for the chunks that belong to information i is
obtained as

χi(n, j) = (1 − pi(n, j)) MC . (8)

According to (8), in the extreme situation where the entire
information i is estimated to be cached within node n’s reach
range, i.e., pi(n, j) = 1, the retrieved content will not be stored
by the node; on the contrary, when node n observes a complete
lack of content i within its reach range, i.e., pi(n, j) = 0, the
caching time will be equal to MC .

C. Small-Sized Caches: Content Replacement

When equipped with a small-sized cache, nodes cannot store
all content that they request but are forced to choose which
items to keep and which items to discard every time newly re-
trieved data fill up their memory. In this case, computing cache
drop times is clearly not a solution, because the lingering of
items in cache is primarily determined by the rate of reception
of new content. Therefore, in the presence of limited dedicated
storage resources, we exploit the information presence estimate
to define a content replacement policy that favors a balanced
distribution of data over the network so that all content is as
“close” as possible to a requesting node.

The rationale of our content replacement strategy is very
similar to the approach employed for the cache drop time
computation. Again, we start by identifying the amount of time
for which the index pic(n, j) must be considered valid and
define a new smoothing factor ŵi(n, k, j) to that end as

ŵi(n, k, j) =
{

1, if j − k ≤ Γ(n, k)
0, otherwise

with Γ(n, k) = �fχ̂i(n, k − 1)� . (9)

Note that the factor ŵi(n, k, j), weighting the contribution of
samples pic(n, k)∀c and at time step j, is necessarily different
from the factor employed in the previous section. In particular,
we no longer filter the weight index, because the ON/OFF

behavior that we previously wanted to avoid now becomes
a desirable effect. In fact, it allows us to mimic the sudden
removal of chunks from the memory upon the arrival of new
content, which is typical of a small-sized cache. In addition,
the estimated caching time χ̂i(n, k) has a different formulation,

2200 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 5, JUNE 2011

whose details will be discussed at the end of this section, for
clarity.

We can thereafter define the completeness of item i, esti-
mated by node n from samples observed at time step k, as

φ̂i(n, k, j) = ŵi(n, k, j)
1
C

C∑
c=1

pic(n, k) (10)

and the overall presence index as

p̂i(n, j) =
j∑

k=j−τ

φ̂i(n, k, j). (11)

With respect to the equivalent formulation for the case of
large-sized caches in (7), the index in (11) is not bounded
by 1. Indeed, p̂i(n, j) is an estimate of the total amount of
information i in the reach range of node n at time step j.

We thus leverage p̂i(n, j) as the metric for a content replace-
ment strategy. Upon the reception, at time step j, of new data
to be cached and exceeding the free storage memory, node n
discards chunks3 of information i associated with the highest
p̂i(n, j) until the remaining data fit the storage constraints. In
other words, each node tries to keep content that is estimated
to be rarer in its surroundings while dropping data that are
evaluated to be already commonly available in the area.

How we can compute the estimated caching time χ̂i(n, k)
remains to be defined. To this end, the best guess that a node can
take is to assume that users in its neighborhood attribute similar
caching priorities to the information items, i.e., the ordering of
p̂i(n, k), ∀i, that they compute is in agreement with the ordering
of the node. Under this assumption, a node n can estimate the
amount of time for which a neighboring user will cache a newly
received chunk of item i to be inversely proportional to the
p̂i(n, k) that it has locally computed. As aforementioned, we
define a maximum cache permanence time MC , after which, a
chunk is discarded to avoid stored information from becoming
stale and node movement from leading to inconsistencies with
respect to previous information presence ratings. The estimated
caching time is then computed as

χ̂i(n, k) =
(

1 − p̂i(n, k)
maxi {p̂i(n, k)}

)
MC . (12)

To provide an interpretation for (12), consider the case of
chunks of the most common information item in the area.
Because, as aforementioned, a node discards a chunk of in-
formation i associated with the highest p̂i(n, j), the estimated
caching time for such a chunk is set to 0 in (12), and caching
times of much less popular chunks are, instead, estimated to be
much longer (up to MC).

As the estimated presence decreases, the chance that chunks
find space in the cache of requesting nodes grows, reaching
the maximum estimated caching time MC if the information
is completely absent from the area, i.e., when p̂i(n, j) = 0.

Note that (12) does not depend on the content query rate
as a precise design choice. Indeed, it is not likely that a node

3Assuming contents with few chunks, we do not distinguish among chunks
from the same item, which are thus randomly selected for removal.

Fig. 4. Simulation scenarios: City (left) and Mall (right).

knows the frequency of requests that were generated for each
information item by the different users in the network and
assuming such knowledge would noticeably limit the feasibility
of the solution. The performance evaluation that we conducted
shows that the lack of query rate awareness does not prevent
Hamlet from achieving its goals.

V. SIMULATION SCENARIOS AND METRICS

We tested the performance of Hamlet through ns2 simula-
tions under the following three different wireless scenarios:
1) a network of vehicles that travel in a city section (referred to
as City); 2) a network of portable devices carried by customers
who walk in a mall (Mall); and 3) a network of densely and
randomly deployed nodes with memory limitations (memory-
constrained nodes). The three scenarios are characterized by
different levels of node mobility and network connectivity.

In the City scenario, as depicted in Fig. 4, vehicle movement
is modeled by the intelligent driver model with intersection
management (IDM-IM), which takes into account car-to-car
interactions and stop signs or traffic lights [27]. We simulated
a rather sparse traffic, with an average vehicle density of
15 veh/km over a neighborhood of 6.25 km2. The mobility
model settings, forcing vehicles to stop and queue at inter-
sections, led to an average vehicle speed of about 7 m/s (i.e.,
25 km/h). We set the radio range to 100 m in the vehicular
scenario, and by analyzing the network topology during the
simulations, we observed an average link duration of 24.7 s and
a mean of 45 disconnected node clusters concurrently present
over the road topology. The City scenario is thus characterized
by scattered connectivity and high node mobility.

The Mall scenario is represented in Fig. 4 as a large
L-shaped open space of 400 m of length on the long side,
where pedestrian users can freely walk. In this scenario, we
record an average of 128 users who walk at an average speed of
0.5 m/s according to the random-direction mobility model with
reflections [28]. The node radio range is set to 25 m, leading
to an average link duration equal to 43 s, with a mean of ten
disconnected clusters of users present at the same time in the
network. The connectivity level in the Mall is thus significantly
higher than in the City, whereas node mobility is much lower.

The memory-constrained scenario is similar to the sce-
nario employed for the performance evaluation of the cache

FIORE et al.: CACHING STRATEGIES BASED ON INFORMATION DENSITY ESTIMATION IN AD HOC NETWORKS 2201

replacement schemes in [9] and [14]. It is composed of 300
wireless nodes deployed over a square area of a side equal
to 200 m. Nodes can be static, positioned according to a
uniform random distribution, or mobile, wandering according
to a random-direction mobility model with reflections. The
node speed is uniformly distributed in the range [0.5vm, 1.5vm],
where vm is the average node speed—a varying parameter in
our simulations. The node radio range is set to 20 m, resulting,
for static nodes, in a fully connected network.

In all the scenarios, we deploy two fixed gateway nodes
at opposite ends of the topology. Each gateway permanently
stores 1/2 of the information items, whereas the other half is
provided by the other gateway. Initially, nodes have an empty
cache; they randomly request any among the I items that are
not in their cache according to a Poisson process with parameter
λi = Λqi (1 ≤ i ≤ I). Λ is the query generation rate per node,
whereas qi represents the content popularity level (i.e., the
probability that, among all possible content, a node requests
item i). The TTL value for query messages is set to ten and five
hops for the case of large- and small-sized caches, respectively,
and the query lag time is 50 ms. Note that the impact of
all the aforementioned query propagation parameters on the
information-sharing behavior has been studied in [23]; here,
we only consider what has been identified as a good parameter
setting.

With regard to the Hamlet parameters, the estimation fre-
quency is such that 1/f = 0.2MC ; indeed, through extensive
simulations, we observed that the impact of f is negligible, as
long as 1/f is not greater than 20% of the maximum caching
time. As we fix τ = fMC , this setting of f leads to a value of τ
as small as 5. Then, we have α = 0.9 and W = 0.5; indeed, we
have verified that this combination yields a smoother behavior
of the presence index pi(n, j). The values of the remaining
parameters are separately specified for large- and small-sized
caches.

The information-sharing application lies on top of a User
Datagram Protocol (UDP)-like transport protocol, whereas,
at the media access control (MAC) layer, the IEEE 802.11
standard in the promiscuous mode is employed. No routing
algorithm is implemented: queries use a MAC-layer broadcast
transmission, and information messages find their way back
to the requesting node following a unicast path. Information
messages exploit the request to send/clear to send (RTS/CTS)
mechanism and MAC-level retransmissions, whereas query
messages of broadcast nature do not use RTS/CTS and are
never retransmitted. The channel operates at 11 Mb/s, and
signal propagation is reproduced by a two-ray ground model.
Simulations were run for 10 000 s.

In the aforementioned scenarios, our performance evaluation
hinges upon the following quite-comprehensive set of metrics
that are aimed at highlighting the benefits of using Hamlet in a
distributed scenario:

1) the ratio between solved and generated queries, called
solved-queries ratio;

2) the communication overhead;
3) the time needed to solve a query;
4) the cache occupancy.

We have further recorded the spatiotemporal distribution of
information and the statistics of information survival, because
they help in quantifying the effectiveness of Hamlet in preserv-
ing access to volatile information. As aforementioned, we did
not explore the problem of cache consistency, because such an
issue is orthogonal to this paper.

VI. EVALUATION WITH LARGE-SIZED CACHES

Here, we evaluate the performance of Hamlet in a network
of nodes with large storage capabilities, i.e., with caches that
can store up to 50% of all information items. Because such
characteristics are most likely found in vehicular communica-
tion devices, tablets, or smartphones, the network environments
under study are the City and Mall scenarios. As discussed in
Section IV, in this case, the Hamlet framework is employed to
compute the caching time for information chunks retrieved by
nodes, with the goal of improving the content distribution in the
network while keeping the resource consumption low.

We first compare Hamlet’s performance to the results ob-
tained with a deterministic caching strategy, called DetCache,
which simply drops cached chunks after a fixed amount of
time. Then, we demonstrate the effectiveness of Hamlet in the
specific task of information survival. In all tests, we assume
I = 10 items, each comprising C = 30 chunks. All items have
identical popularity, i.e., all items are requested with the same
rate λ = Λ/I by all network nodes. The choice of equal request
rates derives from the observation that, in the presence of
nodes with a large-sized memory, caching an information item
does not imply discarding another information item; thus, the
caching dynamics of the different items are independent of each
other and only depend on the absolute value of the query rate. It
follows that considering a larger set of items would not change
the results but only lead to more time-consuming simulations.

Each query includes 20 B plus 1 B for each chunk request,
whereas information messages include a 20-B header and carry
a 1024-B information chunk. The maximum caching time MC

is set to 100 s, unless otherwise specified. Queries for chunks
that are still missing are periodically issued every 5 s until either
the information is fully retrieved or a timeout that is set to 25 s
expires.

A. Benchmarking Hamlet

We set the deterministic caching time in DetCache to 40 s,
and we couple DetCache and Hamlet with both the mitigated
flooding and Eureka techniques for query propagation. We are
interested in the following two fundamental metrics: 1) the
ratio of queries that were successfully solved by the system
and 2) the amount of query traffic that was generated. The
latter metric, in particular, provides an indication of the system
effectiveness in preserving locally rich information content: if
queries hit upon the sought information in one or two hops,
then the query traffic is obviously low. However, whether such
a wealth of information is the result of a resource-inefficient
cache-all-you-see strategy or a sensible cooperative strategy,
e.g., the approach fostered by Hamlet, remains to be seen.
Thus, additional metrics that are related to cache occupancy

2202 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 5, JUNE 2011

Fig. 5. City: solved-queries ratio (top) and query traffic (bottom) obtained
with different schemes versus content request rate.

TABLE I
AVERAGE OCCUPANCY OF THE NODE CACHES, EXPRESSED AS A

PERCENTAGE OF THE CHUNKS TOTAL NUMBER FOR λ = 0.003

and information cache drop time must be coupled with the
aforementioned metrics.

Fig. 5 shows the solved-queries ratio (top plot) and the
amount of query traffic (bottom plot) as λ varies in the City
scenario. When DetCache is used, the higher the query rate,
the larger the number of nodes that cache an information item.
This case implies that content can be retrieved with higher
probability and also that it is likely to be found in the proximity
of the requesting node, thus reducing the query traffic per issued
request. Note that, due to its efficient query propagation mech-
anism, Eureka reduces the propagation of useless queries (and,
hence, collisions), yielding a higher solved-queries ratio than
mitigated flooding. However, it is evident that deterministic
caching does not pay off as much as cooperative caching does
in Hamlet. Table I shows that the average occupancy of node
caches in Hamlet is comparable to the values observed with
DetCache. Thus, it is the quality, not the quantity, of the infor-
mation cached by Hamlet that allows it to top a sophisticated
propagation scheme such as Eureka as far as the solved-queries
ratio is concerned.

The positive effect of the caching decisions can also be
observed in Fig. 5 in terms of the reduced overhead and latency

TABLE II
AVERAGE QUERY SOLVING TIME (IN SECONDS), WITH λ = 0.003

in solving queries. Indeed, Hamlet reduces the overhead by
shortening the distance between requesting nodes and desired
information content. Similarly, Table II shows how sensible
caching choices can significantly reduce the time required to
solve queries, again due to the homogeneous availability of
information that they generate in the network.

Further proof of such virtuous behavior by Hamlet is pro-
vided in Fig. 6, where mitigated flooding is used for query
propagation. The figure depicts the time evolution of content
presence over the road topology for one information item;
in particular, the z-axis of each plot shows the fraction of
different chunks that comprise an information item that are
present in a squared area of 600 m2. On the one hand, it can be
observed that mitigated flooding with DetCache creates a sharp
separation between the area where the content source resides,
characterized by high item availability, and the region where,
due to vehicular traffic dynamics, information-carrying nodes
rarely venture. On the other hand, Hamlet favors the diffusion
of content over the entire scenario so that nodes in areas away
from the information source can also be served.

Fig. 7 refers to the Mall scenario. The poor performance of
Eureka in this case is due to the lack of information items over
large areas of the Mall scenario, resulting in queries not being
forwarded and, thus, remaining unsolved [23]. Interestingly,
Hamlet greatly reduces the query traffic for any λ, although
providing a much higher solved-queries ratio. With regard to
the caching occupancy, because Hamlet leads to results that
are comparable with the results obtained with DetCache (see
Table I, Mall scenario), it can be asserted that the performance
gain achieved through Hamlet is due to the more uniform con-
tent distribution across node caches. Finally, Table II confirms
that such an improved availability of information shortens the
waiting time to receive requested items.

When comparing results obtained from the Mall and City
scenarios, we note that the solved-queries ratio is consistently
lower. We recall that vehicular mobility in the City environ-
ment is characterized by scattered connectivity but high node
speed, whereas the Mall environment provides a better network
connectivity level but reduced node mobility. The low node
mobility in the Mall keeps items away from the sources of
unpopular items for long periods of time. Thus, the probability
of solving requests for such rare content is low, unless an
efficient caching scheme allows nodes to preserve at least a
few copies of every item in every neighborhood, as Hamlet
does. It is also worth pointing out that, with respect to the
City environment, the Mall includes a smaller number of nodes;
thus, fewer queries are issued, and a much smaller amount of
query traffic is generated.

Finally, we may wonder how well Hamlet performs with
respect to DetCache when the cache time employed by the latter
approach is set to a value other than 40 s. Through extensive

FIORE et al.: CACHING STRATEGIES BASED ON INFORMATION DENSITY ESTIMATION IN AD HOC NETWORKS 2203

Fig. 6. City: Space–Time evolution of one information item during the first 400 s of simulation, with mitigated flooding and DetCache (top) and Hamlet (bottom).
The z-axis shows the content completeness in each spatial slot of 600 m2, with a value of 1 meaning that all of the items’ chunks can be found in the slot.
(a) t = 0 s. (b) t = 100 s. (c) t = 200 s. (d) t = 300 s. (e) t = 400 s.

Fig. 7. Mall: Solved-queries ratio (top) and query traffic (bottom) with
different schemes versus content request rate.

simulations, we found that DetCache achieves the best tradeoff
between solved-queries ratio and cache occupancy when its
caching time is set to the average value of cache drop time
obtained using Hamlet [24]. This case is a further proof of how
Hamlet can autonomously determine an optimal cache drop
time at each node.

B. Information Survival

Next, we look at how long information survives in self-
organized networks without centralized control. We say that,
at a given time instant, a particular item has survived if each of
its chunks is cached by at least one node in the network.

Fig. 8. Information survival in the Mall (top) and City (bottom) scenarios.
The temporal behavior of the survived information and solved queries when
the gateway nodes are switched off at t = 200 s.

Fig. 8 shows the time evolution of the number of survived
items when the gateway nodes are turned off after t = 200 s in
the Mall and the City. The same plots also present the overall
solved query rate as time elapses, as observed at 50-s time
discretization steps. We consider that DetCache and Hamlet
are coupled with mitigated flooding, and we set λ to 0.003
request/s.

In the Mall, the adaptive caching time introduced by Hamlet
helps most of the items survive in the system. In the City, the
high node mobility supports the circulation of information and,
thus, its survival after the gateways shut down. However, even
through mobility, DetCache allows some of the items to vanish,
whereas Hamlet succeeds in keeping all of items around.

In the Mall, we further explore the reaction of DetCache
and Hamlet to different gateway switch-off times. In Fig. 9,
for each gateway switch-off time, we show the evolution of
the number of survived items at some landmark time instants

2204 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 5, JUNE 2011

Fig. 9. Mall: Information survival for different gateway switch-off times. The
smaller numbers on the x-axis indicate the landmark time (in seconds) to which
the number of survived items refers.

(computed from the start of the simulation). Clearly, the later
the gateways are shut down, the higher the probability of
information survival, because the information has more time
to spread through the network. We observe that Hamlet can
maintain information presence equal to 100% if the information
is given enough time to spread, i.e., gateways are disabled
after 600 s or more, whereas DetCache loses half the items
within the first 2000 s of simulation. We could wonder whether
caching times give the edge to either Hamlet or DetCache.
However, the average caching time in Hamlet ranges from
37 s to 45 s, depending on the gateway switch-off times and
on the specific information item considered. These values are
very close to the DetCache caching time of 40 s, showing that
Hamlet improves information survival by better distributing
content in the network and not by simply caching them for
longer periods of time.

VII. EVALUATION WITH SMALL-SIZED CACHES

We now evaluate the performance of Hamlet in a network
where a node cache can accommodate only a small portion of
the data that can be retrieved in the network. As an example,
consider a network of low-cost robots that are equipped with
sensor devices, where maps that represent the spatial and tem-
poral behavior of different phenomena may be needed by the
nodes and have to be cached in the network. We thus consider
the memory-constrained scenario introduced in Section V and
employ the Hamlet framework to define a cache replacement
strategy, as detailed in Section IV.

In such a scenario, the caching dynamics of the different in-
formation items become strongly intertwined. Indeed, caching
an item often implies discarding different previously stored
content, and as a consequence, the availability of one item in
the proximity of a node may imply the absence of another item
in the same area. Thus, in our evaluation, it is important to con-
sider a large number of items, as well as to differentiate among
these items in terms of popularity. We consider an overall per-
node query rate Λ = 0.1 and sets of several hundreds of items.
We assume that popularity levels qi are distributed according
to the Zipf law, which has been shown to fit popularity curves
of content in different kinds of networks [29]. When not stated
otherwise, the Zipf distribution exponent is set to 0.5. Such a
value was selected, because it is close to the values observed in
the real world [29], and the skewness that it introduces in the

Fig. 10. Static memory-constrained nodes: Solved-queries ratio and query
traffic as the information set size varies, with HybridCache and Hamlet.

popularity distribution is already sufficient to make differences
emerge between the caching schemes that we study. In any case,
we provide an analysis of the impact of the Zipf exponent at the
end of this section.

We assume that nodes can cache at most ten items, which
correspond to a percentage between 2% and 10% of the entire
information set, depending on the considered value of I . In ad-
dition, we set C = 1 to account for the smaller size of informa-
tion items typically exchanged by memory-constrained nodes
and MC to 300 s, because the increased network connectivity
prolongs the reliability of information presence estimation.

Here, we compare Hamlet with the well-known HybridCache
cache replacement technique [9]. In HybridCache, a node that
requests an item always caches the received data. Instead, a
node on the data path caches the information if its size is small;
otherwise, it caches the data path, provided that the content
copy is not very far away. When the maximum cache size is
capped, content in excess is dropped according to a metric
based on the number of requests observed for the different
items. Because HybridCache does not exploit information pres-
ence estimation, it is less demanding than Hamlet in terms of
computation and memory capabilities.

We couple both schemes with mitigated flooding. While de-
riving the results, we noted that caching the data paths leads to
poor performance due to the high cache replacement frequency
in the simulated scenarios. Therefore, we set the HybridCache
parameters so that the following two conditions are satisfied:
1) The size of the data never results in data path caching but
always in information caching, and 2) mitigated flooding is
always employed for query forwarding. In addition, to reduce
the number of query transmissions in the network, queries
for missing chunks are not reissued, and both Hamlet and
HybridCache are coupled with the preferred group broadcasting
(PGB) technique [30].

A. Benchmarking Hamlet

Let us first focus on the memory-constrained scenario out-
lined in Section V with static nodes. Fig. 10 presents the solved-
queries ratio and the overall query traffic versus the information
set size. We observe that Hamlet reacts better to the growth of
the number of items than HybridCache, without incurring any

FIORE et al.: CACHING STRATEGIES BASED ON INFORMATION DENSITY ESTIMATION IN AD HOC NETWORKS 2205

Fig. 11. Static memory-constrained nodes. (a) Query-solving ratio, (b) time, and (c) average networkwide cache occupancy for each item when using
HybridCache and Hamlet, with I = 300. In (c), the red horizontal line represents perfect fairness in cache occupancy among different items.

Fig. 12. Static memory-constrained nodes: Spatial distribution of the 100th, 200th, and 300th items, averaged over time, for Zipf distribution exponents under
HybridCache and Hamlet, with I = 300. The z-axis in the plots shows the mean content completeness in each spatial slot, with a value of 1, meaning that the
entire content can be found in the same spatial slot. (a) HybridCache. (b) Hamlet.

penalty in terms of network load, as shown by the similar query
traffic generated by the two schemes.

Observing the performance of Hamlet and HybridCache on
a per-item basis allows a deeper understanding of the results.
In Fig. 11(a), we show the solving ratio of the queries for
each item when I = 300. Along the x-axis, items are ordered
in decreasing order of popularity, with item 1 representing the
most sought-after information and item 300 the least requested
information. Unlike Hamlet, HybridCache yields extremely
skewed query solving ratios for the different content; a similar
observation also applies to the time needed to solve queries,
as shown in Fig. 11(b). The explanation for such behavior lies

in the distribution of information in the network. Fig. 11(c)
depicts the average percentage of memory used to cache a given
item, aggregated over all network nodes. As expected from the
previous results, HybridCache fosters the storage of popular
content, whereas it disregards content that is less requested,
even if it represents two thirds of the whole information set.
Instead, Hamlet achieves, in a completely distributed manner,
a balanced networkwide utilization of node caches. Indeed,
the results of Hamlet are very close to the most even cache
occupancy that we can have, represented by the horizontal red
line in the plot and corresponding to the case where the total
network storage capacity is equally shared among the I items.

2206 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 5, JUNE 2011

Fig. 13. Memory-constrained mobile nodes: Query-solving ratio for each
information item when using HybridCache and Hamlet, with I = 300. The
plots refer to vm that is equal to 1 m/s (left) and 15 m/s (right).

Furthermore, it is not only the sheer quantity of data that
makes a difference but its spatial distribution also plays a major
role. If several nodes cache a rare item but they are all very close
to each other, queries that were generated in other areas of the
network take more hops to be satisfied. This case happens with
HybridCache, as proven by the spatial distribution of the 100th,
200th, and 300th items, as shown in Fig. 12(a). Conversely, the
spatial distribution achieved by Hamlet, as shown in Fig. 12(b),
is more uniform, leading to a faster more likely resolution of
queries.

We now compare the performance of HybridCache and Ham-
let in the scenario with memory-constrained mobile nodes. We
test the two schemes when I = 300 and for an average node
speed vm equal to 1 and 15 m/s.

The solved-queries ratio recorded with HybridCache and
Hamlet on a per-item basis are shown in Fig. 13. Comparing the
left and right plots, we note that the node mobility, even at high
speed, does not seem to significantly affect the results due to
the high network connectivity level. The spatial redistribution
of content induced by node movements negatively affects the
accuracy of Hamlet’s estimation process, which explains the
slight reduction in the solved query ratio at 15 m/s. That same
movement favors HybridCache, at least at low speed, because
it allows unpopular information to reach areas that are far from
the gateway. However, the difference between the two schemes
is evident, with Hamlet solving an average of 20% requests
more than HybridCache, when nodes move at 15 m/s.

Note that, for the query resolution delay and the average
cache utilization at the network nodes, we obtained qualita-
tively similar results as in the static case, with Hamlet achieving
more homogeneous solving times and fairer distribution of
content in the network than HybridCache.

B. Impact of the Zipf Distribution Skewness

Finally, we study the impact of the Zipf distribution exponent
on the performance of the cache replacement strategies. We
recall that an exponent that is equal to zero implies perfect
homogeneity, i.e., Zipf distribution that degenerates into a uni-
form distribution, whereas the difference in popularity among
content becomes much more unbalanced as the exponent grows.
We focus on a network where ten items are available and each
node can cache at most one complete item. The choice of
this setting is mandated by the fact that, in the presence of

Fig. 14. Memory-constrained static (top) and mobile (bottom) nodes: Solved-
queries ratio and query traffic as the Zipf distribution exponent varies when
using HybridCache and Hamlet, with I = 10.

hundreds of different items, unbalanced popularity distributions
(i.e., exponents higher than 0.5) lead to very low λi for the 100
or so least popular items, thus making requests for such content
extremely rare.

Fig. 14 depicts the evolution of the solved-queries ratio
and the query traffic as the Zipf exponent ranges vary. By
comparing the two plots, we note that the presence of mobility
(vm = 1 m/s) leads to a higher number of unsolved requests
and in a larger amount of traffic generated within the network
under HybridCache, because queries propagate far from the
source without finding the desired item. However, what is most
interesting is how the network load tends to decrease as the
Zipf exponent grows, both in the absence and presence of node
movements. On the one hand, higher values of the exponent
lead to more unbalanced query rates, with very few items that
are extremely popular and a long tail of seldom-accessed data.
Being requested so often, popular items become commonly
found in nodes caches, and the relative queries are solved faster,
generating small traffic. On the other, when the Zipf exponent
is small, the distribution of queries is more balanced, with
information more evenly distributed in the network. This case
implies that items can usually be found but are hardly cached
very close to the requesting node. Thus, the different items are
all requested at a fairly high rate but are not immediately found,
generating larger query traffic.

VIII. CONCLUSION

We have introduced Hamlet, which is a caching strategy for
ad hoc networks whose nodes exchange information items in
a peer-to-peer fashion. Hamlet is a fully distributed scheme

FIORE et al.: CACHING STRATEGIES BASED ON INFORMATION DENSITY ESTIMATION IN AD HOC NETWORKS 2207

where each node, upon receiving a requested information, de-
termines the cache drop time of the information or which con-
tent to replace to make room for the newly arrived information.
These decisions are made depending on the perceived “pres-
ence” of the content in the node’s proximity, whose estimation
does not cause any additional overhead to the information
sharing system. We showed that, due to Hamlet’s caching of
information that is not held by nearby nodes, the solving prob-
ability of information queries is increased, the overhead traffic
is reduced with respect to benchmark caching strategies, and
this result is consistent in vehicular, pedestrian, and memory-
constrained scenarios. Conceivably, this paper can be extended
in the future by addressing content replication and consistency.
The procedure for information presence estimation that was
developed in Hamlet can be used to select which content should
be replicated and at which node (even if such a node did not
request the content in the first place). In addition, Hamlet can
be coupled with solutions that can maintain consistency among
copies of the same information item cached at different network
nodes, as well as with the versions stored at gateway nodes.

REFERENCES

[1] J. Wortham (2009, Sep.). Customers Angered as iPhones Overload
AT&T. The New York Times. [Online]. Available: http://www.nytimes.
com/2009/09/03/technology/companies/03att.html

[2] A. Lindgren and P. Hui, “The quest for a killer app for opportunistic and
delay-tolerant networks,” in Proc. ACM CHANTS, 2009, pp. 59–66.

[3] P. Padmanabhan, L. Gruenwald, A. Vallur, and M. Atiquzzaman, “A sur-
vey of data replication techniques for mobile ad hoc network databases,”
VLDB J., vol. 17, no. 5, pp. 1143–1164, Aug. 2008.

[4] A. Derhab and N. Badache, “Data replication protocols for mobile ad hoc
networks: A survey and taxonomy,” IEEE Commun. Surveys Tuts., vol. 11,
no. 2, pp. 33–51, Second Quarter, 2009.

[5] B.-J. Ko and D. Rubenstein, “Distributed self-stabilizing placement of
replicated resources in emerging networks,” IEEE/ACM Trans. Netw.,
vol. 13, no. 3, pp. 476–487, Jun. 2005.

[6] G. Cao, L. Yin, and C. R. Das, “Cooperative cache-based data access in
ad hoc networks,” Computer, vol. 37, no. 2, pp. 32–39, Feb. 2004.

[7] C.-Y. Chow, H. V. Leong, and A. T. S. Chan, “GroCoca: Group-based
peer-to-peer cooperative caching in mobile environment,” IEEE J. Sel.
Areas Commun., vol. 25, no. 1, pp. 179–191, Jan. 2007.

[8] T. Hara, “Cooperative caching by mobile clients in push-based informa-
tion systems,” in Proc. CIKM, 2002, pp. 186–193.

[9] L. Yin and G. Cao, “Supporting cooperative caching in ad hoc networks,”
IEEE Trans. Mobile Comput., vol. 5, no. 1, pp. 77–89, Jan. 2006.

[10] N. Dimokas, D. Katsaros, and Y. Manolopoulos, “Cooperative caching in
wireless multimedia sensor networks,” ACM Mobile Netw. Appl., vol. 13,
no. 3/4, pp. 337–356, Aug. 2008.

[11] Y. Du, S. K. S. Gupta, and G. Varsamopoulos, “Improving on-demand data
access efficiency in MANETs with cooperative caching,” Ad Hoc Netw.,
vol. 7, no. 3, pp. 579–598, May 2009.

[12] Y. Zhang, J. Zhao, and G. Cao, “Roadcast: A popularity-aware content
sharing scheme in VANETs,” in Proc. IEEE Int. Conf. Distrib. Comput.
Syst., Los Alamitos, CA, 2009, pp. 223–230.

[13] E. Cohen and S. Shenker, “Replication strategies in unstructured peer-to-
peer networks,” in Proc. ACM SIGCOMM, Aug. 2002, pp. 177–190.

[14] B. Tang, H. Gupta, and S. Das, “Benefit-based data caching in ad hoc
networks,” IEEE Trans. Mobile Comput., vol. 7, no. 3, pp. 289–304,
Mar. 2008.

[15] W. Li, E. Chan, and D. Chen, “Energy-efficient cache replacement policies
for cooperative caching in mobile ad hoc network,” in Proc. IEEE WCNC,
Kowloon, Hong Kong, Mar. 2007, pp. 3347–3352.

[16] M. K. Denko and J. Tian, “Cross-layer design for cooperative caching
in mobile ad hoc networks,” in Proc. IEEE CCNC, Las Vegas, NV,
Jan. 2008, pp. 375–380.

[17] H. Chen, Y. Xiao, and X. Shen, “Update-based cache replacement policies
in wireless data access,” in Proc. BroadNets, Boston, MA, Oct. 2005,
pp. 797–804.

[18] J. Xu, Q. Hu, W.-C. Lee, and D. L. Lee, “Performance evaluation of an
optimal cache replacement policy for wireless data dissemination,” IEEE
Trans. Knowl. Data Eng., vol. 16, no. 1, pp. 125–139, Jan. 2004.

[19] J. Cao, Y. Zhang, G. Cao, and L. Xie, “Data consistency for cooperative
caching in mobile environments,” Computer, vol. 40, no. 4, pp. 60–66,
Apr. 2007.

[20] N. Dimokas, D. Katsaros, and Y. Manolopoulos, “Cache consistency
in wireless multimedia sensor networks,” Ad Hoc Netw., vol. 8, no. 2,
pp. 214–240, Mar. 2010.

[21] T. Hara, “Effective replica allocation in ad hoc networks for improving
data accessibility,” in Proc. IEEE INFOCOM, Anchorage, AK, Apr. 2001,
pp. 1568–1576.

[22] K. Chen, S. H. Shah, and K. Nahrstedt, “Cross-layer design for data ac-
cessibility in mobile ad hoc networks,” Wireless Pers. Commun., vol. 21,
no. 1, pp. 49–76, Apr. 2002.

[23] M. Fiore, C. Casetti, and C.-F. Chiasserini, “Information density estima-
tion for content retrieval in MANETs,” IEEE Trans. Mobile Comput.,
vol. 8, no. 3, pp. 289–303, Mar. 2009.

[24] M. Fiore, F. Mininni, C. Casetti, and C.-F. Chiasserini, “To cache or not
to cache?” in Proc. IEEE INFOCOM, Rio de Janeiro, Brazil, Apr. 2009,
pp. 235–243.

[25] T. Hara, “Replica allocation methods in ad hoc networks with data up-
date,” ACM Mobile Netw. Appl., vol. 8, no. 4, pp. 343–354, Aug. 2003.

[26] W. Li, E. Chan, D. Chen, and S. Lu, “Maintaining probabilistic consis-
tency for frequently offline devices in mobile ad hoc networks,” in Proc.
IEEE ICDCS, Montreal, QC, Canada, Jun. 2009, pp. 215–222.

[27] M. Fiore, J. Haerri, F. Filali, and C. Bonnet, “Vehicular mobility
simulation for VANETs,” in Proc. IEEE ANSS, Norfolk, VA, Mar. 2007,
pp. 301–309.

[28] E. M. Royer, P. M. Melliar-Smith, and L. E. Moser, “An analysis of the
optimum node density for ad hoc mobile networks,” in Proc. IEEE ICC,
Helsinki, Finland, Jun. 2001, pp. 857–861.

[29] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: Evidence and implications,” in Proc. IEEE
INFOCOM, New York, Mar. 1999, pp. 126–134.

[30] V. Naumov, R. Baumann, and T. Gross, “An evaluation of intervehicle ad
hoc networks based on realistic vehicular traces,” in Proc. ACM MobiHoc,
Florence, Italy, May 2006.

Marco Fiore (M’05) received the M.Sc. degrees
from the University of Illinois at Chicago and the
Politecnico di Torino, Torino, Italy, in 2003 and
2004, respectively, and the Ph.D. degree from the
Politecnico di Torino in 2008.

He was a Visiting Researcher with Rice Uni-
versity, Houston, TX, in 2006 and 2007 and with
the Universitat Politecnica de Catalunya, Barcelona,
Spain, in 2008. He is currently an Assistant Profes-
sor with Institut National des Sciences Appliquées
(INSA) Lyon, Villeurbanne, France, where he is

also an Institut National de Recherche en Informatique et en Automatique
(INRIA) Researcher within the Smart Wireless Networking Team, which is
hosted by the Centre of Innovation in Telecommunications and Integration of
Services (CITI) Laboratory. His research interests include mobile networking,
particularly vehicular networks, mobility modeling and analysis, opportunistic
communication, and mobile network security.

Claudio Casetti (M’05) received the M.Sc. degree in
electrical engineering and the Ph.D. degree in elec-
tronic engineering from the Politecnico di Torino,
Torino, Italy, in 1992 and 1997, respectively.

He is currently an Assistant Professor with the
Dipartimento di Elettronica e Telecomunicazioni,
Politecnico di Torino. He is a coauthor of more than
120 journal papers and conference proceedings in
networking and is the holder of three patents. His
research interests include ad hoc wireless networks
and vehicular networks.

2208 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 5, JUNE 2011

Carla-Fabiana Chiasserini (M’98–SM’09) re-
ceived the M.Sc. (summa cum laude) degree in elec-
trical engineering from the University of Florence,
Florence, Italy, in 1996 and the Ph.D. degree from
the Politecnico di Torino, Torino, Italy, in 1999.

Since 1999, she has been with the Dipartimento
di Elettronica e Telecomunicazioni, Politecnico di
Torino, where she is currently an Associate Profes-
sor. From 1998 to 2003, she was a Visiting Re-
searcher with the University of California at San
Diego, La Jolla. Her research interests include the

architecture, protocols, and performance analyses of wireless networks. She
has published more than 180 papers in prestigious journals and leading interna-
tional conference proceedings and is the coholder of three patents.

Dr. Chiasserini is the Associated Editor for several journals, including the
IEEE Wireless Communications Magazine and the IEEE TRANSACTIONS ON

WIRELESS COMMUNICATIONS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

