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Abstract
This thesis focuses on the analysis and modeling of web sessions, groups
of requests made by a single user for a single navigation purpose. Under-
standing how people browse through websites is important, helping us to
improve interfaces and provide to better content.

After first conducting a statistical analysis of web sessions, we go on to
present algorithms to summarize and model web sessions. Finally, we de-
scribe applications that use novel browsing methods, in particular parallel
browsing.

We observe that people tend to browse images in a sequences and that those
sequences can be considered as units of content in their own right. The
session summarization algorithm presented in this thesis tackles a novel
pattern mining problem, and this algorithm can also be applied to other
fields, such as information propagation. From the statistical analysis and
the models presented, we show that contextual information, such as the
referrer domain and the time of day, plays a major role in the evolution of
sessions. To understand browsing one should therefore take into account
the context in which it takes place.
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Resumen
Esta tesis se centra en el análisis y modelaje de sesiones web: grupos de
solicitudes realizadas por un único usuario para un sólo propósito de nave-
gación. La comprensión de cómo la gente navega a través de los sitios web
es importante para mejorar la interfaz y ofrecer un mejor contenido.

En primer lugar, se realiza un análisis estad́ıstico de las sesiones web. En
segundo lugar, se presentan los algoritmos para identificar los patrones de
navegación frecuentes y modelar las sesiones web. Finalmente, se describen
varias aplicaciones que utilizan nuevas formas de navegación: la navegación
paralela.

A través del análisis de los registros de uso se observa que las personas
tienden a navegar por las imágenes en modo secuencial y que esas secuencias
pueden ser consideradas como unidades de contenido. La generación de
resumenes de sesiones presentada en esta tesis es un problema nuevo de
extracción de patrones y se puede aplicar también a otros campos como
el de la propagación de información. A partir del análisis y los modelos
presentados entendemos que la información contextual, como el dominio
previo de acceso o la hora del d́ıa, juega un papel importante en la evolución
de las sesiones. Para entender la navegación no se debe, por tanto, olvidar
el contexto en que esta se lleva a cabo.
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Resum
Aquesta tesi es centra en l’anàlisi i modelatge de sessions web: grups de
sol.licituds realitzades per un únic usuari per un sol propòsit de navegació.
La comprensió de com navega la gent a través de llocs web es important
per millorar la interf́ıcie i oferir un millor contingut.

Primerament, es realitza un anàlisi estad́ıstic de les sessions web. Segui-
dament, es presenten els algorismes d’identificació de patrons freqüents de
navegació i modelatge de les sessions web. Finalment, es descriuen varies
aplicacions que utilitzen noves formes de navegació: la navegació paral.lela.

Mitjançant el análisis dels registres d’ús s’observa que les persones tendeixen
a navegar per les imatges de forma seqüencial i que aquestes seqüencies
poden ser considerades com unitats de contingut. La generació de resums
de sessions presentada en aquesta tesi es un problema nou d’extracció de
patrons i pot ésser aplicat també a altres camps com el de la propagació de
la informació. A partir del análisis i dels models presentats entenem que la
informació contextual, com el domini previ d’accés o la hora del dia, juguen
un paper important en la evolució de les sessions. Per entendre la navegació
no s’ha d’oblidar, per tant, el context en el que aquesta es porta a terme.
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Sommario
Questa tesi si concentra sull’analisi e modellazione di sessioni web, ovvero
di gruppi di richieste presentate da un singolo utente per un unico scopo di
navigazione. Capire come le persone navigano attraverso siti web è impor-
tante, dal momento che ci aiuta a migliorare l’interfaccia e a fornire migliori
contenuti.

Dopo aver condotto un’analisi statistica delle sessioni web, si presentano
algoritmi per sintetizzare e modellare sessioni web. Infine, si descrivono ap-
plicazioni che utilizzano nuovi paradigmi di navigazione web, in particolare
la navigazione parallela.

Dall’analisi si evince che gli utenti tendono a visualizzare le immagini in
sequenza e che tali sequenze possono essere considerate unit di contenuto.
L’algoritmo di sintesi di sessioni presentato in questa tesi affronta un nuovo
problema di data mining. Questo algoritmo può essere applicato anche ad
altri campi, come la propagazione dell’informazione. Dall’analisi statistica
dei modelli presentati, dimostriamo che l’informazione contestuale, come ad
esempio il dominio referrer e l’ora del giorno, gioca un ruolo fondamentale
nell’evoluzione delle sessioni. Per capire la navigazione si deve quindi tener
conto del contesto in cui si svolge.
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Chapter 1

Introduction

It is crucial for service providers to understand the needs and preferences
of their customers. This knowledge is useful in a number of applications
such as improving the service or designing new products. In non-digital
commerce, sources of information are mainly market studies done by means
of surveys and interviews with customers. Such methods, although useful,
are often expensive and limited in sample size since they require manual
work.

With the penetration of the World Wide Web, people started to use web-
sites to buy goods or just browse content. Through websites and mobile
apps, people can get to know and share new ideas and products. Through
browsing, one can understand, explore, and make sense of the large amount
of data items. Web servers are therefore not only providers of services to the
users, but also a useful source of information for their owners. It is indeed
possible to record visits to web pages and track them in an automated and
cheap way. Each time a user visits a page, the server adds a new line to the
server log containing the time of the request, the identifier of the page, and
other optional information.

The availability of server logs opens new horizons towards the understanding
of user behavior. It is possible to precisely record what the user is seeing
on the screen, capture the steps that led the user to undertake a particular
action (e.g., like a particular photo, buy a product), and understand how
the user reaches a particular web page.

While server logs have been intensively analyzed in the case of web search,
not much work has been carried out in the case of general browsing. Ac-

1
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cording to Morse [110], browsing may be defined as a search, hopefully
serendipitous. Differently than the case of search, while browsing the goal
is less clear than a query or may not be so easily expressed by means of a
text phrase. It is also possible that the user does not have any goal at all
(capricious browsing [11]).

The challenge is therefore how to process the enormous amount of data in
the server logs to extract useful knowledge and develop intelligent appli-
cations. The algorithms should be robust enough to cope with the noise
derived from capricious browsing and should be able to understand the
collective signal embodied in the actions of the users.

1.1. Goals

Service providers collect a large amount of information about users, about
sessions, and about the content that is browsed. It is not trivial to figure out
what part of this information is useful to understand the browsing behavior
and what is irrelevant. For example, is the user gender, age, or geographical
location a good indicator of what the user is going to see? How large is the
influence of the context of the session, e.g., time of day or referrer URL?
There is still little work on it and we plan to tackle it in this thesis.

In addition to the study of the factors that influence the browsing behavior
of users, we are also interested in the structure of web sessions, in terms of
transitions among visited pages. Baeza-Yates et al. [6] states that the task
in which users of a retrieval system are engaged may be of two distinct types:
information or data querying (search) and browsing. Both are ways in which
people access information, the first one being random access, and the latter
being sequential access. One can expect that this distinction also exists in
the structure of web sessions. Search may correspond to short sessions with
branching and backtracking (caused by the use of multiple tabs and of the
“back” button in the web browser). Browsing, on the contrary, may be
more linear and correspond to long sequences of pages.

Modern websites make a clear distinction between search and browsing, up
to the point that there are websites (search engines) solely dedicated to
search. In this thesis, we explore ways of combining search and browsing.
Fast retrieval of information as well as the exploration of content is possible,
by taking advantage of both tasks at the same time. The structure of the
sessions will also be different, showing branching and backtracking together
with long browsing sequences of pages. We conjecture that this is helpful
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to go in depth into the results of queries and to understand the information
space that is being browsed.

In this thesis, we will also focus on the content that is browsed. When a
user clicks on a link, the choice is not random, but there is often a reason
behind it. Therefore, pages that are browsed in a session are likely to be
related somehow. This may have interesting applications. First of all, it
should be possible to use the page transitions to build browsing graphs and
these graphs would show communities of similar pages. Moreover, if there
exist frequent information needs shared by many people, there should be
frequent paths that people take in pages in order to satisfy such needs.
Processing server logs should therefore allow us to discover them.

The goal of this thesis is to analyze all these aspects in order to gain insights
about user browsing behavior.

1.2. Contributions

In order to validate the intuitions in Section 1.1 we perform research and
extend the state of the art by:

Improving the understanding of user browsing behavior on multimedia
platforms. This is done through an analysis of server logs coming from
Flickr. The analysis focuses on different phases of the life of a session:
the moment it begins and its evolution. [Chapters 4 and 5]

Developing a summarization algorithm to extract frequent browsing
patterns. A summary corresponds to a set of sessions that browse the
same pages in the same order. We evaluate the algorithm on several
datasets. [Chapter 6]

Proposing models of browsing sessions. The models take into ac-
count a variety of aspects of browsing behavior of the user such as the
context, the content, and the social signal. The models allow us to
understand which aspects have the greatest influence on the browsing
behavior. [Chapters 7 and 8]

Describing an extension of the traditional tree-structure model of ses-
sions: parallel browsing. In parallel browsing the user follows multiple
browsing threads at the same time. To illustrate and evaluate the use-
fulness of this model, we propose PRiSMA, a application to explore
and retrieve photos from a large collection. [Chapter 9]
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a) Birth
b) Search

c) Browsing

Analysis and Characterization
Chapters 4 and 5

Summarization
Chapter 6

Modeling and Clustering
Chapters 7 and 8

Applications
Chapter 9

Figure 1.1: The conceptual flow of the thesis. The thesis starts from a
characterization of web sessions (top left). Next, it continues by present-
ing an algorithm to extract frequent browsing patterns (top right). Given
the characterization, models of browsing are presented (bottom left). The
models can be used to cluster sessions. Finally, the thesis concludes by
proposing new models of sessions (bottom right): parallel browsing and
multidimensional browsing.

1.3. Outline

In this thesis, we characterize, model and exploit browsing sessions for de-
veloping intelligent applications.

Chapter 2 contains a review on related work. Chapter 3 introduces general
elements that will be useful throughout the thesis and describes the datasets
used in the experiments. The rest of the work is divided into four parts.
Figure 1.1 illustrates the conceptual flow among them. We will overview
each one individually.
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Starting from a large sample of server logs, we characterize the behavior of
users in a photo-sharing platform. First of all, we study how sessions are
born, i.e., what happens when users first enter a website. We show that the
referrer URL plays a major role in the evolution of sessions (Chapter 4).
This work has been done together with Michele Trevisiol [31]. The results
of this chapter are published in:

Luca Chiarandini, Michele Trevisiol, and Alejandro Jaimes. Dis-
covering social photo navigation patterns. In Multimedia and Expo
(ICME), 2012 IEEE International Conference on, pages 31–36. IEEE,
2012.

We then characterize sessions in different tasks, such as search and browsing
of images (Chapter 5). For the case of search, we show that the search task
is often hierarchical in the sense that users follow a different search path
each time and roll back if it leads to a dead end. On the contrary, when
browsing images, it is more frequent to browse sequences of photos. We call
such sequences photostreams. This leads to the intuition that photostreams
can be considered as content units in their own right and allows us to
aggregate and compact the representation. Section 5.2.1 is joint work with
Michele Trevisiol [31]. This chapter led to the following publications:

Silviu Maniu, Neil O’Hare, Luca Maria Aiello, Luca Chiarandini, and
Alejandro Jaimes. Search behaviour on photo sharing platforms. In
Multimedia and Expo (ICME), 2013 IEEE International Conference
on, pages 1–6. IEEE, 2013.

Luca Chiarandini, Przemyslaw A. Grabowicz, Michele Trevisiol, and
Alejandro Jaimes. Leveraging browsing patterns for topic discovery
and photostream recommendation. In Proceedings of the 7th Inter-
national AAAI Conference on Weblogs and Social Media, Cambridge,
MA, pages 71–80, 2013.

Luca Chiarandini and Alejandro Jaimes. Browsing-based content
discovery. In Proceedings of the Designing Interactive Systems Con-
ference. ACM, 2012.

Given this characterization, we move towards models of user browsing be-
havior. We begin by tackling the problem of summarizing web sessions
(Chapter 6). A summary is a group of sessions that visit more or less the
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same pages in the same order. Summaries are useful since they condense a
particular user behavior. The results of this chapter were published in:

Lucrezia Macchia, Francesco Bonchi, Francesco Gullo, and Luca Chia-
randini. Mining summaries of propagations. Proceedings of the 13th
IEEE International Conference on Data Mining (ICDM’13), 0:498–
507, 2013.

We then model sessions using a simple, yet reliable model (Chapter 7).
We take into account many features, such as the interests of the user, the
context of the session (e.g., referrer URL, user location), and the content
that is browsed. In this chapter we confirm the observations done in the
characterization chapters by means of an unsupervised learning model. For
example, the referrer URL is a very important predictor of the actions of
the users. We then use a contextual session model to cluster sessions and
we show the results in Chapter 8. This model is based on the features that
give the greater contribution in the previous model. We evaluate the model
on a large dataset of news browsing. The results of the modeling chapters
were published in:

Luca Chiarandini, Ricardo Baeza-Yates, and Alejandro Jaimes. User
Browsing Behavior: Characterization and Modeling. under review.

Peter Haider, Luca Chiarandini, Ulf Brefeld, and Alejandro Jaimes.
Contextual models for user interaction on the web. In Proceedings of
the European Conference on Machine Learning and Knowledge Dis-
covery in Databases (ECML-PKDD 2012), 2012.

Chapter 9 is aimed at exploring new models of sessions by means of user
applications. We first present an application in which sessions are composed
by independent parallel browsing threads. Users can see on the screen multi-
ple queries and browse them in parallel. A user study shows the advantages
and disadvantages of this technique. In the second application users can
explore people participation in public events. Users can move through all
three dimensions of the interface, i.e., people, photos and events. For ex-
ample, one can look for a particular person, see all events in which a person
took part, list all people in a photo, etc.A session is therefore a multidimen-
sional path (in the people-photos-events information space). If we consider
the session as a linear sequence of pages, we fail to capture the structure of



1.3. outline 7

user browsing. The following papers were published based on the results of
Chapter 9:

Pancho Tolchinsky, Luca Chiarandini, and Alejandro Jaimes. Prisma:
searching images in parallel. In Proceedings of the 13th ACM inter-
national conference on Multimedia, pages 985–988. ACM, 2012.

Luca Chiarandini, Luca Maria Aiello, Neil O’Hare, and Alejandro
Jaimes. Metro: Exploring participation in public events. In Pro-
ceedings of the 5th conference on Social Informatics, pages 40–45.
Springer, 2013.

Finally, Chapter 10 draws the conclusions and presents directions and ideas
for future research.





Chapter 2

State of the Art

In this chapter we present other works that are relevant to this thesis. We
organize related work according to the structure of the following chapters.
First of all, in Section 2.1 we list works that deal with analysis and charac-
terization of online user browsing behavior. This will be useful in Chapters 4
and 5. Secondly, we present a survey on summarization (Section 2.2), which
is related to the work in Chapter 6. We then list work in the context of
modeling in Section 2.3. This gives the context for Chapters 7 and 8. Sec-
tion 2.4 presents related work on models for clustering browsing sessions,
which is particularly useful in Chapter 8. Finally, the last section of the
chapter gives an overview about applications for browsing images.

2.1. Characterizing Web Sessions

Much work has been done in characterizing and analyzing web sessions in
social networks and multimedia platforms [85, 74, 26, 94]. Several authors
have analyzed sessions and browsing behavior for various purposes. Ben-
evenuto et al. [14] show a clickstream study over several social networks,
proposing a clickstream model to characterize user behavior, while Jiang et
al. [84] study the Chinese social network Renren, creating latent interac-
tion graphs as a different representation of interaction based on “profiles”
of browsing events.

We can divide the related work into characterization of image search and
analysis of user browsing behavior.

9
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2.1.1. Characterizing Image Search

There has been much work on analyzing the logs of commercial web search
engines, uncovering relationships between queries [20] and using log anal-
ysis to improve search engine rankings [159]. Broder [22] proposes three
distinct types of queries based on user intent: informational, navigational,
and transactional. Other work automatically classifies queries within this
taxonomy [83].

Studies of user behavior using web server logs are often limited by the fact
that the logs only record interactions with the search engine itself, with sub-
sequent actions not recorded in the logs. White and Drunker [157] circum-
vent this problem by inviting users to install a browser plug-in which logged
all their browsing activities, and analyze the entire search sessions of over
2,000 participants, characterizing users based on search trails, similar to our
search trees. The availability of tabbed browsing on modern web browsers
means web browsing session are rarely linear, and models for tabbed brows-
ing have been proposed by Chierichetti et al. [34]. Additionally, the use of
the ‘back’ button can also result in browsing sequences that are not ade-
quately represented by linear models. Much of the work on understanding
image search behavior has focused on professional users, using a combina-
tion of qualitative methods and automatic analysis of search logs [154]. Such
studies tend to show that a variety of search strategies are used, and that
browsing and exploration are often important strategies [155]. In one such
study, Westman and Oittinen [154] use interviews, observation, and analysis
of image queries to understand the types of queries and search strategies
used, while in other work they conduct user experiments to understand
search strategies, comparing professionals to non-professionals [155].

Image search logs have been studied. Jansen et al. [82] analyze audio, video
and image searches from the Alta Vista search engine. Andre et al. [5]
analyze a large image search log and note that, compared with general web
search sessions, image search session have greater average depth (number
of results pages clicked for a query), that they have more results clicked,
and that users spend more time looking at results pages, inferring that
image search is more exploratory than web search. Other work looks at
query modification patterns in image search [147], noting that users tend to
replace search terms rather than adding or deleting them.

Researchers studied taxonomies for image search, attempting to adapt
Broder’s [22] taxonomy of web search to image search [102]. Query tax-
onomies for image search differ significantly from those used for web search,
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which is unsurprising since navigational and transactional queries are not re-
ally applicable to images. Instead, taxonomies of image search have looked
at the type of objects and concepts that the query refers to. Enser [49],
for example, distinguishes between unique (e.g., specific people) and non-
unique requests, each of which could be refined or not. Smeulders et al. [138]
distinguish between target, category search, and search by association, with
target and category search similar to unique and non-unique.

Difference from Previous Work. In this thesis we broadly follow those
taxonomies for classifying queries, distinguishing between general and spe-
cific queries. Various works also show that specific people and other objects
are particularly important in image search [154, 145]. The current work
differs from previous work in image search analysis in that we have ac-
cess to the users entire behavior within search sessions (specifically within
search trees, as defined below in Section 5.1.1), in order to highlight com-
mon search behavior in a photo-sharing platform. Distinct from other work,
after classifying the majority of queries into a taxonomy of query types, we
then investigate the relationship between search behavior and query type,
and also the extent to which search behavior is user-dependent.

2.1.2. Characterizing Image Browsing

Browsing behavior has been studied in many contexts [151, 26, 94, 107].
Some authors have studied user navigation patterns in Flickr. Most no-
tably, Lerman and Jones [96] study how users find new images on Flickr,
highlighting that people often navigate through photo streams of their con-
tacts. They refer to such behavior as “social browsing” because users tend
to browse the photos of their closest contacts. Other authors have also high-
lighted such behavior (e.g., [92, 149]). Lipczak et al. [100] perform a similar
study in Flickr also considering user behavior. However, they focused their
attention on explicit user actions, in particular on favorites.

Huang et al. [78] take into account parallel browsing, i.e., when a user nav-
igates using multiple browser windows at the same time. Other researchers
model user behavior considering the content of the pages [99] and even use
it for tag recommendation in Flickr [142].

Gamon and König [58], study session logs collected from the Microsoft Live
Toolbar. They group URLs into categories, for a manually defined list of
websites, obtaining 5 categories. A somewhat related approach is proposed
by Kumar and Tomkins [94], in which a URL taxonomy is generated by
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an automatic categorization. Other authors have focused on clustering or
using Markov Chains (e.g., Sharma et al. [136] and Vakali et al. [148]) to
model user sessions.

Figueiredo et al. [52] and Yang and Leskovec [163] analyze popularity of
content in online media. They show that the referrer has a strong influence
on the popularity of items and could be used to predict it. Although not
related to user browsing, these works are still relevant to this thesis, since
they acknowledge the importance of the referrer domain.

Srikant and Yang [139] use implicit information extracted from server logs
to improve the design of a website. In particular, the authors analyze the
server logs in order to suggest modifications to the website link structure,
to make content easier to find for the users.

Difference from Previous Work. The main difference between our
work and previous work is that we take into account the referrer URL in
order to model user behavior. Most work on session analysis on the Web
focuses on modeling behavior independently of where the user comes from
when visiting a website. In addition, our work differs from Lerman and
Jones’ [96] in the fact that we do not focus only on new images. More
specifically, we take into account not just which photos users view, but also
consider categories of pages within the Flickr site and, given the referral in-
formation, explicitly analyze users’ behavior. Moreover, most of the above
takes into account individual photos and does not consider photostreams as
content units.

2.2. Session Summarization

The problem of session summarization (Section 6.2) represents an original
type of structured pattern-mining problem, for which not much related prior
research exists. We however briefly discuss the work in similar areas.

Graph Pattern Mining. The problem of graph pattern mining is to
extract graph patterns (e.g., trees or subgraphs) that appear frequently in
a graph database, i.e., a database composed by a large set of graphs. This
research area has been quite active in the last decade and a lot of algorithms
have been defined, such as AGM [80], FSG [95], gSpan [161], FFSM [76],
SPIN [77], and Gaston [113]. Moreover, Yan et al. [162] propose a general
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framework to mine different graph patterns with possibly non-monotonic
objective functions.

Graph Summarization. The problem of graph summarization is to cre-
ate a coarser-grained version of a graph such that the most important fea-
tures of the graph are retained. The typical approach is based on identifying
and aggregating sets of similar nodes so that the error deriving from the
aggregation is minimized. Navlakha et al. [111] exploit the MDL principle
to summarize a graph with accuracy guarantees. Tian et al. [144] define a
graph-summarization method that allows the user to specify the granularity
level of the summarization in real-time.

Applications of Session Summarization. The study of the spread of
information and influence through a social network has a long history in
the social sciences. The first investigations focused on the adoption of med-
ical [38] and agricultural innovations [150]. Later marketing researchers
have investigated the “word-of-mouth” diffusion process for viral market-
ing applications [9, 60], which has then attracted most of the attention of
the data-mining community, fueled by the seminal work by Domingos and
Richardson [46] and Kempe et al. [90]. The main computational problems in
this area are: (i) distinguishing genuine social influence from “homophily”
and other factors of correlation [3, 40, 53]; (ii) measuring the strength of
social influence over each social link [61, 129]; and (iii) discovering a set
of influential users [46, 90, 62]. Finally, a large amount of literature exists
on the analysis of social influence in specific domains: for instance, study-
ing person-to-person recommendation for purchasing books and videos [97],
telecommunication services [72], or studying information cascades driven
by social influence in Twitter [7, 125]. Session summarization can also find
applications in the field of website usage analysis and re-organization [139].
Typical browsing patterns can be exploited for reorganizing a website, cre-
ating quicklinks [27], and, in general, making the navigation in the website
more efficient for the users.

Difference from Previous Work. The problem we study in this the-
sis departs from graph pattern mining, as we do not mine frequent sub-
structures from a set of graphs. Rather we look for sets of graphs that sat-
isfy certain requirements when merged together. Our problem is evidently
different from graph summarization. The output of graph summarization
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is a reduced version of a single graph, whereas our summaries are sets of
structurally-similar graphs.

2.3. Models of Browsing Sessions

In general, techniques to model web user navigation patterns usually operate
on a per-session or a per-user basis, and usually the deployed models are
intertwined with clustering techniques to identify and group similar users
or navigation patterns. Some proposed approaches are based on Markov
processes [23, 104], hidden Markov models [167, 45], or relational hidden
Markov models [4]. Models have been built for general browsing [109],
tabbed browsing [34], parallel browsing of multiple websites [117], or to
predict when the user is likely to stop browsing [130].

Other researchers focus on user intent [59], behavior [69, 73, 104, 167],
implicit feedback [87, 89], or modeling usability and interaction [42, 43, 158].
Choo et al. [36] present an integrated model for browsing and searching on
the web. SNIF-ACT [118] is a computational cognitive model to explain
navigation behavior on the World Wide Web.

Some work focuses on visualizing [23], discovering [29], and in gaining in-
sights from navigation patterns [16, 116], while some research focuses on
modeling the behavior of users pursuing specific known information seeking
tasks [118, 158].

Finally, several techniques have been developed in the context of news
[17, 42, 98]. Billsus and Pazzani [17] model short-term changes in the behav-
ior of users using a hybrid user model composed of two parts: a short-term
component based on k-nearest-neighbor, aimed at understanding user in-
terest in stories similar to the ones she has already read, and a Naive Bayes
classifier that builds a model of the user based on the words and features
that guide her interests. Researchers devised models that are able to pre-
dict future popularity of content, based on past data [141] or favorites and
ratings [28], or signals from social media [25, 2, 8].

Difference from Previous Work. This thesis models user browsing
behavior on a per-session basis. Our work differs from previous model-
based clustering approaches [4, 23, 104, 167] that rely solely on the order
in which web pages are requested. We model not only what content the
user consumes but also the context in which he or she operates and the
interaction with the website.
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2.4. Clustering of Browsing Sessions

Hassan and Karim [69] evaluate the impact of clustering on the performance
of predicting page views. Using a heuristic-based clustering method instead
of a model-based one, they arrive at the conclusion that multiple clusters
do not benefit accuracy. Other researchers study methods to evaluate the
quality of clustered user models and model-based recommendations. Li et
al. [98] investigate offline evaluation of contextual-bandit-based news article
recommendation algorithms. Pallis et al. [116] develop a statistical test to
measure the difference between clusters, obtained by clustering according to
Markov process parameters, which is then also used to visualize the model.
In this way, clusterings can be validated, however without regard to the
behavior’s context. Although our framework can be applied for behavioral
analysis, visualization, and for gaining insights on user behavior, it is in
general closest to approaches based on clustering. Therefore, we discuss
those in further detail.

Often, approaches for modeling user behavior focus on deriving user-based
models and estimating personalized stochastic processes from historic user
data (e.g., [73, 29], Markov processes such as those mentioned above, and
sequence alignment-based methods [71]). Other methods include relational
models [4], association rule mining [42, 43], and higher-order Markov models
[45]. Hoebel and Zicari [73] cluster website-visitors using a combination of
hierarchical clustering with a heuristic centroid-based criterion, aiming at
discovering groups of users with similar interests in several topics, while
Gündüz and Özsu [64] define a similarity measure among navigation sessions
and cluster them using a graph-based approach. For every cluster, a click-
stream-tree is constructed and used for recommendation. Finally, Haider et
al. [67] describe a discriminative clustering method for market segmentation
on Yahoo News. Instead of aiming to understand navigation behavior as in
this thesis, their goal is to classify behavior instances into simultaneously
optimized segments.

Difference from Previous Work. Our model extends Markov process-
based clustering models by dynamically including context, and explicitly
captures periodic behavior by using a time distribution that is a mixture of
periodic Gaussians. In contrast to the results of Hassan and Karim [69], the
fully probabilistic model we present in this thesis takes significant advantage
of multiple clusters.
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2.5. Applications

2.5.1. Photo Browsing Interfaces and Parallel Browsing

Various interfaces have been considered for image browsing. Fan et al. [50]
describe JustClick, which recommends images via interactive exploratory
search. They build a topic network based on Flickr tags, and propose an
interactive interface that allows the user to express a query by selecting
images. They perform experiments on a big Flickr dataset of 1.5 billion
images with 4, 000 different topics. Xu et al. [160] present an innovative
visual search interface based on topic clustering. Given the query and the
results from a search engine, latent topics are detected and clustered and
then the clusters are shown in an intuitive layout. Ren and Calic [123]
present an interactive interface for browsing large-scale image collections.
Their system is based on two main parts, an image clustering module and
an interface generation component in order to retrieve the images in a more
efficient way. Strong et al. [140] present an approach for browsing images
based on conceptual and visual similarity, with the main benefit being that
the displayed images are grouped together. Zavesky et al. [168] propose
a new framework called Visual Island, a novel organization algorithm for
interactively displaying results. The aim is to organize the images in order
to improve human comprehensibility and reduce required inspection time.

With the growing popularity of tablet computers an increasing number of
commercial and research applications have been devoted for these mid-sized
touch screen, mobile devices. Research efforts related to image search in
tablets include optimizing the use of the screen’s real-state, typically limited
in mobile devices [24], better organizing personal image collections [133], or
exploring diverse location-based services [166]. There are however mobile
applications such as PULSE1 or FLUDE2 where users can browse through
their news feeds in parallel, using horizontal sliding strips.

Google’s Image Swirl [86] arranges search results as an exemplar-hierarchy,
based on the images’ visual and semantic similarity. Using a balloon-tree
layout, users can navigate the clusters selecting the different branches of
the tree. Users can only explore one branch at a time and cannot define
different criteria for branching their search.

As already seen in Section 2.1, the term parallel browsing has been used in
the literature [78] to indicate that one navigation session may involve the

1http://www.pulse.me/
2http://www.flud.it/

http://www.pulse.me/
http://www.flud.it/
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exploration of a number of topics at the same time, usually through the use
of the browser’s tabs, or opening multiple windows of the browser. Then,
when users search in parallel [143], they have to switch tabs or windows.
Namely, the search is not actually simultaneous. Furthermore, results in a
different tab or window are mutually agnostic, allowing for repetition in the
results.

Difference from Previous Work. We propose a recommender system
that is well integrated in the standard photo-browsing interface and uses
only anonymous browsing and content data. To the best of our knowledge,
however, no application has addressed the parallel image search paradigm,
neither for tablet computers nor for desktop applications.

2.5.2. People Interaction Exploration Interfaces

Tools to visualize and explore interactions between entities in time tend to
focus either on the structural or the temporal dimension. On one hand,
tools to animate dynamic graphs [164, 10] can visualize the evolution of the
whole set of interactions in the system, but they do not provide a way to
explore the history of relations. On the other hand, timelines [119, 114] and
their variants, such as stacked lines charts and stream graphs [70], foster the
exploratory visualization of temporal data by explicitly displaying temporal
sequences of events as lines on a reference plane. However, being focused
on the representation of temporal information only, the interaction between
entities is not easily represented in such displays.

Attempts to produce visualizations between these two extremes have been
made in the past. Tools for the exploration of genealogical data explicitly
represent both time and interactions, but are bound to the visual paradigm
of the tree [15]. Visualizations with metro maps [135, 134] allow a more
generic layout, but relax the constraint on time representation, being more
similar to graphs than timelines. Alluvial diagrams are used to represent
changes in network structure over time [127]. In such representations, each
line is a cluster of entities and one can see how entities move across them in
time. TimeNets is a tool for genealogical data visualization [91]. People’s
lives are represented on a horizontal timeline as lines spanning from the
year of birth to the year of death. Lines of different people join and split
correspond to weddings or separations.
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Difference from Previous Work. In Metro, the interface presented in
this thesis, the focus is on entities and their interactions rather than on clus-
ters. Metro is different from Timenets since it allows exploration by query
and is not tailored just towards genealogical data, where the interactions
between people are few and, on average, span a long period of time (e.g.,
the duration of two people’s marriage).



Chapter 3

Background

In this chapter we present some elements that are useful throughout the
thesis.

3.1. Browsing Session

When a person is visiting a website, he or she may visit more than one page.
It makes sense to think that such pages are interdependent, i.e., which page
the user will visit next depends on the previous one. Therefore, when a
user visits a service provider, this interaction takes the form of a dialogue
in which the two parts exchange information. We can therefore group entries
in the server logs into browsing sessions. Borrowing the definition made by
Huang et al. [79], a browsing session is a group of requests made by a single
user for a single navigation purpose. The most common way to identify
sessions is by means of a timeout, but more elaborated ways have also been
devised (e.g., [79]).

There are mainly two ways of looking at sessions: a) as a set (or bag): a
session is just a set of items in which the order of the items is not important;
or b) as an ordered list : a session is a list of items, in which the order matters.
The choice influences the methodologies used in the analysis. In the first
case, discarding the order makes the complexity of the problem lower but
may lose information. In the latter case, the complexity becomes larger but
sequential pattern mining becomes a useful tool for the analysis.

19
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Apps

Modeling

Analysis

Data Collection and Preprocessing

Figure 3.1: The framework of the thesis. The pyramid represents the
bottom-up approach taken in the thesis.

3.2. Methodology

In this section, we describe the methodology adopted while developing this
thesis.

In general, our approach is bottom-up and data-driven. This means that
the starting point is the data itself. Since each dataset may have different
characteristics, all methods and applications depend on it. Our path of un-
derstanding of browsing behavior is inspired by the “Knowledge Discovery
in Database” process [51]. Figure 3.1 condenses the hierarchy of the thesis.
Each level is summarized below.

Data Collection and Preprocessing. The first phase is the data collec-
tion. We collect server logs from the servers. The logs are very large since
they contain actions of millions of users, and the collection may be space
and time demanding. We make use of distributed systems, namely Apache
Hadoop,1 to process the large amount of data.

We then perform preprocessing and filtering on the raw data. This phase
is aimed at parsing the data, removing errors or inconsistencies that may
appear, and extracting the segment of the data we are interested in. For

1http://hadoop.apache.org/

http://hadoop.apache.org/
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example, we could focus on a particular section of the website or in a par-
ticular segment of users.

Analysis. Next, we perform the data exploration. This phase is aimed at
understanding the coarse-grained characteristics of the data by manually
exploring it. Due to the large size of the datasets, data visualization tech-
niques are very useful since they allow a compact and interpretable view.
During the data exploration, the researcher poses simple hypothesis and
validate them in the data.

Based on the knowledge acquired during the data exploration, we use data
mining techniques to extract frequent browsing patterns, which we call sum-
maries. We evaluate the approach quantitatively and qualitatively. Quanti-
tative evaluation is aimed at assessing the efficiency of the algorithm, while
qualitative evaluation validates its soundness by presenting examples of out-
put.

Even if we use relatively complex techniques as in the case of pattern mining,
this level of the pyramid does not abstract from the data. All the results,
including the summaries, are given in terms of the data points themselves.
The next level, on the contrary, uses models create an abstraction from the
raw data.

Modeling. We then model browsing sessions using probabilistic genera-
tive models. For each of these models, we evaluate the performance using
automated tests, in the sense that do not involve testing with users. In In-
formation Retrieval and Machine Learning, there are many automatic tests
designed for different situations. In general, they consist in splitting the
data in two sets: a training and a test sets. The training set is used to train
the model and learn its parameters. The test set is used to evaluate the
performance of the learned model. Since server logs are ordered in time, the
datasets should be split chronologically into training and test sets. K-fold
validation and other random split evaluation methodologies are therefore
not applicable in this case.

Apps. The last level is the level of applications. We tried to look beyond
the models and traditional structures of browsing sessions. We presented
interfaces to browse images using completely new paradigms, e.g., parallel
browsing in the case of PRiSMA.
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Since automated testing is not possible, we perform user studies. To emulate
the behavior of a person browsing a website, the study is performed in an
environment in which the user is free to browse the content for a limited
amount of time. We then perform individual semi-structured interviews.

3.3. Datasets

We now introduce the datasets used in the experiments. There are in total
8 datasets:

FlickrBrowsing (Section 3.3.2): a set of browsing sessions extracted
from Flickr.2 To reduce the sparsity of the data, we constructed a
categorization of the external domain from the session starts and a
categorization of the layouts of pages in Flickr;

YahooNewsBrowsing-UK (Section 3.3.3) and YahooNewsBrowsing-USA

(Section 3.3.4): two sets of browsing sessions extracted from Yahoo
News;3

Twitter (Section 3.3.5): a sample of the propagation network of pop-
ular tweets in Twitter;4

Last.fm (Section 3.3.6): a sample of the social network and songs
listened by users in Last.fm;5

Flixster (Section 3.3.7): a sample of the social network and movies
watched by users in Flixter;6

WikipediaBrowsing (Section 3.3.8): a set of browsing sessions of users
in Wikipedia;7

GettyImages (Section 3.3.9): a set of photos and metadata from Getty
Images.8

Before describing the datasets, we introduce the method we use to identify
sessions from the server logs.

2http://www.flickr.com/
3http://news.yahoo.com/
4http://www.twitter.com/
5http://www.last.fm/
6http://www.flixster.com/
7http://www.wikipedia.com/
8http://www.getty.com/

http://www.flickr.com/
http://news.yahoo.com/
http://www.twitter.com/
http://www.last.fm/
http://www.flixster.com/
http://www.wikipedia.com/
http://www.getty.com/
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3.3.1. Session Identification

Since user behavior varies over time, we group page views into sessions.
We define a session as a sequence of click and page view events. While
clicks realize transitions between web pages, page views encode intermediate
events such as displaying an article or a picture. Depending on the use case,
we may attach additional information to the clicks, to the page views, or to
the entire session.

To perform our analysis, we split the activity of a single user into different
sessions when either of these two conditions holds:

Timeout : the inactivity between two page views is longer than 25
minutes. This value has been used in other works (e.g., [26]), as well
as in production systems.9

External URL: if a user visiting Flickr leaves the site and returns from
a different domain, the current session ends even if previous visits are
within the 25 minute threshold (we make the assumption that if a
user is viewing a page on Flickr and visits another domain, then the
session ends).

3.3.2. FlickrBrowsing Dataset

The FlickrBrowsing dataset consists of a sample of the page views of more
than 10 million anonymous users from approximately two months of Flickr
user log data, from August to October 2011. The page views are represented
as plain text files that contain a line for each HTTP request satisfied by the
web server.

For each page view, our dataset contains the following fields: a) the UserId
is a unique anonymized identifier computed from the Flickr user identifier in
case of logged-in users and from a browser cookie otherwise; b) the Curren-
tURL and the ReferrerURL represent the current page the user is visiting
and the page the user visited before; c) the User-Agent identifies the browser
in use; and d) the Timestamp indicates when the page was visited. All the
data processing was anonymous and used aggregated. Flickr allows users to
set specific pages to “private”, so in our analysis we considered only public
pages.

9https://support.google.com/analytics/answer/2731565
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Page View Filtering and Data Selection. In order to obtain a coher-
ent dataset in terms of both time zone and activity, we focused on users
who were located in the United States (US) by extracting the location of the
IP address from the source of the HTTP request and filtering out non-US
locations. We then removed traffic derived from web crawlers by preserv-
ing only the entries whose User-Agent field contains a well-known browser
identifier, namely Mozilla Firefox, Google Chrome, Apple Safari, and Opera
Browser. In spite of this filtering, there are cases in which the User-Agent
field indicates that a legitimate browser was used, but the corresponding
“users” have a very large number of page views. The frequency, however,
suggests that such server requests could not have been made by humans,
but instead were done automatically for malicious crawling. We therefore
apply an additional filter by which we set a maximum threshold on the total
number of page views per user. The threshold is set to remove a small per-
centage of the users (1% of the total amount). After applying the filtering
steps described above, our sample contains approximately 309 million page
views.

We identify sessions as explained in Section 3.3.1 and extract a total of
40, 446, 676 sessions from 10, 912, 431 unique users.

3.3.3. YahooNewsBrowsing-UK Dataset

The YahooNewsBrowsing-UK dataset is large data sample from Yahoo News
United Kingdom. We use a sample of data from June and July 2011 and use
the former month for parameter estimation and the latter for evaluation.
All processing is anonymous and aggregated.

We identify sessions as described in Section 3.3.1 and we attach additional
information. More specifically, a session x of length M is formalized as
a 5-tuple x = (t, r, ~v, ~s, ~w), where t is the timestamp of the session, r is
the referrer domain, ~v = v1, . . . , vM and ~s = s1, . . . , sM−1 are sequences
of page view categories and click locations, and ~w = w1, . . . , wM−1 are
the clicked anchor texts in a vectorial bag-of-words representation. Since
we only consider navigation clicks within the website, there is no click sM
associated to the last page view vM . In addition:

The location of a clicked link is s, which for simplicity is a discrete
identifier that encodes either the clicked component (e.g., widget,
module, etc.) or area (e.g., North, NorthWest). Other representa-
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tions, such as relative/absolute (x, y) coordinates could also be used
with appropriate distributions.

The link anchor text is represented by a bag-of-words w. If no anchor
text is associated with the link, then wi = ∅.

Every page view has a category vm ∈ C where C contains a finite set
of categories.

3.3.4. YahooNewsBrowsing-USA Dataset

The YahooNewsBrowsing-USA dataset is quite similar to the YahooNews-

Browsing-UK dataset (Section 3.3.3), with the difference that it is sampled
from Yahoo News United States during the first months of 2014 and contains
slightly different information.

The data contains all actions executed by the user on the website, including
page views (i.e., when an user requests a page from the server), shares (i.e.,
when a user shares a page on a social media platform), and comments (i.e.,
when a user comments on a news article).

For each action, we collect the following data: a) Timestamp; b) UserId :
the anonymized reference to the user; c) CurrentURL and ReferrerURL;
d) Age, Gender as stated by the user when creating the profile; e) Geoloca-
tion of the request, aggregated at a regional level (i.e., state of the United
States or region for other countries); f) Metadata: category to which the
article belongs. The category is organized in a hierarchical taxonomy, but
we only consider the first level; and g) Publication date: the time and date
in which the news article is published.

All data processing has been performed in aggregate and no personal infor-
mation has been made available to the people involved in the data process-
ing.

We then split all page view actions (i.e., discarding share and comment
actions) into sessions, with the same method described in Section 3.3.1.
Table 3.1 (first block) shows statistics on the sessions in the dataset.

Session Filtering. Among all browsing sessions, some are very short and
thus cannot be considered as browsing. Indeed, it often happens that people
enter news portals to read a single article and then leave. Therefore, we
preprocess the dataset in order to remove such short visits.
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Number of users 11 M

Number of sessions 284 M

Avg sessions per user per day 4.56

Avg distinct articles per session 1.33

Referrer sessions 85 M

0-page sessions 30 M

1-page sessions 83 M

Remaining 87 M

Table 3.1: Statistics on the YahooNewsBrowsing-USA dataset and on the
preprocessing.

We identify three possible cases:

Referrer sessions: these sessions originate from people opening one
or more news articles from another website, without clicking on any
other article on the site. This happens for example, when a user opens
a URL shared by a friend from a social networking site.

0-page sessions: Sessions in which users browse the sections of the
news website without opening any article page.

1-page sessions: Sessions in which users browse the sections of the
news website opening a single article page. Manual inspection of 1-
page sessions showed that they are mainly aimed at checking the most
recent news article, thus do not contain proper browsing.

We filter the dataset and keep only the sessions that do not meet any of
the conditions above. Table 3.1 (lower block) shows the amount of sessions
falling in each category.

3.3.5. Twitter Dataset

We obtain the dataset by crawling the public timeline of the popular online
microblogging service. The nodes of the graphG are the Twitter users, while
each arc (u, v) expresses the fact that v is a follower of u. We additionally
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|O| |V | |A|

Twitter 580, 141 28, 185 1, 636, 451

Last.fm 1, 208, 640 1, 372 14, 708

Flixster 6, 529, 012 29, 357 425, 228

WikipediaBrowsing 50, 092 39, 756 46, 610

Table 3.2: Number of observations (|O|), nodes (|V |), and arcs (|A|) in the
input graph G for Twitter, Last.fm, Flixster, and WikipediaBrowsing

datasets.

crawl a set of entities E and a set of observations of their propagation in
the graph O. The entities in E correspond to URLs share on Twitter, while
an observation 〈u, φ, t〉 ∈ O means that the user u (re-)tweets (for the first
time) the URL φ at time t. Table 3.2 shows the characteristics of the
Twitter and the next three datasets.

3.3.6. Last.fm Dataset

Last.fm is a music website where users listen to their favorite tracks and
communicate with each other. The dataset is created starting from the
HetRec 2011 Workshop dataset available at http://www.grouplens.org/

node/462/, and enriching it by crawling. The graph G corresponds to
the friendship graph of the service. Similarly to the Twitter dataset, the
entities in E are the songs listened by the users. An observation 〈u, φ, t〉 ∈ O
means that the first time that the user u listens to the song φ happens at
time t.

3.3.7. Flixster Dataset

Flixster is a social movie site where people can meet each other based on
tastes in movies. The graph G corresponds to the social network underly-
ing the site. The entities in E are movies, and an observation 〈u, φ, t〉 is
included in O when the user u rates for the first time the movie φ with
the rating happening at time t. We do not take into account the value of
the ratings since we are only interested in the propagation of movies in the
social network.

http://www.grouplens.org/node/462/
http://www.grouplens.org/node/462/
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3.3.8. WikipediaBrowsing Dataset

We create this dataset by looking at the browsing sessions of the popular
online encyclopedia. Any node of the graph G corresponds to a Wikipedia
page, while an arc (u, v) is present in G if there exists a browsing session
where the page v has been reached from the page u, even making use of
intermediate pages external to the website. An entity φ ∈ E corresponds
to a browsing session. An observation 〈u, φ, t〉 ∈ O means that the page u
is visited during the session φ at time t. For each page, we consider only
the first visit among the multiple ones possibly performed within the same
session.

3.3.9. GettyImages Dataset

The GettyImages dataset is powered by the data of approximately 9 million
images, taken between years 2000 to 2011, from a well-known stock photo
agency [115]. Photo metadata include a set of keywords defining the people
depicted in the photo and possibly the identifier and description of the event
the photo relates to, for a total of around 45 thousand unique person names
and 420 thousand unique events. To enhance the visualization with more
accurate people description, we crawl the Wikipedia information of all the
available person names. Among all the people in our corpus, 78% have a
Wikipedia page.

In the dataset, almost all events are at most one day long. Therefore it
makes sense to consider an event as a particular day. Among all 229 thou-
sand days with events, 156 thousand have only one event per person, 36
thousand have two, and 15.6 thousand have three. It is therefore not rare
to see the same person appearing in more than one event per day. In terms
of photos, 91.5 thousand events only contain one photo per person, 51 thou-
sands contain 2, and 36 thousands contain 3. In terms of participation, we
see an average of 251.2 events per person and an average of around 2 people
per event. Events do not have an explicit description in the data but for
most events (346 thousands) all photos share the same title. Therefore we
compute the event’s description as the title that appears most often among
its photographs.

3.4. Categorizations

In this section we describe the categorizations of URLs, which we use to
reduce their sparsity in the FlickrBrowsing dataset (Section 3.3.2).
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Source category %

search: search.yahoo.com, google.com, etc. 34.87

social: facebook.com, tumblr.com, etc. 26.95

mail: mail.yahoo.com, gmail.com, etc. 13.22

aggregator: reddit.com, stumbleupon.com, etc. 7.76

blog: blogspot.com, blogger.com, etc. 6.65

photo: flickrhivemind.net, compfight.com, etc. 2.32

microblog: twitter.com, etc. 2.26

forum: discussion forums 2.00

news: news.yahoo.com, cnn.com, etc. 1.67

shop: ebay.com, etc. 0.85

Table 3.3: Top ten most frequent source categories in the dataset.

3.4.1. Source URL Taxonomy

In order to analyze the referrer URLs (i.e., the websites from where users
arrive to Flickr), we built a taxonomy for external URLs (i.e., whose do-
mains are different from www.flickr.com). The first attempt of catego-
rizing URLs was based on the Open Directory Project10 and the Yahoo
Directory.11 However, by manually inspecting the results, we realized that
the classification was too detailed and did not capture the aspects we were
interested in. More specifically, URL categorization usually works by topic
(e.g., travel, economy, food, etc.) whereas in our study we are interested
on a categorization by type (e.g., blog, social networking site, search, etc.).
We therefore opted to annotate them manually (e.g., search.google.com
as search, etc.) and focused on defining 15 categories that we considered
important, called source categories. We created a set of regular expressions
in order to identify about 210 different external URL domains. Table 3.3
shows the most frequent categories. For the complete list of categories, refer
to Section A.1 in the Appendix.

10Netscape (AOL), “Open directory”, http://www.dmoz.org/, June 1998.
11Yahoo, “Yahoo directory”, http://dir.yahoo.com/, March 1995.

www.flickr.com
search.google.com
http://www. dmoz.org/
http://dir.yahoo. com/
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Page layout Description %

Display all user photos Displays the photos of a user on a grid 26.71

Browse user photos Displays full-page photo of a user and allows

browsing to the next and previous photos

20.67

Browse user album Displays full-page photo of an album and al-

lows browsing to the next and previous photos

14.12

Display single photo Displays full-size photo 7.22

Homepage Home page of Flickr 5.60

View user albums Lists the album of a user 4.59

Browse group photos Displays full-page photo of a group and allows

browsing to the next and previous photos

2.63

Search photos Photo search in Flickr 2.38

Browse user fav. Displays full-page photo of the favorite photos

of a user and allows browsing to the next and

previous photos

2.09

Group photos Displays the photos of a group on a grid 1.79

Table 3.4: Top ten most frequent page layouts in the dataset.

3.4.2. Page View Layouts

In most websites, multiple URLs can map to exactly the same page “layout”.
For example, on Flickr, the URL of a page that shows a single image contains
a unique identifier for the image, thus two URLs for two different images are
different even though the page layout is the same. Since our interest is in
modeling navigation patterns in Flickr, we must map all URLs that refer to
the same layout to a single page layout (e.g., “single image page”). For this
purpose, we define a hierarchical taxonomy of URLs: the page layout. We
manually created a set of regular expressions to classify the URLs to obtain
a total of 96 different layouts. Examples of layouts include the following:
display all user photos, search photos, browse group photos, add contacts,
accept invitation to join Flickr, etc.Table 3.4 summarizes the most frequent
page layouts. For the complete list of page layouts, refer to Section A.2 in
the Appendix.



Chapter 4

Birth of a Session

Insights into how users behave within a website or domain are extremely
important in informing business decisions, in developing strategies to pro-
vide new functionalities, and in general for devising new algorithms that
directly improve such services. For instance, having deep insights on what
pages or sections are visited most and when, can be used not just to cre-
ate better user models, but also to improve the design of such pages and
the overall “flow” of the website (e.g., by highlighting certain sections on
particular page layouts).

Flickr has become a rich resource for research in multimedia, in large part
because its clear copyright policies and APIs have facilitated the gathering
and analysis of its data. While a lot is known about the data that resides
in Flickr, there are not many insights into how people actually use Flickr,
and, in particular, on their social navigation patterns.

As the functionality of the Web has become more complex, and sharing of
content (e.g., Flickr photos) is done in multiple ways (e.g., by posting to
social networks such as Facebook, or information networks such as Twitter;
posting on blogs, in news articles, etc.), it has become increasingly more
difficult to understand the dynamics of how users browse and look at (i.e.,
“consume”) photos once they arrive at Flickr from other sources. Although
Flickr remains very popular, there are many similar services for social shar-
ing and viewing of photos, thus the work we present here should provide
insights that, although computed from Flickr data, should easily generalize.

In this chapter, we perform an in-depth analysis of social navigation patterns
on Flickr. In particular, we analyze a sample of user logs from approximately

31
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two months, by clustering sessions, and specifically considering the referrer
domain (i.e., the site or domain the user visited before arriving at Flickr).

Our work aims at addressing several questions, among which we include
the following: a) are photo social navigation patterns different depending
on the referrer website? if there are differences, what kinds of differences
are there? b) do similar types of websites (e.g., “search” lead to similar
behavior?); c) what types of pages (e.g., within Flickr) are more popular
depending on the referrer website?; and d) does user behavior in terms of
time spent vary depending on the referrer website?

Although there is a reasonable amount of published work on Flickr, with
a few exceptions [96, 52], there is little knowledge on how users actually
behave within the service and the relationship between such behavior and
the referrer pages. Our main contribution is thus providing insights into
social photo navigation patterns. Such insights may be useful for under-
standing the dynamics of photo-sharing sites, although the same type of
analysis could be extended to other domains.

The results presented in this chapter were published in [31].

4.1. Session Analysis

For our analysis we use the FlickrBrowsing dataset (Section 3.3.2). The
number of distinct types of page layouts present in the sessions is 1.83. The
value suggests that a large number of sessions tend to consist of only a few
page categories. However, the “complex” use of Flickr is not infrequent,
proven by the fact that there are sessions visiting many page layouts, up to
a maximum of 39 different page layouts per session.

Table 3.4 shows the ten most visited page layouts in the dataset. We can see
that there are a few page layouts that are visited most frequently: although
we define a total of 96 page layouts, users tend to navigate through a small
subset of them, namely to explore photos of users and groups. Indeed, the
top 10 layouts account for 87, 80% of all page views. This is compatible
with the small average number of distinct page layouts per session, which
shows that users usually browse in just a few categories during one session.
We will now move our focus to the source URL, which is the referrer of the
session.
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Figure 4.1: Distribution of the 14 top categories for the external source
URLs.

4.2. Source URL Category Analysis

One of our main assumptions is that there is a relationship between the
source URL and the type of navigation behavior of the user.

In Table 3.3 we show the most frequent domain categories from which the
user arrives to Flickr pages and some example URLs. The histogram in
Figure 4.1 shows the distribution of the source URL categories. The two
most frequent sources are search and social. The presence of search is
reasonable due to the contribution of image search and navigational queries.
While most photo websites retain proprietary rights on the retrieved results
or do not have clear photo licensing policies, we can assume that Flickr
is one of the main sources of Creative Commons-licensed material. We
will confirm this assumption later in the chapter (Section 4.3.2). Social
network websites, such as Facebook, constitute very popular access points
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Figure 4.2: Cumulative distribution of the nine most popular categories of
source URLs.

to Flickr since users are highly interested in photos shared by friends. We
did not expect mail to have high importance, as usually the attachments
are sent within the message itself and not as external links. As we will see in
Section 4.3.2, many sessions derive from invitations of friends to join Flickr.
The fact that many sessions come from the news domain is indicative that
the image is often considered as appealing or significant as the actual text
of the article.

The raw analysis of volume gives us the first insight into how the initial
context may affect navigation patterns. However, we understand this even
better by observing the cumulative distribution of session lengths given in
Figure 4.2. In the figure we represent only the 9 most frequent categories.
The categories have a different behavior from one another. The lines that
reach value 1 sooner correspond to the situation in which the user spends
less time on Flickr on average. On the contrary, the ones that grow slower
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correspond to longer sessions on average. We see that the shortest sessions
originate from aggregators. One example is http://www.reddit.com/, in
which the links to Flickr appear inside news posts.

It may appear strange that the sessions deriving from news sites last longer.
An explanation for this might be that the visual material in news sites (such
as Yahoo News) is curated by professional editors and photographers and
often consists not only of a single photo, but also of a collection of photos
related to a particular event. For example, an article about the earthquake
in Japan is linked to a group or a set of photos all related to that topic.
The user is therefore prone to see more than one picture.

Extreme behavior is observed in the mail category where the users spend
the longest time interacting with Flickr. One possible explanation might
be that only the “closest” contacts send e-mail, and thus a stronger bond
exists between the sender and the receiver of the message. Moreover one
could assume that users that share links via e-mail, may share entire sets or
albums, which contain many photos, leading to longer and more complex
interactions with Flickr.

4.3. Clustering of Sessions

In this section we describe the clustering of sessions and analyze the clusters’
general characteristics in terms of the page layouts (see Section 3.4.2) and
in terms of browsing behavior depending on the referrer domain categories
(i.e., the type of domain that users visit before arriving at Flickr).

We model each session s as a vector v = (v1, v2, ..., vP ) where each vi counts
the views of page layout i in session s. Cosine similarity is used to compare
vectors since it is not affected by the absolute number of page views but
only by the relative distribution across the page layouts. We apply the
Canopy algorithm [106] on the vectors to initialize the centroids. We choose
empirically the parameters (T1 = 60 and T2 = 40). Then, we run K-Means
clustering to extract clusters of sessions to obtain a total of 62 clusters.

4.3.1. Patterns in Session Clusters

Although our hypothesis is that user browsing patterns are different de-
pending on the source website, we first examine session clusters without
taking into account how users arrived at Flickr. We will then remove this
constraint in Section 4.3.2.

http://www.reddit.com/
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Figure 4.3: Heat-map of p(layout | k) for the most frequent clusters. Darker
squares indicate a higher presence of the relative page layout views (row)
in the current cluster (column).

We want to extract general behavior of users browsing Flickr independently
from the referrer URL. For this purpose, we focus on clusters that are
generated in the same proportion by all source categories source. They
capture actions that people do in Flickr that can be accounted as common
use.

More specifically, we compute the entropy distribution for each cluster k
across p(k | source) with the following equation:

∑
source

[
p(k | source) log2 p(k | source)

]
We then sort the clusters in ascending order and select the 7 clusters with
smallest entropy. These clusters represent the behaviors of users accessing
Flickr in the same percentage from each source category. In order to un-



4.3. clustering of sessions 37

derstand the characteristics, we draw the heat-map of p(layout | k) and the
page layouts that constitute them in Figure 4.3.

As Figure 4.3 shows, k1, k2 and k3 contain a large number of Display all
user photos and Browse user photos page views, which indicates browsing
through the photos of one or more users. Cluster k4, on the other hand,
contains more cases of users that import and add new contacts (Add contact
row in Figure 4.3). A very clear case of browsing photo albums is cluster
k5, where we can observe a large value in the Browse user album row.
A similar behavior is in cluster k6 where the sessions are more balanced
between browsing a specific album (Browse user album) and seeing the list
of albums (View user albums), maybe to explore a different one. Group-
oriented navigation is specific of k7, due to the presence of Group page and
Photos of group. In this case users switch between the main page of the
group and its photos.

Although these clusters are useful to understand how users interact with
Flickr, we would like to explore the peculiarities of the source URL cate-
gories. We therefore manually inspect the clusters and select the ones that
show interesting patterns.

4.3.2. Browsing from Different Sources

As stated earlier, many clusters illustrate a very specific browsing behavior.
We manually pick a few of them to show how well they describe some
navigation patterns in relation with the source categories.

Figure 4.4a shows the distribution of such clusters across source categories
whereas Figure 4.4b shows the distribution of the same clusters across page
layouts. Due to the large amount of sessions originated from search engines,
the search source category appears in most of the clusters. Despite this,
there are still some clusters in which this is not the case.

Cluster k7 shows a large contribution of news and search and the distribu-
tion of page layouts for that cluster (first column of Figure 4.4b) is biased
towards browsing of groups (Group page). This suggests that news editors
embed sets of images into the article page. Moreover, photos of the same
event are likely to be organized in the same group in Flickr. Cluster k8, more
evenly spread across all source categories, but still showing a predominance
of search, is similar to k7 but favors browsing through the photos of a group
(Photos of group) on the home page of the group (Group page). Cluster k9

contains sessions coming from both search and aggregators in which users
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(a) Heat-map of source URLs, p(source | k).
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(b) Heat-map of page layouts, p(layout | k).

Figure 4.4: Heat-map of the most interesting clusters. Darker squares indi-
cate higher values for the presence of sessions with that category (row) in
the relative cluster (column).
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visualize the tag cloud of photo tags used by another user. This visualiza-
tion gives an aggregated vision of the content posted by her. Cluster k10,
mainly originated from search, explores the list of favorite photos of a user
(Browse user favorites).

Cluster k11 in Figure 4.4b contains mainly search page layouts. It is not sur-
prising that Figure 4.4a shows us that those sessions originate from search
engines. One assumption is that in this case users are migrating the search
task to Flickr in order to take advantage of the image search features, as
for instance filtering photos by Creative Commons license or tags.

Cluster k12 shows mail as a principal source and is composed of page layouts
related to social actions: a) Manage friends is the set of all pages related
to adding, editing or removing information about contacts in Flickr; b) Add
friend is the page in which the user is asked for confirmation when adding a
contact. Manual inspection of the sessions suggests that the traffic in this
cluster mainly derives from accepted invitation mails sent to mail contacts.
We do not examine mail contents, so this hypothesis cannot be verified, and
is based solely on the aggregate views of the “add friend” page.

Sessions in cluster k13 are mainly originated from aggregators and are aimed
at checking the recent activity on the Flickr website (i.e., recently added
photos, albums, etc.). Indeed, aggregators are used by the user to get an
overview of recent events in external websites, including Flickr.

The remaining clusters have been inspected but are not listed since they do
not show interesting characteristics.

4.4. Discussion

Our analysis shows that users arrive to Flickr from a variety of source do-
mains (e.g., search, social, mail, aggregators, etc.) and that the overall
length of the sessions depends on the source domain (e.g., users that arrive
at Flickr from mail domains tend to spend more time than those arriv-
ing from any other sources). While the distribution of visits from different
sources gives us interesting insights on the Web as it is today (e.g., social
sites have a prominent place), it is possible to make some observations on
the behavior in terms of session length (e.g., users that click on mail links
may be receiving photos from close social contacts, which might explain
longer sessions). At the same time, we found that clear session clusters
can be observed in the data (e.g., some sessions are very focused on view-
ing photos of users, while others focus on viewing photos in groups), and
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that some of the behavior can be intuitively explained (e.g., sessions that
originate in mail domains have a stronger focus on managing and adding
friends).

Many similar observations can be made based on the figures presented in
this chapter. Sessions that originate from search sites, for instance, cluster
around the Flickr search functionality, suggesting that the user’s main intent
is indeed finding images of some sort. However it is important to keep in
mind that such observations constitute hypotheses that need to be further
examined.

In this chapter, we analyzed a sample from two months of Flickr user data.
Our analysis was performed on user logs. We categorized pages within Flickr
into specific categories, and analyzed how the behavior of users in viewing
such page categories changes depending on the referrer domain (i.e., the
page they come from).

Up to this point, we have seen the birth of a session, i.e., its first step in
the website. We will now continue with the analysis of the evolution of
browsing sessions after they are born.



Chapter 5

Life of a Session

This chapter analyzes how sessions evolve inside photo-sharing platforms.
We focus on two tasks: searching and browsing.

First, we analyze how people search for images (Section 5.1). We show
the differences between queries issued in photo-sharing platforms and the
ones done in a general-purpose search engine. The insights provided in this
section are intended as a launching point for the design of better interfaces
and ranking models for image search.

In Section 5.2 we consider the second task, i.e., browsing. We show that
users tend to browse photos in sequences (called photostreams). We there-
fore consider photostreams as content units and build a large photostreams
browsing graph. We then apply a clustering algorithm used in community
detection to find interesting clusters of photostreams and describe their
characteristics.

To conclude, in Section 5.3 we present an interactive visualization of user
browsing traffic. The visualization is aimed at discovering interesting con-
tent by leveraging past user traffic. It is possible to see that the visualiza-
tion is coherent with the results of Section 5.2. Browsing does indeed follow
photostreams and is characterized by long sequences.

All analysis is performed on the FlickrBrowsing dataset (see Section 3.3.2).

The results presented in this chapter were published in [105, 33, 30].

41
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5.1. Life of a Search Session

Photo-sharing platforms such as Flickr and Instagram are increasingly pop-
ular and, similarly to online social networks, they support activities such
as sharing their photos with friends and forming common-interest groups
where users can usually join freely to share multimedia content with other
members. Such platforms also support image search; in Table 3.4 we showed
that over 2% of page-views in Flickr are accounted for by searches, and an
effective search performance is arguably important for the long-term success
of such platforms.

If the goals of users in general web image search are not well understood,
they are even less understood on photo-sharing platforms, where there little
work on user search behavior has been published. On the other hand, the
server logs of such platforms give us access to entire user search sessions,
including all post search interactions, not just the search and result click
interactions available in search engine logs. This gives us the opportunity
to come to a deeper understanding of what users do after issuing a search.

In this section, we study the search behavior of users of a large online
photo-sharing platform, namely Flickr. We study the typical types of search
conducted on such platforms, and note some differences from general image
search. We look at the entire user session after an initial keyword search,
with a view to uncovering behavior patterns that go beyond simple “search
and click on result” events.

5.1.1. Search Trees

Since sessions are not strictly linear in nature [34, 155], due to branching
(use of browser tabs) and backtracking (the use of the “back” button) be-
havior, we represent search sessions as search trees. The first search action
in a session is the root of the tree and, for each subsequent page view in the
session, we create a node representing its URL class and add it as a child of
the node representing its referrer URL. In the resulting tree, any leaf repre-
sents a termination of a browsing branch; this does not necessarily mean the
end of a search session, as other branches can occur later. Although in some
cases a single session can contain more than one tree, in the remainder of
this section, for simplicity, we will use the terms search sessions and search
trees interchangeably, i.e., by search session we refer to a subtree within a
session corresponding to search activities. To create a more compact repre-
sentation, we collapse non-branching sequences of nodes of the same class
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Sessions Trees Chains

Total 1,071,954 1, 017, 037 1, 622, 329

Avg. width - 1.815 -

Avg. depth - 1.575 3.129

Unique types - 109, 693 108, 255

Trees/session - 1.053 -

Chains/tree - - 1.513

Table 5.1: Events, search trees and search chains in the dataset.

with the same URL parameters into a single node, ignoring differences in
URL parameters in the following circumstances: the page number parame-
ter for search/next nodes is ignored, and the photo id parameter is ignored
for photostream nodes when two photos belong to the same photostream,
and for photo nodes when two photos belong to the same set or group pool
(indicating that the user is browsing within the same photostream, set, or
pool). In this representation, we identify search chains (similar to search
trails [157]) as the paths in a search tree that start at the root of the tree
and end at a leaf.

5.1.2. Statistical Analysis

Table 5.1 summarizes some statistics about the search trees and search
chains in our case. The search tree representation gives over 100K unique
search trees, 95% of which have a depth of at most 3 and width of less than
or equal to 4, and 95% of chains also have a length of 4 or less. For the
remainder of the section, we will refer to distinct search trees as tree types.

In Figure 5.1 we plot the cumulative distribution of repetitions for several
URL Classes (i.e., how often a view of a certain page type is followed by
a view of the same page type). We can see that in search sessions photo
views are followed by other photo views less than 15% of the time, whereas
photostream and userphotos nodes appear much more often one after the
other. This suggests that, when in a photostream view, a user is likely to
browse photos in this photostream. When a user enters the photo view after
a search, however, they are unlikely to view other photos within the same
set or pool: this is likely to be an artifact of the Flickr user interface at the
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Figure 5.1: CDF plot of repetitions for several URL classes.

time of this study, which defaults to browsing a photostream, with options
for browsing related sets or pools receiving less prominence in the interface.
These patterns suggest that the user is browsing the results after the search,
e.g., the user viewing a sequence of individual photos (photostream), or a
sequence of thumbnails (user).

Figure 5.2 shows the 12 most frequent search tree types, which give a suc-
cinct summary of the main user activities following a search. The percent-
age of sessions belonging to each tree type is shown in Table 5.2. The two
most frequent search trees correspond to a search followed by no further
action (t1), and a search followed by clicking on a single result (t2), that
between them account for over 43% of the trees. Type t1 trees may repre-
sent searches where the user is “satisfied” with the first page of thumbnails;
alternatively, they could be “failed searches”. Search reformulation is quite
frequent (t3, t7, t12), as are browsing photostreams via a single photo view
(t4) and searching groups (t5). Branching is relatively infrequent, as only
1 out of the top 12 (and 10 out of the top-50) cannot be represented as
chains.
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Figure 5.2: Most frequent search tree types.
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Type Description %

t1 Search only. 36.0

t2 Result click. 7.3

t3 Query reformulation. 5.4

t4 Result + photostream. 2.5

t5 Search groups only. 1.8

t6 User profile click. 1.5

t7 Query reformulation. 1.5

t8 Click on 2 photos. 1.4

t9 Search + next page. 1.4

t10 Search people only. 1.1

t11 Search, search people + click. 1.0

t12 Search, next page + click. 0.9

Table 5.2: Distribution and description of the top-12 tree types illustrated
in Figure 5.2.

5.1.3. Taxonomy of Image Search

Query taxonomies for image search differ from those used for web search.
Some work [102] has attempted to adapt Broder’s [22] web search taxonomy
of intent, while others have classified queries based on the type of objects
and concepts the query refers to. Enser [49] distinguishes between unique
(e.g., specific people) and non-unique queries, while Westman and Oittinen
[154] follow the scheme of Shatford [137], and classify queries as queries for
general objects, specific objects, and abstract queries. We broadly follow
those taxonomies, and distinguish between general and specific queries, and
introduce 2 additional categories that are specific to photo-sharing plat-
forms:

General Queries, which correspond to non-unique search, represent
searches for items belonging to a certain category. As in Westman and
Oittinen [154], we further sub-classify these as either being objects, or
concepts.
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Class % Subclass Examples %

General 47.2 objects trees, mountains, tiger 27.5

concepts fashion, sports 19.7

Specific 35.7 places san francisco 14.1

events burning man, 9.9

products iphone 4, geektool 6.1

people steve jobs, lady gaga 5.0

organisation nypd, lafd, fdny 0.6

Photography 12.8 photo equipment fuji x100, nikon d7000 6.5

photo techniques bokeh, depth of field 5.5

events bc33, bc34 0.8

Meta 4.3 user/group names - 3.4

other api key 0.9

Table 5.3: Taxonomy of annotated queries.

Specific Queries, which correspond to unique search, represent
searches for known-items, subcategorized by type: places, events, peo-
ple, organizations, and products.

Photography Queries are specific to photo-sharing platforms, and in-
clude searches for photo equipment and techniques, and for photog-
raphy related events.1

Meta Queries include searches for specific usernames and groups, and
for site-specific Flickr features.

We manually annotated the 1, 000 most frequent queries from our corpus
into this taxonomy. Queries that were ambiguous, or that do not clearly
belong to this taxonomy, were labeled as “unknown”, leaving 974 queries
with known categories. From Table 5.3, we can see that 47.2% of queries

1Mainly comprised of photography “bootcamps” – events in which photographers
meet for training purposes.
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are general, 35.7% are specific, 12.6% are photography and 4.3% are meta
queries. There are less general queries than is reported by Jansen [81],
although that work focused on all queries, not just the most popular queries.
Searches for people are much less important on photo-sharing platforms
than has previously been reported, both for general web image search [145,
81] and in a journalistic context [154]. It is also noteworthy that photography
accounts for 12.8% of popular searches, and that meta queries, which may
not even be true image searches, account for over 4.3% of popular queries.

Search is an important task but it is not the only one when it comes to
sessions in a multimedia platform such as Flickr. We will now move our
focus to the life of a session outside search: browsing.

5.2. Life of a Browsing Session

Social media platforms such as Flickr provide a wide range of functionalities
and different ways to share and view content. Given the sequential nature
of browsing photographs, it is frequent for people to share and view images
in sequences, whether the photos are arranged in galleries, slideshows, or in
groups. In Flickr, in particular, photos uploaded by a user to his account
are placed in a “photostream”, which in essence is a sequence of photos.
Although there are many ways to reach individual photographs, such se-
quences constitute a fundamental part of the interaction. In the rest of the
section we will refer to such sequences as photostreams (or simply streams).

Furthermore, navigation across sequential units of content is present in other
fields of social media, e.g., social network, music streaming, and microblog-
ging platforms. In popular social networks photos are organized in albums
and can be viewed sequentially. Songs in music streaming services can be lis-
tened to one after another usually as a part of an album or a playlist. Posts
in microblogging platforms are chronologically organized in independent
blogs. Therefore, methods developed for photostreams could be adapted to
other social media as well.

A key question for social media platforms, then, is how users navigate inside
and between various photostreams. In particular, such photostreams may
be considered not just as collections of images, but rather as fundamental
units of content. On one hand, understanding how users navigate between
specific photostreams is crucial in designing interfaces and algorithms that
improve user experience, by providing the right content in the right places.
On the other hand, analyzing the semantic categories of such streams can
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also provide important insights on general topics of interest. In addition,
investigating how users transition between photostreams allows us to un-
derstand how topics may be related.

In this section, we treat photostreams as content units and analyze a large
sample of navigation logs to gain insights into how users navigate between
different photostreams. More specifically, we examine user navigation logs
containing several millions page views in order to create a photostream
transition graph to analyze frequent topic transitions (e.g., users often view
“train” followed by “firetruck” photostreams).

To the best of our knowledge, this is the first study that analyzes photo-
stream browsing as opposed to photo browsing.

5.2.1. Analysis

In this subsection we define the main concepts of our study, present statis-
tics on how users browse within sessions, and how they transition between
photostreams.

Photostream Browsing. Photos in Flickr are organized in photo-
streams. Each photo in Flickr belongs to a photostream of the owner, but
it can belong to other streams of photos as well: groups, sets, galleries, or
favorites. Apart from favorites, all these photostreams are either chosen or
created by the owner of the photo. Users always view and browse photos
in the context of a particular photostream.

There are two main ways of viewing photostreams: a) grid view, i.e., grid
of photos from the stream (see Figure 5.3a), and b) photo-focused view, i.e.,
a single zoomed-in photo with a possibility of browsing neighboring photos
(see Figure 5.3b). Although Flickr allows different variations of grid views,
they share a common feature, namely that they show several pictures from
the browsed stream at a glance. The photo-focused view is the same for
all the streams: it shows a large selected photo and, on the right side of it,
thumbnails of 4 neighboring photos from the stream are presented, which
the user can switch to by clicking on them. This way one can change the
focus from the current photo to another one from the currently browsed
stream. Below the thumbnails a list of all photostreams that the photo
belongs to is shown in the form of hyperlinks, as visible in Figure 5.3b.

One can expect that users first enter the grid view of a photostream, and
then select one of the photos they like and see it in a photo-focused view.



50 life of a session

(a) Grid view. (b) Photo-focused view.

Figure 5.3: General types of stream views in Flickr.

Then, they can continue on browsing other photos from this photostream.
The grid view may be used for purposes which seem less involving to the
user, e.g., quick browsing many photos from a stream, having an overview
of a stream, or seeking interesting content. Photo-focused views give the
user options of performing many different actions in reference to the photo,
e.g., he or she can comment on the photo, favorite it, download it, see it in
different sizes, or in a light-box setting.

For the purpose of the study, we define a stream-browsing sequence as an
uninterrupted chronological sequence of page views that contains at least
one photo-focused view and an indefinite number of grid views of one par-
ticular photostream (schematic examples are shown in Figure 5.6). Each
browsing session can consist of a number of stream-browsing sequences.

The FlickrBrowsing dataset contains a total of 264 million page views, out
of which a considerable part forms stream-browsing sequences. On average,
each sequence consists of 8 page views, among which there are photo-focused
views and grid views of the photostream. Distributions of both the number
of distinct streams viewed per session (Figure 5.4a), and the number of
photo-focused views per stream (Figure 5.4b), have a heavy-tail showing
high variability in user browsing patterns.

Transitions Between Streams. We have just shown that a large portion
of all page views corresponds to sequential browsing of photos inside of
photostreams. In this context an interesting question to ask is how users
switch between streams.

We distinguish two types of transitions (Figure 5.6): a) direct transitions,
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Figure 5.4: Distributions of number of unique streams per session (a) and
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in log-log scale.
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Figure 5.6: Diagram of possible transitions between streams.
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which happen when the user is in a photo-focused view of the stream and
chooses one of the listed streams to the right of the photo, as in Figure 5.3b,2

and b) indirect transitions, in which the user leaves the photo-focused view
and enters it again in a different stream after performing a number of clicks
(e.g., watching grid views, searching, exploring users’ profiles, etc.).

We define a transition from photostream i to j as a sequence of non-photo-
focused page views from a photo-focused view inside stream i to another
photo-focused view inside stream j. This definition implies directionality.
One can estimate the number of clicks and actions performed during the
transition by counting the number of page views between the photo-focused
views of the two streams and summing one. Direct transitions only require
one click, whereas indirect transitions require more than one action.

In total we have identified 3.6 million transitions between photostreams. In-
direct transitions within 2 clicks cover a large portion of all transitions, as
shown in Figure 5.5. However, even more transitions happen after more than
5 clicks, so many users, before reaching another picture in a photostream
pass through many non photo-focused page views. Moreover, direct transi-
tions happen much less often than indirect transitions. In the present Flickr
interface, photostreams which are reachable from the currently browsed
stream with just 1 click are the ones that the displayed photo belongs to.
Moreover, in Flickr, only the names of these photostreams are presented,
with no thumbnails of pictures shown, which may negatively impact the
number of direct transitions between streams.

Discussion. Almost half of all page views in the dataset form stream-
browsing sequences. Users tend to see multiple photos of a photostream ei-
ther in the photo-focused view or in the grid view before leaving the stream.
The vast majority of all transitions between photostreams take place over
several clicks. These results suggest that a modified photo-focused interface
facilitating direct transitions to other streams could be implemented.

5.2.2. Graph of Transitions Between Streams

In this section, we study the transitions between streams in more detail.
Our goal is to show that users tend to browse photos of a given topic and
sometimes switch to another topic that is related but that is not obvious.
Such observation plays an important role in the design of interfaces and
recommender systems.

2Sample Flickr pages from the user http://www.flickr.com/photos/bombeador/.

http://www.flickr.com/photos/bombeador/
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Figure 5.7: Distributions of degrees (a) and edge weights (b) in the graph
of transitions.
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Graph Nodes Degree Strength

Full 1,530,875 4.23 4.68

LCC 972,047 5.80 6.46

Table 5.4: General statistics of the stream transition graph and its large
connected component (LCC).

General Description. We define the graph of transitions as follows.
Each photostream is treated as a node in a network. Edges in the graph
represent transitions between photostreams i and j and their weight is equal
to the number of such transitions.

The resulting total number of nodes in the transition graph is over 1.5 mil-
lion, with an average degree of 4.2, as stated in Table 5.4. The graph is
therefore sparse. The average strength of nodes, defined as the sum of the
weights of its outgoing and incoming edges, is 5.8. The graph is charac-
terized by typical heavy-tailed distributions of degrees (Figure 5.7a) and
weights (Figure 5.7b). Many nodes of the graph belong to the largest con-
nected component, which covers over 60% of all nodes in the network. Fur-
ther analysis presented in this section is based on it. The largest connected
component has similar characteristics to the whole network, with slightly
higher average degree and average strength, as presented in Table 5.4.

Clusters of Frequently Co-viewed Streams. In order to investigate
if users browse photostreams sharing similar features, we first cluster these
streams using a community detection algorithm. A priori, detected clusters
consist of nodes with dense connections, therefore they consist of photo-
streams where transitions are frequent. Our goal is to test if clusters of
streams share common features.

We used Infomap [126, 128], a state of the art community detection algo-
rithm for weighted and directed networks. This algorithm was found to be
one of the best performing methods in a recent review [55]. Infomap de-
tects hierarchical community structure, but for the purpose of this section
we analyze only the highest hierarchical level of communities. The number
of clusters found by the algorithm at the top level is over 2000.

In order to illustrate the content of clusters covering a considerable portion
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(a) recent-photography (b) portrait

(c) graffiti
(d) landscape

(e) lego (f) virtual-reality

(g) public-libraries
(h) bikes

(i) cakes (j) canon-portrait

Figure 5.8: Tag clouds for the large clusters of photostreams.
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Cluster Number of Escape Self Global

Label photostreams ratio tag-coherence tag-coherence

recent-photogr. 36,260 0.03 0.003 0.003

portrait 35,689 0.21 0.021 0.008

graffiti 20,518 0.06 0.060 0.006

landscape 12,073 0.21 0.009 0.005

lego 8,015 0.03 0.059 0.006

virtual-reality 6,001 0.07 0.030 0.004

public-libraries 5,044 0.28 0.006 0.004

bikes 3,809 0.14 0.009 0.003

cakes 3,748 0.08 0.056 0.007

canon-portrait 3,456 0.28 0.021 0.008

Table 5.5: Statistics of the large clusters of photostreams.

of the network, we show properties of some of the largest clusters. A possible
way to measure the quality of the detected cluster is by calculating the ratio

εi =
`exti

`exti + `inti

where `exti is the number of edges connecting nodes from the cluster i with
external nodes from other clusters, and `inti is the number of edges con-
necting internal nodes from the cluster i. In this work we call it escape
ratio, as in our context it measures likeliness of a user browsing inside of
a stream from a particular cluster to escape from this cluster by switching
to a stream from another cluster. Generally, this ratio should be small for
well-defined clusters, however it grows with the number of clusters and their
size [63]. Values of the escape ratio for the large clusters found in the largest
connected component of the transition graph are shown in Table 5.5. The
results vary on clusters but tend to be very low. Given that the largest
cluster accounts for less than 4% of all streams, its escape ratio of 0.03 is
much lower than the escape ratio of 0.96 that could be expected in a random
scenario.
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In order to characterize the content of the clusters we aggregate all photo
tags that belong to all the streams of each of the clusters. If a photo belongs
to several photostreams in one cluster, then we count its tags multiple times.
Using this method, we created tag clouds for every cluster in the network.
We present them in Figure 5.8, where we plot the 50 most frequent tags for
each large cluster. The size of each tag in a tag cloud is proportional to the
number of its appearances in the cluster. The labels, stated in the figure
underneath each of the tag clouds, are chosen manually.

As one can see in the tag clouds, most of them have quite a narrow focus,
and only a few have a wide focus: recent-photography, portrait, landscape,
public-libraries, and canon-portrait. As a side note, the narrow focus of
clusters could possibly arise from just a few streams with many tags. To
test if this is not the case and to quantify narrowness of cluster topics we
use a measure of similarity sij between streams i and j. We define it as
the cosine similarity of multidimensional vectors of tag-clouds sij , where
each dimension is a tag and the value is the count in the tag cloud. For
every cluster we measure average similarity of its member streams with a)
other member streams from this cluster, and b) all streams. We call these
averages, correspondingly, self tag-similarity and global tag-similarity. The
former property measures how coherent are streams within a particular
cluster, whereas the latter quantifies how coherent these streams are with
respect to all streams. As one can see in Table 5.5, the self tag-similarity is
several times higher than the global tag-similarity for most of the clusters,
meaning that indeed streams belonging to the same cluster are similar in
content. Moreover, the clusters with narrow focus obtain the best scores
as their self tag-similarity is up to 10 times higher than their global tag-
similarity. Therefore streams in the clusters tend to be of similar topics.

Transitions Between Clusters. Since clusters contain streams of sim-
ilar topic, an interesting question to ask is between which clusters people
switch most often. This can be answered by a creating a node in place of ev-
ery cluster of streams and aggregating edges of all streams belonging to this
cluster. In this manner, we obtain a directed and weighted network of tran-
sitions between clusters from the network of transitions between streams.
After the conversion we remove self-loops. This network is dominated, how-
ever, by the connections between large nodes. To account for the size effect
of the nodes and to extract meaningful information about relations between
clusters, we take the following approach. In the random case, the expected
number of connections from node i to node j, having an out-degree kouti
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and an in-degree kinj , is equal to

`randij =
kouti kinj

`

for a large number of edges in the network `. If connections between clusters
were spread randomly between nodes of known degrees then `randij would be
expected to be the number of edges between particular nodes. To see which
connections between clusters are the furthest from a random configuration,
we calculate the ratio

aij =
`ij

`randij

of the actual number of connections `ij and the expected value `randij . We
call aij the abundance ratio. If this ratio is larger than 1 then transitions
from stream i to j are overrepresented, while if it is lower than 1 then they
are underrepresented. We pick the parts of the network formed by edges
with abundance ratio aij higher than 10 and actual weight `ij also higher
than 10. We present most of them in Figure 5.9. Here we provide a short
description of each of the examples:

(a) Clusters of fans of cars and machinery. From left to right in the figure:
the first cluster seems to be on the boundary of cars and photography,
while the next one is more narrowly about cars, especially classic ones.
Users from this cluster tend to switch between both to see photos of
trains and railroads, as well as firetrucks.

(b) Event-oriented clusters. From down to up in the figure: photography
of live music shows is related to the cluster of journaling, blogging and
fisheye photography.

(c) Household-centered clusters. From left to right: clusters of cakes and
vintage style, which incorporate elements from previous eras into mod-
ern fashion and style, are related to the cluster of sewing and fabrics,
and this is related to dolls. Note that dolls and Disney/Disneyland
are also related.

(d) Toys and military. From left to right: photography of lego construc-
tions, mostly of star-wars, is related to army and military photogra-
phy. This is quite interesting, and shows an interests from toys and
plastic soldiers to real ones. The military cluster is related to natu-
ral disasters in which often the army and powerful natural forces are
involved.
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Figure 5.9: Interesting over-represented transitions between clusters of pho-
tostreams. Width of edges corresponds to the abundance ratios.

It is also possible to find underrepresented connections between clusters,
and it would certainly be interesting to examine more clusters in detail.

Discussion. On one hand, low escape ratios and high tag-coherence of the
clusters of streams show that indeed users browse topically-similar streams.
On the other hand, examples of the transitions between the clusters show
that the users also switch between streams which are further apart in the
topical space, but are still related (e.g., trains and firetrucks, cake and
sewing, lego and army). This implies interesting consequences for the de-
sign of new interfaces or recommender systems, e.g., the recommended pho-
tos should not be topically overspecialized, in order to leave to users the
possibility of exploration.

5.3. Visualizing the Life of a Browsing Session

After having presented the analysis of the life of a session, we will show
an example of application that leverages data about user browsing sessions
to generate interactive visualizations. We present an alternative way of
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presenting content, by leveraging the aggregated and anonymous navigation
patterns of thousands of visitors to a site. The key idea behind our work is
that creating dynamic interfaces that leverage previous visitor’s patterns can
lead to more serendipitous content exploration experiences. In particular,
we focus on a graph-based paradigm where nodes represent content items
and edges represent the number of visits (page views) that originate in one
content item (node) and move to the next one. This paradigm allows users
to discover content based on the aggregated browsing patterns of others. It
is important to emphasize that our approach fully preserves privacy since
navigation patterns of individual users are never visible because all data is
anonymized and aggregated: links between two content items exist only if
a sufficiently high number of page views has occurred between the content
items. Only public photos are included in our analysis and application.

User browsing patters have been used in the past to inform design choices.
For example, Paul André et al. [5] analyzed the characteristics of user behav-
ior in image search and suggested ways to improve image search engines.
Our approach relates to social navigation [57], and to the idea of “Foot-
prints” [156]. Related image-browsing interfaces are described in [132, 131].
The majority of image-browsing interfaces focus on exploiting the similar-
ity between images (e.g., [131]), and while the Footprints framework uses
the interaction history for navigation in a complex information space, those
tools assume that people know what they want, but may need help finding
their way to the information and may need help understanding what they
have found. Our purpose, in contrast, is to increase serendipitous discovery.

Websites that host content, such as Flickr, have structured, fixed layouts
and sections, which give them consistency and facilitate their use. In many
cases, however, the possible navigation paths taken by visitors to such sites
can be very rich: in Flickr’s case, visitors can view photo streams, profiles
of users, their favorite photos, photos of contacts, photos in groups, via
search, and other mechanisms. In spite of this wealth of options for viewing
content, users are somewhat constrained by the sites’ layouts and how the
content is organized.

5.3.1. Constructing the Browsing Graph

For the visualization we used the FlickrBrowsing dataset (see Sec-
tion 3.3.2). We concentrated only on the URLs that refer to the Browse
user photos page layout, i.e., pages aimed at displaying a particular photo.
Moreover, since we are interested in representing navigation among photos,
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we remove the page views in which the referrer and current URLs refer to
the same photo (e.g., page reloads, change in photo resolution, etc.).

From the filtered list of page views, we create a weighted graph. We create
a node i for each photo page and an edge eij when there are at least np
page views from i to j. The weight of the arc is the number of page views
from i to j.

5.3.2. The Interface

As already seen in Section 5.2, users often view photos in long sequences
(e.g., all photos of an album). Therefore the browse graph often consists
of long chains of nodes. We designed two layout algorithms to compactly
display the photos: a) Spiral layout (Figure 5.10a): photos are displayed
on a grid: the first photo of a chain is placed at the center and subsequent
photos are placed around it in clockwise order; b) Force-directed layout
(Figure 5.10b): the first photo of a chain is placed at the center and as
photos are rendered, they are added radially outwards from the center, but
each one is placed using a clockwise angular offset. A force-directed layout
algorithm [88] is then applied to the photos.

For example, consider a graph containing 12 nodes {k}12
k=1. Suppose past

users navigated from node 6 to 5 and down to 1 and then follow to nodes
7 and 8. At this point they either go to nodes 9 and 10 or nodes 11 and
12. The left side of Figure 5.10 shows how each layout would render the
resulting subgraph, where photo 1 is in the center.

The front end of our interface is written in HTML/Javascript, the backend
is written in PHP and the data is stored in a MySQL database. Initially
the interface displays a subgraph containing a predefined number of photos.
The user is able to interact with the interface in the following ways:

Change layout algorithm: the user can switch between the two layouts
using the same set of photos.

Show additional photos: the user can expand the fringe nodes of the
displayed subgraph by clicking on a button. Moreover, she can show
the neighbor nodes of a photo by clicking on it.

Display traffic: the user is able to dynamically visualize how past
users navigated in the browse graph. This is represented as animated
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(a) Spiral layout. Numbers on the right side show the order of the photos and do
not appear in the final user interface.
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(b) Force-directed layout.

Figure 5.10: The figures show the two layout algorithms (spiral and force-
directed). The left part displays an illustration of the layout of a sample
graph of 12 photos centered in photo 1 (in grey). On the right side, we
see an example using real data. Edges on the left side are represented as
animated particles on the right side. Their color indicates the context in
which users moved across photos: red indicates that users moved inside the
same Flickr group, green that users moved inside the same album. The
different paths assumed by the red and green particles show that users tend
to navigate photos differently depending on the context.
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particles that move from photo i to photo j. Their number is pro-
portional to the number of users (i.e., if many users browsed photo i
followed by photo j, a large number of particles will move from i to
j).

Filter traffic by photo: by hovering with the mouse on photo i, the
particles are filtered and only the ones passing through i are displayed.
In the example of Figure 5.10, suppose that people which saw photo
9 browsed to photos 8 or 10, but that no user saw photos 9 and 11
in the same session. Therefore, if the user hovers the mouse on node
9, the interface will display particles going from photo 9 to 8 and 10,
but not to 11. This is because users who saw 9 did not navigate to
11. Note that this happens although there is an edge between photos
8 and 11.

Show/Filter traffic by type: the user is able to display the particles
according to the context in which past users saw the photos (photos
were viewed in the same album, in the profile of a group or are both
favorited by the same user, etc.). Each type of traffic is displayed in
a different color. The right part of Figure 5.10 shows an example.

5.4. Discussion

In this chapter, we analyzed a large sample of sessions from an image sharing
platform.

First, we studied user search behavior. Our study uses logs of user behavior
during entire search sessions, as opposed to only the search and result click
data that are available on standard search logs. Using a taxonomy of image
search we describe the main categories of search performed on this platform.
We note differences with previous results on general image search and image
search in journalism.

We then worked with photostreams as content units for analyzing user
browsing behavior in Flickr. In particular, we presented the results of an
analysis of a large sample of Flickr navigation logs to gain insights into how
users navigate between photostreams. To analyze frequent stream topic
transitions, we created a stream transition graph from over 100 million
page views. We found interesting patterns in how users navigate between
streams and showed that users tend to browse related streams.
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Finally, we developed a visualization that suggests that leveraging large-
scale aggregated navigation logs can lead to the creation of new and inter-
esting content exploration paradigms. In particular, we conjecture that a
dynamic graph-based representation can be effective in serendipitous con-
tent discovery.

In the next chapters, we use more complex methods to understand brows-
ing sessions. First of all, we describe a data mining algorithm to extract
frequent browsing patterns (which we call summaries) that show a partic-
ular behavior of the user. We then move towards probabilistic models of
browsing sessions.





Chapter 6

Summarization Based on
User Browsing Sessions

6.1. Introduction

We study the novel data-mining problem of extracting summaries from a
database recording activity sequences on a graph. As better explained next,
ours is a general framework that can be instantiated in different contexts,
ranging from information propagation in social networks to user browsing
activity over the Web.

In our problem, we are given a database P of propagations, where each
propagation represents the trace left by a specific entity φ that “flows” over
an underlying graph G = (V,E). More precisely, a trace of an entity φ is a
sequence of observations 〈v, φ, t〉 representing the fact that the entity φ is
observed at node v at time t. The trace of φ can naturally be represented
as a directed acyclic graph (dag) Dφ, whose arcs (u, v) express the fact that
an arc between the same nodes exists in the underlying graph G and both
u and v activate on φ, with u activating strictly before v. In this case, we
can think that φ flowed from u to v. An example of our input is provided
later, in Section 6.2 (and Figure 6.2).

Our goal is to extract summaries of propagation traces from P. A summary
is a set of propagations. The propagations in a summary should satisfy the
requirement of being structurally similar. More precisely, we want them to
involve (more or less) the same population of nodes. This is however not
enough: we also require the propagations to exhibit a well-defined hierar-

67
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chical structure when merged together. By hierarchical structure, we mean
that one can identify one or more rankings, such that there exist nodes that
usually participate early in the propagations inside the summary, and nodes
that instead activate later. We mill make these concepts more formal later
in the chapter.

Given a summary S, we define the union graph G(S) as the directed graph
(subgraph of G) obtained by merging the dags corresponding to the prop-
agations in S. Moreover we denote as r a ranking of the nodes in G(S).
The ranking expresses the hierarchical structure of S, i.e., the order of
nodes that entities follow while propagating in G(S). The ranking of nodes
makes our summaries informative and useful in a wide and diverse range of
applications, like the ones discussed next.

Application Scenario #1. In a social network like Twitter the under-
lying graph G represents the social connections: the nodes of the graph
are the users of the social network and an arc (u, v) exists if u and v are
related in some way (e.g., v is a follower of u). Here the entity φ is a piece
of information (e.g., the URL of an interesting blog, multimedia content,
such as photos/videos, etc.) propagating in the social networks by means of
re-tweets. Given a database of propagations P, finding summaries is equiv-
alent to finding groups of entities that propagate in the social network in
a similar way. Nodes of these groups may represent different communities
of users interested in different topics: politics-related entities flow trough a
different set of nodes than entities related to electronic music. Moreover,
a summary also comes with a ranking of nodes that reflects, to some ex-
tent, the directionality of the information flow in all the propagations in the
summary. This is crucial to distinguish users that are “early adopters” (or
“opinion leaders”, or “trend setters”, or “influencers”) from users that are
instead simple followers.

Application Scenario #2. In another context, the graph G could be
a (large) website (e.g., Amazon or Wikipedia), whose nodes and arcs cor-
respond to web pages and hyperlinks between pages, respectively. In this
case, the entity φ moving in the directed graph corresponds to (a browsing
session of) a specific user visiting the website, and multiple users clearly
leave different traces. The browsing behavior of a user within the website
can be represented as a dag, where the user moves from the homepage down
in the hierarchical structure of the pages of the website. Cycles might arise
because of user backtracking or because they are allowed by the website
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Figure 6.1: An example of union graph of a summary extracted from a
database of browsing sessions in Wikipedia (application scenario #2). The
numbers inside the nodes identify one optimal ranking. Links that violate
the ranking are depicted in red.

structure. However, as what really matters is the sequence of the pages
visited, one can safely ignore cycles and simply consider only the first visit
to each page.

Finding summaries, in this case, means finding groups of users (sessions)
that navigate the website in a similar fashion. It is essential for website-
usage analysis and re-organization [139], as a summary indicates how a
specific group of users accesses the website, which are the pages accessed
first, and which access page is a good entry point to discover many other
pages. The typical browsing activity of a group of users is thus described by
its corresponding summary, and different groups of users can be detected
and discerned based on their summaries. Moreover, the typical behavior of
successful sessions (e.g., the ones ending in a product purchase) can easily
be detected and studied in order to improve the website organization.
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An example of union graph of a summary extracted from a database of
browsing sessions in Wikipedia is provided in Figure 6.1 (more details are
given in Section 6.4). The numbers inside the nodes correspond to one
optimal ranking, while red links denote ranking violations, i.e., arcs (u, v)
for which r(u) > r(v). In the next section we will formalize the concept of
violating the ranking, and based on that, we will define the constraint to
be satisfied in order to guarantee good hierarchical structures.

Our contributions are as follows:

We formulate the novel problem of extracting structurally-similar
summaries from a set of propagations. We define the requirement
about structural similarity as two constraints that the extracted sum-
maries are required to satisfy. One constraint aims to force all the
propagations in a summary to involve more or less the same set of
nodes, while the second constraint requires for the nodes in the union
graph of a summary to have a well-defined hierarchy, i.e., it should
be as as close as possible to a dag structure.

We show that both constraints satisfy the downward-closure property,
thus allowing the definition of Apriori-like methods.

We devise two algorithms to solve our problem, which differ from
each other in the way in which they visit the lattice of all possible
sets of propagations. The first algorithm, called Bottom-up, relies
on a bottom-up lattice-traversing strategy, which directly exploits the
aforementioned closure properties. Motivated by the fact that check-
ing the hierarchy constraint is more time-consuming, we develop a
second algorithm, called Up-and-down, which consists of two sep-
arate phases: a bottom-up phase where the hierarchy constraint is
discarded, followed by a top-down phase that partially re-visits the
lattice starting from those summaries that violate the hierarchy con-
straint.

We extensively evaluate our algorithms on four real-world datasets
coming from the application scenarios discussed above, i.e., informa-
tion propagation on social networks and web browsing. Quantita-
tive results show that the Up-and-down algorithm generally achieves
better efficiency, even though Bottom-up can be faster in some set-
tings. Qualitative results provide evidence of the significance of the
summaries extracted and how they can be exploited for practical pur-
poses.
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The rest of the chapter is organized as follows. In Section 6.2 we define our
problem, while in Section 6.3 we describe the proposed algorithms to solve
it. Section 6.4 presents the experimental analysis. Section 6.5 concludes
the chapter.

The results of this chapter were published in [103].

6.2. Problem Definition

The input to our problem is (i) a directed graph G = (V,A) representing a
network of interconnected objects, (ii) a set E of entities, and (iii) a set O
of observations involving the objects of the network and the entities in E .
As mentioned earlier in the chapter, objects can be, e.g., users in a social
network or pages of a website, while entities can be, for example, pieces
of information (such as multimedia content) shared by users or web-page
visits. Each observation in O is a triple 〈v, φ, t〉, where v ∈ V , φ ∈ E , and
t ∈ N+, denoting that the entity φ is observed at node v at time t. We
assume that the same entity cannot be observed multiple times at the same
node; should this happen, we consider only the first one (in order of time)
of such observations.

The set O of observations can alternatively be viewed as a database P of
propagation traces (or simply propagations), i.e., traces left by entities that
“flow” over G. Formally, a propagation trace of an entity φ corresponds to
the subset of all observations in O involving that entity, i.e., {〈v, φ′, t〉 ∈
O | φ′ = φ}. Considering the graph G, the database of propagation traces
corresponds to a set of directed acyclic graphs (dags) D = {Dφ | φ ∈ E},
where, for each φ ∈ E , Dφ = (Vφ, Aφ), Vφ = {v ∈ V | 〈v, φ, t〉 ∈ O},
Aφ = {(u, v) ∈ A | 〈u, φ, tu〉 ∈ O, 〈v, φ, tv〉 ∈ O, tu < tv}. Note that
each Dφ ∈ D is guaranteed to contain no cycles due to time irreversibility.
Moreover, we assume that each propagation is started at time 0 by a dummy
node Ω /∈ V , representing a source of information external to the network
that is implicitly connected to all nodes in V . Thus, each dag in D is
assumed to contain such a dummy node Ω connected to all its “real” nodes.
An example of our input is provided in Figure 6.2.

A summary S ⊆ P is a set of propagations. Given a summary S, we denote
byD(S) the set of dags corresponding to the propagations in S and byG(S)
the union graph of all the dags in D(S). The union of two graphs G1 =
(V1, A1) and G2 = (V2, A2) is defined as G1 ∪G2 = (V1 ∪ V2, A1 ∪ A2). An
example of graph resulting by the union of two dags is given in Figure 6.3.
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Figure 6.2: An example of the input of our problem: a graph G, and
a database of propagation traces P defined over a set of entities E =
{φ1, φ2, φ3}. The graph represented here is undirected: each edge corre-
sponds to two directed arcs. Each propagation is started at time 0 by a
dummy node Ω /∈ V . Given the graph G, the propagation database P is
equivalent to the set of dags D = {Dφ1 , Dφ2 , Dφ3}.
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Figure 6.3: The union graph Dφ1 ∪Dφ2 of the dags Dφ1 and Dφ2 depicted
in Figure 6.2.

Note that G(S) is not necessarily a dag itself, as the union of multiple dags
can clearly correspond to a cyclic graph.

As informally anticipated earlier, our goal is to extract summaries that (i)
are homogeneous in terms of the population of nodes involved, and (ii)
exhibit a good hierarchical structure, i.e., the union graph is as close as
possible to a dag structure. We next formalize these two concepts in two
constraints that we require for our summaries to satisfy.

Similar Population of Nodes. To force our summaries to involve a
similar population of nodes, a natural choice is to quantify the amount of
nodes common to all dags of the propagations in a summary and require
that it is no less than a certain threshold. In this work, we measure the
fraction of nodes shared by a set of dags by means of the popular Jaccard
similarity coefficient, which is one of the most used measures of similarity
among sets of objects. Moreover, it has the desirable property of having a
fixed-range codomain, [0, 1], which makes the threshold-setting task easier.
Formally, given a summary S, we define

j(S) =
|
⋂
Dφ∈D(S) Vφ|

|
⋃
Dφ∈D(S) Vφ|

.
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Hierarchical Structure. Here we borrow the concept of “agony” intro-
duced by Gupte et al. [66] to define a measure of the hierarchy existing in
a directed graph. Given a directed graph G = (V,A), consider a ranking
function r : V → N for the nodes in G, such that r(u) < r(v) expresses
the fact that u is “higher” in the hierarchy than v, i.e., the smaller r(u)
is, the more u is an “early-adopter”. If r(u) < r(v), then the arc u → v
is expected and does not cause any agony. Instead, if r(u) ≥ r(v) the arc
u→ v would cause agony because it would mean that u has a follower v (in
the social graph terminology) that is higher-ranked than u itself. Therefore,
given a graph G and a ranking r, the agony of each arc (u, v) is defined as
max{0, r(u)− r(v) + 1}, and the agony a(G, r) of the whole graph given the
ranking r is just the sum over all arcs:

a(G, r) =
∑

(u,v)∈A

max{0, r(u)− r(v) + 1}.

In most cases (as in our problem), the ranking r is not explicitly provided.
The objective therefore becomes finding a ranking (they might be multiple)
that minimizes the total agony of the graph. In this way, one can compute
the agony of any graph G as

a(G) = min
r
a(G, r).

As a dag implicitly induces a partial order over its nodes, it has always
zero agony: the nodes of a dag form a perfect hierarchy. For instance, in
the dags Dφ1 , Dφ2 , Dφ3 in Figure 6.2, it is sufficient to take the temporal
ordering as ranking, i.e., r(u) = tu where 〈u, φi, tu〉 ∈ Dφi , in order to
obtain agony equal to zero.

However, as already mentioned above, merging several dags to form a sum-
mary S leads to a union graph G(S) that is not necessarily a dag, therefore
agony can appear. Consider for instance the union graph Dφ1 ∪ Dφ2 re-
ported in Figure 6.3. It is easy to see that the graph Dφ1 ∪Dφ2 is not a dag
as it contains the cycle v3 → v4 → v5 → v7 → v6 → v3. Due to this cycle,
it is impossible to find a ranking r that provides zero agony. In fact, any
directed cycle containing k arcs (and not sharing arcs with any other cycle)
always incurs agony equal to k [66]. One ranking r providing the minimum
agony for Dφ1 ∪Dφ2 is:

(Ω : 0)(v2 : 1)(v1 : 2)(v4 : 2)(v5 : 3)(v7 : 4)(v6 : 5)(v3 : 6)
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This ranking yields no agony on all the arcs, except on the arc v3 → v4 that
incurs agony 6-2+1 = 5, which is indeed the length of that directed cycle.

Although the number of possible rankings of a directed graph is exponential,
Gupte et al. [66] provide a polynomial-time algorithm for finding a ranking
of minimum agony. They provide a linear-programming formulation and
show that (i) the dual problem has an optimal integral solution, and (ii) the
optimal value obtained by maximizing the dual problem coincides with the
minimum value of the primal. This finding allows to define an algorithm
that decomposes the input graph G into a dag D and a graph H that
corresponds to the maximum (in terms of number of arcs) Eulerian subgraph
of G (an Eulerian graph is a graph in which the indegree of each node is
equal to its outdegree). Let m be the number of arcs and n the number
of nodes of G, then the algorithm to compute such a decomposition takes
O(m2n) time: it requires at each iteration to find a negative-weight cycle,
which can be done by the Bellman-Ford algorithm [13, 54] in O(mn), while,
in the worst case, the number of iterations is m.

Mining Maximal Summaries under Constraints. We have now all
the ingredients to define the problem we study in this chapter. Informally,
given a database of propagations P, we want to extract sets S ⊆ P of
propagations that have high Jaccard of nodes of the dags in D(S) (no less
than a threshold β), and small agony of the graph G(S) obtained by merging
the dags in D(S) (no more than a threshold α). Moreover, we want S to
be maximal and have non-trivial size (i.e., |S| ≥ 2). The formal statement
of the problem is stated next.

Problem 6.2.1 (Mining summaries of propagations). Given a set of prop-
agations P, and two thresholds, α ∈ N and β ∈ [0, 1], we want to extract

S = {S ⊆ P | |S| ≥ 2, a(G(S)) ≤ α, j(D(S)) ≥ β,@T ∈ S : S ⊂ T}.

For each summary S ∈ S we can compute one ranking providing minimal
agony for G(S), that is r∗ = argminr a(G(S), r).

6.3. Algorithms

The search space of Problem 6.2.1 corresponds to the whole lattice 2P of all
subsets of P. The two constraints that are part of our problem definition
hold the downward-closure property, which enables effective pruning of such
large search space, as explained next.
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The Jaccard value is monotonically non-increasing as the number of sets to
be compared increases. More precisely, given any two sets (of sets) S and
T , with T ⊃ S, it holds that j(S) ≥ j(T ). For our purposes, this result can
easily be translated into the following pruning rule to be exploited during
any (bottom-up) traversal of the lattice 2P.

Fact 6.3.1. Given a set of dags D, a subset D ⊆ D, and a threshold
β ∈ [0, 1], if j(D) < β, then j(D′) < β for all D′ ∈ 2D : D′ ⊃ D.

The second property we show is that the agony is monotonically non-
decreasing when the size of the graph increases. We formally state such
a result in the following theorem.

Theorem 6.3.1 (Agony is monotone). Given a directed graph G = (V,A)
and an arc (u, v) /∈ A, let Guv = (V ∪ {u, v}, A∪ {(u, v)}) denote the graph
derived from adding the arc (u, v) to G. It holds that a(G) ≤ a(Guv).

Proof. As shown in [66], the problem of minimizing the agony of a graph
G can be formulated as a linear program whose dual problem corresponds
to finding an Eulerian subgraph of G having the maximum number of arcs.
Let E(G) denote the maximum Eulerian subgraph of G and let |E(G)|
denote the number of arcs in E(G). Another result reported in [66] is
that |E(G)| = a(G). Now, it is easy to see that, although not necessarily
optimal, the subgraph E(G) represents at least an admissible solution (thus
a lower bound) of the maximum-Eulerian-subgraph problem when the graph
in input is Guv. Thus, combining all such results:

a(G) = |E(G)| ≤ |E(Guv)| = a(Guv),

which proves the theorem.

An immediate corollary of the above theorem to exploit in our context is the
following: if for any subset of propagations S ⊆ P it holds that the agony
a(G(S)) of the corresponding union graph exceeds a certain threshold α,
then the agony a(G(T )) of (the union graph of) every superset T ⊃ S is
guaranteed to be greater than α as well. An opposite result clearly holds
for the subsets of a summary S whose agony is no less than α.
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Corollary 6.3.2. Given a set of propagations P, a subset S ⊆ P, and a
threshold α ∈ N, it holds that:

1. if a(G(S)) > α, then a(G(T )) > α for all T ∈ 2P : T ⊃ S;

2. if a(G(S)) ≤ α, then a(G(T )) ≤ α for all T ∈ 2P : T ⊂ S.

Based on these properties we devise two algorithms, namely Bottom-up
and Up-and-down, which explore the lattice 2P of all subsets of P in two
different ways: the Bottom-up algorithm performs a bottom-up, breadth-
first search, while the Up-and-down algorithm consists of two phases: a
first phase roughly similar to the Bottom-up algorithm where only the
Jaccard constraint is considered, followed by a top-down phase where the
lattice is partially re-visited to check the agony constraint.

In the remainder of the section, we provide the details of the two algorithms,
while also discussing the advantages and disadvantages of both, especially
in terms of time/space requirements.

6.3.1. The Bottom-up Algorithm

We describe here the first algorithm we devise to solve Problem 6.2.1. The
pseudocode of the proposed algorithm, called Bottom-up, is summarized
in Algorithm 1.

Bottom-up resembles the classic Apriori algorithm for frequent-itemset
mining [1]. Given a set of dags D and two thresholds α, β, the proposed
algorithm visits the lattice of all possible subsets of D in a bottom-up fash-
ion. Particularly, the algorithm performs a breadth-first search, starting
from the subsets of D of size 2 (level 2), and increasing the level one-by-one
until no summaries satisfying the requirements can be extracted. This way,
the pruning rules stated in Fact 6.3.1 and (the first statement of) Corol-
lary 6.3.2 can easily be exploited at each level: whenever a candidate C
(i.e., a subset of D) does not satisfy the constraints about either the Jac-
card threshold β or the agony threshold α, it is removed from the candidate
set so to skip the visit of all its supersets. Particularly, as computing the
agony of a candidate C is much more time-consuming than computing Jac-
card (i.e., O(m2n) vs. O(n), where n and m are the number of nodes and
arcs in the union graph G(C), respectively), the first constraint checked by
the algorithm is the one concerning Jaccard (Line 6). Only if this constraint
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Algorithm 1 Bottom-up

Require: set of dags D, thresholds α ∈ N, β ∈ [0, 1]
Ensure: set S of all maximal subsets of D such that |S| ≥ 2, a(G(S)) ≤ α,

and j(S) ≥ β, for all S ∈ S
1: S← ∅, C← {{D} | D ∈ D}
2: while C 6= ∅ do
3: C′ ← generateCandidates(C)
4: C← ∅
5: for all C ∈ C′ do
6: if j(C) ≥ β then
7: if a(G(C)) ≤ α then
8: C← C ∪ {C}
9: S← S \ {S ∈ S | S ⊂ C} ∪ {C}

10: end if
11: end if
12: end for
13: end while

is not violated, then the algorithm proceeds to compute the agony and check
whether its value is within the corresponding threshold (Line 7).

The generateCandidates procedure invoked in Line 3 derives the set of
candidates to be processed in the next level i+ 1 from the set of potential
candidates C′ that have passed the tests about the threshold α and β at
level i. The procedure essentially performs a classic Apriori-like join step.
Each pair of potential candidates C1, C2 in C′ sharing a common prefix of
length i − 1 (i.e., for which |C1 ∩ C2| = i − 1) is merged to form the set
C12 = C1 ∪ C2 of size i + 1; such a set C12 will be then included in the
candidate set C′ only if all its subsets of size i are present in C.

In order to further speed-up the execution, the generateCandidates proce-
dure exploits the following simple result about Jaccard: given any two sets
S1, S2, with |S1| ≤ |S2|, the Jaccard value j({S1, S2}) between such sets is
upper-bounded by the size of the smaller-sized set divided by the size of the
larger-sized one, i.e., j({S1, S2}) ≤ |S1|

|S2| . Hence, a further test is performed
on a candidate C12 = C1 ∪ C2 that has passed all the tests required by
the Apriori-like join phase: C12 is actually included in the final set C′ only
if the above constant-time-computable upper bound on Jaccard is no less
than the threshold β.
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A key advantage of the Bottom-up algorithm is the capability of exploiting
the pruning rules stated in Fact 6.3.1 and Corollary 6.3.2, which allow a
smart yet efficient search of the lattice. Moreover, due to its closeness to
the classic frequent-itemset-mining Apriori algorithm, it is rather simple and
easy-to-implement. Nevertheless, Bottom-up still suffers from a couple of
major limitations:

1. The efficiency bottleneck of the algorithm is the computation of the
agony, which, as said before, takes O(m2n) time. Even though the
Bottom-up algorithm tries to minimize the number of agony com-
putations by first checking the less expensive Jaccard constraint, un-
needed agony computations may still arise. Indeed, each maximal
summary S satisfies the property that all its subsets do not exceed
the agony threshold (Corollary 6.3.2, Statement 2); this means that,
for each of such maximal summaries S, all subsets of S have neces-
sarily been involved into an agony computation in previous iterations
that resulted in no pruning. For a bottom-up visit there is no way to
avoid that. An idea could be to compute agony incrementally: how-
ever this is not even a viable solution, as even adding a single new
arc might force the algorithm for agony computation to perform a
number of operations comparable to re-doing the whole computation
from scratch [66].

2. The space complexity of Bottom-up can be high, as the algorithm
needs to keep in memory the union graph of all candidates of the
current level to allow agony computations. On the other hand, the
solution of loading at runtime the union graph of the various candi-
dates would slow down the algorithm too much.

Hence, we devise a second algorithm to overcome the above issues.

6.3.2. The Up-and-down Algorithm

The Up-and-down performs a two-step traversal of the lattice 2P in which
a bottom-up phase is followed by a top-down phase. The outline of Up-
and-down is reported as Algorithm 2.

The first step of Up-and-down (Lines 2-11) is a bottom-up visit similar
to the Bottom-up algorithm, but here performed considering only the
Jaccard constraint (thus completely discarding agony). The aim of this step
is to find the set Sj of all maximal summaries that satisfy Jaccard. Among
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Algorithm 2 Up-and-down

Require: set of dags D, thresholds α ∈ N, β ∈ [0, 1]
Ensure: set S of all maximal subsets of D such that |S| ≥ 2, a(G(S)) ≤ α,

and j(S) ≥ β, for all S ∈ S
1: Sj ← ∅, C← {{D} | D ∈ D}
2: while C 6= ∅ do
3: C′ ← generateCandidates(C)
4: C← ∅
5: for all C ∈ C′ do
6: if j(C) ≥ β then
7: C← C ∪ {C}
8: Sj ← Sj \ {S ∈ Sj | S ⊂ C} ∪ {C}
9: end if

10: end for
11: end while
12: S¬a ← {S ∈ Sj | a(G(S)) > α}
13: S← Sj \ S¬a
14: M ← maxS∈S¬a |S|
15: for i = M,M − 1, . . . , 2 do

16: S(i)
¬a ← {C ∈ S¬a | |C| = i}

17: for all C ∈ S(i)
¬a do

18: if a(G(C)) ≤ α then
19: S← S ∪ {C}
20: else
21: S¬a← S¬a ∪ {C ′ ∈ Sj | C ′⊂C, |C ′|= i− 1, @S ∈ S : S ⊃ C ′}
22: end if
23: end for
24: end for

these summaries, there will clearly be some that do not satisfy agony; such
summaries are collected into the set S¬a (Line 12). The second step of
the algorithm (Lines 15-24) restarts from these summaries that violate the
agony constraint and performs a top-down visit of the lattice aimed at
discovering the summaries whose agony is instead within the threshold α.
The top-down visit is performed in a breadth-first fashion (like the bottom-
up counterpart), starting from level i = M , where M denotes the maximum
size of a summary in S¬a (in general S¬a may in fact contain summaries of
different size). For each level i, the algorithm computes the agony of all
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candidate summaries in S(i)
¬a, which denotes the set of all summaries in S¬a

of size i (Line 18). Each candidate C ∈ S(i)
¬a satisfying the agony constraint

is added to the solution set S (Line 19): indeed, according to (the second
statement of) Corollary 6.3.2, all subsets of C are guaranteed to satisfy
agony as well, then no backtracking is further needed from C. If the agony

constraint is violated, the candidate C in S(i)
¬a is processed so to add to the

candidate set to be considered in the next iteration all (i−1)-sized subsets
of C that do not have any superset in the current solution set S (Line 21).

The main advantage of the two-step lattice traversal of the Up-and-down
algorithm is that, in most cases, it significantly reduces both the total num-
ber of agony computations and the space complexity, thus offering a valid
solution to the issues of the Bottom-up algorithm discussed at the end of
Section 6.3.1. Indeed, the bottom-up phase of Up-and-down completely
ignores the agony constraint, whose computation, as said, constitutes a
bottleneck in terms of both time and space. The agony constraint is consid-
ered only in the subsequent top-down phase, where, however, the number
of agony computations is expected to be less than the agony computations
performed by a purely bottom-up strategy. For a better explanation, let us
consider the following example.

Example Let D={A,B,C,D,E, F,G,H, I, J,K,L} and assume that the
bottom-up phase of the Up-and-down algorithm produces the set Sj =
{ABCD,EFGH, IJKL} (where ABCD is a shorthand for {A,B,C,D}).
Assume also that, among the elements of Sj, IJKL violates the agony con-
straint, while ABCD and EFGH do not, i.e., assume that S¬a = {IJKL}.

For the elements of Sj \ S¬a ( i.e., ABCD and EFGH), the speed-up
achieved by the Up-and-down algorithm with respect to Bottom-up is
guaranteed and quite evident: for each of such elements, Up-and-down
computes agony only once, while Bottom-up would perform a number of
agony computations proportional to the number of subsets of that element
( i.e., 11 agony computations for a 4-sized summary). Also the space re-
quirements of Up-and-down are significantly less, as, for the bottom-up
phase, Up-and-down needs to keep in memory only the set of nodes of each
candidate (because only the node set is needed to compute Jaccard), unlike
the Bottom-up algorithm that requires in memory the entire graph G(C)
for each candidate C (needed for computing agony).

Concerning the elements of S¬a, instead, the speed-up and the memory sav-
ings achieved by Up-and-down depend on how further the top-down phase
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|D| nmin nmax navg mmin mmax mavg

Twitter 8,888 12 13,547 66 11 240,153 347

Last.fm 51,495 6 472 24 5 2,704 39

Flixster 11,659 14 16,129 561 13 85,165 1,561

WikipediaBrowsing 5,477 4 125 9 4 131 9

Table 6.1: Characteristics of the datasets used in the experiments: number
of propagations/dags (|D|); minimum, maximum, and average number of
nodes in a dag in D (nmin, nmax, navg); and minimum, maximum, and
average number of arcs in a dag in D (mmin, mmax, mavg).

needs to go. For instance, assume that the actual candidates that satisfy
agony are {JKL, IKL, IJK}. This way, the top-down phase of Up-and-
down would last only one level, thus still guaranteeing a speed-up and mem-
ory saving with respect to Bottom-up. But if, as another example, the
actual set of candidates satisfying agony is instead the singleton {IJ}, the
Up-and-down algorithm would need to visit a large portion of the lattice
under IJKL before encountering the set IJ , whereas Bottom-up would
have processed IJ quite soon.

According to the above reasoning, the main conclusion that may be drawn
here is that Up-and-down guarantees better efficiency and smaller space
complexity than Bottom-up in most of the cases. Nevertheless, the
Bottom-up algorithm still remains preferable in cases where the time (and
space) spent by Up-and-down in the top-down phase is predominant. This
may happen, e.g., when small agony thresholds α and/or large Jaccard
thresholds β are involved. As we will show in Section 6.4, this conclusion is
also confirmed by experimental evidence.

6.4. Experimental Evaluation

We provide here experimental evidence of the performance of our Bottom-
up and Up-and-down algorithms. We experiment with four real-world
datasets, whose main characteristics are summarized in Table 6.1. For a
description of the datasets, see Section 3.3. Three datasets (i.e., Twitter,
Last.fm, and Flixster) come from the domain of information propaga-
tion in a social network (application scenario #1 in the beginning of the
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α

β 10 20 30 40 50 60

0.7 515 646 537 416 410 411

0.8 121 128 128 120 116 116

0.9 44 51 51 47 45 45

(a) Twitter

α

β 3 5 7 10

0.7 12,208 12,292 12,306 12,293

0.8 5,126 5,136 5,128 5,132

0.9 1,895 1,903 1,900 1,902

(b) Last.fm

Table 6.2: Number of maximal summaries extracted from Twitter (a) and
Last.fm (b).

chapter), while the remaining one (i.e., WikipediaBrowsing) concerns the
web-browsing domain (application scenario #2 in the beginning of the chap-
ter).

In the following sections, we discuss the results achieved by the proposed
algorithms from both a quantitative (Section 6.4.1) and a qualitative (Sec-
tion 6.4.2) viewpoint. We use Twitter and Last.fm mainly for quantitative
evaluation, while we resort to WikipediaBrowsing and Flixster for qual-
itative evaluation.

All algorithms are implemented in java and all experiments are performed
on a single machine with Intel Xeon cpu at 2.20GHz and 48GB ram.

6.4.1. Quantitative Evaluation

We report here quantitative results achieved by our Bottom-up and Up-
and-down algorithms on Twitter and Last.fm.
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α

β 10 20 30 40 50 60

0.7 8 (3.3) 9 (4.4) 11 (4.6) 12 (3.9) 14 (4.1) 14 (4.1)

0.8 5 (2.4) 9 (2.7) 10 (2.8) 12 (2.9) 13 (2.7) 13 (2.7)

0.9 5 (2.4) 8 (2.7) 8 (2.8) 10 (2.7) 11 (2.7) 11 (2.7)

(a) Twitter

α

β 3 5 7 10

0.7 13 (3.3) 13 (3.3) 13 (3.3) 13 (3.3)

0.8 13 (2.9) 13 (2.9) 13 (3.4) 13 (2.9)

0.9 11 (2.5) 11 (2.5) 11 (2.5) 11 (2.5)

(b) Last.fm

Table 6.3: Maximum and average size (i.e., number of propagations) of the
maximal summaries extracted from Twitter (a) and Last.fm (b).

We test our algorithms with Jaccard thresholds β ∈ [0.7, 0.9] and agony
thresholds α ∈ [10, 60] (Twitter) or α ∈ [3, 10] (Last.fm).

General Characterization. Tables 6.2, 6.3, and 6.4 show general statis-
tics about the summaries extracted. In particular, Table 6.2 reports on the
number of maximal summaries, while the remaining tables show statistics
about the size of the summaries: maximum and average number of prop-
agations in a summary (Table 6.3) and maximum and average number of
nodes and arcs in the union graph of a summary (Table 6.4).

As expected, the size of the summaries increases as the agony threshold
α increases and/or the Jaccard threshold β decreases (Tables 6.3–6.4), be-
cause this corresponds to less selective constraints. As far as the number of
summaries (Table 6.2), this is not necessarily true, because it may happen
that, for a less restrictive constraint, the number of maximal summaries is
less but the summaries include a larger number of dags.
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nodes

β α = 10 α = 20 α = 30 α = 40 α = 50 α = 60

0.7 2,252(34) 2,252(33) 2,252(35) 2,252(37) 2,252(37) 2,252(37)

0.8 2,252(55) 2,252(52) 2,252(53) 2,252(55) 2,252(57) 2,252(57)

0.9 2,185(73) 2,185(65) 2,185(65) 2,185(70) 2,185(72) 2,185(72)

arcs

β α = 10 α = 20 α = 30 α = 40 α = 50 α = 60

0.7 13,003(129) 13,003(137) 13,003(141) 13,003(142) 13,003(142) 13,003(142)

0.8 13,003(221) 13,003(220) 13,003(224) 13,003(233) 13,003(237) 13,003(237)

0.9 6,771(214) 6,771(201) 6,771(199) 6,771(208) 6,771(212) 6,771(212)

(a) Twitter

nodes

β α = 3 α = 5 α = 7 α = 10

0.7 483 (22) 493 (22) 493 (22) 496 (22)

0.8 376 (20) 376 (20) 394 (19) 407 (19)

0.9 333 (17) 333 (17) 333 (17) 333 (17)

arcs

β α = 3 α = 5 α = 7 α = 10

0.7 2,904 (35) 2,960 (36) 2,990 (37) 3,019 (38)

0.8 1,998 (32) 1,998 (32) 2,126 (31) 2,221 (30)

0.9 1,621 (22) 1,621 (22) 1,621 (22) 1,621 (22)

(b) Last.fm

Table 6.4: Maximum and average number of nodes/arcs of the union graph
of the maximal summaries extracted from Twitter (a) and Last.fm (b).
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(a) Twitter (b) Last.fm

Figure 6.4: Running times (seconds) of the proposed Bottom-up (bu) and
Up-and-down (u&d) algorithms on Twitter (left) and Last.fm (right)
with varying Jaccard threshold: β ∈ [0.7, 0.9].
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(a) Twitter (b) Last.fm

Figure 6.5: Running times (seconds) of the proposed Bottom-up (bu) and
Up-and-down (u&d) algorithms on Twitter (left) and Last.fm (right)
with varying the agony threshold: α ∈ [10, 60] (Twitter) and α ∈ [3, 10]
(Last.fm).

Efficiency Evaluation. The running times of our algorithms are shown
in Figures 6.4 and 6.5. Particularly, in Figure 6.4 we show the results with
varying the Jaccard threshold β while keeping fixed the agony threshold α;
in Figure 6.5, instead, we keep β fixed and show the times with varying α.

Figure 6.4 clearly shows that the running times of both Bottom-up and
Up-and-down are decreasing as the Jaccard threshold β increases: this is
expected as the larger β, the smaller the number of candidates to be pro-
cessed (larger β denotes a more restrictive constraint). The two algorithms
instead differ from each other when looking at the behavior when varying
the agony threshold α (while keeping β fixed). Indeed, as Figure 6.5 shows,
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the Bottom-up times are increasing as α increases, while the opposite
happens for Up-and-down (there are some fluctuations, but mainly due to
bookkeeping). This is again expected, because larger values of α imply more
candidates to be processed at each level of the Bottom-up algorithm. On
the other hand, the larger α is, the more likely is that the summaries found
at the end of the first phase of the Up-and-down algorithm satisfy the
agony constraint, thus leading to a more lightweight (and faster) top-down
phase.

As far as the comparison of the two algorithms with each other, the results
confirm what discussed in Section 6.3.2. Indeed, we can observe here that
the Up-and-down algorithm is more efficient than Bottom-up in most
settings, with gains up to 65% (Twitter) and 35% (Last.fm). Nevertheless,
in some cases Bottom-up outperforms Up-and-down. This happens, for
instance, for small agony thresholds α and/or large Jaccard thresholds β
(indeed, the gain achieved by Up-and-down over Bottom-up is overall
decreasing as α decreases and/or β increases). The reason is that smaller
α and/or larger β imply a smaller number of candidates to be processed in
the bottom-up lattice-traversing phase, which is an advantage for Bottom-
up (it reduces the number of agony computations), but a disadvantage for
Up-and-down, as it increases the time spent in the top-down phase.

In conclusion, hence, although in most cases the fastest algorithm is Up-
and-down, the efficiency of the two algorithms depends on the selectivity
of the constraints used, thus leading to cases where Bottom-up is instead
preferable.

6.4.2. Qualitative Evaluation

We analyze here the summaries extracted by our algorithms from a quali-
tative viewpoint.

Wikipedia. Figure 6.6 shows examples of union graphs of summaries
from WikipediaBrowsing. Graph (a) consists of two main parts: the first
part is a loop going through Socialism and Proletariat ; the second is a
branch that ends up in Liberalism. One could imagine that the first part is
due to users who would like to explore the topic of socialism, while the sec-
ond one is browsing to a different one. Graph (b) is a chronological sequence
of the sultans from the Ottoman Empire. This summary has no agony. The
nodes of Graph (c) are pharaons of Ancient Egypt. The ranking in the
summary is almost the same as the chronological order. The exceptions are
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Marxism	   Renaissance	  

Category:Socialism	  

The	  Communist	  
Manifesto	  

Proletariat	  

Liberalism	  

Anarchism	  

Bourgeoisie	  Communism	  

1	   Socialism	  

2	  

3	  

2	  

3	  

4	   4	  

5	   5	  

6	  

(a)

Selim	  II	   Selim	  I	  

Mustafa	  I	  

Ahmed	  I	  

Mehmed	  III	  

Abdul	  Hamid	  I	  

Murad	  III	  

Osman	  II	  

1	  
Suleiman	  
the	  Magnificent	  

2	  

7	  

2	  

3	  

4	  

5	  

6	  

Murad	  IV	  Mahmud	  II	  

7	   7	  

8	  

9	   Mehmed	  IV	  

Ibrahim	  I	  

Abdul	  Hamid	  II	  

Mehmed	  V	   Murad	  V	  Al-‐Nahda	  

11	   11	   11	  

10	   10	  

(b)

Amenemhat	  I	  

Mentuhotep	  II	  

Khafra	  Sobekneferu	  

Amenemhat	  III	  
Seqenenre	  Tao	  

Senusret	  III	  

1	  

Middle	  	  
Kingdom	  
	  of	  Egypt	  

2	  

3	  

4	  

5	  5	  

5	  5	  

1	  Menkaure	   1	   Djoser	  

Khufu	  2	  

(c)

Figure 6.6: Three examples of graphs of summaries extracted from
Wikipedia. The numbers inside the nodes correspond to one optimal rank-
ing. Links that violate the ranking are represented in red.
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Mentuhotep II, who reigned before Amenemhat I, and Khafra, who reigned
between Khufu and Menkaure.

We can observe that each summary is related to a train of thought. The
hierarchy of the summaries defines a temporal sequence of concepts that
are presented one after another. For example, Graph (a) consists in the de-
scription of the socialism, passing through Karl Marx, and the connections
to other political philosophies, while Graph (b) goes through the history of
the Ottoman Empire. Applications might exploit this to organize knowledge
and present it to people. A summary could also inspire a lecture since it
condenses the way in which many people move through concepts. Moreover,
as we can see in the examples, nodes in a summary are topically similar to
each other. Summaries could hence help categorizing the knowledge space.
Finally, summaries can be used for online contextual recommendation of se-
quences of pages. Given the current user session, one can fit a summary and
predict not only the next page the user will visit but also the whole future
browsing path. This recommendation is contextualized since it leverages
the browsing history of the user.

Flixster. In Table 6.5 we report two examples of summaries extracted
from Flixster. For each of such summaries, we show some information
(i.e., title, genre, and director) of the movies corresponding to the dags
of the propagations in that summary. We can observe that movies in the
same summary exhibit some homogeneity of genre and type of audience.
In this context, one might exploit summaries to discover early adopters
for a topic (group of movies), by looking at the ranking that is coupled
with each summary. Applications may leverage this information to target
recommendations of new movies sharing similar topics with the summary,
so to guarantee the desired spread over the network.

6.5. Discussion

In this chapter we studied for the first time the problem of extracting infor-
mative summaries from a database of propagations. We defined the sum-
maries of interest using two constraints: the first constraint is defined based
on the Jaccard coefficient, while the definition of the second one relies on
the graph-theoretic concept of “agony” of a graph. We showed that both
constraints satisfy the downward-closure property, thus enabling Apriori-
like algorithms. We developed two algorithms that visit the search space in
different ways and apply to various real-world datasets.
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Title Genre Director

Man of the Year comedy/drama/romance B. Levinson

Conversations With Other Women comedy/drama/romance H. Canosa

Step Up 2 the Streets drama/music/romance J. M. Chu

Brubaker drama S. Rosenberg

Title Genre Director

Prick Up Your Ears biography/drama S. Frears

Crooklyn comedy/drama S. Lee

Boy Culture drama/comedy Q. A. Brocka

One Eyed Jacks western/drama/action adventure M. Brando

Cop and a Half family/comedy H. Winkler

Operation Pacific drama/war/action adventure/comedy G. Waggner

Table 6.5: Two summaries extracted from Flixster: title, genre, and di-
rector of the movies corresponding to the dags of the propagations of each
of the two summaries.

The algorithms presented in this chapter require the α and β parameters to
be set manually. More sophisticated algorithms may automatically detect
the best parameters by performing a search in the α and β space. Alter-
natively, they can avoid setting rigid thresholds by making the constraints
soft [19].

In the next chapters we propose models for browsing. The first model is
aimed at understanding which are the features of browsing that best predict
user actions. This will provide guidelines for the creation of more complex
models.





Chapter 7

Models of Browsing

In this chapter, we take the first steps towards modeling user browsing
behavior. A problem when building models for large datasets is to under-
stand which pieces of information are useful to predict the future actions
of the user and which are not. This problem is known as feature selec-
tion [101, 108].

Automatically understanding which feature is useful and which is not is
important for a number of reasons. First of all, it helps improving the
performance by removing uninformative features. This is essential, particu-
larly in the context of news, where stories have a very short lifespan and are
constantly being created and changed. Models should react to these events
and update constantly. Additionally, understanding which feature can bet-
ter predict what the user will do next gives insight about the behavior of
the user while browsing, giving a quantitative evaluation of the observations
of Chapters 4 and 5.

In this chapter, we aim at modeling how users browse news portals. Using
a sample from click logs of Yahoo News (see Section 3.3.4), we focus on
features of user browsing and model sessions using a simple yet reliable
model that captures a wide variety of features (e.g., geographical location,
user interests, context of the session, etc.). We evaluate the model on the
dataset, learning the right balance of the features.

Our contributions are:

We propose a simple model of news article browsing. The model
takes as input the state of the news article at the time when the user

93
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is accessing it (e.g., freshness, time since last comment, context). The
model is able to learn the mixture of the features, i.e., weight the
features based on their contribution to the model.

We show the result of the learned model, in terms of the weights of the
features. We show that the behavior of users accessing Yahoo News
from different websites is different from the one of the people browsing
inside it. More specifically, we show that people entering Yahoo News
target fresh news and highly commented ones. On the contrary, users
already in Yahoo News are not influenced by the comments.

The rest of the chapter is organized as follows. Section 7.1 presents the
model of browsing sessions. We perform the experiments on the dataset
and report the results in Section 7.2.

7.1. Modeling

In this section we model user sessions using a hybrid approach. With the
term “hybrid” we mean that the model is composed by a set of features that
capture different aspects of the browsing behavior. We present the features
of the model and finally join them into a single structure.

We use the YahooNewsBrowsing-USA dataset (Section 3.3.4). The dataset
contains the web pages seen by users (page views), grouped into sessions. In
addition, it contains the timestamps of the actions people perform on news
articles, namely commenting on them and sharing them on social media.

In the following sections we refer to the current page accessed by the user in
the browser as X, and to its category as catX . Moreover, we use the term
external to refer to page views whose referrer URL is not Yahoo News, else
we refer to them as internal.

7.1.1. Referrer Domain

As seen in Chapter 4, there is a precious piece of information that can be
collected by the web server: the referrerURL (that we denote as r), i.e.,
the last web page seen by the user before the first page is requested to the
web server. This information gives access to at least a partial context from
where the session originates. For example, many sessions are originated
from search or social media and end up in a news article.
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shine.* facebook.com finance.* search.* <other>

shine.yahoo.com 0 0.13 0.5 0.29 0.39

facebook.com 0.14 0 0.5 0.22 0.25

finance.yahoo.com 0.42 0.53 0 0.34 0.59

search.yahoo.com 0.28 0.19 0.33 0 0.31

<other> 0.39 0.24 0.48 0.31 0

<internal> 1.82 1.74 1.44 0.89 0.65

(a) Referrer domain p(X | r). Column headers have been abbreviated due to space
constraints.

Male Female Unknown

Male 0 0.07 0.02

Female 0.08 0 0.03

Unknown 0.02 0.03 0

(b) Genders p(X | g).

California Florida Illinois New York Ohio Texas %

California 0 0.01 0.01 0 1.44 0.01 15.63

Florida 0.01 0 0 0.01 0 0 9.34

Illinois 0.01 0 0 0.01 0 0 5.47

New York 0 0 0.01 0 1.42 0.01 5.29

Ohio 1.43 0 0 1.46 0 0 4.74

Texas 0.01 0 0 1.05 0 0 3.80

(c) Locations p(X | `).

Table 7.1: Comparison of the page view distributions for different values of
the features. For each feature, we take the top-K values and compute the
Kullback-Leibler divergence among the distributions of article categories
catX . The higher the value of the KL-divergence, the more different are the
distributions.

shine.*
facebook.com
finance.*
search.*
<other>
shine.yahoo.com
facebook.com
finance.yahoo.com
search.yahoo.com
<other>
<internal>
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The first component of the model is therefore the referrer domain,

p(X | r) ∝ n(r → catX) + ε (7.1)

where n(r → catX) is the number of page views originated from r which
end up in category catX . We apply a smoothing parameter ε in order to
avoid zero probabilities.

To give an initial proof of the importance of the referrer domain, we com-
pute the distribution of sessions coming from each referrer domain over the
categories of articles in Yahoo News. Manual inspection shows that distribu-
tions are different across referrer domains. To quantify which are the most
diverse referrer domains, we compute the Kullback-Leibler divergence [93]
among the distributions p(X | r) of the referrer domains. Table 7.1a shows
the KL-divergence for the top 4 referrer domains. In addition, the table
also shows the divergence w.r.t. all the remaining domains (<other>), and
w.r.t. the navigation inside Yahoo News (the <internal> row).

From the table we can see that different referrer domains show indeed
different distributions over the categories of news articles. For example,
shine.yahoo.com and facebook.com are similar one to the other but are
both different from finance.yahoo.com. Moreover, we can observe that
distributions of the referrer domains are different from the browsing inside
Yahoo News, i.e., p(X | <internal>) (see last row of the table).

7.1.2. Markov Chain

Sessions are sequences of page views. After entering from a referrer domain,
the user visits a series of pages in Yahoo News. It is natural to consider
in the model the order of the pages. We will use a simple Markov chain to
capture the information about transitions.

We measure the probability of transitioning from an item to another one,
p(Xi |Xi−1), based on the past observations in the server logs. The proba-
bility is defined on the level of news article categories. Similarly to Equa-
tion 7.1, we smooth the distribution using a parameter ε.

p(Xi |Xi−1) ∝ n(catXi−1 → catXi) + ε

where n(catXi−1 → catXi) is the number of transitions from the category of
Xi−1 to the category of Xi.

shine.yahoo.com
facebook.com
finance.yahoo.com
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7.1.3. Personalization

We now focus on the user. Indeed, the browsing behavior of users may
depend on the personal taste or on demographic factors. For this reason,
we model the dependency of the browsed content from the profile of the
user.

The most specific information about the user that can be extracted from
server logs is the anonymized identifier of logged-in users, u. Secondly, we
use the geographical location `. This information can be extracted from the
IP address that originated the request to the server. Additional information
about the user is the gender and age, as stated by the user in the profile.
The information is in decreasing order of accuracy. Indeed the location
may be inaccurate due to nodes of the communication network (e.g., proxy
servers or Internet Service Provider gateways) hiding the true origin of the
request. The gender and the age are stated by the user with no guarantee
of correctness. However, all information has been used in other works (e.g.,
[152]) with good results.

Similarly to Section 7.1.1, we compute the distributions over the category of
news articles for different user segments and compute the KL-divergences.
Table 7.1b shows the KL-divergence across genders and Table 7.1c shows
the same across locations.

We can see that the divergence is not high in the case of gender and loca-
tion. However, there are still some differences in some cases, as for example
between males and females and between some states of the United States
(e.g., California and New York against Ohio).

7.1.4. Freshness

Content freshness f , i.e., the recency of the news article, is an important
factor influencing content consumption. In our dataset, we observe that,
after one day, news articles receive around 70% of their total number of
visits and that 90% of the users read news articles before the fifth day since
the publication.

To estimate the speed at which people consume content, we plot the cumu-
lative distribution of visits depending on the time since the publication of
the article (Figure 7.1). We can see that data follows a power law, therefore,
we can write:

p(X | f ) = power(∆tf ) = a× (∆tf )b
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Figure 7.1: Distribution of time since publication of the article (dark green),
since last comment action (medium green), and since last share action (light
green). The dashed lines are the Maximum Likelihood Estimator of the
distributions.

where ∆tf is the time since the publication of the article.

The parameters of the power law a and b are estimated using the Maximum
Likelihood Estimator [37]. We plot the approximating curve in Figure 7.1
(dark green dashed line).

7.1.5. Social Signal

The last component of the model is the social signal, i.e., the information
extracted from the user contribution to social networking platforms, such
as Facebook, Twitter, or Tumblr. News are constantly shared by users
on social media and it is commonly understood that the explicit actions
of users in social media give a good indicator of the popularity of news
articles. Here, we use two features about user social actions: comments c
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and shares s. Comments are very frequent actions done by users in Yahoo
News, and long discussions are born around trending articles. Shares are
used to spread the news outside Yahoo News, e.g., on social media or to
email recipients. It is natural to consider both comments and shares in
our model since they are explicit actions, which have an impact internally
(comments) and externally (shares) in Yahoo News.

Both comments and shares have a short lifespan, rarely going beyond the
day of the publication. The time distribution of comments is therefore bi-
ased towards the publication of the article. However, after the first burst
short after the publication of articles, there are other peaks of comment-
ing activity. This may be because users tend to visit and comment “old”
articles, possibly to reply to the comments of other users. Thus, the prob-
ability of commenting may be formulated not based on the time since the
publication of the article, but based on the time since the last comment.
This formulation accounts for both “fresh” comments, i.e., those appearing
soon after article’s publication, and “old” comments, i.e., those appearing
in the peaks.

By manually inspecting the distribution of clicks as a function of the time
since last comment, we see that it resembles a power law distribution (Fig-
ure 7.1, medium green). As a result, we model the probability of a particular
item as:

p(X | c) = power(∆tc)

where ∆tc is the time since last comment.

The same is valid for shares s (light green in Figure 7.1).

Comparison between Freshness and Social Signal. Since freshness
f (Section 7.1.4), comments c, and shares s are all based on time, we in-
vestigate how related the features are. To do so, we compute the Pearson
product-moment correlation coefficient ρ of the features in the train set.
We observe that freshness is correlated neither to comments (ρf ,c ' 0.131)
nor to shares (ρf ,s ' 0.124). However there is a higher correlation between
comments and shares (ρc,s ' 0.565). As a result we keep all the features in
the model.

7.1.6. The Complete Mixture Model

We build the session model by mixing all features. Each feature is weighted
by a factor λk that represents its importance.
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Let C = {u, g , a, `, f , c, s} be the set of features, containing the user u, the
gender g , the age a, the geographical location `, the freshness f , and the
social signal coming from comments c and shares s. The likelihood of a
complete session is given in Equation 7.2, where we split the contribution
of the first (Equation 7.3) and the next page views (Equation 7.4).

p({X1, . . . , XN} |Θ) = p(X1 |Θ)
N∏
i=2

p(Xi |Xi−1,Θ) (7.2)

p(X1 |Θ) = λr p(X1 | r) +
∑
c∈C

λc,e p(X1 | c) (7.3)

p(Xi |Xi−1,Θ) = λm pt(Xi |Xi−1) +
∑
c∈C

λc,i p(X1 | c) (7.4)

The features in C are shared among all page views, while the referrer do-
main r is only used from page views coming from other domains, and the
Markov chain m is only used for page views originated internally in Yahoo
News. The referrer and the Markov chain models both take into account the
influence of the previous page view on the current one. The other features
in C take into account only the current page view.

The basic idea behind the model is the following. The first page view of the
session is modeled as a mixture of the referrer and of the other features in
C. For the next actions, we perform a mixture between the Markov chain
and the other features in C.

Parameters Θ contain the mixing coefficients λc as well as the parameters
of the power law used for freshness, comments, and shares.

7.1.7. Cluster Model

The model can be naturally extended to cluster the data by adding a clus-
ter variable k for each page view. Each cluster will have its own set of
parameters Θk.

Figure 7.2 shows the complete cluster model. We introduce two hidden
variables, whose values will be learned. The first variable, zi, is a 1-of-K
variable that encodes to which cluster the page view Xi belongs. The second
variable, γk, encodes which feature is responsible for generating the page
views in cluster k.
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Figure 7.2: Plate model for the complete model (a) and for the page view
−→
Xi (b). Shaded nodes are observed.

7.1.8. Complexity

The space complexity of the model consists in the space needed to store
the distributions. Given the set of news article categories C, the set
of external referrers R, and the set of users U , then the complexity is
O(|C| · (|R|+ |U |+ |C|)), where |R| is the number of referrer domains, |C|
is the number of categories of news articles, and |U | is the number of users.
In the equation we only considered the most space consuming probability
distributions, namely r , u, and m.

7.1.9. Parameter Estimation

The parameters of the model Θ are estimated using the Expectation Max-
imization (EM) algorithm.

Expectation Step. First we compute the joint probability of the page
view belonging to the cluster k and being generated by it using the feature
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c applying the Bayes’ theorem:

p(zi = k, γk = c |Xi) =
p(Xi | zi = k, γk = c) p(zi = k, γk = c)

p(Xi)

∝ p(Xi | c)︸ ︷︷ ︸
observed

p(c | k) p(k)

The distributions p(Xi | c) are computed offline using the training set. We
also compute the parameters of the power law distributions using the Max-
imum Likelihood estimator [37].

The Expectation step can be easily parallelized, since each page view is
independent from the other ones.

Maximization Step. We accumulate over all page views and compute
the parameters of the model.

p(k, c) ∝
∑
Xi

p(zi = k, γk = c |Xi) (7.5)

From the result of Equation 7.5 we can compute p(k), the prior of clusters,
and p(c | k), the probability of the features for each cluster.

7.2. Experiments

In this section, we evaluate the performance of the model under different
points of view. For the evaluation, we split the dataset in two sets, one
used for training (first 80% of sessions in order of time), and one for testing
(remaining 20%).

7.2.1. Model Training

We train the model described in Section 7.1.7. Figure 7.3 shows the values of
the parameters for the 1-cluster model M1. We can see immediately that
the contributions of the components to the model is different depending
on whether the user is coming from a different domain (Figure 7.3a) or is
browsing internally in Yahoo News (Figure 7.3b).

When the user is entering from a different domain, the predominant com-
ponent is comments c, followed by freshness f , and referrer domain r . This
means that most of the traffic coming from outside could be predicted just



7.2. experiments 103

10 20 30 40 50 60

0

10

20

30

40

Iteration

P
er

ce
n
ta

ge

λc,e
λf ,e
λr
λu,e
λg,e
λa,e
λ`,e
λs,e

(a) Parameters for external page views.

10 20 30 40 50 60

0

10

20

30

40

50

Iteration

P
er

ce
n
ta

ge

λc,i
λf ,i
λm
λu,i
λg,i
λa,i
λ`,i
λs,i

(b) Parameters for internal page views.

Figure 7.3: Values of the parameters of the 1-cluster model M1 at various
iterations of the EM algorithm.



104 models of browsing

considering the time of the visit of the user to Yahoo News (i.e., using
comments and freshness). There is however a contribution of the referrer
domain r . This means that, as introduced qualitatively in Chapter 4 and
Section 7.1.1, the traffic coming from particular referrer domains ends up
in different categories of news articles.

Concerning the internal traffic, most of the contribution is due to the fresh-
ness f and to the Markov chain m. Surprisingly, comments c, which had
such a great importance for external traffic, is almost insignificant in this
case. The contribution of freshness could be explained by the fact that news
sites promote fresh news articles by putting them on the top of the page.

The 1-cluster model already shows its potential to capture differences and
peculiarities of specific cases. We will now increase the number of clusters
K and describe the results of a model with more clusters.

7.2.2. Cluster Model Training

In this section we present the results of the training of the K-cluster model
for K = 4 and for K = 10. Figure 7.4 shows the value of the parameters
Θk for the two cases. We only considered the four parameters that have the
highest importance: r , m, f , and c.

We can see that the characteristics of the 1-cluster model appear in the
multi-cluster ones. For example, the importance of the previous action is
higher on average for internal actions. Indeed, r in Figure 7.4a has lower
values than m in Figure 7.4b.

We can see that the behavior is independent from the number of clusters.
Increasing the number of clusters to 10, we can see that they more or less
converge to the same areas. The first area is around p(X | c) = 0 (left edge
of the triangle), where the contributions come mainly from the referrer and
the freshness. The second area is a mixture of the three components (in the
center of the triangle).

7.2.3. Contribution of the Features

From the complete 1-cluster model presented in Section 7.2.1, which we call
M1, we derive simplified models, considering only a subset of information
about the actions:

Mr ,m : only considers the information about the external context (re-
ferrer domain r and Markov chain m);
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(c) 10-cluster model: external page views.
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Figure 7.4: Value of the parameters of the cluster model for K = 4 and
K = 10, at various iterations of the EM algorithm. We use ternary plots to
represent the contribution of the most significant features: f , r , m, and c.
Each line represents the evolution of the parameters of a cluster at various
iterations of the learning (starting close to the bottom left corner).
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Figure 7.5: Log-likelihoods of the baseline models.

Mu : only considers the user u;

Mf : only considers the freshness of the articles f ;

Mc : only considers the contribution of the comments c;

Ms : only considers the contribution of the shares s.

Figure 7.5 shows the performance of the baselines in terms of log-likelihood
in the test set. Since the full model M1 increases the log-likelihood by
learning the parameters, we plot the evolution of its log-likelihood depending
on the iterations of the algorithm.

We can see that the best performing baseline,Mf , outperforms the 1-cluster
model at the first iteration, but it is rapidly reached by it in the next it-
erations. The second best model is Mr ,m , as one could expect from Sec-
tion 7.2.1. The worst-performing model is Ms , while comments c perform
better.
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7.3. Discussion

This chapter presented a model for user browsing. The model combines
the contribution of an heterogeneous set of features. The features capture
aspects such as the freshness of news articles, the context of the session,
the user, and the social signal. We formalized the generative model and
described the results of the learning. According to the learned model, the
best features are the freshness of news articles, the referrer domain, the
Markov chain, and the time since last comment.

The next chapter will build on the results of this one. We will describe
a more complex model of user browsing that is focused on the features
that gave the greatest contribution, namely the context of the session, the
referrer URL, and the Markov chain.





Chapter 8

Clustering Based on
User Browsing Sessions

Modeling user behavior has become critical on the web, but particularly for
large-scale websites that openly offer content or services without requiring
user registration. Such websites often rely on repeated user visits, so their
success depends highly on how well they are able to anticipate a user’s infor-
mation needs by providing the right content, at the right time, in the right
places. Yet, it is not unusual for the “owners” and editors of these sites
to rely on simple click-through rate heuristics to make important decisions
that clearly impact on whether visitors will return to the site or not. In the
particular case of news, this includes deciding the different layouts of news
sections (e.g., should the business section display a link to a technology arti-
cle on the top part of an article page or on the right or left panel?), the links
to include (e.g., should the sports section have a link to entertainment?),
and the type of content to promote.

Such decisions, however, are often complex because all the variables that
determine the look and feel of a page and the content provided, must also
take into account user behavioral patterns, which often depend on context.
News consumption patterns differ depending on how the user arrives at the
site, whether by clicking on links shared through social media, e-mail, or
through comments on the news sites themselves (see [120]). In addition,
users search for news, subscribe to RSS feeds, and visit news pages directly.
Added to this is the fact that users don’t consume news the same way
at different times of the day or different days of the week. Given this
complexity, there are important needs for news content providers in at least
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two areas: (1) gaining insights into how users behave when they visit the
site depending on the context; and (2) using models that can be leveraged
to predict behavior and automatically link content or set layout parameters.

In this chapter, we address these two areas. In particular, we present a
probabilistic framework for session modeling that creates clusters of similar
sessions, and uses contextual session information (time, referrer domain, link
locations, page categories) to probabilistically assign a session to multiple
clusters. We use a generative probabilistic model whose core is formed by a
Markov process to capture the sequential nature of augmented sessions, and
which naturally extends to a clustering of the data that can be computed
by means of a nested Expectation Maximization algorithm. Moreover, the
fully probabilistic nature of our approach allows us to turn the model into a
predictor by marginalizing out latent variables and conditioning on the de-
sired input observables. Exploiting the flexibility of the inference machinery
allows us for instance to compute predictions for the next category, for the
location of the next click, or for identifying keywords in link texts given a
category, respectively. Visualizing the posterior estimates of the respective
parameters provides insights on where to place links and which words to
use for the anchor texts.

Our main technical contribution is the extension of Markov process-based
clustering models to dynamically include context. We develop a nested mix-
ture model for distributions over session timestamps that is able to capture
periodic behavior and derive a nested EM-algorithm that simultaneously
infers the mixture weights of the time distribution and the cluster parame-
ters for the distributions over categories and other context. Our framework
does not limit the type or number of context variables, but we validate our
approach by using timestamps, referrers, and click metadata as contextual
variables.

We empirically evaluate our approach using the YahooNewsBrowsing-UK

dataset (see Section 3.3.3) and observe that the session-based clustering
model outperforms usage-based and personalized models by a large margin.
We provide exemplary interpretations of the produced clusters along various
dimensions and discuss their impact on user understanding.

The results of this chapter were published in [68].
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8.1. The Clustering Model

In this section we will describe the contextual generative model used for
clustering browsing sessions.

In Section 3.3.3 we formalized a session x of length M as a 5-tuple x =
(t, r, ~v, ~s, ~w), where t is the timestamp of the session, r is the referrer domain,
~v = v1, . . . , vM and ~s = s1, . . . , sM−1 are sequences of page view categories
and click locations, and ~w = w1, . . . , wM−1 are the clicked anchor texts in
bag-of-words representation, respectively.

The basic idea behind our model is as follows. In the first step, a cluster
k is drawn according to a multinomial distribution parameterized by π.
Then the session is drawn according to the parameters θk of the selected
cluster by drawing timestamp t, referrer r, and the first page view v1 and
using the Markov process to generate subsequent clicks with page views vj ,
locations sj , and word distributions wj until the exit state which terminates
the generation process is reached. The probability of a session x can be
factorized as follows:

P (x|θk) = P (t|βk)P (r|ρk)P (~v|r, τk)P (~s|~v, σk)P (~w|µk),

where θk = {βk, ρk, τk, σk, µk} denotes the set of parameters of the k-th
component so that

P (x|Θ) =
K∑
k=1

πkP (x|θk)

with Θ = {(θk, πk)}Kk=1 denotes the complete generative model.

Figure 8.1 shows plate models visualizing the generative process. Observed
variables are shaded, while unshaded nodes correspond to model parame-
ters; arrows denote dependencies and boxes indicate repetitive draws. The
node labeled ~e denotes the sequence of events, whose generating model is
detailed in the bottom of the figure.The remainder of this section explains
the model as well as the inference and parameter optimization processes in
greater detail.

8.1.1. Timestamp

The distribution for the timestamps P (t|β) is designed to capture regular
behavior across days of the week: a week is modeled as a mixture model
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Figure 8.1: Graphical model for the generative process. Shaded nodes en-
code observables, and unshaded nodes model parameters. The navigation
sequence is subsumed in node ~e in the left hand diagram, and detailed in
the right hand diagram.
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of periodic Gauss-like distributions whose peaks are repeated in one week
intervals. In addition to these weekly repeating patterns, we capture regu-
larities within workdays by including components whose peaks repeat from
Monday to Friday. Note that repeating components alone does not favor
periodic patterns since a repeating component is only a mixture of non-
repeating components and does not change the space of overall mixture
distributions. We therefore introduce a bias towards periodic and smooth
distributions by interpolating the components with a uniform distribution
to various amounts. Smoother and more periodic components are interpo-
lated less than peaked components.

In general, mixtures using an infinite number of components do not scale
well. Thus, we restrict our mixture to only a finite number of components
that can be estimated efficiently; that is, instead of introducing components
centered at every possible point within a week, we use components spaced in
10 and 30 minute intervals, respectively. We end up with 1,536 components
organized in four groups:

The first group consists of 48 working-day periodic components spaced
30 minutes apart, with a standard deviation of four hours;

The 144 components in the second group are also periodic over the
working days; their time lag is 10 minutes, and their standard devia-
tion is one hour;

The components of the third group are non-periodic (apart from re-
peating weekly) to capture patterns that differ between days of the
week. We deploy 336 density functions centered in 30 minute intervals
with a standard deviation of four hours;

The fourth group contains 1,008 non-periodic components spaced in
10 minute intervals with a standard deviation of one hour.

Each element in these groups is referred to as a mixture component gj .
For every cluster k, the influence of each component is parameterized
by a 1536-dimensional vector βk with

∑1536
j=1 βk,j = 1. Every session

has a latent indicator variable z that selects one of the mixture compo-
nents, such that the overall distribution over timestamps can be written
as P (t|β) =

∑
j P (z = j|β)P (t|gj). Figure 8.2 shows an exemplary time

distribution for a solution with three clusters together with the actual ob-
served distribution in the training set.The described mixture model pro-
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Figure 8.2: Observed and modeled time distributions.

duces smooth and periodic distributions without overfitting the data, i.e.,
without reproducing the noise of the actual observed distribution.

8.1.2. Referrer Domain and Page views

As shown in Figure 8.1, the referrer domain r and the page views v1, . . . , vM
form a Markov chain together with a distinguished exit-symbol. We use
a first-order Markov assumption, which reflects the intuition that clicks
only depend on the viewed page and are thus independent of previous page
views and/or clicks. The resulting Markov process consists of two com-
ponents, a multinomial distribution parameterized by a vector ρ over the
set of all referrer domains P (r|ρ) and transition probability parameters τ
for the sequence of page views P (~v|r, τ). The latter decomposes into the
matrices τ = {τ0, τ+} where τ0 specifies the distribution of the topic of
the first page view given the referrer, and τ+ specifies the probability of
transitioning between the topic vm and topic vm+1 or the end of the ses-
sion, respectively. Hence, the probability of the Markov chain is given by
P (r,~v|ρ, τ) = P (r|ρ)P (v1, . . . , vn|r, τ), where P (r|ρ) = ρr and matrices τ0
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and τ+ such that

P (~v|r, τ) = P (v1|r, τ0)

[
M−1∏
m=1

P (vm+1|vm, τ+)

]
P (exit|vM , τ+)

= τ0
r,v1

[
M−1∏
m=1

τ+
vm−1,vm

]
τ+
vM ,exit

.

8.1.3. Anchor Texts and Location of Clicks

The distribution of the anchor texts of the clicked links P (~w|µ) could give
insights into the static information needs of the users. The words of the an-
chor texts are drawn from multinomial distributions over a dictionary with
cluster-specific vector parameter µ. Similarly, the location of the clicked
links is also modeled by a multinomial distribution P (~s|~v, σ) which is how-
ever conditioned on the category of the following page view. The latter
multinomial is governed by matrix parameter σ. Using the independence of
link text and location leads to P (~w,~s|~v, σ, µ) = P (~w|µ)P (~s|~v, σ) with

P (~w|µ) =

M−1∏
m=1

P (wm|µ) =

M−1∏
m=1

|wm|∏
i=1

µwm,i

where |wm| denotes the number of anchor text words of the m-th clicked
link, and

P (~s|~v, σ) =

M−1∏
m=1

P (sm|σ, vm+1) =

M−1∏
m=1

σvm+1,sm .

8.2. Parameter Estimation

Given a set of N sessions X = {x1, . . . , xN} and a number of clusters K,
the task is to estimate the parameters Θ = {(θk, πk)}Kk=1 of the generative
model. We aim at finding the maximum-a-posteriori (MAP) solution by
solving

argmax
Θ

P (Θ|X) = argmax
Θ

P (Θ)
N∏
i=1

K∑
k=1

πkP (xi|θk),
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where P (Θ) is modeled by a symmetric Dirichlet prior with concentration
factor α.

The main difficulty in the optimization is the presence of two different types
of latent variables, the first is encoding the cluster memberships of the
sessions k and the second encodes the distribution over time components
z that generate the timestamp. Since the latter is required for inferring
the former, we now present a nested Expectation Maximization strategy to
optimize both simultaneously.

Let us assume for a moment that the time component indicator vari-
ables zi were known. In that case we could use a standard Expectation-
Maximization (EM) clustering algorithm [44] for the parameter estimation.
The EM algorithm computes, in every E-step, estimates γi,k of the clus-
ter membership variables, with

∑
k γi,k = 1, which indicate the posterior

probabilities of an example xi belonging to cluster k. In the M-step, the
MAP-estimates for every set of the cluster parameters θk are computed as
follows:

θ̂k = arg max
θk

P (θk|X, y) = arg max
θk

logP (θk) +
∑
i

γi,k logP (xi|θk).

Due to the conjugacy of the Dirichlet prior to the multinomial distribution,
the maximization simplifies to counting the occurrences of a particular com-
ponent transition. For example the time distribution component weights βk
are computed as

β̂k,` =
α− 1 +

∑
i γi,k[[zi = `]]∑

`′ α− 1 +
∑

i γi,k[[zi = `′]]
,

with the indicator function [[zi = `]] = 1 if zi = ` is true or 0 otherwise. All
other parameters are calculated analogously.

However, since the zi are actually unknown, we have to marginalize over
them. Thus the optimal parameter vector β for a cluster k, given the current
cluster membership estimates γ, is optimized using

β̂ = arg max
β

(α−1)
∑
j

log βj +
∑
i

log

[
γi,k

1536∑
`=1

β`P (ti|g`)

]
,

under the constraint
∑

j βj = 1 where g` denotes the generating compo-
nents of the timestamp. This is a concave optimization problem under the
condition that α ≥ 1, since the terms P (ti|g`) are constant. Having no
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closed-form solution, a straight-forward approach would be to solve it using
gradient descent or a variant of Newton’s method. However the estimates γ
change in every iteration of the EM-algorithm, and thus a costly optimiza-
tion would have to be performed in every iteration.

A more efficient method is to intertwine the optimization of β with the EM-
algorithm, performing only one closed-form update of β in every M-step. We
derive this update analogously to the M-step update for the cluster prior π
(cf. [18]), by introducing additional variables ζk,i,`, with

∑
l ζk,i,` = 1, which

encode our posterior belief that the timestamp of session xi is generated
by component `, conditioned on xi belonging to cluster k. These can be
computed in the E-step as

ζk,i,` =
βk,`P (ti|g`)∑
`′ βk,`′P (ti|g`′)

. (8.1)

Using these estimates, we can compute the component weights of each clus-
ter in the M-step as

β̂k,` =
α− 1 +

∑
i γi,kζk,i,`∑

`′ α− 1 +
∑

i γi,kζk,i,`′
.

This nested EM-algorithm is guaranteed to increase the data likelihood in
every iteration until convergence to a local optimum, analogously to the
standard EM-algorithm.

8.3. Inference

Our generative model P (x|Θ) can be easily turned into a prediction model
by marginalizing out latent variables and conditioning on the desired input
observables. Recall that, at the m-th page view of a session, we already ob-
served the previously visited categories v1, . . . , vm and the previously clicked
locations s1, . . . , sm−1 and link texts w1, . . . , wm−1, as well as the session’s
timestamp t and referrer domain r.

For instance, we can predict the category of the next page view a user will
navigate to by conditioning on the context and history while marginalizing
over the latent cluster variable. Conditioning again on this prediction, we
can furthermore predict which location within the page she will click on
next. Let ~e[m] denote the events of a session up to the m-th page view, that
is ~e[m] = {(v1, . . . , vm), (s1, . . . , sm−1), (w1, . . . , wm−1)}, then the predictive
distribution for the next category (including the end of the session) is given
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by P (vm+1|~e[m], t, r) and can be computed by marginalizing over the cluster
variables,

P (vm+1|~e[m], t, r) ∝
∑
k

P (vm+1|vm, θk)P (~e[m], t, r|θk)P (k). (8.2)

However, our model also contains traditional models as special cases that
are solely based on the observed sequence of categories [23] by an additional
marginalization over the context variables,

P (vm+1|v1, . . . , vm) ∝
∑
k

∑
~s,~w,t,r

P (vm+1, k|~e[m], t, r)

∝
∑
k

P (vm+1|vm, θk)P (v1, . . . , vm|θk)P (k). (8.3)

The comparison of Equations (8.2) and (8.3) shows that the context vari-
ables provide additional information on how to weight the influences of the
different clusters. In the following section, we evaluate the context variables
in terms of their contribution to the predictive performance.

Our model can contribute to optimize the layout of web pages by providing
insights on where to place links and likely-clicked word distributions. We
therefore infer the location of the next click by conditioning on the linked
category

P (sm|vm+1, ~e[m], t, r) ∝
∑
k

P (sm|vm+1, θ
(k))P (~e[m], t, r, vm+1|θ(k))P (k).

The predictive distribution for clicking on a link with anchor text
w, P (w|~e[m], t, r), can be computed similarly and is proportional to∑

k P (w|θ(k))P (~e[m], t, r|θ(k))P (k).

8.4. Incremental and Distributed Parameter
Estimation

For practical applications, the batch style of the nested EM-algorithm hin-
ders deployment because every retraining needs to be performed on all data.
In this section, we briefly sketch the parameter estimation in real-time us-
ing incremental updates, similar to the algorithm proposed by Neal and
Hinton [112].

Once the clusters are determined by running the nested EM-algorithm until
convergence, new sessions can be incorporated by performing a single partial
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iteration. For every new session, we have to compute the estimates γ, then
update the counters of all components and normalize the cluster parameters
using O(K) operations. Let countT (·) denote the counts of all weighted
entity occurrences after having processed T examples, e.g., countT (ρ(k), `) =
α − 1 +

∑T
i=1 γi,k[[ri = `]] and countT (ρ(k)) =

∑
` countT (ρ(k), `). Then a

new example x∗ can be incorporated into the model by first estimating its
cluster membership using the current model parameters Θ̃, π̃ as

γ∗,k =
π̃kP (x∗|θ̃(k))∑
k′ π̃kP (x∗|θ̃(k′))

.

The counts are updated according to countT+1(ρ(k), `) = countT (ρ(k), `) +
γ∗,k[[r∗ = `]] and countT+1(ρ(k)) = countT (ρ(k)) + γ∗,k. The new MAP-
parameters are

ρ̂
(k)
` =

countT+1(ρ(k), `)

countT+1(ρ(k))
.

The remaining parameters, π, β, τ, σ, and µ, are updated analogously.

That way, an up-to-date, approximate model can be maintained efficiently
and full retraining is only necessary occasionally. The benefit of an online
variant is that novel topics can be taken into account and recommended to
users faster. Our model already has an advantage over user-centric, per-
sonalized models, because every user benefits from the information gained
about sessions in the cluster she is currently in. Having an always up-to-
date model entails that estimates for the click probability of a new topic
are available as soon as a few peers have clicked on it.

Furthermore, the training of our model can easily be distributed on several
machines using the MapReduce framework. EM-like algorithms process
training instances one after another and store tables with counts for every
instance in the E-step. The counting can be performed on several machines
in parallel during the map-phase, independently for every training example,
generating cluster membership estimates and fractional counters. In the
reduce phase, the fractional counters are aggregated, and finally the M-
step is performed, namely computing the MAP-parameters from the total
counts. After the M-step, the current model is distributed to all machines
for the next iteration of mapping and reducing respectively expectation
and maximization (cf. [41]). The distributed computation schema can in
principle also be applied to the online variant, for processing multiple new
examples in parallel.
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8.5. Empirical Evaluation

In this section we evaluate the generative model under several aspects using
the YahooNewsBrowsing-UK dataset (see Section 3.3.3).

The next section reports on the predictive performance of the probabilis-
tic model and compares the outcomes with appropriate baseline methods.
Section 8.5.2 addresses insights gained by applying our model to the news
domain and discusses the findings in terms of user understanding.

8.5.1. Predictive Performance

We measure predictive performance in terms of the predicted log-
likelihood of the next page view and the location of the next click con-
ditioned on the session’s history and context. That is, we average
logP (sm, vm+1|~e[m], t, r) over all events of all test sessions. The higher the
session log-likelihood of a model, the better it reflects the characteristics
of the data. This is a more natural evaluation measure than for instance
measuring the accuracy of the most probable page view and location, (e.g.,
arg maxsm,vm+1 P (sm, vm+1|~e[m], t, r)), since there are no negative examples.
Note that if a user clicks on a link `, it does not mean that she is not in-
terested in other articles but that she is at that point more interested in
`.

Our evaluation comprises several aspects of the probabilistic model. We
first introduce the baseline methods. We then compare the accuracy of
the next click with appropriate baseline methods, and finally evaluate the
impact of the context by marginalizing over the respective variables.

Baselines. We compare our model to two user-centric baselines. Instead
of using the nested EM-algorithm, the two baselines use a fixed assignment
of user sessions to clusters. They are formally defined as follows.

The usage-based baseline simply groups the users into three groups accord-
ing to their number of page views in June 2011. We define the group sizes
so that they reflect heuristics used in commercial systems to provide a ba-
sic level of personalization and/or monetization. The first group contains
tourists who rarely visit the site, the second group covers regular users, and
the third group contains the power users. We estimate a probabilistic model
for every group.
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The personalized baseline reflects a personalized approach and estimates a
single probabilistic model for every user, by assigning her respective sessions
in June 2011 to a cluster. However, initial experiments showed that the data
was too sparse for users with only a few page views. We thus split users
according to their usage in two groups by using a threshold η. For users
whose page views exceed η in June 2011, a personalized model is estimated
as described, while users who generate fewer page views than η are grouped
into a single cluster. If users cannot be disambiguated and uniquely assigned
to a cluster in the evaluation data from July we also resort to the model
that is estimated on the shared cluster. The trade-off η is adjusted by
model selection where the chronologically last 25% of June 2011 are used
as holdout data.

Predicting Categories Using Context. We evaluate the performance
of predicting the next clicked category and link location, conditioned on the
session history, using the model in Equation 8.2. We compare the baselines
with the full generative model of Section 8.1 and a model where we omitted
the words of the anchor texts. Preliminary experiments have shown that
the latter improves over the full model. By contrast, marginalizing over
the other context variables reduces the performance of the full model. We
refer to the next section for detailed analysis of the impact of the different
context variables.

Figure 8.3a shows the average log-likelihood of the prediction for different
numbers of clusters. The two baselines use a fixed clustering and are there-
fore independent of the number of clusters. The full probabilistic model and
its counterpart without the anchor texts outperform the baselines signifi-
cantly, even for only a few clusters. Additionally, the models without words
consistently outperform the full model, indicating that the distribution over
the bag-of-words is too noisy to contribute positively.

The predictive performance initially increases with the number of clusters
and then decreases again for more than 20 clusters; generally, solutions with
too many clusters tend to overfit the data. In the remaining experiments
we therefore focus on models with 20 clusters and always marginalize out
the anchor texts of the clicked links.

Evaluating the Impact of Context. We now evaluate the importance
of the incorporated context. We begin with the best model obtained that
consists of 20 clusters and does not depend on the anchor texts of the links.
Using this model, we selectively discard parts of the remaining context,
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Figure 8.3: Prediction performance and standard error depending on num-
ber of clusters (a) and length of session history (b).
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that is the referrer, the timestamps, and the locations of the clicks, to
measure their respective impact. For comparison, we include the usage-
based and personalized baselines and an additional single-cluster solution
that has only a single generating component and does not take context into
account. Additionally, we break down prediction accuracy by the position of
the clicked category and link within the session, in order to gain insight into
how accumulating various amounts of context information impacts accuracy.

Figure 8.3b shows the resulting prediction accuracies for the baselines, the
best model, and various sub-models thereof. Accuracies clearly drop as ses-
sions progress. Except for the usage-based baseline, all methods predict the
first click after the first page view equally well. As the number of page views
increases, the performance of the approaches becomes more distinguishable.
A possible explanation for the performance drop is that users are presented
a variety of related news articles and may be distracted by interesting news
articles while browsing the site, making prediction more difficult as a session
progresses.

Interestingly, the single-cluster solution performs significantly better than
the other two baselines. Apparently, the fixed clusterings are inappropriate
approaches to the data and thus lead to poorer performance. The contextual
models always perform significantly better than the baselines, which do not
take advantage of context. More importantly, instead of deteriorating as the
baselines, the context saturates the performance of the contextual models,
which remain constant for sessions with more than 5 page views. Discarding
context significantly drops the performance; the differences in performance
clearly show the importance of the different types of context.

8.5.2. Applications of Our Model

In this section we discuss the suitability of the cluster mapping, visualiza-
tion, and how our model may be applied to modifying page layouts.

Mapping Users to Clusters. One of the key questions is how confident
the cluster assignments obtained from the probabilistic model are. We mea-
sure confidence using the information theoretic measure perplexity. In our
case, the maximum possible perplexity value for 20 clusters is 20, which
indicates a uniform distribution over the 20 clusters, while a perplexity of
1 implies a point distribution for a single cluster.

Figure 8.4 shows the perplexity of the distribution over the 20 clusters,
conditioned on different sets of variables. The leftmost point denotes the a
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Figure 8.4: Perplexity of distribution over clusters.

priori perplexity that is solely based on the priors πk of the clusters. The
second point is the perplexity of the distribution conditioned on the initial
context given by the referrer domain and the timestamp. The figure shows
that context significantly reduces the uncertainty by about 50%. Every
click of the user further reduces the perplexity which drops rapidly until it
reaches 2 which corresponds to the same uncertainty as that of a coin flip.

The figure shows that we obtain significant reductions in perplexity and
therefore higher confidence about the cluster membership by conditioning
the model on context.

Time-based Visualizations. Previous work on clustering user sessions
(e.g., [23]), focuses on visualizing the resulting clusters only in terms of the
sequences of visited categories. By contrast, one of the main advantages
of using dynamic contextual models is that the resulting clusters can be
interpreted along the context dimensions. The corresponding visualizations
thus highlight context-specific aspects of the data and allow for meaningful
projections. For instance, Figure 8.5 shows the observed category distribu-
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Cluster 1 Cluster 1 Cluster 1

Cluster 2 Cluster 2 Cluster 2

Cluster 3 Cluster 3 Cluster 3

Cluster 4 Cluster 4 Cluster 4

Figure 8.5: Distribution of categories over time in the largest 4 clusters for
models with 4 (left column), 20 (middle column), and 50 clusters (right
column).

tion for the four clusters with the highest prior probabilities, projected on
the days of the week according to the timestamps of the contained sessions.
The rows depict a model with four clusters (left column), the already dis-
cussed solution with 20 clusters (middle), and a large model with 50 clusters
(right).

The figure shows strong correlations between the relative volume of the cat-
egories and time. Some clusters are specialized on reoccurring patterns for
business days, while others focus on capturing weekends. The respective
clusters also possess different topic distributions, indicating that one cap-
tures work-related browsing sessions while others cover more recreationally-
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Category	  A Category	  B

Loca%on	  1	  

Loca%on	  2	  

Loca%on	  3	  Loca%on	  4	  

Loca%on	  5	  

Loca%on	  1	  

Loca%on	  2	  

Loca%on	  3	  Loca%on	  4	  

Loca%on	  5	  

Cluster	  1	   Cluster	  2	   Cluster	  3	   Cluster	  4	  

Figure 8.6: Distributions over five link locations for four clusters and two
exemplary categories.

oriented information needs. Naturally, solutions with more clusters tend to
cover fewer categories.

Compared to traditional approaches the contextualization leads to intu-
itive and interpretable results. Without context, the range of visualization
possibilities is limited and more or less restricted to displaying transition
matrices or cluster distributions.

Improving Web Page Layout and Content. Our model can be used
to improve web page layout (e.g., where to place “modules”, sections, or
links), and content (e.g., words to use for link anchor texts). For example,
Figure 8.6 shows the five most frequent locations for two categories A and B.
The colored lines correspond to the four clusters and show the probability
of a click on one of the locations given the category.

The visualization shows that some locations, such as 4 and 5, play only a
minor role in the layout and are rarely clicked on. By contrast, locations
1 and 2 receive a high number of clicks and exhibit interesting behavior.
Sessions in the blue cluster interested in category A mainly use location
1, while members of the black cluster focus on location 2 for performing
the same action. Vice versa, location 2 is preferred by the blue cluster for
category B, while the black cluster “prefers” location 1. Once detected, this
behavior can be exploited by cluster-dependent layouts of the page to guide
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the user through the site, and link locations that are ignored by groups of
users could be dynamically replaced by more appropriate pointers.

8.6. Discussion

The dynamic nature of user behavior in news consumption along with the
complexities of the news cycle makes modeling and prediction extremely
difficult. Our framework is able to consider context dynamically, and can
be applied for prediction, as well as to obtain insights that could be used
to make decisions on content and layout. On one hand, the interpretabil-
ity of the clusters can provide significant insights (e.g., a content provider
examining Figure 8.5 could easily determine the most suitable content cat-
egories for weekdays vs. weekends), and on the other hand, its prediction
capabilities could be used to automatically adjust content locations and
links.

We presented a generative model for user navigation on the Web. Our
approach models sessions as sequences of contextualized page views where
context is incorporated in terms of timestamps, click metadata, and referrer
domains. The model naturally leads to a clustering of the sessions that can
be projected on context variables for interpretable visualizations. We em-
pirically showed, on a large sample from Yahoo News, that our probabilistic
approach is more accurate than baseline models. We exploited several fea-
tures and discussed applications of our model in adjusting content locations
and links.

The next chapter is an exploration of new models for browsing sessions.
We try to go beyond Markov-based models and investigate models in which
sessions are not linear but rather composed by parallel threads.





Chapter 9

Beyond Traditional Sessions

In this chapter we present two applications that go beyond the traditional
session model. Until now, sessions have been modeled as sequences of ac-
tions or at most trees. This model is due to tabbed browsing in modern
web browsers in which users open pages in a specific tab or spawn a new
one from an already opened one.

The first application named PRiSMA (Section 9.1) is aimed at investigating
the potential of parallel browsing, i.e., the possibility of having multiple
browsing threads opened at the same time.

The second application named Metro (Section 9.2) allows the user to
smoothly move in the information space in order to explore people’s re-
lationships. Since the user is browsing through different dimensions at the
same time (i.e., people. photos, events), modeling a session by means of a
list of pages becomes more limiting. A session becomes therefore a contin-
uous path inside the information space.

The content of the next sections were published in [146, 32].

9.1. Searching Images in Parallel

We present PRiSMA, an image search application primarily designed for
tablet devices, which allow users to explicitly perform multiple queries in
parallel on large image collections. PRiSMA provides an intuitive and novel
graphical user interface, which facilitates branching an initial query to si-
multaneously explore two or more result sets. As depicted in Figure 9.2, the
results of each query are presented in an horizontal sliding strip. The inter-
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Figure 9.1: A screenshot of the search panel. Users can perform a simple
search or branch the query by topic, color or location.

face allows users to easily create new strips, merge them, remove them and
edit their associated query to modify the results of each query independently
(see Figure 9.3). These functionalities, combined with traditional faceted
search, allow users to automatically split the results by colors, geolocation
or topic (e.g., Sports, Politics, or Nature). Furthermore, PRiSMA also sup-
ports searching by image similarity, hence, users can create a new strip on
the fly containing images, which are similar to a user-selected picture. Any
such action can be done and undone without loosing the previous search
stage. In this way, users are encouraged to explore the image collection in
diverse and complementary ways with little effort.

By facilitating the exploration of multiple queries in an orderly fashion
PRiSMA can help users to: a) have a better account of the result space;
b) diversify the results; and c) conveniently broad or narrow the search
space, first by exploring alternative search paths to latter focus only on
those queries that provide better results. We envision three uses in which
PRiSMA may be particularly useful for. In creative tasks, where users may
require to explore diverse images within a given context while keeping a
global picture of the results. As an educational tool, where users may use
parallel search as a visual dictionary, where, with a single click, a term is
shown in different contexts (e.g., organizing the term “folk art” by location).
Journalist and editors may benefit from the diversity in the result in order
to identify potential stories. Thus, comparing images of concurrent events
(e.g., search for different images of riots in the different countries of the
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Middle East) or comparing images from similar events in different periods
of time.

PRiSMA may also be useful when users need to compare search results, for
which, given no better option, users may place two windows side-by-side
[153].

PRiSMA makes use of faceted search [165], image clustering using the image
metadata [12] and it allows for searching images using similarity based on
the images associated tags [121]. While each of these features is relevant for
the implementation of PRiSMA, they are not essential to the application.

The main contributions of this section are:

the proposal of a novel approach for image search browsing;

the development of an image search application intended to facilitate
and promote searching images in parallel;

a user study with very positive results regarding the user’s acceptance
of this novel image search approach.

9.1.1. An Application for Parallel Browsing

For most common image searches, traditional search applications like Ya-
hoo,1 Bing,2 or Google,3 provide very good results. In many occasion how-
ever, users must modify their queries several times, not always with a sat-
isfactory result [35]. With a greater or lesser success, several heuristics,
techniques and interfaces have been proposed in order to improve these
situations. To the best of our knowledge, all image search applications,
whichever underlying technique they use, assume a single stream of ex-
ploration. Acknowledging that some image searches will always require, o
benefit from, several modification of the initial query, we propose a novel
approach by which users can simultaneously explore the result of multiple
queries in a structured and orderly fashion.

PRiSMA is an image search application for tablet computers that facilitates
and promotes the exploration of image collection from different perspectives.
In other words, PRiSMA allows users to branch an initial query into two

1http://images.search.yahoo.com/
2http://www.bing.com/images/
3https://www.google.com/imghp/

http://images.search.yahoo.com/
http://www.bing.com/images/
https://www.google.com/imghp/
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Figure 9.2: A screenshot for the results of the search for the keyword Earth-
quake organized by location. When automatically branching a query, the
application opens up to 4 new strips. A button allows users to load more
strips, or conclude the expansion.

or more queries and follow their results on the same screen. As depicted in
Figure 9.2, PRiSMA places the results of each query in a horizontal strip.
Users can browse the results in each strip by sliding their finger over the
touch screen. Strips can be scrolled simultaneously or independently. This
allows for two modes of exploration: a more general exploration, possibly
more convenient on an early stage of the search; and a more detailed search,
where users can focus on a single result set.

Strips can easily be created, reordered, edited (as depicted in Figure 9.3),
removed and merged. This respectively allows users to initiate a new con-
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current search, facilitates the results comparison, enables modifying the
queries, discard non relevant search path and combine two or more queries.4

Currently PRiSMA allows searching the image collection by tags, colors, ge-
ographic location, and topic, where the topic of an image is given by a taxon-
omy of over 140 terms including categories like Nature, People, Celebrities,
etc. To illustrate a simple use case of parallel image search, let us suppose a
user, who is preparing some slides for a presentation, searches for the term
“information overload”, after some browsing, she may think that adding the
keyword “funny” might render more interesting results. Now, rather than
initiating a completely new search, the user can branch the query adding
the term “funny” and continue browsing the two results in parallel.

As depicted in Figure 9.3, colors, location, and topic can be used for tradi-
tional faceted search on a single query. More interestingly, however, is that
PRiSMA allows branching automatically any query into the multiple values
of the selected facet type. Thus, for example, a user searching for images of
“bus” may branch the query with a single click (see Figure 9.1), to obtain
multiple strips organized by topic, color or location. Figure 9.2 depicts the
result of branching the query “earthquake” by location, while Figure 9.3
shows the results of branching the query “tiger” by topic. This function-
ality is particularly useful in an initial stage of an exploration where users
may want to diversify the results to help them clarify the scope of their
search. An important side effect of diversity is the promotion of creative
and serendipitous search. Thus returning to the “information overload”
example, if the query is branched by topic, the user will obtain images of
“information overload” in the context of Technology or Business, but also
under less obvious topics such as Cheerful, Travel or Food & Drinks, which
may help finding more original images.

It is worth noting however that while PRiSMA may promote diversity, it
does so in an organized fashion. Strips with diverse but uninteresting images
are easily removed. In other words, PRiSMA provides a principled way to
broaden or narrow the search space, recognizing the benefits of expanding
the exploration in an initial phase, but also the need to focus the search on
a later stage.

In addition to the above-mentioned features, PRiSMA support searching
images by similarity, based on the images’ associated tags. Thus at any
moment, by tapping on the bottom-left corner of an image, a new strip

4For the time being, this involves combining the two queries with an OR operator.
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is created containing images similar to that selected by the user. In the
current stage of development, this feature has shown to have an uneven
performance. Because image similarity is explored as a secondary query
(on a new strip), obtaining weak results is not critical, since the user can
easily remove the created strip and continue exploring the image collection
by other means.

While PRiSMA is mainly intended for tablet computers, it also runs on
desktop computers. The application is fully implemented using HTML5,
with Javascript and PHP. The image collection used by PRiSMA is the
GettyImages dataset (see Section 3.3.9). Being stock images, most images
contain rich and clean metadata. In particular, features like location and
colors are already given by the images’ tags. The search by image similarity
is currently based only on the images’ tags. Given the quality of the images
metadata a straight query over the selected image tags renders fair results.

PRiSMA may be used for a variety of use cases, including simple enter-
tainment (e.g., searching for celebrities in different contexts or location) to
more creative uses which may involve searching for conceptual terms, as
in the case of “information overload”, or searching more graphically ori-
ented images, where organizing the search by colors may be of particular
help. Suppose a user wants to explore images for the term “forest” for cre-
ative/inspirational purposes. In order to expand the search the user may
select to view “forest” branched by location. The user may now have strips
with images of forests from USA, Japan, UK, and Canada. The user may
now decide to further branch by colors in Japan. With only three taps on
the tablet computer, the user may obtain images for Japanese forests in the
colors green, white, red, and pink.

Journalist and editors may also benefit from PRiSMA. By visualizing the
results of different queries in the same screen, users can easily compare
the results in order to construct a narrative. Searching, for instance, for
concurrent events in different locations (as in Figure 9.2), may help users
identify similarities and differences useful for building a story.

PRiSMA is in early stage of development and it firstly intended to help
us explore the pros and cons of searching images in parallel from a user
perspective. Our initial concern when initiating this exploration was related
to the inherent complexity of searching in parallel multiple queries. In the
following section we present our study intended to clarify this concern.



9.1. searching images in parallel 135

Figure 9.3: A screenshot of the Edit panel of a strip. Each strip can be
edited individually. Users can add or remove tags, select one or many of
the available facets or request to branch the query by all the values of the
facets.

9.1.2. Evaluation

For the study we conducted individual interviews with eleven participants.
We began each interview with a five minutes presentation of PRiSMA, both
on a tablet and a desktop computer. We then gave turn to participants
to ask questions and use the application with no specific instructions and
for as long as the participants wanted. We concluded the interview with a
questionnaire. The interview took between 20 and 30 minutes, depending
on the time participants spent with the application and providing feedback.
The participants included 10 computer scientists and a professional graphic
designer. The age of the participants ranged between 25 and 40 years old,
with a majority of male users and only one female. All users were familiar
with image search and use it regularly: 3 of the participants searched for
images on a daily basis, 4 on a weekly basis, and 4 users a few times per
month.

For this study we were particularly interested in learning three basic things
from the users: a) whether the inherent complexity of parallel search
overshadows its benefits; b) what images would users search in this kind of
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environment; and c) to what extent users perceive this approach as both
useful and novel.

Overall the results of this study were very good, in fact much better than
expected. Unless otherwise specified, questions required participants to give
a score between 0 and 10, being 10 the best option. From our study, users
had a very clear understanding of the general principles of searching in
parallel with PRiSMA, with an average score of 9. The users found the
overall interaction very intuitive (with an average score of 7.5) and found
no particular difficulty in navigating simultaneously through the results of
the different queries (with an average score of 2.18, 10 was “very difficult”).
In summary all participants were willing to use this application (with an
average score of 8.5) and believed it was worth sharing (with an average
score of 8.4).

Participants reported numerous use cases in which they envision themselves
using PRiSMA. However, a recurrent theme was the search for images that
illustrate abstract concepts, generally to be used for presentation slides.
Participants particularly valued the diversity in the results obtained when
automatically branching the query over one of the available facets. Par-
ticipants equally valued the structured presentation of the results, which
allowed to keep the search focused. One of the users was particularly in-
terested in the use of PRiSMA for news related images, in order to browse
through multiple events in different locations, inline with the search de-
picted in Section 9.2. Other suggested uses included entertainment (e.g.,
“search for rare and ambiguous terms” to see how PRiSMA organizes the
results). Three users, including the graphic designer, thought PRiSMA was
very good for inspirational purposes.

Participants were then asked to think of other applications that would al-
low them for similar results. Only two participants responded, one partic-
ipant mentioned Flickr5 while the other mentioned both Google Images6

and Cooliris.7 Nonetheless, they both expressed a clear preference for the
parallel search approach as it allowed a “more focused search”.

To further ensure that participants perceived PRiSMA as a novel and use-
ful image search application, we wanted participants to compare PRiSMA
with the use of the browser’s tabs as a way to perform parallel browsing.
All participants were not only familiar with the use of tabs, but recognized

5http://www.flickr.com/
6https://www.google.com/imghp/
7http://www.cooliris.com/

http://www.flickr.com/
https://www.google.com/imghp/
http://www.cooliris.com/
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themselves as users who make an intensive use of the browser’s tab for
searching and browsing in parallel (with an average score of 9.1). While
they understood what makes the two options comparable, they recognized
the two as very different (with an average score of 7.64) with a clear pref-
erence for searching images using PRiSMA over using multiple tabs (with
an average score of 8.2). Users valued the possibility of seeing all results
at once, in one single page. They also valued the fact that a query can
be branched automatically by any given facet (e.g., colors, geographical
location or topic).

To conclude, we have presented PRiSMA, an image search application in-
tended to facilitate and promote searching images in parallel. We have illus-
trated how, by facilitating the exploration of multiple queries in an orderly
fashion, PRiSMA can help users have a better account of the result space,
diversify the results and conveniently broad or narrow the search space. We
have illustrated use cases of PRiSMA for creative, educational and editorial
uses. Of course, these examples should be further developed and eventually
tested. In this early stage of development, our main concern was to learn
from users whether the inherent complexity of parallel search overshadows
its potential benefits. To clarify this concern, we conducted a study on 11
users with surprisingly positive results. Users unequivocally deemed that
the complexity was well justified. Of course, future work should include a
more rigorous and extensive study not only on the application’s principles
but also to evaluate the actual performance of the application.

9.2. Exploring Participation in Public Events

The structure of a social network is time-dependent, as relationships be-
tween entities change in time. In large networks, static or animated vi-
sualizations are often insufficient to capture all the information about the
interactions between people over time, which could be captured better by
interactive interfaces. We propose a novel system for exploring the interac-
tions of entities over time, and support it with an application that displays
interactions of public figures at events.

In the context of image search, people often query and browse photos of
celebrities and public figures [75]. Automated query analysis allows search
engines to identify the queried person and display structured information on
the result screen (e.g. biographical information, birth year, related people,
etc.). The information is usually an aggregated summary of a person’s life
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and does not allow the user to further explore important events, nor the
social interactions of a celebrity.

Representing events in a person’s life, and especially social interactions, can
help us to gain a better understanding of a person, not just as a standalone
entity but also as an individual in a social environment. A person at a
particular instant of time is not just a set of properties (e.g. hair color,
job, birth date, etc.), but is also defined by the connections to other people.
Displaying the interactions of entities over time is a challenging task because
of the conflation of the temporal and relational dimensions.

In this section we present Metro, a system for exploring social interactions
over time, leveraging information about participation in public events, using
the paradigm of crossing life lines over time. Metro provides functions to
explore online content in an unconventional yet practical way, allowing com-
plex exploration of the information space by querying, pivoting over people
and events, and inspecting the context information around the visualized
interactions (photos of events and related people). Metro not only allows
the user to explore existing social interactions and visualize their temporal
characteristics, i.e., are they sporadic, periodic or clustered around a par-
ticular date, but it also helps the user to discover tempo-structural holes in
the network, i.e., moments in time when links between people are missing.
Through interactive search, Metro can retrieve people that are connected
to a particular person and not to another. To the best of our knowledge,
this work is the first to present such feature automatically.

Example We present an example to motivate the Metro approach. Con-
sider the case of a person living in different geographical locations. His or
her social network could be composed of separate components. This is often
due to the geographical distance between the people one knows. If we rep-
resent the social network as a graph, we would see the person acting as a
hub across communities. Without any further information, we are not able
to reconstruct the life of this person, nor the reason why he or she is con-
necting such heterogeneous communities. By exploiting time and structure
jointly, we can understand if the person was interacting simultaneously with
multiple communities or if he or she was interacting with a community at
a time. Moreover we may be able to observe frequent and time-independent
interaction, i.e., people with whom he or she interacts across locations ( e.g.
family, long-lasting friends, etc.). Displaying participation to events instead
of explicit connections allows us to distinguish between currently active and
non-active relationships.
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Figure 9.4: The interface containing the event bar (red), the search field
(yellow), the people and ignore lists (green), and the timeline (blue).

The methodology we present could naturally adapt to many exploratory
tasks, such as co-appearance in online social networks, or authorship of
scientific publications. Now we present an application to search and browse
photos of public figures, which is a frequent task in image search [81].

9.2.1. Exploring People and Events

Metro is a system to explore interactions among people over time. In the
application we present, people are public figures and their interactions are
the co-participations in events. Figure 9.4 shows a snapshot of the working
system. We can see how three politicians interact during 2009. Each person
is represented by a horizontal line of the same color as his or her name on
the left. Lines join when the two people appear together in photo. We
can see, for example, that Vladimir Putin visits Angela Merkel during mid-
January. Along the blue line there is a point surrounded by a gray circle.
This is the currently selected point. It refers to the preparation of United
States president Barack Obama to visit Russia. The photos of the event
are shown in the upper part.

The front-end of this demo has been fully developed in HTML 5 and the
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(a) The profile of a celebrity. (b) Recommendation of people.

Figure 9.5: The profile of a user and the recommendation box as they appear
in the interface.

back-end uses PHP 58 and MySQL.9 The application uses the Getty Dataset
described in Section 3.3.9.

9.2.2. Interface Structure

In this section we describe the structure of the interface. Figure 9.4 shows
the interface of Metro; components of the interface are highlighted by dif-
ferent colors to ease the description.

Interactions between people are displayed with intersecting life lines on the
top of a timeline (bottom right module, highlighted in blue). The horizontal
axis represents time and the vertical one the social relations. Participation
in events is represented as points on the person’s life line. When multiple
people attend the same event, the points are grouped together, placed on
the topmost free row and enclosed in a black border. To minimize line
crossings when many lines are present, we use a greedy algorithm to order
them so that lines of people who appear together often are drawn close
to each other. The timeline can be explored by horizontally zooming or
scrolling.

Hovering on a point opens a text-box with a short event description, while
clicking on it loads related pictures in the event bar (red box in the figure),
together with the full event description and the list of other people attending
the event.

8http://php.net/
9http://www.mysql.com/

http://php.net/
http://www.mysql.com/
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On the left in the green box is the people list, which contains the list of
currently displayed people. Clicking on a person’s photo displays the bio-
graphical information, extracted from Wikipedia (see Figure 9.5a). People
in the people list can be dragged down to the ignore list. The timeline only
shows events in which at least a person in the people list appears and no
person in the ignore list appears.

9.2.3. Recommendation Algorithm

The people list can be expanded by searching for a person’s name in the
search field on top (yellow). If no query is typed, clicking on the search
field opens a box with a recommendation list of the people who mostly
co-occurred with the people already present in the list (see Figure 9.5b).
The recommendation algorithm takes as input two disjoint sets of people,
P+ (the current people list) and P− (the ignore list), and the current time
frame on the timeline t1 ≤ t2. The suggested people should be tightly
connected to the ones in P+ but not to the ones in P− in the given time
frame.

The score assigned to people for ranking is computed as follows. First, let
c : R × ‖P‖ × ‖P‖ 7→ R be the co-occurrence function, where c(t, pk, ph)
returns the number of photos taken at time t in which both pk and ph
appear. Second, the time-constrained co-occurrence function c̄(p1, p2) =∫ t2
t1
c(t, p1, p2) dt is created to quantify how often people co-occur in a spec-

ified time interval. Finally, the person score p, which is used to rank people
for the recommendation list, is computed as:

score(p) =

∏
p+∈P+

c̄(p, p+)∏
p−∈P− c̄(p, p−)

.

An example of recommendation is shown in Figure 9.5b. In this case p+ = {
Barack Obama } and p− = { Michelle Obama }. The recommended person,
the vice-president of the United States Joseph Biden, appears often with
Barack Obama but not with Michelle Obama.

9.2.4. Functionality

Unlike previous work, Metro allows users to explore the history interactions
over time at different granularities and across several dimensions. This is
done by means of the following functions.
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Search people. The social space is explored by searching for a person’s
name. When adding new life lines in the interface, the intersections in
common events are dynamically adapted.

Slice over a social or a time dimension. Display all events for a person
in the timeline or all the attendees at an event in the event bar. The slicing
works also for group of people, when more than one are selected.

Context exploration. The interaction between public figures during
events is contextualized by the content displayed in the event bar. Pictures
related to the events are shown, together with the full set of attendees.

Pivoting. People related to the ones displayed and to the current time
frame are recommended with the algorithm described above, allowing the
user to pivot from one person to another based on their past co-appearances.
Moreover, event attendees shown in the event bar can be added to the people
list. The iteration of this process allows to move smoothly through the space
and find related entities [48].

In summary, Metro is a system to explore people’s participation in public
events. The interface jointly represents social interactions and the temporal
dimension, and allows the user to browse through people using either. This
rich set of features enables an effective way to explore the information space
that could be adapted to different domains.



Chapter 10

Conclusions

The path of understanding of user browsing behavior started with a general
analysis of browsing behavior in social media platforms. First, we studied
the entry points of web sessions, i.e., the URL from where people access
the website (Chapter 4). We showed that this feature has an impact on the
next actions the user will take. Then (Chapter 5), we studied the evolution
of both search and non-search sessions. We presented an interactive appli-
cation that leverages the linear structure of browsing sessions to enhance
content discovery. In Chapter 6, we extracted frequent browsing patterns
from the sessions using data mining techniques.

Based on the insights acquired during the analysis, we presented probabilis-
tic generative models of browsing sessions. The models capture and cluster
behavior of the users online. Models can be used for gaining insights about
frequent patterns as well as for predicting the actions of users, thus allowing
to present the right content in the right place.

Finally, we tried to extend traditional structures of browsing sessions. We
presented interfaces to browse images using completely new paradigms: par-
allel browsing in the case of PRiSMA and multidimensional browsing in the
case of Metro.

10.1. Main Results

In this section we go through the goals of the thesis presented in Section 1.1
and discuss the results we obtained from the research.

The first goal is to access if, among all the data present in the server logs,
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some information is more useful than other for understanding the browsing
behavior of users. The models presented in this thesis show that this is the
case. Indeed, the contextual information, such as the referrer URL, appears
to be a much better indicator of what the user is going to see than, for
example, user demographics.

Secondly, the thesis aimed at understanding if there is a distinction between
search and browsing in the structure of web sessions. This goal resulted in
a much broader analysis of user browsing behavior in photo sharing plat-
forms. However, comparing the results of Sections 5.1.2 and 5.2.1, we dis-
cover that search sessions are indeed shorter and that their structure can
be represented as a tree. On the contrary, browsing sessions consists of
long sequence of photos, the photostreams. We show that this structure
is so frequent, that it is possible to represent a session as a sequence of
photostreams, thus making the representation more compact.

For the purpose of exploring ways to combine search and browsing we pre-
sented PRiSMA, an application of image search that allows for parallel
browsing. Through a user study we show that people are willing to use the
application and parallel browsing is not perceived as an added complexity
but rather as novel and useful approach. Moreover, participants perceived
that the structured presentation allows for a more focused search.

The last goal is related to the content that is browsed. We were inter-
ested in the characteristics of the browsing graph, and in the existence of
frequent information needs shared by many people. We discover that it is
possible to build a photostream browsing graph and that this graph shows
clear communities. Moreover, the exemplary summaries of sessions in Sec-
tion 6.4.2 are indeed the frequent browsing paths that user take to satisfy
their information needs.

10.2. Lessons Learned

In this section, we present some conclusions that we obtained from the work
that has been done. We hope that this section can suggest ways to improve
existing applications and system as well as encourage further research in
the topic.
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Figure 10.1: The theoretical distribution of “complexity” of sessions against
the number of sessions.

10.2.1. The Long Tail of User Browsing Behavior

During the thesis, one of the problems we encountered was the size of the
data. This made going manually through all sessions intractable and the
hypothesis were stated observing a limited amount of examples.

In addition to this, most sessions do not contain much information that can
be exploited. For example, in Section 3.3.4 we showed that many sessions
of the users in news portals are very short and contain very simple activities
(e.g., click on the first article in the homepage).

Figure 10.1 shows the theoretical distribution of information that can be
extracted from sessions. The figure is an exemplary distribution and is
not based on any real data, although we may get a similar distribution
by looking for example at the number of items visited in sessions (e.g.,
Figure 5.4a). What we try to communicate with the plot is that the majority
of user sessions are relatively simple, and that there is a fraction of sessions
(the tail on the right in the figure), that are quite complex.

In order to leverage sessions to build intelligent applications, both “simple”
and “complex” sessions are useful, depending on the case. For example, if
the task is to optimize daily activities (e.g., improving the layout of news
portals to make news articles more accessible to the user) simple sessions
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can be used, since they contain a strong signal of the activity of the users.
This is what we did in Chapter 8.

The tail of the distribution, instead, can be used to develop exploratory
applications that could lead to serendipitous discoveries. “Serendipity” is
defined in the Oxford English Dictionary as “the faculty of making happy
and unexpected discoveries by accident”. The term was originally coined
by Horace Walpole in a letter to Sir Horace Mann on January 28, 1754
[122]. Serendipity has been long studied in the context of information re-
trieval (empirical studies have been performed by Foster and Ford [56] and
Roberts [124]) but many authors expressed concerns about the opportunity
for serendipitous information encounters in information retrieval systems
[65, 39], since artificial filters and document ranking can excessively limit
searches.

We argue that complex sessions contain the most interesting data for
serendipitous applications. In the case of search, long sessions are due to
the user struggling to get a result, or consecutive searches towards the same
goal (cf., research missions [47]). In the case of browsing, long sessions do
not necessarily mean that the user is looking for something, but rather that
he or she is moving in the information space. However, this movement is
not random but rather structured. For example, in Section 5.2 we showed
that users browse photos using the notion of photostream. Following the
steps of other users may therefore enhance content discovery, as shown in
the visualization presented in Section 5.3.

10.2.2. The Importance of Context

Chapters 7 and 8 proved the importance of context in the browsing behavior
of users. When dealing with user browsing, “tell me what you see” is not
enough to be able to “tell you what you are”. One has to add the where
and the when also.

With the advent of mobile devices, context is becoming more and more im-
portant. Think for example in Google Now.1 It is an intelligent personal as-
sistance that uses context to make recommendations or deliver information
to the user. For example, Google Now may recommend nearby restaurants
based on one’s location, or display traffic information to the workplace early
in the morning.

1http://www.google.com/now/

http://www.google.com/now/
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Context is still underexploited in the web. There are indeed opportunities
in customizing the content and portal to better accommodate contextual
user needs.

10.2.3. Per-session or Per-user

There are generally two approaches when dealing with modeling of user
browsing behavior, as seen when presenting related work (Section 2.3): the
per-session and per-user basis. In this thesis, we adopted the per-session
approach. There are multiple advantages to do so.

First of all, the user is sometimes too coarse-grained and sometimes does not
have a direct relationship with the individual. For example, it may appear
that two or more people, e.g., in a family, use the same terminal to access
the internet. In this case, modeling the behavior of the user may average the
contributions of the family members, obtaining useless if not even wrong
results. This does not happen with sessions. It is indeed reasonable to
assume in the majority of cases that a session has been done by a single
individual, especially when they are short enough.

Secondly, the per session basis solves the issue of the cold start problem,
i.e., the case in which a new user is accessing the website. When modeling
sessions and not users, each sessions is treated equally, whether it belongs
to a new user as well as to a known user.

Finally, per-session models can be applied virtually anywhere, since they do
not require user login. They are insensitive to privacy concerns since the
information they use is naturally aggregated.

10.2.4. There Is No One Model to Rule Them All

The final remark is about models of browsing sessions. In this thesis we
have done a few different assumptions about the shape of browsing sessions,
namely sequential (e.g., Section 5.2), hierarchical (Section 5.1), or parallel
(Section 9.1).

To the limit, complex applications as PRiSMA give rise to sessions that
show a graph structure. Indeed, the possibility to organize the filmstrips by
topic, color, or location (cf., Section 9.1.1) splits a filmstrip into different
branches, thus making a session a tree. If we allow merging two parallel
strips, the session may become a graph.
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The choice of the structure of the sessions has great influence not only on
the complexity of models but also on the user interaction. Allowing parallel
browsing made PRiSMA a brand new application that allows the user to
better explore the information space.

10.3. Future Work

The directions in which the work presented in this thesis can be expanded
are presented in the following paragraphs.

Characterization. Regarding the analysis of browsing data, future work
may include deeper analysis of user actions within each page layout, as well
as content analysis and meta-data analysis to gain insights into how the con-
tent itself affects the navigation patterns. Moreover, it would be interesting
to conduct a detailed comparison of image search behavior on photo-sharing
platforms with general web image search, also aimed at understanding the
intent behind image search queries.

Summarization. Session summarization can be extended from various
perspectives. First, taking inspiration from the wide literature on pattern
mining, more efficient algorithms can be devised: for instance by a depth-
first visit of the search space or by taking advantage of the fact that we only
look for maximal patterns. Second, methods can be devised to adaptively
decide which constraint to check first as the computation progresses [21].
Finally, future research can study how to avoid setting rigid thresholds and
make the constraints soft [19].

Modeling. Regarding modeling of user browsing behavior, it would be
interesting to study the impact of our model in terms of user understand-
ing in greater detail. A straightforward way to test the acceptance rate
of optimized web pages is to compare the number of clicks in a controlled
environment with that of an alternative layout. Another interesting line of
research deals with ways to combine session- and user-based approaches.
Our contextual approach is orthogonal to personalized methods and a com-
bination could possibly benefit from both worlds.

PRiSMA and Metro. Finally, the new light shed on alternative session
models by Chapter 9 could be augmented by improving the two applications.
For PRiSMA, we also intend to explore the use of other image collections
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with different characteristics (e.g., Flickr) and implement different search
dimensions, for example time or the images’ source. Both features would
be particularly useful for journalists as they will allow to compare images
across time and images from different sources. For Metro, we plan to in-
clude functionalities to reduce and aggregate the information displayed, by
clustering similar entities. Finally, it would be interesting to compare Metro
to other interfaces performing similar tasks and evaluate its performance by
means of a user study .
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[41] Abhinandan S. Daş, Mayur Datar, Ashutosh Garg, and Shyam Ra-
jaram. Google news personalization: scalable online collaborative fil-
tering. In Proceedings of the 16th international conference on World
Wide Web, pages 271–280. ACM, 2007. 119
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[63] Przemyslaw A. Grabowicz, José J. Ramasco, Esteban Moro, Josep M.
Pujol, and Victor M. Eguiluz. Social features of online networks: The
strength of intermediary ties in online social media. PLoS ONE, 7(1),
2012. 57
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Appendix A

Categorizations

A.1. List of FlickrBrowsing Source Categories

Table A.1 shows the URL categories used to categorize URLs that do not
belong to Flickr in the FlickrBrowsing dataset.

Category Examples

search search.yahoo.com, google.com

social facebook.com, tumblr.com

mail mail.yahoo.com, gmail.com

aggregator reddit.com, stumbleupon.com

blog blogspot.com, blogger.com

photo flickrhivemind.net, compfight.com

microblog twitter.com

forum discussion forums

news news.yahoo.com, cnn.com

shop ebay.com, amazon.com

video youtube.com, vimeo.com

geo maps.google.com, maps.yahoo.com

wiki wikipedia.org, wikimedia.org

sport sports.yahoo.com

autos autos.yahoo.com

Table A.1: 15 URL categories in the FlickrBrowsing dataset.
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A.2. List of FlickrBrowsing Page Layouts

We list below and in the next pages (Table A.2) all page layouts of the
FlickrBrowsing dataset. There is a total of 96 layouts. The italicized
parts of the URLs stand for the identifiers: group-id for groups, user-id for
users, photo-id for photos, and set-id for albums.

URL in Flickr Name

/ Homepage

/about About Flickr

/abuse Report Abuse

/account Your Account

/activity Recent Activity: All activity

/analog Explore Analog

/apps Your Apps

/bestpractices Best Practices for Organiza-
tions

/cameras Camera Finder

/commons The Commons

/configurator Flickr Configurator

/confirm Confirmation page

/creativecommons Creative Commons

/do Monkey see? Monkey do!

/do/more Monkey see? Monkey do!

/explore Explore

/explore/interesting Explore interesting photos

/galleries Explore Galleries

/gettyimages Getty

/gift Flickr gift

/gp Flickr guestpass

/groups Groups

/groups/group-id Group page

/groups/group-id /admin Group administration

/groups/group-id /discuss Group discussion

/groups/group-id /members Group members

/groups/group-id /pool Group photos
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URL in Flickr Name

/groups/group-id /pool/map Group photo map

/groups/group-id /pool/tags Group tags

/groups/group-id /pool/with People appearing in group’s
photos

/groups/group-id /rules Group rules

/groups create.gne Create group

/groups invite.gne Invite to group

/groups join.gne Join group

/groups leave.gne Leave group

/guidelines Flickr Community Guide-
lines

/help Help

/iconbuilder The Icon Builder

/import Find your friends

/import/people Find your friends

/invite Invite your friends

/logout.gne Log out

/logout ok.gne Log out

/mail Flickr Mail: Your Inbox

/mail/contact notifications Flickr Mail: Contact Notifi-
cations

/mail/reply Flickr Mail: Reply

/mail/sent Flickr Mail: Your Sent Mail

/mail/write Flickr Mail: Compose a Mes-
sage

/map Explore Anyones’ photos on
a Map

/nearby Everyone’s photos taken
near you

/partners/getty Getty

/photo delete.gne Delete photo

/photo edit.gne Edit photo

/photos Explore

/photos/friends From the people you know
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URL in Flickr Name

/photos/organize Organize your photos

/photos/tags Popular tags on Flickr

/photos/upload Upload a photo

/photos/upload/basic Upload a photo

/photos/user-id Display all user photos

/photos/user-id /alltags Display all user tags

/photos/user-id /archives Display all user photos in
cronological order

/photos/user-id /collections View user albums

/photos/user-id /favorites Display all user favorites

/photos/user-id /galleries View user albums

/photos/user-id /map Explore user photos on a
map

/photos/user-id /page Display all user photos

/photos/user-id /people People featured in user pho-
tos

/photos/user-id /popular Popular user photos

/photos/user-id /sets View user albums

/photos/user-id /sets/set-id Display all album photos

/photos/user-id /show Display single photo

/photos/user-id /stats User statistics

/photos/user-id /tags User tags

/photos/user-id /upload Upload a photo

/photos/user-id /with People appearing in user’s
photos

/photos/user-id /photo-id Display single photo

/photos/user-id /photo-id /favorites People who favorited the
photo

/photos/user-id /photo-id /in/contacts Browse contacts photos

/photos/user-id /photo-id /in/faves-user-id Browse user favorites

/photos/user-id /photo-id /in/photostream Browse user photos

/photos/user-id /photo-id /in/pool-group-id Browse group photos

/photos/user-id /photo-id /in/set-set-id Browse user album

/photos/user-id /photo-id /meta Photo metadata
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URL in Flickr Name

/photos/user-id /photo-id /sizes Photo in different resolutions

/photosets deletecomment.gne Delete comment

/photosets editcomment.gne Edit comment

/photosof People you follow

/places Explore places

/profile delete.gne Delete profile

/search Search photos

/search/advanced Search photos

/search/forum Search forum

/search/groups Search groups

/search/people Search people

/search/show Search photos

/services/api Flick API

/services/apps Flick Apps

/services/auth Authentication

/services/developer The Flickr Developer Guide

/services/feeds Flickr photo feed

/services/oauth O-auth authentication

/services/partners Flick parterns

/signin Sign in

/signup Sign up

/tools Tools to upload and share
photos

/tour Flickr tour

/upgrade Upgrade account

/welcome Welcome to Flickr

Table A.2: List of page layouts in Flickr. The table shows the URL inside
Flickr and the description of the layout.
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