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Abstract—We propose a systematic method for creating constel-
lations of unitary space–time signals for multiple-antenna commu-
nication links. Unitary space–time signals, which are orthonormal
in time across the antennas, have been shown to be well-tailored to
a Rayleigh fading channel where neither the transmitter nor the
receiver knows the fading coefficients. The signals can achieve low
probability of error by exploiting multiple-antenna diversity. Be-
cause the fading coefficients are not known, the criterion for cre-
ating and evaluating the constellation is nonstandard and differs
markedly from the familiar maximum-Euclidean-distance norm.

Our construction begins with the first signal in the constel-
lation—an oblong complex-valued matrix whose columns are
orthonormal—and systematically produces the remaining signals
by successively rotating this signal in a high-dimensional complex
space. This construction easily produces large constellations of
high-dimensional signals. We demonstrate its efficacy through
examples involving one, two, and three transmitter antennas.

Index Terms—Fading channels, multielement antenna arrays,
receive diversity, transmit diversity, wireless communications.

I. INTRODUCTION

RECENT theoretical treatments have shown that commu-
nication systems that employ multiple antennas can have

very high channel capacities, especially in Rayleigh flat-fading
environments [5], [16], [9]. In [5], a constructive approach to
achieving some of this capacity is proposed under the assump-
tion that the receiver knows the complex-valued Rayleigh fading
coefficients. Under the same assumption, [14] presents a trellis-
based approach for designing space–time codes, and [15] gives
a space–time signaling method based on orthogonal designs.
However, the known-channel assumption may not be realistic in
a rapidly changing fading environment or with a large number
of transmitter antennas.

A new class ofunitary space–timesignals is proposed in [10]
that are well-tailored for flat-fading channels where neither the
transmitter nor the receiver knows the fading coefficients. Sup-
pose there are transmitter antennas, and that we transmit sig-
nals in blocks of time samples, over which interval the fading
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coefficients are approximately constant. Then a constellation of
unitary space–time signals , ,

has the defining property that are com-

plex-valued matrices obeying . Of
necessity, . The th column of any contains the
signal transmitted on antenna as a function of time. Essen-
tially, the directions, and not the lengths, of the orthonormal
columns of (more precisely, the subspace spanned by its
columns) carry the message information.

Intuitive and theoretical arguments in [9] and [10] suggest
that unitary space–time signals are not only simple to decode,
but they also attain capacity when used in conjunction with
coding in a multiple-antenna Rayleigh fading channel when
either or the signal-to-noise ratio (SNR) is reason-
ably large and . Hence, there is a strong motivation
for designing good unitary space–time constellations. Some
successful unitary space–time constellations are designed and
demonstrated in [10] but the techniques used therein cannot be
readily extended to large constellations or to signals of high
dimension. This paper presents some simple algorithms for
designing effective constellations of these signals.

The onlya priori structure on a unitary space–time constel-
lation is the time orthonormality of the signals. Constellation
design is viewed in [10] as a difficult and cumbersome search
and optimization problem. But, as we show, by imposing
additional structure on these signals and requiring that their
generation be systematic, we can construct some effective
constellations with relatively little effort. We present the design
in two disparate but ultimately equivalent ways. The first
approach, Section III, is Fourier-based and uses ideas from
signal processing theory. The second approach, Section IV,
is algebraic and uses ideas from coding theory. Section V
demonstrates the performance of these approaches on a
multiple-antenna Rayleigh fading channel where neither the
receiver nor the transmitter knows the propagation coefficients.
The performances of constellations for use with one, two, and
three transmitter antennas are compared.

Throughout the paper, we concentrate on modulation and
constellation design, and do not address coding issues that
lower error probability by adding redundancy. We focus,
instead, on raw or uncoded signal and bit error probabilities.

The following notation is used throughout the paper. Two
complex vectors, and , areorthogonal if , where
the superscript denotes “conjugate transpose.” The zero-mean,
unit-variance, circularly symmetric, complex Gaussian distribu-
tion is denoted by .
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Fig. 1. Wireless link comprisingM transmitter andN receiver antennas. Every receiver antenna is connected to every transmitter antenna through an independent,
random, unknown propagation coefficient having Rayleigh-distributed magnitude and uniformly distributed phase. Normalization ensures that thetotal expected
transmitted power is independent ofM for a fixed�.

II. CHANNEL MODEL; UNITARY SPACE–TIME MODULATION

A. Rayleigh Flat Fading

Consider a communication link comprising transmitter
antennas and receiver antennas that operates in a Rayleigh
flat-fading environment. Each receiver antenna responds to each
transmitter antenna through a statistically independent fading
coefficient that is constant for symbol periods. The received
signals are corrupted by additive noise. We use complex base-
band notation: during the -symbol interval, we transmit the
signal on antennas, and
we receive the noisy signal
on receivers

(1)
Here is the complex-valued fading coefficient between
the th transmitter antenna and theth receiver antenna. The
fading coefficients are constant for , and they are
independent with respect to and and distributed.
The additive noise at timeand receiver antenna is denoted

, and is independent (with respect to bothand ) and
identically distributed . The quantities in the signal

model (1) are normalized so that represents the expected
SNR at each receiver antenna, independently of. We assume
that the realizations of , ,
are not known to the receiver or transmitter. See Fig. 1 and [9]
for more details.

We assume that the fading coefficients change to new inde-
pendent realizations every symbol periods. This piece-
wise-constant fading process (also called a block-fading model
[12], [2]) mimics, in a tractable manner, the approximate co-
herence interval of a continuously fading process. Furthermore,
it is an accurate representation of many time-division multiple-
access (TDMA), frequency hopping, or block-interleaved sys-
tems. Each channel use (consisting of a block oftransmitted
symbols) is independent of every other.

Equation (1) can be written compactly as

(2)

where is the complex matrix of received signals,is
the matrix of transmitted signals, is the matrix
of Rayleigh fading coefficients, and is the matrix
of additive receiver noise. In this notation, the columns of

represent the signals sent on thetransmitter antennas as
functions of time.
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B. Unitary Space–Time Signals

We use constellations of unitary space–time signals
to transmit binary information over

the multiple-antenna link. It is shown in [9] and [10] that the
capacity-achieving distribution for and for a fixed is

, where and is isotropically distributed.
Details about the isotropic distribution may be found in [9], but
it suffices to say that its defining characteristic is thatand
have the same distribution for any deterministic unitary.

It is also shown in [10] that the maximum-likelihood (ML)
decoder for a constellation of unitary space–time signals is

(3)

This so-called noncoherent receiver has an equivalent interpre-
tation as a generalized likelihood ratio test (GLRT)

(4)

which entails the use of the coherent receiver with the unknown
value of replaced by its ML estimate under the assumption
that the th signal was transmitted; hence

(5)

The maximum-likelihood interpretation for the noncoherent re-
ceiver (3) assumes that the propagation matrix has independent
elements that are distributed as , while the GLRT in-
terpretation is less restrictive because it does not assume any-
thing about the statistics of the propagation matrix. Built into
the philosophy of the GLRT [17] is the notion that when the
correct decision is made the associated ML estimateis good.
With this in mind, our case for using unitary space–time signals
is further strengthened by the fact that these signals constitute
optimal training signals [13], [8] for learning . Specifically, if
a known signal is transmitted from which the receiver obtains
an ML estimate for , the energy-constrained signal that mini-
mizes the total error variance is a unitary space–time signal.

While our original motivation for using unitary space–time
signals is information-theoretic, this paper focuses on modula-
tion and on uncoded probability of error. These signals are of
interest in their own right because they have a simple demodu-
lator that also has a pleasing GLRT interpretation.

C. Constellations of Unitary Space–Time Signals

The task is to design a constellation ofunitary space–time
signals that has a low probability of error. We note that the prob-
ability of error is invariant to two types of transformations: 1)
left multiplication by a common unitary matrix,

and 2) right multiplication by individual
unitary matrices, ; see [10].

We consider any two constellations to be equivalent if they are
related by unitary transformations of this type.

We are unable to compute the block probability of errorfor
a general constellation of unitary space–time signals. However,

the performance may be upper-bounded in terms of pairwise
probabilities of error through the union bound

error transmitted

(6)

where is the pairwise (i.e., two-signal constellation) prob-
ability of mistaking for or vice versa, which has the
closed-form expression [10]

choose transmitted

choose transmitted

(7)

where are the singular values of the

correlation matrix , and

The singular values are a measure of the overlap of the two sub-
spaces that are spanned by the column vectors of the signals. The
exact pairwise probability of error is cumbersome to evaluate,
requiring either the extraction of residues of high-order poles, or
a one-dimensional numerical integration. The Chernoff bound is
somewhat simpler [10]

(8)

The probability of error (and Chernoff bound) is lowest when
and highest when .

We obtain when the columns of are
all orthogonal to all the columns of . The ideal constellation

, therefore, has all the columns of orthogonal to
all the columns of for . However, because
the columns of each are within themselves orthogonal to one
another, all the pairwise cannot all be made zero if

. Conversely, and are indistinguishable, within
the context of our model, when .

We can further simplify the bound (8) in terms of the average
of squares of the singular values

(9)

where (9) defines the matrix norm used in this paper (a scaled
Frobenius norm). For both the pairwise probability of error and
the Chernoff bound, it can be shown that the first and second
derivatives with respect to the squares of the singular values are
positive
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This implies that for any two singular values that are contained
in the open interval , if one increases the larger singular
value while decreasing the smaller singular value such that their
sum of squares is constant, thus maintaining constant norm (9),
the pairwise probability of error (and its Chernoff bound) in-
creases. Consequently, for a given norm (9), the probability of
error is minimized when all the singular values are equal. Con-
versely, the probability of error is maximized when as many sin-
gular values as possible are equal to one. This implies that, in

the worst case, about singular values are equal to
one, and the remaining singular values are equal to zero, which
gives an upper bound on the Chernoff bound

(10)

For a given constellation, let

(11)

Then the combination of (6), (10), and (11) gives a bound on the
block probability of error for the entire constellation in terms
of

(12)

Accordingly, we attempt to construct constellations that min-
imize in (11). This is a particularly simple performance mea-
sure to compute, and it does not depend on either the SNR or the
number of receive antennas.1 The definition of in (11) has a
connection with the standard definition of distance between sub-
spaces [6, Sec. 12.4.3]. Let and be the -dimensional
subspaces of spanned by the columns of and , re-
spectively. Then one can think of the singular valuesas the
cosines of the so-calledprincipal angles between and

. The distance between the two subspaces is now defined
as while the chordal dis-
tance is . The minimum chordal distance be-
tween any two subspaces and for ( ) is precisely

. This shows that our design problem is related to
so-called packings in complex Grasmannian space. Some exam-
ples of packings in real Grasmannian space are given in [3].

The design criterion of minimizing is markedly different
from the familiar maximum-Euclidean-distance criterion, and
it arises entirely because the fading coefficients are unknown to
the receiver. Because of this, antipodal pairs of signalsare
indistinguishable, for example.

An alternative criterion for constellation design that we do
not pursue in this paper seeks to maximize the product

1The performance of a given constellation always improves with increasing
N . For the remainder of the paper we setN = 1.

upon which the Chernoff bound depends dominantly for large
SNRs.2 We note simply that for small

and, therefore, minimizing for small is roughly the same
as maximizing this product.

To transmit bits per channel use, we need a constellation
of at least signals. For example, if 2 bits/channel
use and , then . Generating and storing
this many complex matrices is cumbersome if the signals
are not provided with some additional structure. Furthermore, it
is not obvious how to ensure that the generated signals have low
probability of error. In the next section, we describe a systematic
approach to create signals with low probability of error and that
requires storage of only and a diagonal matrix with
which to generate .

III. FOURIER-BASED CONSTRUCTION

In this section we present a Fourier-based construction of a
constellation of unitary space–time signals. Section III-A gives
the intuition behind the construction, which has a block-circu-
lant signal correlation structure. Section III-B then proves that
this construction yields all constellations having a block-circu-
lant correlation structure.

We make no claim for the optimality of circulant correlation
structure. However, this structure has the advantage that it sig-
nificantly simplifies the design process.

A. Fourier-Based Construction Has Block-Circulant
Correlation

We begin with transmitter antenna; we, therefore,
need unit vectors in a -dimensional complex space where,
in general, . Clearly, these vectors will form an over-
complete or linear dependent system. Overcomplete represen-
tations are becoming increasingly popular in signal represen-
tation and are often studied using the mathematical technique
of frames[4]. Even though there is no immediate reason why
frames would form good constellations, we draw inspiration
from existing methods for building frames.

We say that a collection of vectors in a -dimensional
space form atight frameif all of the eigenvalues of the

matrix are equal, implying that

where is the frame constant. While the details of frame theory
go beyond the scope of this paper, we use a well-known re-
sult that any tight frame with vectors in dimensions can
be seen as the projection into a-dimensional space of an or-
thogonal basis in dimensions and vice versa, see, e.g., [7].
Balan and Daubechies construct tight frames by projecting an

-dimensional discrete Fourier transform (DFT) basis onto a
-dimensional space [1]. The projection simply retains the first

2This criterion was independently suggested by an anonymous reviewer.
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Fig. 2. Correlation structure of signals in (13) as a function of` � ` whenT = 6 andL = 64, which implies a transmission rate ofR = 1-bit/channel use. We
clearly see the sinc-like behavior. The maximum correlation� as defined in (11) (which is achieved when` � ` = 1) is 0:986.

components of the -dimensional vectors. Inspired by this
construction, we propose the one antenna constellation

...

(13)

For this choice, we obtain

As shown in (7) and (8), the two-signal probability of error de-
pends only on the correlation and decreases as decreases.
We observe that

1) The correlation between and depends only on
mod ; the correlation structure of the entire con-

stellation is therefore circulant and it suffices to consider
for .

2) The correlation structure behaves roughly like a sinc func-
tion, and hence equation (11) yields

as . For large , (7) (with and

) therefore implies that the probability of mis-
taking for its immediate neighbors is high; this is de-
cidedly undesirable. Fig. 2 shows the correlation structure
for and , for which .

Property 2) suggests that given by (13) are a
poor choice of signals, especially if is large. However, we
are not necessarily constrained to choose the firstrows of the

DFT matrix as is done in (13). To lower the correlation
between neighbors, we may consider choosing another set of
components. We thus let

...
(14)

where, without loss of generality, .
We still have a circulant correlation structure because
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Fig. 3. Correlation as a function of` � ` when choosingu ; . . . ; u in (14), withT = 6 andL = 64. Hereu = [1 18 23 39 46 57] and is found by
minimizing � using a random search, yielding� = 0:5604.

We can now choose the “frequencies” to get the
lowest possible correlations. As mentioned in Property 1, be-
cause of the circulant structure it suffices to look at

(15)

where denotes theth component of . We wish to find
achieving

(16)

where (given by (11)) depends on . Observe that

can be interpreted as the modulus of the DFT of a
length- sequence with the value at positions
and elsewhere. Thus one can look at the minimization in (16)
as a filter design problem, where the filter is sparse (i.e., only
out of a possible filter coefficients are nonzero), the response
at zero frequency is unity, and where we choose the locations
of the nonzero coefficients to minimize the response at
frequencies that are multiples of .

The problem of sparse filter design is analogous to that of
aperiodic antenna array design [11]. A conventional linear an-
tenna array having elements uses periodic half-wavelength

spacing between its elements, and it has an angular frequency re-
sponse having the sinc-like behavior shown in Fig. 2. The width
of the central peak at zero frequency is inversely proportional
to the physical length of the array. If one desires the narrower
central peak associated with higher angular resolution for the
samenumber of elements, one has to use a longer array. Dou-
bling the spacing to give a uniform spacing of one wavelength
would reduce the width of the central peak by a factor of two, but
with the penalty of replicating the angular frequency response
at intervals of (the so-called grating lobe effect). However,
by using a longer aperiodic array, one can obtain a narrower
central peak without introducing grating lobes. Despite much
effort, there has never been a completely satisfactory way to
design aperiodic arrays: for small arrays one can use exhaus-
tive search, whereas, for large arrays, random search strategies
seem to be the only resort. In our optimizations, we therefore
also generally employ a random search. Fig. 3 shows the results
of such a search. Observe how optimizing over al-
lows a much better correlation structure than in Fig. 2.

We now show how we can generalize this single-antenna con-
struction to antennas. In the single-antenna case, each
signal can be written as

(17)

where is a matrix whose diagonal elements are
and is times a vector of

all ones. Note that is a unitary matrix and that .
Geometrically, the construction can be interpreted as rotating
an initial vector through -dimensional complex space using a
matrix which is the th root of unity. The matrix is chosen so
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that the resulting vectors have as little correlation as possible,
and after rotations the vector is brought back to its initial
position.

For transmitter antennas, let be a matrix
with and form the constellation again by applying
(17). Because is an th root of unity, we have a block-circu-

lant structure in the sense that the matrix only de-

pends on , and because is unitary, .
Geometrically, this construction can be interpreted as rotating
an initial -dimensional subspace using anth root of unity to
form different -dimensional subspaces.

As noted in Section II-C, a constellation with small proba-
bility of error generally has small. We may, therefore, choose

to achieve

(18)
A simple method to build a starting matrix is to choose
distinct columns of a DFT matrix. This ensures that

. A secondary benefit is that the transmitted power
never varies.

In the next section we show that the above construction gen-
erates all constellations with circulant correlation structure.

Remark: The starting unit vectors that we have used so
far—either times a vector of all ones, or the columns
of a DFT matrix—have components all with modulus .
There is no particular need to impose this constraint, and exper-
iments indicate that optimizations that allow the moduli of the
starting vector components to vary (but maintain unit norms for
the columns of each ) can yield even smaller values of. For
simplicity, we do not pursue these optimizations.

B. Block-Circulant Correlation Has Fourier-Based
Construction

In the previous section, we propose a constellation with a cir-
culant correlation structure. This structure does not automati-
cally guarantee that the constellation performs well. However,
the structure simplifies performance testing since only
rather than correlations need to be checked. In this
section, we investigate the restrictiveness of this condition by
characterizing all constellations which yield a circulant correla-
tion structure.

Let be some constellation of unitary
space–time signals. We impose the block-circulant correlation
structure

(19)

where are matrices and the orthonormality of the
columns of each signal implies that . It is also easy to see
that

(20)

The block-circulant correlation structure implies that the exact
conditional probability of error for deciding which of thesig-
nals was transmitted is the same for allsignals.

We now take the double (i.e., both inand ) DFT of both
sides of (19) to obtain

(21)

where the Fourier transforms, which are matrix-valued, are de-
noted by the hatted quantities

and

(22)

Equation (21) is equivalent to the well-known result that a cir-
culant matrix is diagonal in the Fourier domain.

According to (21), the Fourier coefficients , each a
matrix, are mutually orthogonal. Consequently, all but at

most of the coefficient matrices are zero. We denote the
possibly nonzero Fourier coefficient matrices by
where . The signals are thus given by
the inverse Fourier transform

(23)

When exactly coefficient matrices are nonzero, then orthog-
onality requires them all to have rank one, for there cannot be
more than linearly independent -dimensional vectors. When
only coefficients are nonzero, at most one of them can
have rank two while the others have rank one. The rank-two
matrix can always be written as the sum of two rank-one ma-
trices; for example, take its singular value decomposition and
write the two-element diagonal matrix as a sum of two one-el-
ement diagonal matrices. Then we again have a sum (23) with

terms where each coefficient matrix has rank one; the only
difference is that the two coefficient matrices coming from the

split have the same frequency term . Similar argu-
ments for or fewer nonzero coefficients yield the same
conclusion that all coefficient matrices in (23) can be made to
have rank one.

We now show that, without loss of generality,
can be nonzero in exactly one row. Consider the matrix
formed by taking the first column of each , .
The columns of this matrix are then orthogonal, but not nec-
essarily orthonormal. Thus this matrix can be written as,
where is a unitary matrix and is diagonal. Now

times the first column of is a vector with only theth
component nonzero. Because is rank-one, all its columns
are scaled copies of one another. Hence is a matrix with
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only its th row nonzero. Recall that the error performance of a
constellation does not change when applying the transformation

(24)

for unitary . From (23) we see that this transformation
is equivalently applied to the Fourier coefficient matrices:

, . After this transformation,
is zero except in itsth row. The set of Fourier coefficients are
therefore orthogonal by virtue of their disjoint row support.

The signal combines the different nonzero rows of the
matrices

Any other signal can be formed from by multiplying the

th row by as in (23). Hence, can be expressed
more conveniently as a diagonal unitary matrix that is
raised to the th power, times the matrix

(25)

where

...

(26)

Since only underwent the unitary transformation (24), it still

has the property that . By (25), the correlation ma-
trix between any two signals has the block-circulant structure
(19)

(27)

We conclude that any unitary space–time constellation whose
correlation matrix is block-circulant can be designed using the
methods of Section III-A. We therefore have the following the-
orem.

Theorem 1: Any unitary space–time signal constellation of
matrices with a block-circulant correlation

structure is equivalent to one that can be written

(28)

where is a matrix obeying , and is a
diagonal matrix whose diagonal elements areth roots

of unity. Conversely, every constellation of the form (28), has a
block-circulant correlation structure.

C. Multiple Index Block-Circulant Structures

The previous constellation construction may be extended to
a doubly indexed construction

where , and where the constellation has the fol-
lowing correlation structure:

It can be shown (we omit the details) that this construction yields
a constellation that is generated by means of a separate rotation
for each index

(29)

where and are diagonal unitary matrices that are thth
and th roots of , respectively. This construction involves
choosing the diagonal elements of and , which we label

and
The constellation is therefore completely determined by the

matrix , and the matrix whose entries are ,
, .

This construction extends readily to a-indexed constella-
tion in which and is a matrix.

IV. EQUIVALENT ALGEBRAIC CONSTRUCTION

The constellation construction described in the previous sec-
tion can also be viewed algebraically, and in this section we
create a constellation of signals by mapping a linear block code
into complex signal matrices. The code is over the ring of in-
tegers modulo- and the number of codewords is equal to the
number of desired signals. We will relate to shortly, and
we begin by describing the construction for transmitter
antenna.

Let be the ring of integers modulo-,
and let denote a linear code over of length

and containing codewords. Each elementof is a vector
of integers in . Because the code is linear it
contains the all-zero vector, and if and are in then so is

for any .
We map these codewords into signals by mapping thein-

tegers in a codeword to the components of a complex signal
using the function

Note that addition modulo-for the argument corresponds to
complex multiplication for the function value. By letting the
function work on vectors, we effectively obtain the one-antenna
constellation

...

Let be the all zero codeword; then is times a vector
of all ones. We show that the maximum correlation of the re-
sulting constellation is given by

where again denotes theth component of (and the arith-
metic is in the field of complex numbers). To see this, pick two
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different signals and . By definition, and
for some . Thus

for some , where the last equality follows from the code’s
linearity. Therefore, as in (15), in searching for constellations
that minimize their maximum correlation, we need to check only

quantities.
So far, the codes are restricted to be linear but are otherwise

arbitrary. We further restrict our search by considering codes
that have a generator matrix of elements in , where

can be thought of as the dimension of the code. The code
represented by is the linear span of the rows of, i.e., every
codeword can be written in the form

for some vector whose elements are all
in . We incorporate this restriction explicitly, because, unlike
linear codes over finite fields, linear block codes overdo not
necessarily have a generator matrix. It follows that the size of
the constellation is .

We may now call the multi-index ( -index) of the code-
words of . Then the signals have a multi-index circulant cor-
relation structure since

where all arithmetic is modulo-.
The connection to the constellation construction discussed in

Section III-A becomes more apparent if we rewrite the codes
in the following form. Given , we let be
diagonal complex matrices with entries ,

, . Note that .
The one-antenna constellation determined by the matrixis
then the set of all vectors of the form

For and these are exactly the forms sug-
gested in (25) and (29). Thus the one-antenna constellation is
the image of under the action of the discrete group gener-
ated by . We can extend this construction to admit
multiple-antenna constellations by replacing the vectorwith
a representation of a subspace of larger dimension in exactly the
same way as is done in Section III-A.

The space of linear codes which do have a generator
matrix of elements in is still quite large. Since we limit our-
selves to finding codes that have low correlation by examining
randomly chosen elements of the given space and keeping the
one with the lowest correlation, it helps to restrict the class even

TABLE I
TABLE OF BEST FOUND M = 1 ANTENNA CONSTELLATIONS OFLENGTH

T = 8 BASED ON LINEAR BLOCK CODESOVER . THE NUMBER OF

SIGNALS IN THE CONSTELLATION ISL, THE MAXIMUM CORRELATION

IS �, THE DIMENSION OF THE BLOCK CODE ISK , THE ARITHMETIC

BASE IS q, AND THE ROWS OF THEPARITY MATRIX U ARE

GIVEN LAST. NOTE THAT L = q

TABLE II
TABLE OF BEST FOUND M = 2 ANTENNA CONSTELLATIONS OFLENGTH

T = 8 BASED ON LINEAR BLOCK CODESOVER . THE NUMBER OF

SIGNALS IN THE CONSTELLATION ISL, THE MAXIMUM CORRELATION

IS �, THE DIMENSION OF THE BLOCK CODE ISK , THE ARITHMETIC

BASE IS q, AND THE ROWS OF THEPARITY MATRIX U ARE

GIVEN LAST. NOTE THAT L = q

further. In particular, we restrict to have a systematic gener-
ator matrix of the form

where is the identity matrix and is a
parity matrix with elements in . Tables I and II list the best

and antenna constellations for we
have found with our random search procedure. For each con-
stellation, the maximum scaled Frobenius normis given, as
described in Section II in (11). The constellations all have a sys-
tematic representation and the rows of the parity matrixare
listed. Hence, for a code of dimension, rows of
elements in are listed. The starting vector for is

times a vector of all ones, and the starting matrixfor
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Fig. 4. Bit-error rate forM = 1, 2, and3 transmitter antennas versus SNR withN = 1 receiver antenna on an unknown channel,T = 8, andR = 1 bit/channel
use.

is times a matrix whose first column is all ones,
and whose second column is

V. APPLICATION TORAYLEIGH FLAT-FADING CHANNEL

We now examine the performance of constellations designed
using the methods of Sections III and IV on the multiple-antenna
Rayleigh fading channel given in Section II. We look specif-
ically at , , and transmitter antennas and consider

receiver antenna. We choose typical parameters of
1 bit/channel use and we assume that the fading coefficients are
constant for channel uses. Thus we require a constella-
tion of at least signals, each an matrix,
for , , and .

The following constellations were used in the simulations.

• : The constellation in Table I.

• : The first 256 signals from the constel-
lation in Table II.

• : The first 256 signals from an constella-
tion where

and comprises the first, sixth, and seventh columns of
an DFT matrix

Here .

This code was found by the methods described in the previous
section.

Fig. 4 shows the bit-error rate for the signal constellations
designed for , , and transmitter antennas. We see
that the bit-error rate for larger drops dramatically as the
SNR increases. To understand the reason for this, note from
the Chernoff bound on pairwise error probability (8) that when

for all , for high SNR and

The probability of error therefore decays approximately as
. More generally, if some of the , then we have
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Fig. 5. Mutual information for the three constellations used to generate Fig. 4 versus SNR (solid curves); channel capacity versus SNR forM = 1 (dashed curve).

the pairwise probability of error bound (12), which for large
and can be written

In either case, the probability of error generally decreases more
rapidly with as increases.

We also note that at low SNRs, the behavior of the unitary
space–time signals with increasing is reversed—the proba-
bility of error increases as increases. A similar effect is noted
in [10]. Fortunately, the decrease in performance at low SNR’s
is generally a fraction of a decibel.

By themselves, the simulations leading to Fig. 4 do not ad-
dress the question of whether the constellations have good per-
formance relative to some standard. Unfortunately, we are not
aware of other unknown-channel designs with which compar-
isons may be made. We can, however, compute the mutual in-
formation of the constellations and compare their performance
to signal designs for a channel that is known to the receiver.

Fig. 5 shows the mutual information as a function of SNR
for the three constellations ( ) that are used to

generate Fig. 4. The dashed curve is the channel capacity when
, which was computed by the methods described in [9].

(As in [9], we do not know how to compute the capacity for
or .) The constellations have rate , im-

plying that for high SNRs, the mutual informations approach
one. For SNRs below 3 dB, the mutual information of the

constellation is a significant fraction of the channel
capacity, which suggests that, in this regime, the 256 sig-

nals constitute a relatively efficient packing of the-dimen-
sional complex space. However, for higher SNRs we conclude
that it should be possible, with a larger constellation, to transmit
at much higher rates.

We can also examine the performance of the constellations
when the channel is known to the receiver. Fig. 6 compares the
block error rate for the constellations of Fig. 4 when the channel
is known and unknown. Our constellations typically perform
approximately 2–4 dB better when the channel is known. For

antennas, we also give the performance of an orthog-
onal design [15], which has an effective block size of and
is designed specifically for a known channel. As we can see, our
block error rates compare favorably even though our constella-
tions are designed for an unknown channel.

VI. CONCLUSIONS

Unitary space–time modulation is appropriate for flat-fading
conditions where nobody knows the propagation coefficients.
It requires the design of relatively large constellations of ma-
trix-valued signals according to a criterion that differs markedly
from the traditional maximum-Euclidean-distance criterion. We
have introduced new design algorithms that easily produce large
constellations of these signals in a systematic manner, by suc-
cessive rotations of an initial signal. This entails the imposition
of a circulant correlation structure on the constellation. Further
research is needed to determine if significant improvements are
possible by relaxing this structure.
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Fig. 6. Block-error rate comparison of unknown- and known-channel performance forM = 1, 2, and3 transmitter antennas. The performance advantage when
the known channel is approximately 2–4 dB. Also included forM = 2 is the performance of a rate-one orthogonal design (dashed line) with a known channel.
(The orthogonal design has an effective block size ofT = 2 and would be completely ineffective for all SNRs if the channel were unknown.)
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