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Abstract—We propose a systematic method for creating constel- coefficients are approximately constant. Then a constellation of
lations of unitary space-time signals for multiple-antenna commu- 7, unitary space—time signals, = VT ®,, ¢ = 1,..., L,

nication links. Unitary space—time signals, which are orthonormal |, .
e ' ) as the defining property thdt,, ..., ®; areT x M com-
in time across the antennas, have been shown to be well-tailored to g property L P e

a Rayleigh fading channel where neither the transmitter nor the plex-valued matrices obeying; ¢, = ... = ¢J£¢L = 1. Of
receiver knows the fading coefficients. The signals can achieve lownecessity,\/ < 7'. The mth column of anyS, contains the
probability of error by exploiting multiple-antenna diversity. Be-  signal transmitted on antenma as a function of time. Essen-

cause the fading coefficients are not known, the criterion for cre- a1y the directions, and not the lengths, of the orthonormal
ating and evaluating the constellation is nonstandard and differs

markedly from the familiar maximum-Euclidean-distance norm. columns of®, (more premsely, the subspace spanned byits
Our construction begins with the first signal in the constel- columns) carry the message information.

lation—an oblong complex-valued matrix whose columns are Intuitive and theoretical arguments in [9] and [10] suggest

orthonormal—and systematically produces the remaining signals that unit fi . | t onlv simole to d d
by successively rotating this signal in a high-dimensional complex 1at unitary space—time signais are not only simple to decode,

space. This construction easily produces large constellations of but they also attain capacity when used in conjunction with
high-dimensional signals. We demonstrate its efficacy through coding in a multiple-antenna Rayleigh fading channel when

examples involving one, two, and three transmitter antennas. either” > M or the signal-to-noise ratio (SNR) is reason-
Index Terms—Fading channels, multielement antenna arrays, ably large andd/ < T'. Hence, there is a strong motivation
receive diversity, transmit diversity, wireless communications. for designing good unitary space—-time constellations. Some

successful unitary space—time constellations are designed and

demonstrated in [10] but the techniques used therein cannot be

readily extended to large constellations or to signals of high
I. INTRODUCTION dimension. This paper presents some simple algorithms for

) designing effective constellations of these signals.
ECENT theoretical treatments have shown that commu- . . .
The onlya priori structure on a unitary space—time constel-

nication systems that employ multiple antennas can h v?. is the ti th litv of the sianals. Constellati
very high channel capacities, especially in Rayleigh flat-fadi 'on 15 the time ormonormalty of the sighals. Lonstetiation
environments [5], [16], [9]. In [5], a constructive approach t esign 1S \/_lew_ed in [10] as a difficult and cumbersome sea_lrch
achieving some of this capacity is proposed under the assu 91_ ppt|m|zat|on problem. BUt.’ as we show, _l?y Imposing
tion that the receiver knows the complex-valued Rayleigh fadi d|t|on.al structure on these signals and requiring that th(_a|r
coefficients. Under the same assumption, [14] presents a trel neration be systematic, we can construct some effective

based approach for designing space—time codes, and [15] g&ggstellations with relatively little effort. We present the design

L ; . - in_two disparate but ultimately equivalent ways. The first
a space-time signaling method based on orthogonal desIdHS'roach, Section ll, is Fourier-based and uses ideas from

However, the known-channel assumption may not be realisticihP

a rapidly changing fading environment or with a large numbtgf'gnlal Erogessw&g theor_;(/j. Thef secondd_app{r(])ach, SSecttlpn I\\//’
of transmitter antennas. is algebraic and uses ideas from coding theory. Section

A new class ofinitary space—timsignals is proposed in [10] demonstrates the performance of these approaches on a

that are well-tailored for flat-fading channels where neithertﬁgult!ple-antenna Raylglgh fading channel whgre nelthe'r the
transmitter nor the receiver knows the fading coefficients. Su gceiver nor the transmitter knows the propagation coefficients.

pose there ar@/ transmitter antennas, and that we transmit si l:'he pterformz_at?ces ?f constellations for l(ste with one, two, and
nals in blocks off” time samples, over which interval the fadin ree transmitter antennas are compared.
Throughout the paper, we concentrate on modulation and
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Fig.1. Wirelesslink comprising/ transmitter andV receiver antennas. Every receiver antennais connected to every transmitter antenna through an independent,
random, unknown propagation coefficient having Rayleigh-distributed magnitude and uniformly distributed phase. Normalization ensuresdhexpeeted
transmitted power is independent &f for a fixed p.

II. CHANNEL MODEL; UNITARY SPACE-TIME MODULATION model (1) are normalized so that represents the expected
. : SNR at each receiver antenna, independentiy/ofVe assume
A. Rayleigh Flat Fadin o '
y- g g S o _ that the realizations df,,,,, m = 1,..., M, n =1,..., N

Consider a communication link comprising transmitter are not known to the receiver or transmitter. See Fig. 1 and [9]
antennas and receiver antennas that operates in a Rayleighr more details.
flat-fading environment. Each receiver antenna responds to eaCWe assume that the fad|ng coefficients Change to new inde-
transmitter antenna through a statistically independent fadiﬁgndent realizations evefly > 1 symbol periods. This piece-
coefficient that is constant faf symbol periods. The receivedyyise-constant fading process (also called a block-fading model
signals are corrupted by additive noise. We use complex bagep], [2]) mimics, in a tractable manner, the approximate co-
band notation: during th&-symbol interval, we transmit the herence interval of a continuously fading process. Furthermore,

signal{sm,t =1,...,T, m =1,..., M}onM antennas, and it is an accurate representation of many time-division multiple-
we receve the noisy signglry,.t = 1,...,T\n=1,....,N} access (TDMA), frequency hopping, or block-interleaved sys-
on N receivers tems. Each channel use (consisting of a blocH’¢fansmitted

symbols) is independent of every other.

M . .
o \/W Zhnlnstnz+wtn7 f=1,.... T, n=1...N. Equation (1) can be written compactly as

mt 1 X=/" sH+w 2
1) =\ + (2

Here h,,, is the complex-valued fading coefficient between

themth transmitter antenna and th¢h receiver antenna. ThewhereX is theT x N complex matrix of received signalS,is
fading coefficients are constant for= 1,...,7, and they are the7 x M matrix of transmitted signal¢{ is theM x N matrix
independent with respect ta andn andCA/(0, 1) distributed. of Rayleigh fading coefficients, and is the I’ x N matrix
The additive noise at timeand receiver antennais denoted of additive receiver noise. In this notation, thé columns of
wen, and is independent (with respect to batland») and S represent the signals sent on the transmitter antennas as
identically distributedC (0, 1). The quantities in the signal functions of time.
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B. Unitary Space—Time Signals the performance may be upper-bounded in terms of pairwise
probabilities of error through the union bound
L
1 .
P, =— E P{error| &, transmitte
’ L =1 { | ‘ | q

We use constellations of unitary space—time sigriils=
VT &+, ..., S, = /T & to transmit binary information over
the multiple-antenna link. It is shown in [9] and [10] that the
capacity-achieving distribution f& >> M and for a fixedp is B
S = /T ®, wheredTd = I and® is isotropically distributed. <l Z Z P ©)
Details about the isotropic distribution may be found in [9], but - L 6
it suffices to say that its defining characteristic is tihaind© @ whereP; ¢ is the pairwise (i.e., two-signal constellation) prob-

have the same distribution for any deterministic unit@ry ability of mistaking®, for ®, or vice versa, which has the
It is also shown in [10] that the maximum-likelihood (ML) ;|osed-form expression [10]

decoder for a constellation of unitary space—time signals is .
ysp 9 P, ¢ = P{choosed |®, transmitted

(=104

P = arg o, mAX tr {XT‘Pz‘PIX} . (3) = P{choosed,|®, transmitted
=P, .-, PL
. : . . 1
This so-called noncoherent receiver has an equivalent interpre- = Z Res,—ia; {—7/2
tation as a generalized likelihood ratio test (GLRT) J wtif
~ T M N
$ =arg  max  tr{ — [X — (pT/M)1/2<I>4H4 . H 1+ pT/M (7)
Bt w5 LT MR &)W+ a)

dom <1
. [X — (pT/M)l/%égé}} (4) wherel > d; > .- > dy > 0are the singular values of the
M x M correlation matrix<1>;r<1>é/, and
which entails the use of .the cohergnt receiver with the unknqwn wr 11 14 pT/M
value of H replaced by its ML estimate under the assumption m \/Z + (PT/M)(1 —d2)

that the/th signal was transmitted; hence .
1/ The singular values are a measure of the overlap of the two sub-
i - T <I>TX ) spaces that are spanned by the column vectors of the signals. The
¢ e exact pairwise probability of error is cumbersome to evaluate,
The maximum-likelihood interpretation for the noncoherent ré€quiring either the extraction of residues of high-order poles, or
ceiver (3) assumes that the propagation matrix has indepeno%ﬂf‘e'd'me”_s'onal numerical integration. The Chernoff bound is
elements that are distributed @/(0, 1), while the GLRT in- Somewhat simpler [10]

terpretation is less restrictive because it does not assume any- M 1 N
thing about the statistics of the propagation matrix. Built into Py < H TP a—E) . (8)
the philosophy of the GLRT [17] is the notion that when the 2 as |1+ W
correct decision is made the associated ML estinf&atis good. The probability of error (and Chernoff bound) is lowest when
With this in mind, our case for using unitary space—time signads = --- = dj; = 0 and highest whed; = --- = dy; = 1.
is further strengthened by the fact that these signals constitwe obtaind; = --- = dy; = 0 when the columns ob, are
optimal training signals [13], [8] for learning . Specifically, if all orthogonal to all the columns df,,. The ideal constellation
a known signal is transmitted from which the receiver obtains, , ..., &, therefore, has all the columns®f orthogonal to
an ML estimate foi7, the energy-constrained signal that miniall the columns ofb, for # £ ¢ =1, ..., L. However, because
mizes the total error variance is a unitary space—time signal.the columns of eactt, are within themselves orthogonal to one

While our original motivation for using unitary space—timeanother, all the pairwisé,, ..., dys cannot all be made zero if
signals is information-theoretic, this paper focuses on modulg-> 7°/M . Conversely®, and®, are indistinguishable, within
tion and on uncoded probability of error. These signals are fe context of our model, whef = --- = dy; = 1.
interest in their own right because they have a simple demoduiVe can further simplify the bound (8) in terms of the average
lator that also has a pleasing GLRT interpretation. of squares of the singular values

M

C. Constellations of Unitary Space—Time Signals % Z a2, = % tr { (q;jq,[,)T ((I)I‘I’[/)}

The task is to design a constellationfofinitary space—time m=1 )
signals that has a low probability of error. We note that the prob- = @1@, H (9)

ability of error is invariant to two types of transformations: 1

left multiplication by a commorT” x T unitary matrix,®, — zlvhere (9) defines the matrix norm used in this paper (a scaled

o . L St Frobenius norm). For both the pairwise probability of error and
\IJT(I)" ¢=1,..., L and 2) right multiplication by individual the Chernoff bound, it can be shown that the first and second

M x M unitary matricesp, — @Yy, £=1, ..., Ly see [10]. o aives with respect to the squares of the singular values are
We consider any two constellations to be equivalent if they aﬁ%sitive

related by unitary transformations of this type.
We are unable to compute the block probability of edfofor OF;, ¢ 0 O?Py ¢
a general constellation of unitary space—time signals. However, d(d2)) > d(d2)?

m

> 0.
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This implies that for any two singular values that are containegbon which the Chernoff bound depends dominantly for large
in the open interval0, 1), if one increases the larger singulaiSNRs? We note simply that for smail,,,

value while decreasing the smaller singular value such that their o o

sum of squares is constant, thus maintaining constant norm (9), H (1-2)~1— Z J2

the pairwise probability of error (and its Chernoff bound) in- m m
creases. Consequently, for a given norm (9), the probability of L i
error is minimized when all the singular values are equal. Cods therefore, minimizing for smalld,,, is roughly the same
versely, the probability of error is maximized when as many sifS maximizing this product. _
gular values as possible are equal to one. This implies that, in/© {ransmiti bits per channel use, we need a constellation

t 9 of at leastl = 277 signals. For example, iR = 2 bits/channel
the worst case, about ||®, ® . ||* singular values are equal to se andl’ = 10, thenL = 2%° ~ 10°. Generating and storing

- . u
oir\ulee,sa;: lﬁhe :rggﬁg%z'?ﬁ;lg;]\é?rl]%eﬁsbegjn%qual to zero, Wh{ﬁls manyl’ x M complex matrices is cumbersome if the signals
9 PP are not provided with some additional structure. Furthermore, it

m=1 m=1

N-(M—[Mu@:,f,cmuﬁ) is not obvious how to ensure that the generated signals have low
P < 1 1 (10) probability of error. In the next section, we describe a systematic
L =3 14 PT/M)2 ' approach to create signals with low probability of error and that

AL+pT/M)
For a given constellation, let
6= max H<I>;r<1>gr
1<é<e'<L
Then the combination of (6), (10), and (11) gives a bound on the

block probability of error for the entire constellation in terms In this section we present a Fourier-based construction of a
of § constellation of unitary space—time signals. Section IlI-A gives

the intuition behind the construction, which has a block-circu-
lant signal correlation structure. Section IlI-B then proves that

requires storage of onlg, and a7’ x 7' diagonal matrix with
which to generat®,, ..., ¢ .

. (11)

Il. FOURIER-BASED CONSTRUCTION

N-(M— [M||<I>:,r<1>c||21)

1 1 1 . . X i . :
P < I Z Z > | 7T g this construction yields all constellations having a block-circu-
=1 vz < | Lt arman lant correlation structure.
N-(M—[M&2]) We make no claim for the optimality of circulant correlation
L 1 structure. However, this structure has the advantage that it sig-
T (pT/ME : (12) nificantly simplifies the design process.

201+ 4(1+pT/M)
Accordingly, we attempt to construct constellations that minx. Fourier-Based Construction Has Block-Circulant
imize 6 in (11). This is a particularly simple performance meacorrelation
sure to compute, and it does not depend on either the SNR or th
number of receive antennaslhe definition ofé in (11) has a g . . .
. ) - ; eedL unit vectors in dl’-dimensional complex space where,
connection with the standard definition of distance between sul: .
: . In general,. > 7. Clearly, these vectors will form an over-
spaces [6, Sec. 12.4.3]. Lét andFiw be theM-dimensional complete or linear dependent system. Overcomplete represen-
subspaces of” spanned by the columns &f, and @, re- P P y : P P

spectively. Then one can think of the singular valdgsas the tat!ons are becoming mc_reasm_gly popular in 5|g_nal represen-
. — tation and are often studied using the mathematical technique
cosines of the so-callegrincipal anglesd,,, betweenf; and

Fy. TheL? distance between the two subspaces is now defin%hframes[4]' Even though there is no immediate reason why

. - ey > . Trames would form good constellations, we draw inspiration
asmaxy, sin (6m) = maxy, \/1 - d;, while the chordal dis from existing methods for building frames.

. — . . i
tance isy/2_,,,(1 — dr,). The minimum chordal distance be We say that a collection df vectors®, in a’Z-dimensional

tween any two subspacdg and Iy for (¢ #£ /) is precisely . . ;
M (1 — 62). This shows that our design problem is related tsopace form aight frameif all of the eigenvalues of thé" x T

. L . .
so-called packings in complex Grasmannian space. Some ex8girix 2., ®®, are equal, implying that
ples of packings in real Grasmannian space are given in [3]. L

The design criterion of minimizing is markedly different Z <1>é<1>;f =K.7I
from the familiar maximum-Euclidean-distance criterion, and =1

Itarises _entlrely because th_e fadlng coefﬁc!ents are unknownvs%ereK is the frame constant. While the details of frame theory
the receiver. Because of this, antipodal pairs of sigaabsare

indistinguishable, for example go beyond the scope of this paper, we use a well-known re-

. o : . sult that any tight frame with. vectors in7" dimensions can
An alternative criterion for constellation design that we dB L ) .
R - e seen as the projection intdZadimensional space of an or-
not pursue in this paper seeks to maximize the product o . : .
v thogonal basis in. dimensions and vice versa, see, e.g., [7].
H (1—d2) Balan and Daubechies construct tight frames by projecting an
m L-dimensional discrete Fourier transform (DFT) basis onto a

T-dimensional space [1]. The projection simply retains the first
1The performance of a given constellation always improves with increasing
N. For the remainder of the paper we $ét= 1. 2This criterion was independently suggested by an anonymous reviewer.

9\/e begin withM = 1 transmitter antenna; we, therefore,

m=1
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Fig. 2. Correlation structure of signals in (13) as a functioff 6f ¢ whenT' = 6 andL = 64, which implies a transmission rate 8f = 1-bit/channel use. We
clearly see the sinc-like behavior. The maximum correlatias defined in (11) (which is achieved whén— ¢ = 1) is 0.986.

T components of thé.-dimensional vectors. Inspired by this 2) The correlation structure behaves roughly like a sinc func-

construction, we propose the one antenna constellation tion, and hence equation (11) yields
i 1 T § =0 ®p| =1 O(1/L2)
27,
¢ T asL — oo. For largeL, (7) (with M = 1 andd; =
&, = R ez‘?%%é—l) ) (13) |<I>I<I>é+1|) therefore implies that the probability of mis-
VT . taking @, for its immediate neighbors is high; this is de-
: cidedly undesirable. Fig. 2 shows the correlation structure
S (T =1)(6=1) for T = 6 and L = 64, for whiché = 0.986.

Property 2) suggests that;, ..., ¢, given by (13) are a

For this choice, we obtain . . : :
poor choice of signals, especially if is large. However, we

g = ‘@Té are not necessarily constrained to choose thefinsiws of the
L= 5™y L x L DFT matrix as is done in (13). To lower the correlation
1, =1 between neighbors, we may consider choosing another get of
R components. We thus let
Z i (t—1)(¢' =€)
—_ 'L
_ .27
=17 t=1 G (e=1)
. ’ 2 e
= Tn(ﬂ(( v 5)2//% - @2 B L | CEY (14)
n{7m ﬁ :
As shown in (7) and (8), the two-signal probability of error de- 25 (0 — 1)
pends only on the correlatiafi and decreases ds decreases. e L
We observe that where, without loss of generalit, < uq, ..., up < L — 1.

1) The correlation betweef, and ®, depends only on We still have a circulant correlation structure because
(¢ — ¢) modL; the correlation structure of the entire con- T
stellation is therefore circulant and it suffices to consider |¢;r¢£,| _ l Z ci%"ut(z’fz)
| Pyl for £ =2, ..., L. r

t=1
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Fig. 3. Correlation as a function ¢f — ¢ when choosing:1, ..., ur in (14), withT = 6 andL = 64. Hereu = [1 18 23 39 46 57] and is found by
minimizing 6 using a random search, yieldiig= 0.5604.

We can now choose the “frequenciesy, ..., ur to get the spacing betweenits elements, and it has an angular frequency re-
lowest possible correlations. As mentioned in Property 1, bsponse having the sinc-like behavior shown in Fig. 2. The width
cause of the circulant structure it suffices to look at of the central peak at zero frequency is inversely proportional

to the physical length of the array. If one desires the narrower

‘@Té ‘ _ ET: @] central peak associated with higher angular resolution for the
15 = po el samenumber of element&, one has to use a longer array. Dou-
o bling the spacing to give a uniform spacing of one wavelength
1 i 2, (0— Id reduce the width of th tral k by a factor of two, but
_ 1 Z ESRCOIE ¢=2 ... L (15) Wouldreducethewidthofthe central peak by afactor of two, bu
T \—= with the penalty of replicating the angular frequency response

at intervals ofr (the so-called grating lobe effect). However,
where[-]; denotes theth component of-]. We wish to find by using a longer aperiodic array, one can obtain a narrower
U1, - .., wp achieving central peak without introducing grating lobes. Despite much

effort, there has never been a completely satisfactory way to

] 1 [ 2x 1 design aperiodic arrays: for small arrays one can use exhaus-

min max — Z A Gl ; ;
0<ur, hup<l—1 t=2 L T tive search, whereas, for large arrays, random search strategies

- - t=1 , seem to be the only resort. In our optimizations, we therefore

= min 6 (16) :
0<uin s ooy uy <=1 also generally employ a random search. Fig. 3 shows the results
of such a search. Observe how optimizing oxver. . ., ur al-
whereé (given by (11)) depends om;, ..., uz. Observe that lows a much better correlation structure than in Fig. 2.
|®] ®,| can be interpreted as the modulus of the DFT of a We now show how we can generalize this single-antenna con-
lengthL, sequence with the valug at positionsu,, ..., ur Struction toM > 1 antennas. In the single-antenna case, each

ando elsewhere. Thus one can look at the minimization in (16jgnal can be written as
as a filter design problem, where the filter is sparse (i.e., @hly & — 0o
. . - ¢ = 1 a7

out of a possibld. filter coefficients are nonzero), the response
at zero frequency is unity, and where we choose the locationbere © is a T x T matrix whose diagonal elements are
of the T nonzero coefficients to minimize the response at?~“/L .. . 2 /L and &, is 1/v/T times a vector of
frequencies that are multiples 2f /L. all ones. Note tha® is a unitary matrix and tha®’ = I.

The problem of sparse filter design is analogous to that Geometrically, the construction can be interpreted as rotating
aperiodic antenna array design [11]. A conventional linear aan initial vector througlf'-dimensional complex space using a
tenna array having” elements uses periodic half-wavelengtimatrix which is thel.th root of unity. The matrix is chosen so
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that the resulting vectors have as little correlation as possibléhe block-circulant correlation structure implies that the exact
and afterL rotations the vector is brought back to its initiakonditional probability of error for deciding which of thesig-
position. nals was transmitted is the same foralsignals.

For M > 1 transmitter antennas, Iét, be a7’ x M matrix We now take the double (i.e., both frand#’) DFT of both
with <I>I<I>1 = I, and form the constellation again by applyingsides of (19) to obtain
(17). Becaus® is an Lth root of unity, we have a block-circu-

L L
lant structure in the sense that thex A/ matrixcbzrcbé, only de- Z Z @jq)é,e—i?%[(é’—1)(n’—1)—(é—1)(n—1)1
pends or{¢' —¢) mod L, and becaus® is unitary,@j@e =1p. =1 ¢=1
Geometrically, this construction can be interpreted as rotating = <i>:[<i>n
an initial M/ -dimensional subspace using Ath root of unity to — LI S/ ) mod L 1)

form L different A{-dimensional subspaces.

As noted in Section II-C, a constellation with small probawhere the Fourier transforms, which are matrix-valued, are de-
bility of error generally has smadl. We may, therefore, choosenoted by the hatted quantities

u1, ..., up to achieve
L
~ 27
(Pn = @éc—lf(é—l)(n—l)
min 6= min max H<I>T<I>5H ;_:1
0<uy, ..., ur<L—1 0<uy, .., ur <L—1 €= =
(18) and
A simple method to build a starting matri; is to choose\/ A L —i 2T (1) (n—1)
distinct columns of dI' x 7" DFT matrix. This ensures that I = Z Fee I : (22)

o
Il
—

¢, &, = I;. A secondary benefit is that the transmitted power

never varies. Equation (21) is equivalent to the well-known result that a cir-
In the next section we show that the above construction gefilant matrix is diagonal in the Fourier domain.

erates all constellations with circulant correlation structure.  According to (21), the, Fourier coefficientsb,,, each & x
Remark: The starting unit vector®, that we have used so M matrix, are mutually orthogonal. Consequently, all but at

far—either1//T times a vector of all ones, or the columndnostT” of the coefficient matrices are zero. We denote the
of a DFT matrix—have components all with modultsy/T. possibly nonzero Fourier coefficient matricesdby; . ...,_<I>W
There is no particular need to impose this constraint, and exp Ihe_reo < ul, o UT < L — 1. The signals are thus given by
iments indicate that optimizations that allow the moduli of th & inverse Fourier transform

starting vector components to vary (but maintain unit norms for T

the columns of eacth,) can yield even smaller values &fFor Z &, T el Do 4=1,...,L.  (23)
simplicity, we do not pursue these optimizations. t=1

When exactlyl’ coefficient matrices are nonzero, then orthog-
onality requires them all to have rank one, for there cannot be
more thari’ linearly independerif-dimensional vectors. When

In the previous section, we propose a constellation with a caly 7" — 1 coefficients are nonzero, at most one of them can
culant correlation structure. This structure does not automdigve rank two while the others have rank one. The rank-two
cally guarantee that the constellation performs well. HowevéRatrix can always be written as the sum of two rank-one ma-
the structure simplifies performance testing since ahly- 1  trices; for example, take its singular value decomposition and
rather tharnl(L — 1) /2 correlations need to be checked. In thigvrite the two-element diagonal matrix as a sum of two one-el-
section, we investigate the restrictiveness of this condition lynent diagonal matrices. Then we again have a sum (23) with
characterizing all constellations which yield a circulant correld terms where each coefficient matrix has rank one; the only

B. Block-Circulant Correlation Has Fourier-Based
Construction

tion structure. difference is that the two coefficient2matrices coming from the
Let {®;,...,®.} be some constellation of unitarysplit have the same frequency terf ™ ‘=1 Similar argu-
space-time signals. We impose the block-circulant correlatiatents forZ” — 2 or fewer nonzero coefficients yield the same
structure conclusion that all coefficient matrices in (23) can be made to
have rank one.
ola, = Flo—tymodr, =1, L ¢ =1L We now show that, without loss of generaliy,,, . .., .
(19) can be nonzero in exa_ctly one row. Considerthe 7" matrix
formed by taking the first column of eadh,,, t =1, ..., 7.

The columns of this matrix are then orthogonal, but not nec-
whereF; are M x M matrices and the orthonormality of thegssarily orthonormal. Thus this matrix can be writtenles,
columns of each signal implies thag ;. It is also easy to see where W is a7 x T unitary matrix andD is diagonal. Now
that ot times the first column oﬁ3ut is a vector with only théth

component nonzero. Becau@a is rank-one, all its columns

F ,=F; ,= ‘I’I‘I’L = FJ_L = Fj. (20) are scaled copies of one another. Heﬂr&@ut is a matrix with



HOCHWALD et al: SYSTEMATIC DESIGN OF UNITARY SPACE-TIME CONSTELLATIONS 1969

only its #th row nonzero. Recall that the error performance oflacan be shown (we omit the details) that this construction yields
constellation does not change when applying the transformatimeonstellation that is generated by means of a separate rotation

o wle,  r=1 ... L (24) Tor €achindex
_ofi—1lnt—1 _ . _
for unitary ¥. From (23) we see that this transformation®at= =©1" 07" Py, b=1,...., s =1, ..., L
is equivalently applied to the Fourier coefficient matrices: (29)

b, — \IJT<I>W t =1,...,T. After this transformationéut . . .
is zero except in itth row. The set of Fourier coefficients areWhere@l and®, are diagonal unitary matrices that areltfth

; S and Loth roots of Iz, respectively. This construction involves
therefore orthogonal by virtue of their disjoint row support. . . .
. . . A choosing the diagonal elements®f and©,, which we label
The signakb; combines the different nonzero rows of thg,
matrices t 0<ug, ..., < Li—-1 and0§u21,...,u2T < Lo—1.
The constellation is therefore completely determined byftle
1 I M matrix ®{, and the2 x T matrix U whose entries arey,,
or=— > Dy, k=12t=1,..., T
t=1 This construction extends readily tof-indexed constella-
tion in which L = Hle Ly andU isa K x T matrix.

1

Any other signakb, can be formed fron®; by multiplying the

#th row by ¢’  “(=1 as in (23). Henced, can be expressed

more conveniently as& x 1" diagonal unitary matriy® that is
raised to the/ — 1)th power, times th& x M matrix &, The constellation construction described in the previous sec-
1 tion can also be viewed algebraically, and in this section we

¢, =0""9; (25) . . X .

create a constellation of signals by mapping a linear block code

where into complex signal matrices. The code is over the ring of in-

Ci%ul 0 tegers modular and the number of codewords is equal to the

o number of desired signals. We will relateq to L shortly, and

IV. EQUIVALENT ALGEBRAIC CONSTRUCTION

0= o ’ O, - upsl=1 we begin by describing the construction flaf = 1 transmitter
0 A A antenna.
(26) LetR;, = {0, ..., ¢ — 1} be the ring of integers modulg-
Sinced; only underwent the unitary transformation (24), it stilf"d 1€ = ley, ..., ep} denote alinear code ove of length
o ] and containing. codewords. Each elemenitof C is a vector
has the property thak, ©, = I). By (25), the correlation ma- ¢ 7~ jntegers in{0, ..., ¢ — 1}. Because the code is linear it

trix between any two signals has the block-circulant structugg ,:-ins the all-zero vector anddf andcy

are inC then so is
(19)

acy + bep foranya, b € Ry,
We map these codewords into signals by mappinglthe-
tegers in a codeword to tHE components of a complex signal

. . . using the function
We conclude that any unitary space—time constellation whose g

correlation matrix is block-circulant can be designed using the $(j) = 1 ei%‘—j =0 1
methods of Section IlI-A. We therefore have the following the- J)= VT ’ kA
orem.

olo, = olof o, @7)

Note that addition modulg-for the argument corresponds to
Theorem 1: Any unitary space—time signal constellation otomplex multiplication for the function value. By letting tke

T x M matricesdy, ..., ¢ with a block-circulant correlation function work on vectors, we effectively obtain the one-antenna
structure is equivalent to one that can be written constellation
P, = 01, (28) Jorledh
where®, is aZ’ x M matrix obeying<1>1r<1>1 = Iy, andB@is a 1 Ci%ﬁ[cdz
T x T diagonal matrix whose diagonal elements Atk roots Oy = p(cr) = ﬁ _ , 1</¢<L
of unity. Conversely, every constellation of the form (28), has a :
block-circulant correlation structure. z‘%’[edT
c
C. Multiple Index Block-Circulant Structures Let ¢, be the all zero codeword; thdn is 1/+/T times a vector
The previous constellation construction may be extendedaball ones. We show that the maximum correlation of the re-
a doubly indexed construction sulting constellation is given by
{@éléz,glzl,...,L1;£2:17...,L2} T
) max Z [®e]+
whereL; - Lo = L, and where the constellation has the fol- (=2, L |~

lowing correlation structure: ] )
where[-]; again denotes thith component of-] (and the arith-

<I>;r1 ‘0 @g;éé = F(éfl_él) mod Ly (€, —€5) mod Lo+ metic is in the field of complex numbers). To see this, pick two
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different signals®, and ®,. By definition, ®, = ¢(¢,) and
by = ¢(ce) for someey, ¢ € C. Thus

el =3 ¢ (fed)olleely)

T
:% 3 i lede 1% leal
t=1

1 z:r: i%[c[/—cdt 1 z:r: i%[%”}t
= — e = — c
T t=1 T t=1

for some#”, where the last equality follows from the code’s
linearity. Therefore, as in (15), in searching for constellations
that minimize their maximum correlation, we need to check only
L — 1 quantities.

So far, the codes are restricted to be linear but are otherwise
arbitrary. We further restrict our search by considering codes
that have & x 1" generator matrix/ of elements irR,, where
K can be thought of as the dimension of the code. The €ode
represented b¥/ is the linear span of the rows &f, i.e., every
codeword can be written in the form

C(IE'U

for somel x K vector/ = [¢; ... £x]whoseK elements are all
in R,. We incorporate this restriction explicitly, because, unlike
linear codes over finite fields, linear block codes oRgrdo not
necessarily have a generator matrix. It follows that the size of
the constellation id. = ¢%.

We may now calll the multi-index ¢{-index) of the code-
words ofC. Then the signals have a multi-index circulant cor-
relation structure since

Cyr — Cp = ([gll . /I(] — [El e g[(])U
=, =ty .l — U
= RU
= CZH

where all arithmetic is modulg:

The connection to the constellation construction discussed in
Section IlI-A becomes more apparent if we rewrite the codes
in the following form. GivenU, we let©q, O, ..., Gk be
diagonall’ x T' complex matrices with entrié®;|:: = ¢(Uxt),
k=1,...,K,t=1, ..., T. Note thato? .=0% =1
The one-antenna constellation determined by the mafris
then the set of all vectors of the form

ehel ... olra,.

TABLE |

TABLE OF BESTFOUND M = 1 ANTENNA CONSTELLATIONS OFLENGTH
T = 8 BASED ON LINEAR BLock CopESOVER R,. THE NUMBER OF
SIGNALS IN THE CONSTELLATION IS L, THE MAXIMUM CORRELATION

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 6, SEPTEMBER 2000

Is 4, THE DIMENSION OF THE BLOCK CODE IS K, THE ARITHMETIC
BASE IS ¢, AND THE ROWS OF THEPARITY MATRIX U’ ARE
GIVEN LAST. NOTE THAT L = ¢¥

L 4§ K g rtows of U’ (parity)
8 0.000000 1 8 [3765042]
16 0306186 1 16 [03141511108]
64 0353553 3 4 [23330]
[20311]
[03233]
133 0.534026 1 133 [4898104 72 38 123 4]
256  0.559017 4 4 [1031]
[3112]
[2023]
[1132]
529 0.643485 2 23 [14155529]
[1121141319]
1296  0.695971 4 6 [2015]
[2552]
[2303]
[5422]
2209 0.749396 2 47 [204 36 43 8 42]
[448346121]
TABLE I

TABLE OF BESTFOUND M = 2 ANTENNA CONSTELLATIONS OFLENGTH
T = 8 BASED ON LINEAR BLOCK CODES OVER Rq. THE NUMBER OF
SIGNALS IN THE CONSTELLATION IS L, THE MAXIMUM CORRELATION

Is 4, THE DIMENSION OF THE BLOCK CODE IS K, THE ARITHMETIC
BASE IS ¢, AND THE ROWS OF THEPARITY MATRIX U’ ARE
GIVEN LAST. NOTE THAT L = ¢¥

L 6 K q rtows of U’ (parity)

4 0.000000 2 2 [011001]
010101]
8 0383533 1 8 [3072567)

17 0475099 1 17 [12119146100]

32 0531944 1 32 [18112228035]

67 0.588905 1 67 [73115329200]
130  0.636015 1 130 [30713915441124]
257 0.669317 1 257 [76079 187 125 198 154]
529 0.733934 2 23 [1531091517])

[22 16 14 4 21 21]
1024  0.76227 2 32 [262213726]

[182822824 1]
2304 0.803542 2 48  [152227 3424 41)

[18 1 38 29 33 25]

ator matrix of the form

For K 1 and K = 2 these are exactly the forms sug-
gested in (25) and (29). Thus the one-antenna constellation is

ated by®,, ..

further. In particular, we restrid/’ to have a systematic gener-

U=1[1 U]
the image of®; under the action of the discrete group genewherel! is the K x K identity matrix and/’ isaKk x (T — K)

., O k. We can extend this construction to admiparity matrix with elements iR,. Tables | and Il list the best

multiple-antenna constellations by replacing the veétowith A/ = 1 and M = 2 antenna constellations f&f = 8 we

a representation of a subspace of larger dimension in exactly tieve found with our random search procedure. For each con-
stellation, the maximum scaled Frobenius natis given, as
The space of linear codes which do havE a« 7" generator described in Section Ilin (11). The constellations all have a sys-

same way as is done in Section IlI-A.

matrix of elements iR, is still quite large. Since we limit our- tematic representation and the rows of the parity mdffare
selves to finding codes that have low correlation by examinirigted. Hence, for a code of dimensidf, K rows of " — K
randomly chosen elements of the given space and keeping ¢fements irR, are listed. The starting vectdr, for M = 1is
one with the lowest correlation, it helps to restrict the class eveyh/T times a vector of all ones, and the starting madrixfor
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Fig. 4. Bit-error rate foi\/ = 1,2, and3 transmitter antennas versus SNR wih= 1 receiver antenna on an unknown chaniiet- 8, andR = 1 bit/channel

use.

M = 2is 1/+/T times a matrix whose first column is all ones,
and whose second column is

[1 ei%w eiQTﬂ(T_l)].

V. APPLICATION TORAYLEIGH FLAT-FADING CHANNEL

We now examine the performance of constellations designed
using the methods of Sections Il and IV on the multiple-antenna
Rayleigh fading channel given in Section Il. We look specif-
ically at M = 1, 2, and3 transmitter antennas and consider
N = 1 receiver antenna. We choose typical parameter$ of

and®; comprises the first, sixth, and seventh columns of
an8 x 8 DFT matrix

rl 1 1 7
1 &'8° '8
.27 .27
1 67, ) 2 67/?4
27 27
1 1 CZ ] 7 CZ ] 2
Pi=m g
1 e 38 1
2% .27
1 ez—l 61§6
27 .27
1 CZ 6 CZ ] 4
.27 .27
[1 83 72

Here$ = 0.74355150.

1 bit/channel use and we assume that the fading coefficients &his code was found by the methods described in the previous

constant forI” = 8 channel uses. Thus we require a constell&ection.

tion of at leastl = 287 = 256 signals, each af/ x T matrix, Fig. 4 shows the bit-error rate for the signal constellations

for M =1, 2, and3. designed forM = 1, 2, and3 transmitter antennas. We see

The following constellations were used in the simulations. that the bit-error rate for larget/ drops dramatically as the
o SNR p increases. To understand the reason for this, note from

* M =1:TheL = 256 constellation in Table I. the Chernoff bound on pairwise error probability (8) that when
* M = 2: The first 256 signals from thé = 257 constel- d,,, < 1 for all m, for high SNR andV = 1

lation in Table II.

* M = 3: The first 256 signals from ah = 257 constella-
tion where

1 /4M\M ¥
Pg Vi S — E— H —_—.
' 2\ pT 1—d2,

m=1

The probability of error therefore decays approximately as
w = [220 191 6 87 219 236 173 170] 1/pM. More generally, if some of thé,, = 1, then we have



1972 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 6, SEPTEMBER 2000

2 T T T T T T T T ~ T
Ve
7
re
1.8 , B
Ve
7
Ve
16 e =
capacity: M=1 7
e
141 Phd B
e
~
rd
12F - .

-

Mutual information (bits/symbol)

0 ] L ! L ! ! L 1 !
0 1 2 3 4 5 6 7 8 9 10

SNR (dB)

Fig.5. Mutual information for the three constellations used to generate Fig. 4 versus SNR (solid curves); channel capacity versig SNR(ftashed curve).

the pairwise probability of error bound (12), which for large nals constitute a relatively efficient packing of tedimen-

andN = 1 can be written sional complex space. However, for higher SNRs we conclude
M-[SY &) that it should be possible, with a larger constellation, to transmit
1 /4M m=1 “m :
Po<z| = at much higher rates.
2\ pT We can also examine the performance of the constellations

In either case, the probability of error generally decreases maygen the channel is known to the receiver. Fig. 6 compares the

rapidly with p asM increases. block error rate for the constellations of Fig. 4 when the channel
We also note that at low SNRs, the behavior of the unitai§ known and unknown. Our constellations typically perform

space—time signals with increasing is reversed—the proba- approximately 2—4 dB better when the channel is known. For

bility of error increases a&/ increases. A similar effectis noted = 2 antennas, we also give the performance of an orthog-

in [10]. Fortunately, the decrease in performance at low SNRegial design [15], which has an effective block sizd o 2 and

is generally a fraction of a decibel. is designed specifically for a known channel. As we can see, our
By themselves, the simulations leading to Fig. 4 do not alllock error rates compare favorably even though our constella-

dress the question of whether the constellations have good gms are designed for an unknown channel.

formance relative to some standard. Unfortunately, we are not

aware of other unknown-channel designs with which compar-

isons may be made. We can, however, compute the mutual in- VI. CONCLUSIONS

formation of the constellations and compare their performance

to signal designs for a channel that is known to the receiver.  Unitary space—time modulation is appropriate for flat-fading
Fig. 5 shows the mutual information as a function of SNRonditions where nobody knows the propagation coefficients.

p for the three constellations\{ = 1, 2, 3) that are used to It requires the design of relatively large constellations of ma-

generate Fig. 4. The dashed curve is the channel capacity wiiervalued signals according to a criterion that differs markedly

M = 1, which was computed by the methods described in [9fom the traditional maximum-Euclidean-distance criterion. We

(As in [9], we do not know how to compute the capacity fohave introduced new design algorithms that easily produce large

M = 2 or M = 3.) The constellations have rafé = 1, im- constellations of these signals in a systematic manner, by suc-

plying that for high SNRs, the mutual informations approactessive rotations of an initial signal. This entails the imposition

one. For SNRs below 3 dB, the mutual information of #le=  of a circulant correlation structure on the constellation. Further

1 constellation is a significant fraction of th = 1 channel research is needed to determine if significant improvements are

capacity, which suggests that, in this regime, the- 256 sig- possible by relaxing this structure.
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