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ABSTRACT

Structured or fielded metadata is the basis for many digi-
tal library services, including searching and browsing. Yet,
little is known about the impact of using structure in the
effectiveness of such services. In this paper, we investigate
a key research question: do structured queries improve ef-
fectiveness in DL searching? To answer this question, we
empirically compared the use of unstructured queries to the
use of structured queries. We then tested the capability of
a simple Bayesian network system, built on top of a DL re-
trieval engine, to infer the best structured queries from the
keywords entered by the user. Experiments performed with
20 users working with a DL containing a large collection of
computer science literature clearly indicate that structured
queries, either manually constructed or automatically gener-
ated, perform better than their unstructured counterparts,
in the majority of cases. Also, automatic structuring of
queries appears to be an effective and viable alternative to
manual structuring that may significantly reduce the burden
on users.
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1. INTRODUCTION

Ensuring the high quality of Digital Library (DL) services
is key to guaranteeing DL usefulness and patrons’ satisfac-
tion. Largely because of this concern for quality, metadata,
and more specifically, structured or fielded metadata, has
historically been the basis for many digital library services,
including basic ones such as searching and browsing. Yet,
regarding the effectiveness of such services, little is known
about the impact of using structure. Moreover, while a few
DL services try to utilize this information through the use of
advanced interfaces®, experience has shown that users rarely
make use of these features, most probably due to the com-
plexity of user interfaces and lack of knowledge of internal
DL structures.

In this paper, we investigate a key research question: do
structured queries improve search effectiveness in DLs? To
answer this question, we empirically compared the use of
unstructured queries to the use of structured queries. Since
users are often unwilling, or unable, to manually structure
their queries, we also provide a simple system that tries to
close the gap between the user’s information need and the
DL content. This experimental engine, built on top of a
Bayesian network model and a retrieval system optimized for
DLs, tries to infer the best structured queries from the key-
words entered by the user, based on knowledge of DL struc-
tures and collection statistics. A very simple text box user
interface guarantees the simplicity of the process. To ensure
proper treatment of their information need, users simply
have to choose from an automatically produced ranked list
of structured queries.

To test our hypotheses and methods, we performed a se-
ries of experiments with 20 users (graduate students and

!See, for example, http://www.acm.org/dl, or
http://www.informatik.uni-trier.de/"ley/db/
indices/query.html.



researchers) using CITIDEL (Computing and Information
Technology Interactive Digital Educational Library)?, a DL
containing a large collection of computer science literature,
including metadata from the ACM Digital Library, the DBLP
collection, NDLTD-Computing (the computing subset of the
Networked Digital Library of Theses and Dissertations)®,
and others sources. Results, using three different informa-
tion retrieval measures, indicate that structured queries, ei-
ther manually constructed or automatically generated, per-
form better than their unstructured counterparts in the ma-
jority of cases. Also, automatic structuring of queries ap-
pears to be a viable alternative to manual structuring, since
it reduces work for users, while yielding superior effective-
ness.

This paper is organized as follows. Section 2 explains the
underlying models and context of the work. Section 3 de-
scribes ESSEX, a retrieval system optimized for DLs, which
provides for basic retrieval capabilities and for the structur-
ing process. Section 4 details the query structuring process,
including the Bayesian network model and the query ranking
schemes. Section 5 discusses experimental setup and results.
Section 6 presents related work and Section 7 concludes the
paper, also including plans for future work.

2. CONTEXT AND DEFINITIONS

In this work, we adopt a simplified view of the structured
metadata that describes the contents of a DL. According to
this view, each document or digital object do; stored in the
DL is described by, at least, one metadata specification. The
j-th metadata specification for object do; is defined as a set
of pairs:

msj; = {Al Y LA Unji}: nj; > 1

jirc -
where each Ay is an attribute or metadata field and each Vi
is a value belonging to the domain of A;. We note that the
attributes do not need, necessarily, to be the same for all
metadata specifications.

For some attributes, instead of a single value, we may
have a set or list of values. For instance, in a metadata
specification describing a paper, the attribute author might
be a list of names. To represent this using our notation, we
allow a same attribute to appear several times, here called
a value list. Thus, if attribute A,, in metadata specifica-
tion ms;;, has n different values, we can represent metadata
specification ms;; as:

msji ={..., Ap 1 v1,, Ap 1 V2, ..., Ap i Uny,. ..}

We define the metadata schema of a DL as the set of all
attributes that compose any of the metadata specifications
of that DL. Thus, the metadata schema of a DL D is defined
as:

Sp = {A|A is an attribute of
some metadata specification in D} (1)

We define an unstructured query U as a set of keywords
(or terms):

U = {t1,t2,...,tr}

2See http://www.citidel.org/.
3See http://wuw.ndltd.org/.

As for a metadata specification, a structured query @ is
defined as a set of pairs:

Q:{Al:vlq,...

where each Ay is an attribute or metadata field and each
Ukq a value belonging to the domain of Ayg.

This simplified set of definitions allows us to ignore the
details of how metadata is actually represented in the DL,
since it can mapped from any actual representation format.

aAn : Unq}y Ng >1,

3. THE RETRIEVAL SYSTEM: ESSEX

ESSEX is a vector-space IR system optimized for the dig-
ital library setting. It is designed to be light and fast and to
make few demands on the architecture of the rest of the DL
system. It achieves these objectives by an optimized C++
implementation, an entirely in-memory index, and a back-
ground daemon model using socket communication with the
DL application.

In addition to these architectural provisions, ESSEX has
a number of query language features that make it well suited
to digital libraries. Besides basic features such as force/forbid
(“4” and “”) term operators, ESSEX supports field filters
and adjustable field weightings®.

Field filters have the syntax “field:term”, where “field” is
an indexed metadata field, and “term” is the query term.
A field filter modifies the behavior of the search such that
matches will only be made with term occurrences within the
specified field.

ESSEX was developed primarily for CITIDEL and cur-
rently serves as the search engine for CITIDEL and Plan-
etMath®. Our familiarity with the code made it a natural
choice as a test-bed for the experimental query structuring
system discussed in this paper. In addition, ESSEX’s field
filtering capability served as the core of the query structur-
ing engine. We also utilized ESSEX’s support for the “+”
operator, and may use its field weighting support in the fu-
ture. Details on how some of these features were used are
explained in the following sections.

4. RANKING QUERIES: THE BAYESIAN
NETWORK MODEL

This section presents an overview of the automatic query
structuring approach. We start by describing the general
querying process and explain how user queries are structured
automatically and ranked according to the likelihood that
they will satisfy the user’s needs.

4.1 The Query Structuring Process

In our ESSEX query structure inference system, query
structuring consists of: (1) collecting the unstructured user
query, (2) building a set of candidate structured queries, and
(3) ranking the candidate queries according to the prob-
ability of best representing the user’s needs, as proposed
in [8,12].

“Field weightings allow the DL provider and user to change
the contribution of the various metadata fields to the final
results ranking. For more information on this and other
features of ESSEX and how they make it a superlative choice
for a digital library search engine, see http://br.endernet.
org/~akrowne/elaine/essex/index.html.

5See http://planetmath.org/.



To explain these steps in detail, assume that the objects
in our digital library have fields author and title. Let
U = {t1,t2,t3} be the initial, unstructured query entered
by the user, where t1, t2, and t3 are three distinct terms.
To create the candidate queries, ESSEX simply builds all
possible combinations of field-term pairs, using the fields in
the metadata schema of the DL and the terms entered by
the user.

To illustrate, if term t1 occurs both in the title and in the
author fields of the objects in the DL, pairs < author : ¢; >,
and < title : t; > would be created. Similarly, if terms
to and t3 occur only in the title of the objects in the DL,
pairs < title : ¢ >, and < title : t3 >, would be cre-
ated. Given these field-term assignments, the candidate
structured queries would be Q1 = (author : ti,title :
to,title : t3) and Q2 = (title : ti,title : t2,title : t3).
Notice that these would be the only two possible queries,
since we assume that one term cannot occur in two different
fields of the same query. In this case, term ¢; cannot occur
in the title field and author field of the same query.

The creation of the field-term pairs can be further re-
stricted by considering a minimum frequency of occurrence
of a term in the field values of the digital objects in the DL.
Thus, if, say, term ¢; occurs less than N times in the author
field, the pair author : ¢; would not be created. The value
of N can be used both to increase efficiency, by reducing the
number of candidate queries, as also to filter out spurious
terms that may occur in a field due to errors in the data.
In our experiments the value of N was set to 1, since this
filtering process was proved unnecessary.

Once the set of candidate queries is created, each query is
evaluated and ranked according to the probability of fitting
the data in the DL. This is accomplished through the use of
the Bayesian network model first proposed by Calado et al.
in [8], as explained in the following section.

Figure 1 shows the architecture for the query structuring
process in ESSEX. Evaluation of a structured query takes
place in two phases. The first is the evaluation of the indi-
vidual query terms (with field filters). For this phase, each
term is sent to the search engine and a results set is received.
The ranks of the results set documents are combined into a
score for the query term. Because many structured query
terms occur numerous times over the entire set of candidate
structured queries, they are cached in a hash table which
maps them to their corresponding fused scores. In our ex-
periments, we found that this caching speeded up the entire
structuring process by more than a factor of 3.

In the second phase, the scores of the structured query
terms are combined into a final score for the entire struc-
tured query. This score is then used to generate the ranks
for the set of all potential structured queries.

In cases were the full digital library content is not acces-
sible, or in order to improve efficiency, not all of the DL ob-
jects are used in the query structuring process. Instead, only
a subset of the DL is considered for building the candidate
structured queries and for deriving the statistics necessary
to the Bayesian network model. This subset is called the
sample database and is generally built by taking a sample
of objects from the DL that are representative of the whole
DL content. A more detailed discussion on how a sample
database is built can be found in [12].

We now present a brief explanation of the Bayesian net-
work model used as a basis for this implementation, and
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Figure 1: Architecture of the query structuring sys-
tem.

emphasize the changes needed to adapt it to our experimen-
tal collection.

4.2 Findingthe Best Structured Queries

The ranking of candidate structured queries is accom-
plished through the use of the Bayesian network model pro-
posed in [8]. For clarity, the model is presented in Figure 2.
‘We note that although the network can be easily expanded
to model any metadata schema, for simplicity, here we show
only two fields, A: and A,.

The network in Figure 2 consists of a set of nodes, each
representing a piece of information. With each node in the
network is associated a binary random variable, which takes
the value 1 to indicate that the corresponding information
will be accounted for in the ranking computation. In this
case, we say that the information was observed. In the net-
work, the DL is represented by node O, each node A; rep-
resents a field, each node A;; represents a value of field A;,
each node a;; represents a term in the value of field A;,
each node @; represents a structured query to be ranked,
and each node @;; represents the portion of the structured
query Q; that corresponds to the field A;. Vectors a1 and
a» each represent a possible state of the variables associated
with nodes a1; and as;, respectively.

The likelihood of a candidate structured query @; fitting
the DL O can be seen as the probability of observing @i,
given that O was observed, i.e., P(Q;|O). By appropriately
defining the conditional probabilities described by the net-



Figure 2: Bayesian network model for ranking struc-
tured queries.

work in Figure 2, we obtain the following equation:

P(Q;|0) =n x %[1 - Jl;[l (1 — cos(Aq;,d1))

na

+1— H (1- cos(Azj,d'2))] (2)

j=1

where @1 and @, are the states in which only the query terms
referring to fields A; and A,, respectively, are observed; n,
and no are the total number of values for fields A; and A,
in the DL; and n accounts for the constants «, P(d1), and
P(dy). It is important to note that, although in [8] dis-
junctive and conjunctive operators were suggested for the
final combination function, empirical tests with the collec-
tion used in our experiments indicated that using disjunctive
operators for probability P(A;|A;;) and a mean for proba-
bility P(O|A;) yielded the best results. For further details
on the derivation of Eq. (2), refer to [8,22].

The function cos(A;;, @;) represents the similarity between
the field value A;; and the terms in the candidate query be-
ing ranked. It is defined as the traditional vector space co-
sine similarity [25] between the vector of terms representing
the field value A;; and vector @;, which represents the terms
in the query.

To compute this similarity, the value A;; is seen as a vector
of k; terms. To each term t in A;;, we assign a weight w;
that reflects the importance of the term for field A;:

wie = tf;(t) - f6£: (¢) - fidf(t) (3)

where tf;(t) is the term frequency of term ¢ in document j,
i.e., the number of times term ¢ appears in document j; ftf;
is the field term frequency, i.e., the number of times term
t occurs in field 4; and fidf is the inverse field document
frequency, i.e., the inverse of the number of fields term ¢
appears in.

The first factor in Eq. (3), tf;(¢), is very common in
vector-space IR. It indicates that the more times term ¢
appears in document j, the more representative ¢ is of docu-
ment j. Although it is also common in IR to have an idf, or
“inverse-document frequency” factor, we leave this out for
reasons discussed below.

The second two factors are novel in our work. On the one
hand, ftf;(¢), indicates that the more times term ¢ appears in
a field 4, the more representative t is of field ¢. On the other
hand, if term t appears in many fields, the factor fidf(t) in-
dicates that it is probably too generic to be useful. We call
these “field tf” and “field idf” respectively, as they are anal-
ogous to the standard tf and idf described previously. The
difference is that they reflect term distribution relative to
fields rather than documents. These term weighting func-
tions differ from those used in [8] due to the fact that CI-
TIDEL, and many other digital libraries, contain collections
of scientific papers and, therefore, many textual metadata
fields, being very different from the collections used in [8],
which contained mostly information on commercial prod-
ucts extracted from Web databases. In the context of query
structuring, one of the main differences in the CITIDEL
case is that there is a large overlap between the vocabulary
in the object’s fields such as titles, abstracts, publications,
and authors.

The net effect of these weightings is to value terms (1)
strongly to the extent that they occur many times in the
specified metadata field, (2) strongly to the extent that they
occur in the most common field for the term, and (3) weakly
to the extent that they are “diluted” by appearing in many
metadata fields.

Let us consider an example of how this is useful. As-
sume that the unstructured query is given as “jones algo-
rithm”, and that the word “algorithm” appears evenly in
the title and abstract fields, and a handful of times in the
publication field. Also, assume the word “jones” appears
a small amount in the field abstract, but much more fre-
quently in the field author. With the weightings described
above, occurrences of “algorithm” will have similar value in
either the title or abstract fields. However, occurrences
of “jones” in author will be worth much more than occur-
rences in abstract. Finally, occurrences of “algorithm” will
be worth less than occurrences of “jones”, because “algo-
rithm” appears in three fields, while “jones” appears in only
two.

Given this weighting scheme, the cosine of the angle be-
tween vector A;; and vector @; is defined as:

EVte T, WitJt (@)

2
EVteTi Wiy

(4)

COS(Aij y Eil) =

where g¢(d@;) gives the value of the ¢-th variable of the vector
a;, and T; is the set of all terms in the values of field A;.

We now can rank all the structured queries by computing
P(Q;|0) for each of them. The user then can select one
query for processing from among the top ranked ones, or
the system can simply process the first query.

5. EXPERIMENTS

To test our research questions, namely, (1) if structured
queries are better than unstructured ones and (2) if au-
tomatically structured queries can perform as well as (or
better than) their manually constructed counterparts, we
conducted a series of experiments with real users and the
structuring Bayesian network, as described in Section 4, im-
plemented on top of the ESSEX search engine.

5.1 Experimental Setup and Design



Experiments were performed on the CITIDEL collection
which contains metadata from the ACM Digital Library, the
DBLP collection, NDLTD-Computing, and other sources -
totaling more than 440,000 metadata records. Only a sub-
set of the ACM Digital Library, with approximately 98,000
metadata records, was used as a sample database for query
structuring. This means that all information used by the
Bayesian network model to rank the structured queries was
taken only from this subset of CITIDEL. The ACM DL sub-
set was chosen as the sample database since it contained the
greatest breadth and depth of metadata, hence providing a
comprehensive amount of metadata and content widely rep-
resentative of the metadata and content of the whole collec-
tion. The set of metadata fields considered in the experiment
was Scrriper, = {title, abstract, author, publication},
where publication means the name of the conference or
journal where a paper was published.

Our experiments involved 20 subjects among researchers
in the Virginia Tech Digital Library Research Lab and grad-
uate students from a Digital Library graduate course. The
process is illustrated in Figure 3. Each subject was in-
structed to issue five searches for items of their own interest
in the CITIDEL collection and provide relevance judgments
(as relevant or non-relevant) for the items returned. Sub-
jects were divided in two groups: G1 and G2. Subjects in
group G1 were not aware of the possibility of structuring
queries with field information. They issued unstructured
queries, which were then automatically structured using the
Bayesian network model. Subjects in group G2 were re-
quired to issue manually structured queries. For compar-
ison, an unstructured version of the manually structured
query was created by removing all field structure informa-
tion from these queries, which were again re-structured using
the Bayesian network model.

Gl user Manually G2 user
Keyword query

structured query
Q0 QM/

Relevance
od "

Relevance
judgments

User Interface

!

System
Manually Top-5 automatically
Keyword query structured query structured queries
Qo oM Q1 Q2 Q3 Q4 Q5 Lo

results

Figure 3: Experimental process and evaluation.

All queries, i.e., the unstructured query (QO0), the best
of the top 5 structured queries (Q1-Q5), and the manually
structured query (QM), were sent to the ESSEX search en-
gine and the top 25 items returned by each were merged
(with removal of duplicates). The resulting union set was

completely shuffled and presented to the users for relevance
judgments.

All relevant and non-relevant items returned for each query
were used to compute precision, recall, and F1 figures. Pre-
cision (P) is the percentage of retrieved items that are rele-
vant. It is useful as an indication of how accurate the system
was when retrieving the answers to the user’s question. Re-
call (R) is the percentage of all the relevant items that were
retrieved. It indicates if the system is able to retrieve all of
the relevant items. High recall is especially useful when the
user needs to be certain that all relevant information will
be found. Finally, F'1 combines precision and recall with
equal weights and is defined as F'1 = 2PR/(P+ R). The F1
measure combines precision and recall into a single value,
providing a simple way of evaluating the system’s overall
performance.

To present the results, we also consider two forms of pre-
cision: 10-precision and R-precision. The 10-precision mea-
sure indicates the precision for the first 10 items retrieved
by the system. This measure is important in practice since
it is known that users tend to only look at the top results
in a ranked answer set. The R-precision measure indicates
the precision when all relevant documents were retrieved. It
is a measure of how many spurious results the user has to
look at before all relevant results are seen. Both measures
are useful in determining not only if the system is able to
show relevant results at the top of the list of retrieved items,
but also if it can discover all relevant information while still
keeping the noise level to a minimum.

5.2 Results

Before the experiments, all test subjects answered a short
questionnaire regarding their background and knowledge in
their area of interest in computer science. Among other
questions, users were asked to cite five researchers and three
publications that they would consider of importance in their
selected research area. Surprisingly, most subjects did not
know much about authors other than professors in the de-
partment, or about important publications (conferences and
journals). Probably for this reason, queries were generally
very short, averaging 2.59 terms per query, independently
of being manually structured or not.

The average number of items indicated as relevant by sub-
jects in group G1 was slightly higher than for group G2
(18.79 vs. 14.26 records), with a higher median (12 vs. 8)
and standard deviation (19.46 vs. 14.33). This may be ex-
plained by the fact that when users are forced to use field
structure information, queries tend to be more focused and
so naturally tend to retrieve a smaller number of relevant
items. This supports the assumption that structured queries
are more precision-oriented.

Figure 4 shows the distribution of fields and combination
of fields used by subjects in G2 in their manually structured
queries. It is worth noticing that 63% of the queries contain
only one field, there are no queries using only publication,
only one using three fields, and none using all the four fields.
This distribution may again be explained by the lack of user
knowledge about publications and the difficulty of creating
structured queries manually. We now examine the impact
of query structuring, manually and automatically, on the
quality of the retrieved results.

5.2.1 Unstructured vs. Structured Queries



Figure 4: Distribution of fields and combination of
fields in the manually structured queries.

Tables 1, 2, 3, and 4 show a comparison between the un-
structured query (QO), the top ranked automatically struc-
tured query (Q1), the best of the top 5 structured queries
(Q1-Q5), and the manually structured query (QM).

Q1 vs. QO F1 10-precision | R-precision
G1 64.5% 83.3% 81.2%
G2 73.4% 89.3% 85.7%

Table 1: Percentage of times query Q1 is better or
equal to query QO considering the F'1, 10-precision,
and R-precision measures, in groups G1 and G2.

Average F1 10-precision | R-precision
Q0 (G1 + G2) | 28.2 31.1 29.4
Q1 (Gl + G2) | 36.4 51.4 49.7

Table 2: Average F'1, 10-precision, and R-precision
values for all the Q0 and Q1 queries, in groups G1
and G2 together.

For all 97 queries®, the top ranked structured query Q1
had an overall better performance than the unstructured
query Q0. Considering the F'1 measure, results for Q1 were
equal to or better than results for Q0 in an average of 69%
of the searches, in both groups. In terms of 10-precision, Q1
was better or equal to QO0: 86.3%. In terms of R-precision,
Q1 was better or equal to QO in 83.4% of the searches. We
can conclude that, without the need of user intervention
(except from entering the query keywords), the system is
able to automatically find a structured query in the top of
the ranked list that outperforms a simple keyword-based
search in the majority of cases. In fact, as shown in Table 2,
the average F'1, 10-precision, and R-precision values for Q0
were 28.9, 31.9, and 29.4, while for Q1 the corresponding
values were 35.9, 51.4, and 49.7.

SRaw data for three queries was lost.

best(Q1-Q5, F1 10-precision | R-precision
QM) vs. QO

G1 81.2% 100% 100%

G2 85.1% 97.9% 97.9%

Table 3: Percentage of times the best (manual or
automatically) structured query is better or equal
to query QO considering the F'1, 10-precision, and
R-precision measures, in groups G1 and G2.

Average F1 10-precision | R-precision
Q0 (G1+G2) 289 | 31.1 29.4
best(Q1-Q5,QM) | 62.2 | 84.5 84.7
(G1+G2)

Table 4: Average F'1, 10-precision and R-precision
values for the best (manual or automatically) struc-
tured query and query QO, in groups G1 and G2
together.

When comparing the best of the Q1 through Q5 and QM
queries with QO, it is clear that using structured queries
is better than a simple keyword-based search. The best
structured query showed better or equal results than Q0 in
83.7% of the searches, considering the F'1 measure and in
98.9% considering both 10-precision and R-precision. The
average values were 62.3 for F'1, 84.5 for 10-precision, and
84.7 for R-precision.

These results clearly indicate that structured queries, ei-
ther manually constructed or automatically generated, per-
form better than their unstructured counterparts in the ma-
jority of cases. The situations in which the unstructured
query QO performed better can be classified into four major
cases:

1. Insufficient or outdated sampling data

The most common reason for Q0 to outperform the
structured queries was the absence of support in the
sample database for very specific queries. This was
especially evident in queries concerning new trends in
computer science research (e.g. “peer-to-peer comput-
ing”, “cognitive affordance”, “multi-modal presenta-
tion”, or “discourse processing”). One obvious solu-
tion would be to use the whole collection as the sample
database, although this could have a negative impact
on performance. Another possibility is to use better
sampling strategies, which can guarantee high-quality
coverage using the minimum possible data, and good
policies for updates.

2. Very specific queries and strict separation between title
and abstract

It was noticed that, in almost all cases, subjects did
not care in which field the relevant concepts in the
query appeared. For instance, in very specific or short
queries like “kerberos” users do not care if the word
“kerberos” appears in the title or the abstract. Since
the query structuring process must choose one field
to insert the word “kerberos”, say, the title field,
the structured query becomes too specific, thus not



retrieving all relevant items, despite having good pre-
cision. This suggests that some kind of combination
(for instance, a Boolean OR) of fields with a large over-
lap in vocabulary, such as titles and abstracts, in the
automatically structured query, may be beneficial.

3. The “+” constraint is too restrictive

Another assumption in this work was that structured
queries are, by nature, more focused and therefore
more precision-oriented. This led to the design choice
of enforcing the words in the structured queries to ap-
pear in the respective fields by using the “+” operator.
In a few cases, this assumption proved too restrictive,
mainly in long queries (e.g., “parallel all pairs short-
est path”) or in queries with two or more embedded
concepts that never occur together in the collection
(e.g., “peer-to-peer comparison systems”). In these
cases the “+” constraint became too restrictive and re-
turned none or few results. Subjects preferred to mark
at least a few records as relevant, even if all relevant
concepts in the query did not appear together in the
document, rather than mark no result at all. One ob-
vious solution is to relax the “+” constraint, but initial
tests showed that performance would be degraded. A
better choice could be to identify these extreme cases
and only then relax the constraint or apply techniques
of query splitting [21].

4. Failure of the model

In very few cases the network model was unable to
correctly rank the structured queries, even when there
was support from the sample database. The main rea-
sons for this problem are ties in the ranking and skewed
keyword distributions. Ties occur when several of the
structured queries get the same score and, thus, their
ranking order becomes arbitrary. Keyword distribu-
tions in the collection are skewed because some fields
tend to contain more words than others. For instance,
the abstract field is larger than most others and, thus,
contains the majority of words in the collection. For
this reason, the Bayesian network model tends to as-
sign higher probabilities to queries that contain ab-
stracts. One possible solution to both problems is to
assign different weights to each field, according to their
relative importance in the collection. Preliminary ex-
periments have shown that this strategy may be ben-
eficial, but the proper choice of weights for all fields is
hard to obtain and will require further experimenta-
tion.

5.2.2 Manually Structured vs. Automatically Struc-
tured Queries

We next compare the performance of the best automati-
cally structured query to the manually structured query. As
shown in Table 5, the best automatically generated query
tied or outperformed query QM in 91.8% of the searches,
considering the F'1 measure. Considering 10-precision and
R-precision, the best structured query equaled or outper-
formed QM in 97.9% of the searches. The average F'1, 10-
precision, and R-precision values for query QM are 55.6,
72.5, and 70.2, respectively, while for the best structured
query the values are 59.8, 83.4, and 84.7, respectively, as
shown in Table 6.

best (Q1-Q5) | F1
vs. QM
G2 91.8% 97.9% 97.9%

10-precision | R-precision

Table 5: Percentage of times the best automatically
structured query is better or equal to query QM con-
sidering the F'1, 10-precision, and R-precision mea-
sures, in group G2.

Average F1 10-precision | R-precision
Manual 55.6 72.5 70.2
best (Q1-Q5) 59.8 | 83.4 84.7

Table 6: Average F'1, 10-precision and R-precision
values for the best automatically structured query
and query QM, in group G2.

We note that, in most cases, one of the top five automati-
cally structured queries precisely matched the query manu-
ally structured by the user. Also, even when not completely
correct, automatically structured queries generally outper-
formed manual structured queries.

These results can be explained. When judging the re-
turned items’ relevance, test subjects tended to focus mostly
on the title field. Thus, in cases where the automatically
structured query contains the relevant concepts in the title
field, users almost always considered the returned items as
relevant. On the other hand, items that contained relevant
concepts in other fields, such as in the abstract or publica-
tion, were very often ignored. For this reason, the automatic
structuring model was able to outperform the results of the
manually structured queries, in which the abstract field was
often the user’s choice.

The few cases where QM performed better than one of
the top five structured queries were due to one of the four
cases described in the previous section, in particular Case
1, in which there was insufficient or outdated information
in the sampling data. These results show that automatic
structuring of queries is a viable alternative to substitute
manual structuring, and one that significantly reduces the
burden on the users while still yielding good performance.

6. RELATED WORK

Very few works have explored user interfaces that facili-
tate the search process in digital libraries. However, there
are notable exceptions: the DLITE project [10], SenseMaker
[5], and the query synthesizers described in [4]. In most
cases, DL search services are limited to simple keyword-
based query formulation, a rather common resource in all
types of information retrieval systems [3]. More recently,
keyword-based queries also have been introduced to struc-
tured databases [2,13,17]. Furthermore, there is a long
history of work in the information retrieval community on
(semi)automatic generation of queries [6,18,20,24,29] but it
generally did not focus on structuring opportunities.

In this work, keyword-based queries formulated by the
user are given structure by the use of a Bayesian network
model. This is somehow similar to the work of Croft et
al. [11], where Boolean queries are derived from a user given
a natural language query, and then improved with automat-



ically inferred phrases. Bayesian network models were first
used in IR problems by Turtle and Croft [27] and later by
Ribeiro-Neto and Muntz [23] (upon whose work our model
is based). More recently, Acid et al. [1] further refined such
models so that exact propagation algorithms can be used
to efficiently compute probabilities. Bayesian networks also
have been applied to other IR problems besides ranking as,
for example, relevance feedback [19], automatic construc-
tion of hypertexts [26], query expansion [14], information
filtering [9], ranking fusion [28], and document clustering
and classification [7,15]. Nevertheless, there have been few
studies similar to this study.

7. CONCLUSIONS

In this paper, through a number of user experiments, we
have shown that: (1) structured queries perform better than
pure keyword-based queries in DL searching services based
on fielded metadata; and (2) a system can be used to auto-
matically add structure to the users’ queries, thus providing
a viable alternative to manual structuring that significantly
reduces the burden on the users while still yielding good
performance. The experiments performed confirm that, in
the majority of cases, better results are achieved by struc-
tured queries than by unstructured queries. Also, using the
Bayesian network model proposed in [8] and an appropri-
ate term weighting scheme, automatically structured queries
outperform not only the unstructured queries but also the
query manually structured by the user.

We may conclude that a system such as the one used in
this work can be effectively used to improve DL search ser-
vices. We envision a search system that is able to suggest
a few alternative structured queries to the user. Acccord-
ing to a semi-automatic scenario, these structured queries
can be presented together with the results of the initial un-
structured query. By clicking on one of these candidates,
the user could get corresponding structured search results —
a refinement on the initial list of items retrieved. Alterna-
tively, according to a fully automatic scenario, the system
can simply submit the highest ranked structured query, and
provide corresponding results without user intervention.

Further improvements on the models used in this work
are possible. For instance, if the list of candidate structured
queries is too long, too much time would be spent by the
user in selecting the most appropriate candidate. Thus, it
would be important to guarantee that the top one or two
candidates successfully contain the best structured query in
the majority of cases. We believe that such a level of perfor-
mance is ultimately attainable with minor adjustments to
our model and implementation.

Besides testing the system in production mode in CITI-
DEL and other DLs hosted in the Digital Library Research
Laboratory, future work will continue in a number of ways.
First, we want to investigate different and more effective
sampling strategies that minimize the discovered problems
of incompleteness and outdated information, including good
policies for updates. Second, we will investigate automatic
field weighting based on the relative or perceived impor-
tance of the fields, in order to increase the accuracy of our
model. Third, we intend to investigate new models that can
combine fields with large vocabulary overlap (e.g., titles and
abstracts) in the query, and to study possible ways to relax
the “4+” constraint without reducing effectiveness. Further,
we plan to investigate the effect of the “+” constraint by

itself in keyword-based queries. Fourth, we plan to incorpo-
rate relevance feedback and personalized ranking strategies
to our belief network models [16]. Finally, we intend to work
on new approaches to improve system performance that go
beyond our simple caching strategy.

Acknowledgments

This research work was funded in part by the NSF—grants
DUEO0136690, DUE0121679 and IIS0086227, by the I3DL
project—grant 680154/01-9, by the GERINDO project—
grant MCT/CNPq/CT-INFO 552.087/02-5, by individual
grants MCT/FCT SFRH/BD/4662/2001 (Pavel Calado) and
CNPq 304890/02-5 (Alberto H. F. Laender), by the SiteFix
project, grant MCT-CNPQ-CT-INFO 55.2197/02-5, by a
PHILIPS MDS Manaus R&D sponsorship (Altigran S. Da
Silva), and by a fellowship from AOL (Marcos A. Gongalves).

REFERENCES

[1] S. Acid, L. M. de Campos, J. M. Ferndndez-Luna, and
J. F. Huete. An information retrieval model based on
simple Bayesian networks. International Journal of
Intelligent Systems, 18(2):251-265, January 2003.

[2] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A
system for keyword-based search over relational
databases. In Proceedings of the 18th International
Conference on Data Engineering, pages 5-16, San
Jose, CA, USA, February 2002.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison Wesley, New York,
NY, USA, 1999.

[4] M. Baldonado, S. Katz, A. Paepcke, C.-C. K. Chang,
H. Garcia-Molina, and T. Winograd. An extensible
constructor tool for the rapid, interactive design of
query synthesizers. In DL’98: Proceedings of the 3rd
ACM International Conference on Digital Libraries,
pages 19-28, Pittsburgh, PA, USA, June 1998.

[5] M. Baldonado and T. Winograd. Sensemaker: An
information-exploration interface supporting the
contextual evolution of a user’s interests. In
Proceedings of ACM CHI 97 Conference on Human
Factors in Computing Systems, pages 11-18, Altlata,
GA, USA, March 1997.

[6] D. Cai, C. J. V. Rijsbergen, and J. M. Jose.
Automatic query expansion based on divergence. In
Proceedings of the 10th International Conference on
Information and Knowledge Management CIKM 01,
pages 419-426, New York, Novemeber 2001.

[7] P. Calado, M. Cristo, E. Moura, B. R.-N.

Nivio Ziviani, and M. A. Gongalves. Combining
link-based and content-based methods for web
document classification. In Proceedings of the 12th
International Conference on Information and
Knowledge Management, pages 394-401, New Orleans,
LA, USA, 2003.

[8] P. Calado, A. S. da Silva, R. C. Vieira, A. H. F.
Laender, and B. A. Ribeiro-Neto. Searching web
databases by structuring keyword-based queries. In
Proceedings of the 11th International Conference on
Information and Knowledge Management, pages
26-33, McLean, VA, USA, 2002. ACM Press.

[9] J. P. Callan. Document filtering with inference



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

networks. In Proceedings of the 19th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
262-269, Zurich, Switzerland, August 1996.

S. B. Cousins, A. Paepcke, T. Winograd, E. A. Bier,
and K. Pier. The digital library integrated task
environment (DLITE). In DL’97: Proceedings of the
2nd ACM International Conference on Digital
Libraries, pages 142-151, Philadelphia, PA, USA, July
1997.

W. B. Croft, H. R. Turtle, and D. D. Lewis. The use
of phrases and structured queries in information
retrieval. In Proceedings of the 18th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
32-45, Chicago, IL, USA, October 1991.

A. S. da Silva, P. Calado, R. C. Vieira, A. H. F.
Laender, and B. A. Ribeiro-Neto. Effective Databases
for Text & Document Management, chapter
Keyword-based Queries over Web Databases, pages
74-92. Idea Group Publishing, 2003.

S. Dar, G. Entin, S. Geva, and E. Palmon. DTL’s
DataSpot: Database exploration using plain language.
In Proceedings of 24th International Conference on
Very Large Data Bases VLBD’98, pages 645-649, New
York, NY, USA, August 1998.

L. M. de Campos, J. M. Ferndndez-Luna, and J. F.
Huete. Query Expansion in Information Retrieval
Systems Using a Bayesian Network-Based Thesaurus.
In Proceedings of the 14th Annual Conference on
Uncertainty in Artificial Intelligence (UAI-98), pages
53-60, San Francisco, CA, July 1998.

S. T. Dumais, J. Platt, D. Hecherman, and

M. Sahami. Inductive learning algorithms and
representations for text categorization. In Proceedings
of the Tth International Conference on Information
and Knowledge Management CIKM’98, pages
148-155, Bethesda, Maryland, USA, November 1998.
W. Fan, M. D. Gordon, and P. Pathak. Discovery of
context-specific ranking functions for effective
information retrieval using genetic programming.
IEEE Transactions on Knowledge and Data
Engineering, 2003. In press.

D. Florescu, D. Kossmann, and I. Manolescu.
Integrating keyword search into XML query
processing. WWW9 / Computer Networks,
33(1-6):119-135, 2000.

E. A. Fox. Relational Models of the Lexicon:
Representing Knowledge in Semantic Networks,
chapter Improved Retrieval Using a Relational
Thesaurus for Automatic Expansion of Boolean Logic
Queries, pages 199-210. Cambridge University Press,
1988.

D. Haines and W. B. Croft. Relevance feedback and
inference networks. In Proceedings of the 16th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
2-11, Pittsburgh, PA, USA, June 1993.

M. Mitra, A. Singhal, and C. Buckley. Improving
automatic query expansion. In Proceedings of the 21st
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,

21]

[22]

23]

[24]

25]

26]

27]

28]

[29]

pages 206—214, Melbourne, Australia, August 1998.
F. D. Neves and E. A. Fox. Extending retrieval with
stepping stones and pathways - NSF proposal
(funded), 2003.

J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers, 2nd edition, 1988.

B. Ribeiro-Neto and R. Muntz. A belief network
model for IR. In Proceedings of the 19th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
253-260, Zurich, Switzerland, August 1996.

G. Salton, C. Buckley, and E. A. Fox. Automatic
query formulations in information retrieval. Journal of
the American Society for Information Science,
34(4):262-280, July 1983.

G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, 1983.

D. Shin, S. Nam, and M. Kim. Hypertext construction
using statistical and semantic similarity. In DL’97:
Proceedings of the 2nd ACM International Conference
on Digital Libraries, pages 5763, Philadelphia, PA,
USA, July 1997.

H. R. Turtle and W. B. Croft. Inference networks for
document retrieval. In Proceedings of the 13th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
1-24, Brussels, Belgium, September 1990.

R. F. Valle, B. A. Ribeiro-Neto, L. R. S. de Lima,

A. H. F. Laender, and H. R. F. F. Junior. Improving
text retrieval in medical collections through automatic
categorization. In Proceedings of the 10th
International Symposium on String Processing and
Information Retrieval SPIRE 2003, pages 197210,
Manaus, Brazil, October 2003.

E. M. Voorhees. Query expansion using
lexical-semantic relations. In Proceedings of the 17th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 61-69, Dublin, Ireland, July 1994.



