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Abstract

Motivated by recent development in high speed networks, in this paper we study two
types of stability problems: (i) conditions for queueing networks that render bounded queue
lengths and bounded delay for customers, and (ii) conditions for queueing networks in which
the queue length distribution of a queue has an exponential tail with rate 6. To answer these
two types of stability problems, we introduce two new notions of traffic characterization:
minimum envelope rate (MER) and minimum envelope rate with respect to §. Based on
these two new notions of traffic characterization, we develop a set of rules for network opera-
tions such as superposition, input-output relation of a single queue, and routing. Specifically,
we show that (i) the MER of a superposition process is less than or equal to the sum of the
MER of each process, (ii) a queue is stable in the sense of bounded queue length if the MER
of the input traffic is smaller than the capacity, (iii) the MER of a departure process from
a stable queue is less than or equal to that of the input process (iv) the MER of a routed
process from a departure process is less than or equal to the MER of the departure process
multiplied by the MER of the routing process. Similar results hold for MER with respect
to 6 under a further assumption of independence. These rules provide a natural way to
analyze feedforward networks with multiple classes of customers. For single class networks
with nonfeedforward routing, we provide a new method to show that similar stability results
hold for such networks under the FCFS policy. Moreover, when restricting to the family of
two-state Markov modulated arrival processes, the notion of MER with respect to 6 is shown

*TEEE Trans. Automatic Control, Vol. 39, pp. 913-931, 1994.



to be equivalent to the recently developed notion of effective bandwidth in communication

networks.
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1 Introduction

As information technology advances, the demands for new types of communication services
have been rapidly increased. To cope with these new demands, recent development of commu-
nication networks aims to serve these different demands through an integrated network, i.e., an
Integrated Services Digital Network (ISDN). Before entering an ISDN, each service proposes
to the network controller a service request which includes the information of source, destina-
tion, traffic pattern and grade of service (GOS). Judging from the “state” (current utilizations)
of the network, the network controller then grants this service request if the GOS of this re-
quest and other traffic that are currently being served are satisfied. Otherwise, the service
request is rejected. As noted in [42, 40, 34], an open and challenging problem is how to design

a network controller to make such a decision. Recent research in this area can be found in
[5, 14, 15, 19, 21, 22, 20, 23, 25, 26, 30] and many others.

Motivated by the problem in communication networks, in this paper we study two types of
stability problems: (i) conditions for queueing networks that render bounded queue lengths
and bounded delay for customers, and (ii) conditions for queueing networks in which the queue
length distribution of a queue has an exponential tail with rate §. The first type of problem
corresponds to the case when GOS requires no loss or bounded delay, while the second type of
problem might be suitable for the case when GOS requires an extremely small loss probability,
e.g. 1072, Other interesting applications of these stability problems include investigation of
inventory levels and due dates for manufacturing systems, especially for the semiconductor
manufacturing systems [12, 33, 32]. In such systems, the variability of arrivals of parts and
processing times of parts are small. Moreover, there are due dates for certain types of products.
The question is if there exists a scheduling policy that meets all the due dates while keeping
the inventory levels bounded.

We will answer these two types of stability problems in Sections 2 and 3 respectively. Our
approach to these two problems is to develop stability conditions parallel to the classical con-
ditions for queues with random inputs. It is well known (e.g., [31, 6, 3, 7]) that a single-server
queue with interarrival times {7T,,n > 1} and service times {S,,n > 1} is stable, i.e., the
delays converge in distribution to a finite random variable, if {(T},,S,),n > 1} is stationary
and ergodic and ET,, > ES,, (a random variable is finite if Prob(|X| < oc) = 1). Moreover, if
ET, < ES,, then the delays converge almost surely to infinity. From this classical example, we
deduce two conditions: (i) traffic characterization and (ii) traffic condition. Stationarity and
ergodicity reduces the complexity of characterizing a process to a single number, the average
rate. The traffic condition then ensures that the input rate is smaller than the output rate.

To obtain an appropriate traffic characterization of the first type of problem, we use the notion

of “envelope process” by Cruz [14, 15]. The notion of envelope process is similar to stationarity



since it bounds the original process for an arbitrary shift of time (note that a stochastic process
is stationary if its joint distribution is invariant with respect to an arbitrary shift of time). By
adding the subadditive property to an envelope process, we show that a subadditive envelope
process has an average rate. The subadditive property corresponds to the ergodic property
in a G/G/1 queue, which requires the existence of an identical average for each sample path.
Among all envelope processes, we denote the smallest envelope process as the minimum envelope
process (MEP). The MEP is subadditive and has an average rate, denoted as the minimum
envelope rate (MER). Based on the new traffic characterization of MER, we develop a set of
rules for network operations such as superposition, input-output relation of a single queue, and
routing.

(i) (Lemma 2.3) The MER of a superposition process is less than or equal to the sum of the
MER of each process.

(ii) (Theorem 2.4) A queue is stable in the sense of bounded queue length and bounded delay
for customers if the MER of the input traffic is smaller than the capacity, and it cannot
be stable if the MER is larger than the capacity.

(iii) (Lemma 2.6) The MER of a departure process from a stable queue is less than or equal
to that of the input process.

(iv) (Theorem 2.7) The MER of a routed process from a departure process is less than or equal
to the MER of the departure process multiplied by the MER of the routing process.

These rules are parallel to classical stability results and provide a natural way to analyze
feedforward networks with multiple classes of customers. The analogy is shown in Table 1.

Table 1. Analogy of stability conditions

shift invariant existence of average stable unstable
classical stationary process ergodicity ET, > ES, | ET, < ES,
deterministic | envelope process subadditivity MER < ¢ MER > ¢

For single class networks with nonfeedforward routing, we use the facts that the MER’s of
departure processes are bounded by capacities in such a network and that the total number of
customers in the network is decreasing with respect to the capacity of each queue. We show
that the queue length and delay at each queue is bounded under the First Come First Served
(FCFS) policy if the input rates from solving traffic equations are smaller than the capacities.
As in Lu and Kumar [32], in general the same stability result may not hold for multiclass
networks with nonfeedforward routing, even though the input rate is smaller than the capacity
at each queue. We then discuss various scheduling policies that stabilize multiclass networks



with nonfeedforward routing such as priority assignments and capacity partitions. Based on
the argument for single class networks, we provide a sufficient condition for the stability of a
multiclass network under the FCFS policy.

In Section 3, we generalize the notion of MER as a function of 6. This characterization is called
minimum envelope rate with respect to . This rate function is increasing in # and ranges
between average rate and peak rate. Moreover, when restricting to the family of two-state
Markov modulated arrival processes, the MER, with respect to 6 is shown to be equivalent to
the recently developed notion of effective bandwidth in communication networks. Parallel to
the development for the first type of problem, we derive a set of rules for network operations.

(i) (Lemma 3.4) The MER with respect to 6 of a superposition of independent processes is less
than (resp. equal to) the sum of the MER with respect to 6 of each process (resp. when

a set of large deviation conditions, [C'1 — 3] in Section 3.1, are satisfied).

(ii) (Theorems 3.8 and 3.9) If the MER with respect to 6 of the input traffic is smaller than the
capacity, then the queue length distribution has an exponential tail with rate . Moreover,
the MER with respect to # of the departure process is less than or equal to that of the
input process.

(iii (Lemma 3.11) The MER with respect to € of a routed process from a departure process
can be bounded by a function of the MER with respect to 6 of the departure process and
the MER with respect to 6 of the routing process.

These rules allow us to analyze acyclic networks with multiple classes of customers, where the
arrival processes in front of each queue are independent. For a single class nonfeedforward
network, we show similar result holds when the routing sequences are i.i.d. Bernoulli random
variables.

We conclude the paper in Section 4, where we discuss possible extensions of the theory developed
in this paper.

Throughout we use increasing and convex in the nonstrict sense.

2 Deterministic networks

In this section, we will answer the type of stability problem regarding bounded queue lengths
and bounded delay for customers. We will introduce the notions of envelope processes and
envelope rate in Section 2.1 as a method for traffic characterization. Network operation rules
for this characterization are developed for a single queue in Section 2.2, and for a feedforward
network with multiple classes of customers in Section 2.3. A single class nonfeedforward network
is addressed in Section 2.4.



2.1 Envelope processes and envelope rates

Consider a nonnegative sequence {a(t),t = 0,1,2,...}. Let A(t1,t2) = Z?:;ll a(t). Cruz [14]
introduced the following characterization of the burstiness of the sequence a(t). He considered

a bounding process A(t) with the following property:
Aty to) < Aty — t1), Vi1 < to.

This process A(t) will be called an envelope process of a(t) in this paper. Note that A(f) is
“stationary” in the sense that it only depends on the difference of the two time epochs #; and
to. In the following lemma, we establish monotonicity and subadditivity for envelope processes.

Recall that a process A(t) is subadditive if A(t; + to) < A(ty) + A(ty) for all ¢ and 5.

Lemma 2.1 Given that A(t) is an envelope process of some unknown nonnegative process a(t),

one could obtain from A(t) another envelope process A'(t) that is increasing and subadditive.

Proof. Let A"(t) = inf,>, A(s). Clearly, A”(t) is increasing. Since a(t) is nonnegative,
A(tl,tQ) S A(tl, to + S) S A(S + 19 — tl) for all s Z 0. Thus, A(tl,tQ) S infsz(] A(S + to — tl) =
A"(ty — t1) for all ¢, <ty and A”(¢) is an envelope process of a(t).

To show the subadditivity, we construct A'(t) from A”(t) recursively by the following equation:

Aﬁ):mmﬁﬂuhggﬂﬁw)+@u—sﬂ.

It is easy to verify inductively that A’(¢) is still increasing in ¢. Note that

Al : Al Al -
At +1) < min [A'(s) + A'(tr + 15— 9)]

< A'(t)) + A'(t2).

Thus, A'(t) is subadditive. Now we show that A’(t) is an envelope process by induction on

t. Clearly, it holds for ¢ = 1 since A’(1) = A”(1). Assume it holds for ¢ — 1 as our induction
hypothesis. From the induction hypothesis, it follows that that for all 7 and 0 < s < ¢,

AT, T +1) = A(T, 7+ s) + AT + 5,7 + 1) < A'(s) + A'(t — 5).

This implies that A(7,7 + ) < ming<s<;[A’(s) + A’(t — 5)]. In conjunction with A(7, 7 + ) <
A"(t), we have A(r, 7 +t) < A'(t). This completes the argument for ¢. O



According to Lemma 2.1, we may assume that A(t) is increasing and subadditive. It is known
(see [28]) that

A A1) ge
fim A0 _ o A e

t—oo ¢ t>1 ¢

if A(t) is subadditive. The limit a will be referred as the envelope rate of the envelope process

A(t).

Since envelope processes are not unique, it is natural to ask if there is a minimum one, i.e.,

an envelope process A*(t) satisfying A*(t) < A(t) for all ¢ and for all envelope processes A(t).
Clearly, the answer to this question is

A*(t) = il;%)A(s, s+t). (1)

Hereafter, we refer to the process A*(t) as the minimum envelope process (MEP) of a(t). It is
easy to see that A*(¢) is increasing and subadditive. Define the minimum envelope rate (MER)
A (1)

a* as the limit, lim;_, %(t) = inf;>1 —5=. One can also view the MER by considering the

family of linear envelope processes proposed by Cruz [14, 15]

F {a: A*(t) < at + 6 for some nonnegative constant 7}. (2)

The linear envelope processes in (2) have been used in [14, 15] as a tool for computing the bound
for delays. Clearly, a* < a for all @ € F. Since limy_,, A*(t)/t = a*, for every € > 0 there exists
a constant ¢y such that for all ¢ > tg, A*(t)/t < (a* +€). Let 0 = max;4,[A*(t)] = A*(to — 1).
It then follows that A*(t) < (a* + €)t 4+ 0. Thus,

a* =infla : a € F]. (3)

A(s,s+t)
t

In the following, we show by a counterexample that this is in general not true.

If the average rate of a(t) exists, i.e., lim;_, = ¢ for all s, then one might ask if a’ = a*.

Example 2.2 Let a(t) be a function that alternates between ones and zeros as follows: 1 one,
1 zero, 2 ones, 2 zeros, 3 ones, 3 zeros, 4 ones, 4 zeros, etc. Then we have

1 1
EtSA[O,t] < §t+\/i+1.

A(s,s+t)
t

of consecutive 1’s and thus a* = 1.

Thus, lim;_, 4 = 1/2. However, one could find a subsequence with an arbitrary number



We note that under the uniformly convergent condition, one could interchange the limit with
the supremum to derive that a* = a’. One could also verify that the uniformly convergent

condition is satisfied when a(t) is periodic.

In the following lemma, we establish bounds for the MEP and the MER of a superposition of
K processes.

Lemma 2.3 Let a(t) = Zszl ai(t) be a superposition of K nonnegative processes. Then
A*(t) < 31 Ap() and a® < YR aj

Proof. Observe that

Mw

K
A*(t) = sup A(s,s +t) = sup Z (s,s+1) ZsupAks s+t) = (4)
> :

s>0 > k=1 520 k=1

That a* < S5, ay, follows immediately by taking limits. O

Throughout, we shall use a lower case letter to denote a process, e.g., a(t) and the corresponding
upper case letter to denote the partial sums, e.g., A(t, 1) = 12 tll (t). A superscript * on
the corresponding upper (lower) case letter will denote the MEP (MER) of that process, e.g.,
A*(t) (a*). We shall use the letters a, b and p to denote an arrival process, a departure process

and a sequence of routing parameters, respectively.

2.2 A single queue

In this section, we consider a discrete-time queue with one class of customers. Let a(t) and
q(t) be the number of arrivals at time ¢ and the number of customers in the queue at time ¢
respectively. Assume that the buffer size is infinite and that the server can serve ¢ customers
per unit of time. The constant ¢ will be referred to as the capacity of the server. Under a
work-conserving policy, i.e., a policy that does not allow idling when there are customers in the
queue, the queue is governed by the following Lindley’s equation:

q(t +1) = (q(t) +a(t) — )" (5)

where (z)* ef max (0, z).

Let A(ty,t9) = Y52 tl a(t) be the number of arrivals in [t1,%2) and A*(¢) be its MEP with MER

a*. Note that A*(t) is the maximum number of arrivals within ¢ units of time.



In the following theorem, we show that there exists a bounded delay if a* is less than the
capacity and the delay cannot be bounded if a* exceeds the capacity. A similar result also
holds for queue length.

Theorem 2.4 (i) If a* < c, then there exists a constant d < oo such that the delay of every

customer s not longer than d.

(ii) If a* > ¢, then there does not exist a constant d < oo such that the delay of every customer

15 not longer than d.

As noted in the introduction, we have complete analogy to the the classical stability conditions
for queues with random input: (i) envelope processes, which bounds the number of arrivals
with respect to an arbitrary shift of time, correspond to stationary processes which require the
joint distributions to be invariant with respect to an arbitrary shift of time, (ii) subadditivity
of envelope processes, which guarantees the existence of a limit, corresponds to ergodicity of
stationary processes which also guarantees the existence of an identical limit for every sample

path, and (iii) the condition ¢* < ¢ in Theorem 2.4 is simply the usual traffic condition.

Proof. (i) We first show that the length of each busy period is bounded above by a constant
d. This in turn implies that the delay of each customer is bounded above by d. This argument
has been used in Cruz [14, 15] and Kurose [30]. Let

d Y inf{t >1: A*(t) — ct < 0} (6)

A*T(t) = a* < ¢, limy_y00 A*(t) — ¢t = —o0 and thus d is finite. Observe that the

total number of arrivals within d units of time is bounded above by A*(d). Thus, if we start

Since lim;_, o

from an empty system at time 0, then the next time (under a work conserving policy) that the
queue becomes empty must be within d units of time. Following the same argument shows that
each busy period is bounded above by d.

(ii) We show that the queue length cannot be bounded above by a constant. Since the server

can serve at most ¢ customers per unit of time, this in turn implies that the delay of each

A* (1) A (1)
t t

have that A*(t)/t > a* for all t. From (1), it follows that for every ¢ and e > 0, there exists a

constant m > t such that

customer cannot be bounded above by a constant. Since lim;_, oo = infy>q = a*, we

A(m —t,m) > A*(t) —e > a™t —e. (7)

If the queue is empty at time 0, expanding (5) recursively yields

g(m) = max [0, a(m—1)—c,a(m—1)+a(m—2)—2¢,...,a(m—1)+a(m—2)+... (Z(O)*'In()}. (8)



In conjunction with (7), we conclude that

a(m) > A(m — t,m) — tc

> (a" — )t —e.

Since a* > c and t and € are arbitrary, the queue length cannot be bounded above by a constant.
O

Remark 2.5 Though Theorem 2.4(i) is only stated for a queue with a fixed capacity ¢, it can
be extended to a queue with a time varying capacity. Specifically, let ¢(¢) denote the maximum
number of customers that can be served at time ¢ and C(t1,%2) = Ziftll c(t). Instead of
defining an envelope process from above, one can also define an envelope process from below.
The maximum lower envelope process, denoted by C,(%), is then defined to be inf,>q C(s, s + 1).
Analogous to the argument for MEP, one can easily verify that the maximum lower envelope
process is increasing and superadditive. Thus, one can define the maximum lower envelope rate,
denoted by c., as limy,oo Ci(t)/t = sup;>; Ci(t)/t. Under the condition a* < c,, the delay of

every customer is bounded above by d, where

d ¥ inf{t > 1: A*(t) — C.(t) < 0}. (9)

In particular, if ¢(¢) is a periodic sequence, then ¢* = ¢, and both rates are the same as its
average rate. We will not pursue the notion of lower envelope processes any further in this
paper. Further development along this line can be found in [10, 11].

In Theorem 2.4(i), we do not assume any particular scheduling policy as long as it is work-
conserving. If we assume that the scheduling policy is FCFS, then the bound for the delay in
(6) could be tightened by considering the maximum queue length. The delay of a customer
that arrives at time ¢ + 1 is bounded above by [(g(t + 1) + a(t + 1))/c]. From (8), it follows
that

g(t+1) +a(t+1) < max [A*(1), A*(2) — ¢, A*(3) — 2¢,..., A*(t+2) — (t+1)c].  (10)

By the definition of d in (6), A*(d) < ¢d. Thus, for ¢t > d, we have from the subadditive property
of A*(t) that

A() = (t—1)e < A*(t—d) — (t—d — 1)e+ A*(d) —cd < A*(t —d) — (t —d — 1)c.

In conjunction with (10), it follows that for all ¢

g(t+1) +a(t+1) < max [A*(1), 4*(2) — ¢, A(3) ~ 2¢,..., A*(d) —e(d ~ 1)]. (1)



Note that the right hand side of (11) is independent of ¢ and provides an upper bound for the

maximum queue length.

As shown in Example 2.2, we also note that the two conditions (i) the existence of an average

rate ¢’ and (ii) ¢’ < ¢ are not enough to guarantee bounded delays.

Now we consider the departure process from the queue. Let B(t,%9) denote the number of
departures in [t,t2). Also let B*(t) and b* be the corresponding MEP and MER.

Lemma 2.6 If the delay of each customer is bounded above by a finite constant, then the MER

of the departure process is the same as that of the input process, i.e., b* = a*.

Proof. Since each arrival can be delayed by at most d units of time,
A(t1,ta) < B(ty,to +d) < Aty — d, to + d). (12)
This implies that A*(t) < B*(t +d) < A*(t + 2d). Thus, b* = a*. O

We note that the first inequality in (12) was used in Cruz [14] to compute the delays in feedfor-
ward networks. Also, Lemma 2.6 does not depend on how the queue is operated. For instance,
the input process might be a superposition process of multiple classes of customers. As long as
the delay for each customer is bounded above by a constant, the result in Lemma 2.6 holds for
each class of customers. In the next section, we will use the input-output relation in Lemma
2.6 to discuss the stability of feedforward networks.

2.3 Multiclass networks with feedforward routing

In this section, we consider a discrete-time queueing network with K classes of customers and
I queues. We assume that the buffer sizes of these I queues are infinite and that the service
requirements of these K class customers at all I queues are one unit of time. The capacity
of queue i is ¢;, i.e., at most ¢; customers can be served at queue i per unit of time. We
further assume that each queue is operated under a work-conserving policy. The number of
class k, k =1,2,..., K, customers that arrive at the system at time # is denoted by ag(t),t =
0,1,2,.... These arriving customers are then routed to the I queues according to a set of routing
parameters po;x(n),i = 1,2,..., I,k =1,2,...,K,n =0,1,2,.... The n' class k customer is
(resp. not) routed to queue i if pg;x(n) = 1 (resp. 0). Similarly, the n departure of class k
customers from queue i is (resp. not) routed to queue j if p; ;(n) = 1 (resp. 0). We assume

that p; j x(n) = 0 for all i > j, i.e., the network is feedforward (see figure 1). We note that we

do not assume that Z][':1 pijk(n) < 1. This allows us to model broadcasting.

10



Let a;x(t) be the number of class k customers that arrives at queue ¢ at time ¢ and a;(t) =

S K L aik(t). Let ¢i(t) be the total number of customers in front of queue i at time ¢. Then we

have the Lindley equation for queue 7, ¢ =1,...,1I:
qi(t +1) = (gi(t) + ai(t) — )™ (13)

Let Aj(t1,t2) = 2?2;11 ajr(t), 7 = 0,1,2...,I, be the number of class k arrivals at queue
j (the system when j = 0) in [t;,?2) and A7, (f) and a}, be its MEP and MER. Also let

Aj(t,te) = Yy Ajk(t1,t2) be the total number of arrivals at queue j in [t1,22) and A} ()

be its MEP with the MER aj, j = 1,...,1. Let P, (m) be the MEP of the routing process

pijk(n), ie.,
s+m—1
E def

Pm-’k(m) = sup Pijik(n). (14)
520 p=s

*
In other words, Pz',j,k

(m) is the maximum number of class k customers that are routed to queue
j among m consecutive class k customers that depart from queue 7. Similarly, let p;"j’k be the

corresponding MER. Let

j—1
Pk = a0 kPojk T Z PikPijks J =1, 1 (15)
i=1
In the following theorem, we will show that p;; is an upper bound for the MER of class k
customers at queue j and that the delay of each customer can be bounded above by a constant
if the bound for the MER of the arrival process at each queue is less than the capacity of the
corresponding queue.

Theorem 2.7 If 215:1 pjk < cj forall g =1,... 1, then the delay of a customer through the

network can be bounded above by a constant.

Proof. We will prove this by double induction on j = 1,...I. Our induction hypotheses are (i)
the delay is bounded above by a constant and (ii) the MER of the departure process of class

*

J
j = 1. In this case, the number of class k customers arrived at the first queue in [t1,#9) is the

k customers from queue j, denoted by b7,, is not greater than p;;. First, we show the case

number of class k& customers that arrives within this time interval and are routed to queue 1.
Thus, we have

Arg(t,t2) < Py g(Aok(ti t2) < Py (At — 1)) (16)

This implies that
1£() < By (Ag k(1)) (17)

11



Note that

P (Ao ®) P (Agy () A ) L
lim —————— = lim = P0,1,k%0 k-

t—00 t T {500 AE k(t) t

Since py k= Py x00. % We have
*
arr < Pk (18)

In conjunction with Lemma 2.3 for a superposition of K processes, it follows that

K K
* *
af <D aip <D ik
k=1 k=1

It then follows from Theorem 2.4 (i) and the assumption S5, p1k < ¢ that the delay for
each customer at queue 1 is bounded above by a constant. This completes the argument for
the induction hypotheses (i) for queue 1. That the induction hypothesis (ii) for queue 1 holds

follows from Lemma 2.6 and (18).

Now suppose the induction hypotheses (i) and (ii) hold for the first j — 1 queues. Note that
the arrival process of class k£ customers at queue j is a superposition of the external arrivals
that are routed directly to queue j, and all the class k customers that depart from queue i,
1 =1,...7 — 1, and are routed to queue j. Using Lemma 2.3, the argument in the previous
paragraph for routing and the induction hypothesis (ii) yields

i1 i1
* * * * * * * * _ .
a5 < ag .yt D Uikl ik < G0RPD kT D PLEDI jk = Pik-
=1 =1

Apply Lemma 2.3 once more to show that aj < Z,le pjk- Again, it follows from Theorem 2.4

(i) and the assumption 215:1 pjk < c¢j that the delay at queue j is also bounded above by a

finite constant. Finally, applying Lemma 2.6 completes the induction hypothesis (ii) for queue
J- m

We note that the stability result in Theorem 2.7 can also be extended to networks in which

customers have different service times. Let s; 4(n),i=1,...1, k =1,..., K, denote the service

time of the n'? class k customer at queue i and s7;’s be the corresponding MER's.

Theorem 2.8 If 215:1 PjkS;k < ¢j for all j, then the delay of a customer through the network

can be bounded above by a constant.

Proof. We only prove it for a queue with a single class of customer. The rest of the proof is
completely parallel to the development in Theorem 2.7. Consider the workload process, v(t),

12



(virtual waiting times) that satisfies the following Lindley’s equation:
vt +1) = (v(t) +w(t) — )T, (19)

where w(t) is the total amount of work that arrives at time ¢. As in the proof for Theorem
2.4, one can show that the busy period at each queue is bounded above by a finite constant, if

w* < ¢. Since the total amount of work that arrives within an interval is the sum of the work
of the customers that arrive within the interval, 2271 w(t) satisfies a similar inequality to that

in (16). This implies w* < a*s*. In conjunction with the assumption a*s* < ¢, the delay of
every customer is bounded above by a constant. O

Note that s; ;(n) may not be the same as the service time of the n'" class k customer that arrives

at the network. However, for the network with fixed routing for each class, i.e., p; jx(n) =1 or

0 for all n, and the FCFS policy at each queue, the n'* class k customer at queue i is also the

same as the n' class k customer that arrives at the network.

2.4 Single class networks with nonfeedforward routing

In this section, we consider a discrete-time queueing network similar to the one in §2.3 with
the following two exceptions: (i) there is only one class of customer (and thus the index &k will
be dropped in this section), and (ii) the routing can be nonfeedforward, i.e., p; j(n) may not
be 0 for all i < j (see figure 2). In a nonfeedforward network, an individual customer could be
circled within the network for an arbitrary number of times. Thus, the delay for an individual
customer cannot be bounded and we are interested in the conditions that result in bounded
delay for each queue. To be precise, let v; = aﬁpaj, j =1,...,1. From §2.3, v; is an upper
bound of the MER of the external arrivals to queue j. Similar to the definition of p; in (15),
let pj, 7 =1,...,1 be the solution of the following traffic equation:

1
pj =i+ pivi;. (20)

i=1
As one might notice, p; is the arrival rate to queue j (including both external and internal
traffic) in the Jackson network with the external arrival rates v, j = 1,...,I and the routing
probabilities p; ;, 7,7 = 1,..., 1. It is known that the Jackson network is stable if p; < ¢; for
all j. These conditions will be referred to as the usual traffic conditions. Our interest in this

section is to answer if the delay at each queue can be bounded above by a finite constant under
the usual traffic conditions.

Due to the possibility of customers being circled around, our inductive proof in the previous
section cannot be applied to nonfeedforward networks. As a natural extension of induction,
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one might consider the fixed point iteration algorithm as in [15, 30]. First, one considers the
network excludes all internal traffic. Each queue is analyzed in isolation and a bound is found
for the MEP of the departure process from each queue. These bounds for the MEPs of the
departure processes are then incorporated with the bounds for external traffic to analyze each
queue in isolation. The procedure is iterated until the bounds for the MEPs of the departure
processes converge. Unfortunately, as noted in Cruz [15], this iteration algorithm converges
only if the traffic is sufficiently low and the traffic conditions needed for it to converge are
stronger than the usual ones. Thus, a different approach is needed.

Before we introduce our approach, let us simplify the notations by using matrix representation.
Let p = [p1,-..,p1], v = [v1,...,v1], € = [c1,...,cr] and p* be a matrix with p; j being the

element in the i row and 5 column. Write (20) in matrix form as follows:

p=v+pp" (21)

Equation (21) can be solved by the fixed point iteration. Since v and p* are nonnegative,
the sequence of vectors, p(™ = v + p®Vp* with p(0 = [0.,...,0], is increasing in n. If the
spectral radius of the matrix p*, denoted by sp(p*), is less than 1, then the sequence p(")
converges to p and p;, 7 = 1,..., I are finite. Moreover, the matrix I' — p* is invertible and
thus p = v(I' — p*)~!, where T' is the identity matrix. A sufficient condition for sp(p*) < 1
is that Z]I-:l pi; < 1for alli ([24], Theorems 5.6.5 and 5.6.9). Hereafter, we will assume that

sp(p*) < 1.

Our approach for the stability problem consists of the following steps. We first consider two
open polyhedral sets F1 and Ey (below) obtained from a strong traffic condition and the usual
traffic condition. In Lemma 2.9, we show that a bounded delay at each queue can be achieved
under the stronger traffic condition Fy. We then relax the traffic condition from F; to Es using
the monotonicity result in Lemma 2.10.

Now consider the following two open polyhedral sets:
Ei={c:v<c —-p")} (22)

Ey={c:v(T —p") ' <c} (23)

It is easy to see that E; is a shifted cone (i.e., all the hyperplanes pass through p) and that p is
an extreme direction of Fy (i.e., for any ¢ € E; and A > 0, ¢+ Ap € E;). The open polyhedral
set Fy is simply the quadrant {¢ : ¢ > p}. Moreover, we have the following two properties

between these two open polyhedral sets.
(P1) E;y C Es.
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(P2) For every vector ¢ € Fy, there is a vector ¢! € E; such that ¢! <e.

To show the first property, one observes that
(C—p") ' =T+p" + (@) +{@)+... (24)

is a nonnegative matrix with positive diagonal elements since the matrix p* is nonnegative.

Thus, if a vector ¢ is in F1, then multiplying both sides of (22) by the matrix (T' — p*)~! yields
v(T—p")"' <e(T—p")(T-p")" (25)

since each scalar inequality in (25) is a linear combination of the scalar inequalities in (22) with
at least one positive coefficient. This shows that ¢ € E,. For (P2), we only show the case
v > 0. The general case can be shown by a similar argument and the property of open sets.

Since v > 0, we have p > 0. Let A def minfcy /p1, ..., cr/pr]. Clearly, A > 1 if ¢ € Ey. Now let
c! = \p. It is easy to see that ¢! < e. Moreover, ¢! € E; since Ap(T' — p*) = Av > v. As an

|

In this example, p = (2,2) and the regions of E; and Es are shown in figure 3.

example, consider v = (1,1) and the matrix

*

p:

O o=

= O

Lemma 2.9 If ¢ € Ey, then the delay at each queue is bounded above by a finite constant and
the queue length at each queue is also bounded.

Proof. Note that the MER of the departure process from queue j is bounded above by the
capacity ¢;j. Thus, the MER of the arrival process to queue j is bounded above by Uj—l—zz-’:l Cip; -

From Theorem 2.4 (i), it follows that customers at queue j would have a bounded delay if

I

vj+ Zcip;"j < ¢j. (26)
=1
The condition (22) is the matrix form of (26). a

Lemma 2.10 For two queueing networks described in this section, if the capacities are ordered,

i.e., ' < €2, then the number of departures from each queue by time t at the first system is not
greater than that at the second system. As a direct consequence, the total number of customers
in the first system is not less than that of the second system.
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Proof. This type of monotonicity result is well known in the literature (see Tsoucas and Walrand
[39], Foss [18] and references therein). For completeness, we provide the argument in [39]. Let
r;t(n) be the time remaining at time ¢ until the n'® customer that arrives at queue i leaves
queue ¢. By convention, r;;(n) = oo if fewer than n customers have arrived at queue ¢ by time
t and r;;(n) = 0 if the n' customer has departed from queue i by time ¢. Then it can proved

by induction on ¢ that r}’t(n) > th(n) for all i,n,t if ¢' < c?. a

Remark 2.11 We note that if there are non-integer, but rational components in ¢! in Lemma
2.10, then those capacities should be interpreted as periodic sequences that alternate between
their ceiling and floor values (cf. Remark 2.5). For instance, if ¢ = 2.5, then ¢(2¢) = 2 and
¢(2t + 1) = 3 for all ¢, where ¢(¢) is the maximum number of customers that can be served
per unit of time. One can easily verify that both Lemmas 2.9 and 2.10 hold for this periodic

interpretation for a non-integer capacity. (To apply the sample path argument in Lemma 2.10,

one should construct the two periodic sequences such that c!(t) < c?(t) for all t.)
Analogous to the stability conditions for the Jackson networks, we have the following theorem:

Theorem 2.12 If p; < ¢; for all j and sp(p*) < 1, then every queue length can be bounded
above by a finite constant. As a direct consequence, the delay at each queue is bounded if the
service discipline is FCFS.

Proof. For every ¢ € E,, there exists ¢! € E; such that ¢' < ¢?. From Lemma 2.9, the queue
length at each queue is bounded above by a constant when the system has capacity ¢'. This
implies that the total number of customers in the system is still bounded above by a finite
constant. Applying Lemma 2.10, the total number of customers in the system with capacity
c? is then bounded above by the same constant. Thus, each queue is bounded above by the
same constant. If, furthermore, the service discipline is FCFS, it then follows from the same
argument as in (11) that the delay at each queue is bounded above by a finite constant. O

Corollary 2.13 If p; < ¢j, sp(p*) < 1, and the service discipline at each queue is FCFS, then
b; < pj for all j, where b} is the MER of the departure process from queue j.

Proof. The MER of the arrival process from queue i to queue j is bounded above by 0;pj ;.
Thus, the MER of the arrival process to queue j is bounded above by v; + 21‘121 bip; j- Since we

assume that p; < ¢;, it then follows from Theorem 2.12 the delay at each queue is bounded above

*

by a constant. In conjunction with Lemma 2.6, we have b;‘- <vj+ > b

p; j or equivalently

b* (I —p*) <w, (27)
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where b* = [b},...,bj]. Analogous to the argument for (P1), we multiply both sides of (27) by
the matrix (I' — p*)~'. We then have b* < v(T' — p*) ! = p. O

We note one can also use the argument in this section to compute the bound for the total
number of customers in the network. However, this bound may not be tight.

To stabilize a K-class nonfeedforward network, one can reserve a certain portion of the capacity
at each queue to each class of traffic. Thus, the system behaves like K independent single class
nonfeedforward networks and each one of them can be shown to be stable by the argument
developed in this section. Another way to stabilize a K-class nonfeedforward network (with
fixed routing) is to assign appropriate priorities to classes of jobs at each queue. For instance,
one could assign priorities according to the order that queues are visited (see [32]). By so
doing, the class of jobs that has higher priority is not affected by the other classes of jobs.
Moreover, the traffic of this class of jobs entering its first queue is also not affected by its own
internal traffic from other queues. Thus, the induction technique in §2.3 can be used to show the
stability of the network under the usual traffic conditions, i.e., Zszl pjk < c; for all j, where
pjk is the solution of (20) for class k customers. However, it is still not clear if the system
could be stabilized under the FCFS policy when the usual traffic conditions are satisfied. The
main difficulty in analyzing multiclass nonfeedforward networks is that the departure process
from each queue consists of different classes of customers. If we simply bound the departure
process of each class by capacity, the bound is too loose to derive the desired traffic conditions.
However, we still can mimic the proof for Theorem 2.12 to obtain sufficient conditions. Recall
that the number of arrivals from queue 7 to queue j within a time interval of ¢ units of time is
bounded above by the number of customers that depart from queue ¢ within that interval and
are routed to queue j. Suppose there are ny class k customers that depart from queue ¢ within

the interval of ¢ units of time. Clearly, Zle ng < ¢;t. Thus, we have

-

K
* * def 2
Ajj () < nl+.ﬂ%’;gm [kgl Pi,j,k("k)] = Ai;(1). (28)

It is easy to verify that fli’j(t) defined above is also increasing and subadditive in ¢. Since

A; j(t) > maxg[P]; | (;t)], limy o0 A; j(t)/t > ¢; maxy, [p; ; x]- Note that for every €; j, > 0 there

)

exists a constant o; ; such that
Pl (n) < (P75 + €ijk)n + 0ijk- (29)

It then follows that fli’j(t) < (maxk[p;:j’k} + € j)cit + 055, where € ; = maxy[e; ;i) and 05 =
maxy[0; ;] Thus,

A -
lim Aij(t)

— . *
Jim =5 = cimaxlp )
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Now using the same argument as in the proof of Theorem 2.12, one can show that a multiclass
nonfeedforward network under FCFS policy is stable if p; < ¢; for all j, where p; is the solution

of (20) with p} ; = max[p; ; ;] and v; = S vk However, these traffic conditions are stronger

than desired.

3 Stochastic networks

In this section, we extend our results in the previous section from deterministic queueing net-
works to stochastic queueing networks. Our objectives in this section are (i) to provide a tool
to compute simple bounds for tail distributions and (ii) to answer the second type of stability
problem of queueing networks.

Instead of having deterministic bounds for random variables as in the previous section, in this
section we consider bounds for moment generating functions. We say a random variable X is
bounded exponentially with respect to 8 (0 < 6§ < oco) if the #-norm of exp(X) is finite, i.e.,
there exist a constant d < oo such that

(B’ < d. (30)
Thus, we have from Chernoff’s bound that
P(X >z)<d’e % for all x,

which provides a bound for the tail distribution of X.

Parallel to the development in deterministic queueing networks, we consider envelope processes
(EP) of input processes with respect to 6 in Section 3.1. Among the EPs, the class of linear
EPs is of importance, as noted by Cruz [14, 15] in a deterministic setting. We show that if
the input process in a single queue has a linear EP whose rate is smaller than the capacity, c,
and the queue is operated under a work-conserving policy, then (i) the queue length is bounded
exponentially with respect to 6, (ii) there exists a linear EP of the departure process which
can be represented as a function of the linear EP of the input process and (iii) the virtual
delay is bounded exponentially with respect to fc if the scheduling policy is First Come First
Served (FCFS). Using these results, bounds for the tail distributions of queue length and virtual
delay can be computed easily from the linear EP of the input process. Like in the previous
section for deterministic networks, the minimum envelope rate with respect to § (MER) is the
infimum of the rates in the class of linear EPs. A sufficient condition for the queue length to be
bounded exponentially with respect to 6 is that the MER of the input process is smaller than
the capacity. On the other hand, if the MER is larger than the capacity, then the queue length
cannot be bounded exponentially with respect to 6. In particular, when the arrival process is a

18



superposition of independent two-state Markov modulated processes, we show that the notion
of MER is equivalent to the recently developed notion of effective bandwidth in [26, 20, 23] and

is also related to the Perron-Frobenius eigenvalue in [37].

In order to extend these results to networks, in Section 3.3 we consider marked point processes,
in which there are a sequence of arrival points and a sequence of marks associated with the
arrival points. The marks can be viewed either as the service requirements or the routing
variables. We show that if (i) there are a linear EP of the arrival process and a linear EP of the
marking sequence and (ii) the arrival points and marks are independent, then there is a linear
EP of the marked process in terms of the linear EP of the arrival process and the linear EP
of the marking process. Using these input-output types of relations, we extend the bounds for
the tail distributions of virtual delay and queue length from a single queue to acyclic networks,
where the paths of customers do not form a loop and the input at each queue is a superposition
of independent processes. Note that the notion of independence, though trivial in deterministic
networks, is crucial in stochastic networks.

We then consider a single class network with nonfeedforward routing in Section 3.4. We assume
that the routing random variables from each queue are independent and identically distributed
(i.i.d.). Using an argument similar to that in Section 2.4, we show that the queue length at
each queue can be bounded exponentially with respect to € if the strong traffic condition (Ej) is
satisfied. Under the weak traffic condition (F5), we show that the total number of customers in
the system can be bounded exponentially with respect to /1, where I is the number of queues

in the network.

3.1 Envelope processes and envelope rates

Consider a sequence of nonnegative random variables, {a(t),t = 0,1,2,...}. Let A(t1,t2) =
?:;11 a(t). Analogous to the notions of envelope processes in previous section for deterministic

networks, we consider the following “bounding” process of a(t):

1

] IOg EeaA(tl’tz) < A(G,tQ — tl) A t1 < tg (31)

The process A(6,t) will be also called an envelope process of a(t) with respect to § (EP). Clearly,

the minimum envelope process with respect to 6 (MEP) is

1
A*(0,1) = sglg i log EelA(s:571), (32)
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Unlike the MEP in a deterministic setting, the MEP defined in (32) is not subadditive in
general. Thus, we define the minimum envelope rate of a(t) with respect to § (MER) to be

A*(0,t
a*(#) = limsup 9, ) (33)
t—o0
Similar to (2), one can also view the MER by considering the family of linear EPs.
Fo def {a(0) : A*(0,t) < a(f)t + 6(F) for some nonnegative constant ()}, (34)

where a(6) will be called the rate of a linear EP. Note that () is constant in ¢, but it is a

function of #. Using the same argument as in (3), it is easy to see that for each fixed 6,

a*(0) = inf[a(8) : a(9) € Fy). (35)

We note that our definition of MER is connected to the theory of large deviation through
the Gartner-Ellis theorem. To establish the connection, we further introduce the following

conditions for a sequence {a(t),t > 0}.

(C1) {a(t),t > 0} is stationary and ergodic.

C2) a*(0) = lim;_, A0 for all 0 < 6 < 0.
I

(C3) 6a*(0) is strictly convex and differentiable for all 0 < 6 < co.

Under these three conditions, the sequence {A(0,t),t > 1} obeys the large deviation principle

(see [8]) with the rate function

I(v) = Sl;p{ov —6a*(0)}. (36)

We note that fa*(0) is increasing and convex for 0 < 6 < oo according to the definition of
a*(#). Strict convexity of fa*(#) implies that a* () is strictly increasing. We will discuss more
on monotonicity and bounds in Lemma 3.5. Moreover, under [C'1 — 3] one can also verify that
for all ¢; <ty and any € > 0, there is a constant &(f) > 0 such that

(a*(0) — €)(ts — 1) — 6(0) < %log Ee"Att2) < (0*(0) 4 €)(ty — t1) + 6(6). (37)

Thus, a*(#) is not only the minimum upper envelope rate but also the maximum lower envelope

rate. For further development along this line, we refer to [29, 11].

In the next section, we will first use linear EPs to derive input-output relations between arrival
processes and departure processes and then apply the representation in (35) to establish stability
results. Now we consider some stochastic processes where these concepts can be easily applied.
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Example 3.1 If a(t) is a sequence of independent random variables, then the MEP A*(6,t) is
subadditive. Thus,

A*(0,t A*(6,t
a*(f) = lim (’):mf (’)
t—o0 t t>1 t
Proof. Observe that
A*(e,tl + tQ) = sup l log EeaA(S,S+t1+tz) = sup l log EeaA(S,S+t1)+aA(S+t1,S+t1+t2) (38)
5>0 5>0
Thus,
1 1
A* (0,1 + 1) = sup {_ log FefA(s,s+t1) + - log EeGA(s+t1,s+t1+t2)}
s>0 L0 6
< sup 1 log BEeA(5+0) 4 qup 1 log BelAlsttusttitts)
§>0 0 5>0 0
< A%(0,t1) + AT(0,12).
The limit then follows from the subadditive property (see [28]). O

In the second example, we consider stationary and associated processes. A process a(t) is said
to be stationary if its joint distribution is invariant with respect to an arbitrary shift of time,
ie.,

Prob(a(ti) < x1,...,a(t,) < x,) = Prob(a(t + s) < z1,...,a(t, + 8) < ) (39)

for all t1,...,t, and s. A process a(t) is said to be associated if all the random variables,
{a(t),t =0,1,2,...}, are associated, i.e.,

Ef(a(t1),...,a(tn))gla(tr),...,a(ty)) > Ef(a(t1),...,a(ty))Eg(a(ti), ..., a(tn)) (40)

for all ¢1,...,%, and for all f, g increasing. For the properties of associated random variables,
we refer to [4, 17].

Example 3.2 If a(t) is stationary and associated, then the MEP A*(6,t) is superadditive.
Thus,
A*(6, 1) A*(6, 1)

a*(0) = lim = su
( ) t—00 t tzllj t

Proof. Observe from stationarity that
A0, 1) + 1) = %log B0 A0 +) _ %log F0AW0.1) At ot)
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Since a(t) is associated, the two random variables A(0,%;) and A(t1,%1 + t2) are associated.
Thus,

1 1
A*(0,t1 + to) > g log EefA0N) 4 7] log EefAtititta)

Since a(t) is stationary, the two random variables A(t1,%; + t2) and A(0,t2) have the same

distribution. Thus, we have
A* (19, t1 + t2) > A* (9, tl) + A* (19, tg).
Again, the limit then follows from the superadditive property [28]. O

As a special case of Examples 3.1 and 3.2, a*(0) = (1/6) log(E exp(0a(0))) if a(t) is a sequence
of i.i.d. random variables. The MER a*(#) for i.i.d. random variables is referred to as effective
bandwidth in Kelly [26].

In the third example, we consider a Markov modulated process (MMP). Let z(t) be a Markov
process on the states {1,..., M} with the transition matrix », i.e., r; ; is the transition proba-
bility from state i to state j. Also let {y;(¢),t =0,1,...},i=1,..., M, be M sequences of i.i.d.
random variables with the moment generating functions ¢;(f) = E exp(6y;(0)). The process
a(t) = Yu(r)(t) is then an MMP with the modulating process z(t). Clearly, a(t) is stationary if

x(t) is stationary.

Example 3.3 Consider an MMP a(t) as described above. Let ¢(6) be the diagonal matrix
diag{¢1(0),...,ém(0)} and sp(¢p(d)r) be the spectral radius of the matrix ¢(6)r. Then the
MER a*(#) is bounded above by (1/6) logsp(¢(6)r).

If, furthermore, the Markov process z(t) with the transition matrix 7 is irreducible and aperi-
odic, then

a*(0) = lim AT6,¢) = 1log sp(p(0)r).

t—00 t 0
Note that sp(¢(0)r) = sp(r¢(6)) ([24], Theorem 1.3.20).
Proof. Analogous to the backward equation, one observes that

M
E(e"OD]a(0) = i) = ¢i(6) 3 B(e O [w(0) = j)r. (41)
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and v(0,t)" be its transpose. Writing (41) in matrix form, we have

$(0.0)" = o@)ry(0,t - 1)" (42)

with the initial condition

$(0,1)" = ()17,

where 17 is the column vector with all its elements being one. Let 7; be the probability of z(0)

being at state i and also let w = (7y,...,mas). Thus,
B(40D) = wp(0,1)" = m(g(0)r)" ' (0)17. (43)

Since sp(¢(6)r) is the spectral radius of the matrix ¢(0)r, for every € > 0 there exists a constant
o.(0) such that every element of the matrix (¢(#)r)! is bounded above by o.(0)(sp(¢(0)r) +
€)' (see [24], Corollary 5.6.13). In conjunction with (43), one can easily show that a*(f) <
(1/6) log sp(¢p(0)r).

If we also assume that the Markov process x(t) with the transition matrix = is irreducible and
aperiodic, then the matrix r is primitive, i.e., " > 0 for some n > 1. Observing that the
matrix ¢(6) is a diagonal matrix with positive diagonal elements, it is easy to see that the
matrix ¢(0)r is also primitive. From (43) and the Perron-Frobenius theorem ([24], Theorem
8.5.1), i.e.,

lim [$(0)r/sp(¢(0)r)]" = L(9) > 0

t—o0

for some constant matrix L(6), it follows that the MER is (1/0) logsp(¢(0)r). 0

If the modulating process is a two-state Markov chain, then the spectral radius of the matrix

¢(0)r can be computed easily (see [24], pp. 39) and

ri1¢1(0) + raaga(0) + \/(7“11¢1(9) — raa(0))” + 4T12T21¢1(9)¢2(9))

a*(0) = %log ( g (44)

For the usual voice model [37], one has in particular a constant number of arrivals, v, at state
2 and no arrivals at state 1. Then ¢9(0) = exp(vf) and ¢1(6) = 1 and the MER

(ru + 790 exp(v0) + \/(7“11 + rog exp(18))? — 4(r11 + 199 — 1) exp(y@))

1
F(0) = =1
a*(6) og 5

7 (45)

Our definitions for MERs in (33) can also be easily extended to continuous-time models. For
instance, we consider the two-state Markov modulated fluid process. The transition rate from
state 1 to state 2 is A and the transition rate from state 2 to state 1 is y. Assume that there
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are no arrivals at state 1 and that the arrivals at state 2 is a constant rate process with rate v.
Using the backward equation as in Example 3.3, one can easily show that

O —pu =X+ (O —p+ N2+
— 20 .

The MER in (46) is then the same as the effective bandwidth «({) in Gibbens and Hunt [20]
with ¢ = —0.

a*(0)

(46)

Now we discuss some properties of MEPs and MERs. In Lemma 3.4 below, we establish bounds
for the MEP and the MER of a superposition of K independent processes. The proof is direct.

Lemma 3.4 Let a(t) = 215:1 ay(t) be a superposition of K independent processes. Then

(i) A*(0,%) < 2420 AL(0.1) and a*(6) < 325, ai(0).
(ii) If, furthermore, ap(t), k = 1,..., K satisfy conditions [C'1 — 3|, then a(t) also satisfies

conditions [C1 — 3] with a*(0) = Y5, al(6).

If these K processes are not independent, a general bound can be obtained by Holder’s inequality
(suggested by Joy Thomas). Note that for my > 1, k=1,... K, 215:1 (1/my) =1,

K
Eeg Zszl Ak(tl,tz) S H (Eegmk:Ak:(tl:tZ))l/mk_ (47)
k=1
It then follows that
K
a*(f) < inf > aj(mih). (48)

COYE (fm)=1 =

As we shall prove in Lemma 3.5, aj(#)’s are increasing in 6. The general bound in (48) is not
as tight as that in Lemma 3.4. However, this general bound cannot be improved without any
further assumptions. Consider the case that ay(t)’s are identical, i.e., a(t) = Ka;(t). Then
a*(#) = Kaij(K0) which is the same as the right hand side of (48), taking into account the

convexity of fa7(0).

We note that the process a(t) is associated if ax(t), k = 1,..., K are associated. This follows
from the fact that independent random variables are associated.

In the following lemma, we establish monotonicity results and bounds for MEPs and MERs.
Define the essential supremum of a random variable X, denoted as || X ||, to be the greatest
lower bound of the set {z : Prob(X > z) = 0} (see [36]), i.e.,

| X ||oo = inf{z : Prob(X > z) = 0}.
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Thus, Prob(X < || X||s) = 1 and EX < ||X|/«. Since the function exp(fz), 0 < 6 < oo, is
strictly increasing and continuous in z, we have that || exp(0X)]||co = exp(0]| X ||oc). Moreover,

it is easy to verify that
[ X1lloo + 1 X2l[oc 2 [[ X1 + X /oo

Lemma 3.5 MEPs are increasing in 0, i.e., for 0 < 01 < 6y < 00, A*(01,t) < A*(09,t) for all
t. Moreover, for 0 < 6 < oo,

sup FA(s,s +t) < A*(0,t) <supl|A(s,s + t)|loo- (49)
5>0 5>0

As a direct consequence, MERs are increasing in 6 and

1 1
inf — <a* < inf — .
;g{ " ig}gEA(s,s +1) <a’(0) < ;g{ 7 Sup [A(s, s + )]0 (50)

If a(t) is stationary, then inf;>, %supszo EA(s,s +t) = Ea(0). The lower bound in (50) implies

that MERs are not less than the corresponding average rate.

Proof. From Jensen’s inequality, it follows that for 0 < 8, < 6y < o0

E€02A(s’s+t) — E€(02/61)01A(s’s+t) > (EeglA(s,s—l—t))GQ/gl. (51)

Taking the log function on both sides yields

1

lOg EealA(S,S+t) S i lOg EGGQA(S’S+t).
91 92

Thus, we have A*(6,,t) < A*(62,t). The first inequality in (49) also follows immediately from
Jensen’s inequality. For the second inequality in (49), observe that

EeGA(s,s—H) < ||66A(s,s+t)||oo _ eHGA(s,s—H)HOOI

Observe that both sup,sq EA(s,s + 1) and supss(||A(s,s + )|l are subadditive in ¢. Thus,
the inequalities in (50) hold. O

In the following lemma, we show that both the upper and lower bounds for MEPs can be
reached if a(t) is bounded. Moreover, under the same condition, the MEP A*(6,¢) and the
MER a*(0) are continuous for 0 < § < oo. The proof is given in Appendix A.

Lemma 3.6 If a(t) is bounded, i.e., a(t) < M for some constant M < oo and for all t, then
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(i) the upper bound of the MEP can be reached by letting 0 — oo, i.e.,

lim A*(0,t) = sup ||A(s, s + )] cos
f— o0 $>0

(ii) the lower bound of the MEP can be reached by letting 6 — 0, i.e.,

lim A*(0,t) = sup FA(s,s + 1),
0—0 $>0

(iii) A*(6,t) and a*(0) are continuous for all 0 < 6§ < co.

From Lemma 3.6, it follows that the MEP A*(6,t) of a bounded process a(t) is continuous for
0 < 6 < oo if one defines A*(0,1) = sup,>q FA(s, s + t) and A*(00,t) = supsq [|A(s, 8 + 1) -
We note that the conditions for a*(6) to be continuous at § = 0 and § = oo are in general more

restrictive than the boundedness of a(t). These conditions won’t be pursued here.

As in the previous section, we shall use a lower case letter to denote a stochastic process, e.g., a(t)
and the corresponding upper case letter to denote its partial sums , e.g., A(t1,t9) = Z?:ﬁ a(t).

A superscript * on the corresponding upper (lower) case letter will denote the MEP (MER) of
that process, e.g., A*(0,t) (a*(0)).

3.2 A single queue with multiple classes of customers

In this section, we consider a discrete-time queue with K classes of customers. The service
requirements of these K class customers are assumed to be one unit of time. Let ax(t), k =
1,..., K, be the number of class k arrivals at time ¢ and a(t) = Y&, ax(t) be the total number
of arrivals at time t. We assume that these K arrival processes are independent. Denote ¢(t)
as the number of customers in the queue at time ¢. Assume that the buffer size is infinite and
that the server can serve ¢ customers per unit of time. The constant ¢ will be referred to as the
capacity of the server. Analogous to §2.2, under a work-conserving policy the queue is governed

by Lindley’s equation in (5). Furthermore, we assume that the queue is empty at time 0.

Let Ag(t1,t9) = 2?2;11 ar(t) be the number of class k arrivals in [t1, £2) and A} (6,t) be its MEP
with MER aj (). We use the notations without the subscript £ to denote the corresponding

definitions for the superposition of these K independent processes. For the departure processes,
we use the letter b or B to denote the corresponding quantities.

In the following lemma, we establish an input-output relation for a single queue. We show that
if the arrival process of each class has a linear EP, a;(0)t + 64(0), and the total envelope rate is
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less than the capacity, i.e., YK | a,(0) < ¢, then (i) the queue length is bounded exponentially
with respect to 6, (ii) there exists a linear EP of the departure process which can be represented
as a function of the linear EP of the input process and (iii) the virtual delay at time ¢ (the
workload at time ) is bounded exponentially with respect to fc if the scheduling policy is First
Come First Served (FCFS).

Lemma 3.7 Suppose that a,(0)t + 61(0) is an EP of ai(t), i.e., Aj(0,t) < ar(0)t+ 61(0). Let
a(0) = K ap(0) and 5(0) = S5, 61(0). Also let B5(6,t) be the MEP of Y j.cq br(t), where
S is a subset of {1,...,K}. If a(f) < ¢, then q(t) is bounded exponentially with respect to 6,

and there exists a constant B(0) < oo such that for all t,

Prob(q(t) > z) < B(0)e % (52)
B3 (6,1) < (3 n(0))t + 5 log 6(6). (53)
keS

where

If the scheduling policy is FCFS, then the virtual delay at time t, denoted as v(t), is bounded

exponentially with respect to Oc and

Prob(v(t) > z) < ?49) g(g)e ez, (54)
Proof. Expanding (5) recursively yields
q(t) = max [O,a(tf 1)—cya(t—1)+a(t—2) —2¢,...,a(t—1)+a(t—2) +...a(0) ft(:}. (55)

Using the inequality that max(zy,z9) < x1 + z9 for z1, 29 > 0, we have
Eeﬂq(t) < Z EeG(A(tfs,t)fsc). (56)

From (31) and Lemma 3.4, it follows that Eexp(fA(t — s,t)) < exp(fa(f)s + 05(0)). In

conjunction with (56),
t e

B0 < 050 N (f5(al0)=c) < o05(0) 3™ fs(af)=) — g(p) (57)
s=0 5=0
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if a(f) < c¢. Applying Chernoff’s bound yields
Prob(q(t) > z) < e "*Ee?® < g(9)e 7.

This completes the argument for the queue length.

For the departure processes, observe that the number of class k departures in [t1,%2) is not
greater than the sum of the number of class k arrivals in [t1,#5) and the number of class k

customers in the queue at time #;. Thus, we have

Z Bk(tl,tQ) < Z Ak(tl,tg) + q(tl) (58)

kes kesS

for any subset S of {1,..., K}. From (55), it follows that

" Biltiste) < max | 3" Ap(t —s,t2) + Y Ax(t — s,t1) — sc]. (59)
keS =SS s kgsS

Using an argument similar to that for the queue length and the independence assumption of
arrival processes, one can easily show that

Eexp(0 Bi(ti,t2)) < exp(0 Y ax(0)(t2 — t1))B(6).

keS kesS

Taking the log function on both sides completes the argument for the departure processes.

If the scheduling policy is FCFS, then the virtual delay of a customer that arrives at time ¢ is
bounded above by [(g(t) + a(t))/c|. Note that

Prob([(q(t) + a(t))/c] = x) < Prob(q(t) + a(t) > c(z —1)). (60)

Now ¢(t) + a(t) in (60) is a special case of (58) when taking t; = ¢, to = t+ 1 and § =
{1,2,...,K}. O

We note that the K departure processes are in general not independent though the K arrival
processes are independent. Moreover, the bounding processes for the departure processes ob-
tained by (58) are in general not independent since the random variable ¢(t) appears in the
right hand side of (58) for each class. However, if the queue length is always bounded above by
a constant ¢, one could obtain independent bounding processes for the departure processes by
replacing ¢(t) with ¢ in (58). If, furthermore, the delay of each customer is bounded above by a
constant d, one can use the property derived in a deterministic queue (cf. Lemma 2.6) to estab-
lish that By (t1,19) < Ag(t; —d,t2). Now the bounding processes Ag(t1 —d,t2),k =1,2,..., K,

are also independent if the arrival processes ax(t),k = 1,2,..., K, are independent. These
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independent bounding processes have been used in Kurose [30] for stochastic networks with
deterministic bounded delays.

Also, we note that inequalities similar to (52) for queues with renewal inputs, i.e., GI/GI/1

queues, were reported in the literature (see [27, 35, 38]).

From the relation between the MER and the class of linear EPs in (34-35), the theorem below,
stating the input-output relation of MERs and the boundedness of queue length and virtual
delay, follows as a direct consequence of Lemma, 3.7.

Theorem 3.8 If the sum of MER of the K independent processes is less than the capacity,
i.e., Zszl a;(0) < ¢, then the MER of the departure process is bounded above by the MER of
the corresponding arrival process, i.e., bp(0) < aj(0) for all k. Moreover, the queue length can

be bounded exponentially with respect to 0. If the scheduling policy is FCFS, then the virtual
delay can be bounded exponentially with respect to Oc.

Since a*(#) is increasing in € ( Lemma 3.5), it is of interest to study the largest 6 that satisfies
a*(f) < c. Let
0" = sup{f : a*(0) < c¢}. (61)

Suppose ag(t) is a two-state Markov modulated process with aj () described in (45). Then 6*

is the solution of the following equation

K (k)
exp(fc) = H (7"11 + 799

exp(vif) + \/ 7”11 + 7“52) exp(VkH)) (7”51) + rég) -1) exp(yke))
5 )

(62)
We note that (62) is the same as (13) in Sohraby [37], which was obtained by a spectral decompo-
sition method. Based on an asymptotic expansion, Sohraby further obtained an approximation
for 0* and showed that it is consistent with the result in [1] when all the K arrival processes

are identically distributed.

We now show a converse statement to Theorem 3.8.

Theorem 3.9 (i) If the MER of the input process is larger than the capacity, i.e., a*(6) > ¢,

then the queue length cannot be bounded exponentially with respect to 0, i.e., there does not
exist a constant d < 0o such that (Eexp(0q(t)))Y? < d for all t.

(ii)If, furthermore, ar(t), k = 1,..., K, satisfy conditions [C1 — 3] and 6* in (61) is positive
and finite, i.e., 0 < 0* < 0o, then the queue length process {q(t),t > 0} converges in distribution
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to a finite random variable q(oo) that satisfies

. —log Prob(q(oc) > x)
lim

Tr— 00 €T

— . (63)

Proof. (i) We will prove the first part of the theorem by contradiction. Assume that Eexp(0q(t)) <
d’ < oo for all t. From (55), it follows that g(s +t) > A(s,s +t) — tc. Thus, Eexp(0(A(s, s +

t) —tc)) < oo for all s and ¢. This in turns implies that a*(f) < ¢ and we reach a contradiction.

(ii) From Lemma 3.4(ii), it follows that a*(f) = Yp_; ai(#) and a*() also satisfies conditions
[C1 — 3]. Thus, a*(0) is strictly increasing, and 6* is the unique solution of a*(f) = ¢. Since
0 < 0* < 0o, we have from Lemma 3.5 that Fa(0) < a*(6*) = ¢. Observe from the stationarity
of a(t) and (55) that the queue length process {¢(t),¢ > 0} is a stochastically increasing sequence
if ¢(0) = 0 (cf. Loynes’s construction in [31, 3]). Recall that the stochastic ordering X <z Y if
Prob(X > z) < Prob(Y > z) for all . Thus, {q(¢),t > 0} converges in distribution to a finite
random variable g(oc). To show (63), observe from Theorem 3.8 that

lim sup log Prob(g(t) > ) <9 (64)

x

T—00

for all ¢ and z if a*(f) < ¢. Thus, it suffices to show the lower bound. Since ¢(t) <g g(o0),
Prob(gq(oo) > z) > Prob(gq(t) > z) > Prob(A(0,t) > ¢t + z) for all £. Letting v = ¢+ (z/t) and
applying the lower bound of the Gértner-Ellis theorem [8], one has

log Prob(g(o0) > )

log Prob(A(0,t) > vt) . I(v)

lim inf > liminf 4 > , (65)
T—00 T t—oc (’U — C)t v —cC
where I(v) is defined in (36). Optimizing v over all possible values yields
log Prob > 1
lim inf (28PTOP(0(0) 2 @) o, T(0) (66)
£—>00 €T v>c v — C

The proof is then completed if the right hand side of (66) is shown to be —6*. We will follow
the argument used in [29] Lemma 1. Let J(0) = 6a*(#). Then I(v) and J(6) are convex
conjugates [2]. Since we assume by [C3] that J(0) is strictly convex and differentiable, I(v)
and J(0) actually forms a pair of Legendre transformation, i.e., I(v) is also strictly convex and

differentiable and J(#) has the representation

J(O) =61 (0) — I(I'""(9)), (67)
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where I’ () is the inverse function of I'(v). Since 6* is the unique solution of a*(#) = ¢, 6* is
the unique solution of

o) - w =c. (68)

Define the function g(v) = v —I(v)/I'(v). From the strict convexity of I(v), it follows that g(v)

1

is strictly increasing. Thus we can define g~ ' as the inverse function of g. Note that g~ '(c) is

the solution of the equation ¢ = v — I(v)/I'(v) and that

= I'(g7\(0)). (69)

It is easy to verify that I’(g~'(c)) is indeed a solution of (68) and thus inf,>. I(v)/(v — ¢) = 6*.
a

In particular, we consider the arrival process as a superposition of K independent continuous-
time two-state Markov modulated fluid processes with the MERs aj () in (46). It is easy to
see that

K
Qv — — A Qv — )2 + 4
a* () = Z Vg — [k K+ (Ovk — pk + Ap)? + A (70)

20

k=1

for all 0 < § < oo and thus conditions [C1 — 3] are satisfied. As an application of Theorems
3.9(ii), we recover the result for the effective bandwidth in Gibbens and Hunt, Theorem 1 [20].
Note that 0* is the solution of the equation

(71)

& Gy — e — M+ Ok — e+ )2 T AN
c=> T .
k=1

The equation (71) has been reported by Guérin, Ahmadi and Naghshineh ([23], (7)) for an
approximation of the tail distribution of the queue length.

To extend our result for delay, define the distribution of the stationary delay z as follows:

1
Prob(z > z) = Jim - Z 1., >a} (72)

m=1

h"customer that arrives at the queue.

where z,, is the delay of the m!
Corollary 3.10 If (i) a(t) satisfy conditions [C1 — 3], (ii) 1 < a(t) < M < oo, and (iii) 0* in
(61) is positive and finite, then under the FCF'S policy

. —log Prob(z > x)
lim

T—00 €T

=6%c. (73)
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Proof. Note that under the FCFS policy

limesoo 2 3001 S0 14 10a0s) 47132}

limy o0 33701 a(s)

1 n
lim =31 - 1
Jim ”mgl {zm>0) (74)

Since ¢(s) < q(s)+1 < q(s)+a(s), it then follows from stationarity and ergodicity (cf. Campbell-
Little-Mecke formula in [3]) that

Ea(0)1{1(q,(0)+a(0))/c|>a}
Ea(0) ’

Ea(0)1{14,(0)/c]

>z}
=L < Prob(z > z) <
Fa(0) < Prob(z > z) <

(75)

where ¢5(0) is the stationary version of ¢(t) at time 0, i.e., ¢5(0) =5 g(00). The rest of the proof
then follows from Theorem 3.9(ii) using the assumption 1 < a(0) < M. O

In the next section, we will use the input-output relation in Lemma 3.7 to study the stability
of acyclic networks in which we need the notion of splitting departure processes.

3.3 Marked point processes and acyclic networks

Our objective in this section is to extend the single queue result to acyclic networks. Our
approach is based on the notion of marked point processes. A discrete-time marked point
process {(7(n),p(n)),n = 0,1,2,...} is a sequence of random vectors. The process {r(n)} is
called the arrival process with 7(n) being the arrival epoch of the n'® customer. We will assume
that 7(n) is increasing and that 7(n) — oo a.s. as n — oco. The random variable p(n) is called
the mark associated with the arrival epoch 7(n). For instance, the mark p(n) could be the
service requirement of the n'* arrival. If p(n) is an indicator function, it could be viewed as a

routing variable (see Section 2.3). Let

b(t) =D 1irn)—r}-
n=0

Then b(t) is the number of arrivals at time ¢. Let

a(t) = 1 m)—np(n).
n=0

If p(n)’s are service requirements, then a(t) is the total amount of work that arrives at time ¢.
On the other hand, if p(n)’s are indicator random variables (e.g., routing variables), then a(t)
is a thinning process of b(¢) and can be viewed as the number of customers that are routed to

a particular queue at time t.

32



In the following, we establish the “input-output” relation between the arrival process and the
marked process.

Lemma 3.11 (i) If the two sequences {T(n),n > 0} and {p(n),n > 0} are independent, and
there exist two linear EPs of b(t) and p(n) as follows:

B*(0,1) < b(0)t+6(F) V0 < 6 < oo,
P*(0,m) <p(@)m+n(0) Y0 <6 < oo,

then there exists a linear EP of the marked process a(t) as follows:

A*(0,t) < p(O)b(Op(0))t + 7(0) + H(0)5(Hp(F)) V0 < 6 < .

As a direct consequence, the MER of the marked point process, a*(0), is bounded above by
p*(0)b*(0p*(0)), where b*(0) and p*(0) are the MERs of the arrival process and the marking

process respectively.

(11) If, furthermore, both b(t) and p(n) satisfies conditions [C1 — 3], then a(t) also satisfies
conditions [C1 — 3] with a*(0) = p*(0)b*(6p*(0)).

We note that we have implicitly assumed that p*(6) < oo in Lemma 3.11. If p*(0) = oo, then

we have the trivial inequality a*(6) < oo.

Proof. (i) Let ny = inf{n : 7(n) > ¢} and n; = inf{n > ny : 7(n) > ty}. Since 7(n) — o a.s.
as n — oo, both ny and n; are finite random variables. In other words, ny is the identity of the
first customer that arrives after £; — 1 and n; is the identity of the first customer that arrives
after to — 1. Thus, B(t1,t2) =n; — ny. Since {7(n)} and {p(n)} are independent,

o [e.e] Z 59—
B = N N B fen= my P Prob(nf—ml,nl ms)
0ma2=my

IN

oo
mi1=0

Z )(ma—mq)+7(0 ))PI‘Ob(TLf =my,n; = my)
2=MmM

m 1

o o0
= Z Z I (P(O)m-+ (0 Prob(nf =myq, B(t1,t2) = m)

m1=0m=0
Interchanging the sums yields

EefAltit) < o00(0) gotp(0) Bty tz) (76)
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Replacing the expectation in (76) by the EP of B(t,t2) and taking the log function on both
sides completes the derivation.

(ii) It follows directly from (37) and the argument for (i). For stationarity and ergodicity of

marked point processes, we refer to [3]. O

We note that the independence of the arrival process and the marking process is crucial. As
we mentioned earlier, the departure processes of different classes of customers from a common
queue are not independent. Thus, in order to use the input-output relation in a network, the
departure processes of different classes from a common queue cannot be the arrival processes
of another queue. Networks with this property are known as acyclic networks (see figure 4).
To be precise, consider the multiclass feedforward network in Section 2.3. Construct a directed
graph with all the queues in the feedforward network being its nodes (excluding the router).
Add an arc between queue i and queue j (i < j) whenever there is a class of customers that are
routed from queue ¢ to queue j. Then the network is acyclic if there is at most one path from
queue i to queue j (i < j) in the directed graph. This implies that the input in front of each
queue can be represented as a superposition of independent arrival processes. Thus, one could
apply Lemmas 3.4, 3.7 and 3.11 inductively to obtain bounds for the tail distribution of queue
length at each queue as well as the linear EPs of the input process and the departure process
at each queue.

Analogous to the notations in Section 2.3, let o], (0) and p;,,(0) be the MER of the arrival
process of class k customer to queue 7 and the MER of the routing sequence of class k£ customer
from queue i to queue j (i = 0 for external arrivals). Let S;j denote the set of queues from which
there are class k& customers routed to queue j. In an acyclic network, the set S;; contains at
most one element. Let pg () = a;;,k(e), k=1,...,K. Since an acyclic network is feedforward,

we can define recursively for each &

pik(0) = > pik(0p;,;x(0))p;i;£(0), j=1,....L (77)

iESjﬁk

Theorem 3.12 In an acyclic network, if Zszl pik(0) <cj forallj=1,...,I, then the queue
length of each queue can be bounded exponentially with respect to 6. If the scheduling policy is
FCFS at each queue, then the virtual delay of a customer that arrives at queue i at time t can

also be bounded exponentially with respect to Oc;.

Proof. Using an argument similar to that used in Section 2.3 and Lemma 3.11, one can easily
show inductively that p;;(0) > aj ((6). The rest of the proof of Theorem 3.12 then follows from

Theorem 3.8. O
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We note that there are other networks that can be analyzed by our method. For instance, the
intree network in figure 5 is not an acyclic network since there are two paths from queue 1 to
queue 2. However, using (53) we are still able to obtain a linear EP of the superposition of
the departure processes from queue 1. Thus, by viewing the superposition of the departure
processes from queue 1 as a single composite process, the input process at queue 2 can be
represented as a superposition of independent processes with known linear EPs. Using Lemma
3.7, one could obtain a bound for the tail distribution of the queue length at queue 2, as well
as other desired information.

To extend from the fixed service requirements to general service requirements, one can consider
the virtual waiting processes instead of the queue length processes. Since the virtual waiting
process can be approximated by the queue length process subject to batch arrivals, similar
results to (52) and (54) in Lemma 3.7 can be derived by replacing the queue length ¢(¢) by
the work load v(t) and treating a(t) as a marked point process with the marks representing
the service requirements. However, unlike the deterministic queues with bounded delays in the
previous section for deterministic networks, we do not have the input-output relation as in (53)

and the result might not able to be extended to acyclic networks.

3.4 Single class networks with nonfeedforward routing

In this section, we consider the nonfeedforward network in Section 2.4. As in the acyclic
networks, we assume that the sequences of routing random variables {p; j(n)} and the external
arrival process {ag(t)} are independent. We further assume that the sequence of the routing
variables {(p;1(n),...,pir(n))} are i.i.d. random vectors with the means (p;1,...,p; ). Thus,
the sequence {p;, j(n),n = 0,1,2,...} and the sequence {p;, ;(n),n = 0,1,2,...} (i1 # i2)
form two independent sequences of i.i.d. Bernoulli random variables with means p;, ; and p;, ;

respectively. This implies that
P;5(0,m) = mpj ;(0)
with
i (0) = log(@ige” + (1~ 7))
We note that p; j, (n) and p; j,(n) (j1 # j2) are in general not independent.

Let A§(0,t) and af(f) be the MEP and the MER of ag(¢). In the following theorem, we show
that every queue in the single class nonfeedforward network is bounded exponentially with
respect to 0 if a strong traffic condition similar to E; in Section 2.4 is satisfied.
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Theorem 3.13 If ag(0)t + 6¢(0) is a linear EP of the external arrival process ag(t) satisfying
ao(Opy ;(0))po ;(0) + Z cip; (0) <cj forj=1,...,1, (78)

then for j = 1,...,1, the queue length of the j*" queue at time t, q;(t), is bounded exponentially
with respect to 6 and

P(q;(t) > z) < B;(0)e ",

where
3(6) = exp [060(0p3 (05, (0)] (1 — exp [0(ao (05 5 (0))pi 50 +Zczpm —e)])

As a direct consequence, the queue length is bounded exponentially with respect to 0 if

ag (0p (0))po ;(0) + Z cip; ;(0) < cj  for all j. (79)
Similar results hold for the virtual delay at each queue when the scheduling policy is FCFS.

Proof. Let A; j(t1,t2), 1 =0,...,1, 5 =1,...,1, be the number of customers that are routed
from queue i to queue j in the interval [t1, t5) (i = 0 for external arrivals) with the corresponding
MEP A7 .(0,t) and MER a; ;(0). Also let A;(t1,t2) = o A j(t1,t2) be the total number of
customers that arrives at queue j within the interval [t1,#2) with the corresponding MEP A% (6, t)
and MER a;‘(e) In order to use Lemma 3.7 to derive the desired result, we need to derive a

linear EP for A;(t1,12).

From Lemma 3.11, it follows that for j =1,....1,
0,5 (05 1) < ao(0py ;(0))po 5 (0) + 500 ;(6))po 5 (6). (80)

Note that the number of customers that depart from queue 7 in the interval [¢;, ) is bounded
by ¢;(ta —t1). Since we assume that the routing random variables are i.i.d., it then follows from

a standard sample path argument (see [38, 35]) that

Cl(tzftl) t? tl
Aj(tr,t2) <g Aoglti,ta) + Y, prjn)+...+ Z prj(n (81)
n=1
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where <, denotes the stochastic ordering as in the proof of Theorem 3.9(ii). Now the right-
hand side of (81) is a sum of independent random variables. Using an argument similar to

Lemma 3.11 and (80), one can show that

I
A5(0,1) < (ao(095,10)w55(0) + 3 im0 ) + 5o (05, (0)) 5 (6)-
=1

View the superposition process of all arrivals to queue j as a single class of customers. Applying
Lemma 3.7 for a single class of customers completes the proof. O

Analogous to the notations in Section 2.4, let v;(0) = ag(0p; ;(0))p; ;(0), 5 = 1,...,1. From
Lemma 3.11, v;(#) is an upper bound of the MER of the external arrivals to queue j. Using the
matrix representation, let v(0) = [v1(0),...,v(0)], ¢ = [c1,...,c;] and p*(0) be a matrix with
p; ;(0) being the element in the i'" vow and 5 column. The condition in (79) then corresponds

to the polyhedral set defined in Section 2.4:
Ey(0) = {c:v(0) < —p*(0))}, (82)

where T is the identity matrix. If the spectral radius of the matrix p*(f), denoted by sp(p*()),
is less than 1, then the matrix T' — p*(#) is invertible and the traffic equation

p(6) = v(6) + p(O)p" (9) (83)

has the solution

p(8) = (p1(8).--.,pr1(0)) =v(6)(T —p* ()"
Consider the second polyhedral set:
By(0) ={c:v(®)(T —p*(#) "' <c} (84)

Analogous to the argument in Section 2.4, we have the following two properties between these

two open polyhedral sets (if sp(p*(0)) < 1).

(P1) Ey(0) C Ey(0).

(P2) For every vector ¢ € Ey(f), there is a vector ¢' € E1(f) such that ¢! < e.

Theorem 3.14 If p;(0) < ¢; for all j and sp(p*(6)) < 1, then the total number of customers

in the system can be bounded exponentially with respect to 6/1.
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Proof. Since for every ¢? € Es, there exists ¢! € F; such that ¢! < ¢2. From Theorem 3.13,
the queue length at each queue is bounded exponentially with respect to # when the system
has capacity ¢'. Note that if there are non-integer component in ¢!, they should be interpreted
as periodic sequences as in Remark 2.11. Using the Holder’s inequality in (47) yields the result
that the total number of customers in the system is bounded exponentially with respect to 6/1.
Applying the monotonicity result in Lemma 2.10, the total number of customers in the system

with capacity ¢? is then bounded exponentially with respect to /1. O

As an application of Theorem 3.14, consider the case that the external arrivals ag(t) are i.i.d.
random variables with mean ag. Suppose the moment generating function of ag(¢), denoted as
¢o(0), is finite for some 6 > 0. Then a*(0) = 1/0log ¢y (0) and limy_,gaj(0) = ap. Similarly,
limy_, p;-"j(e) = pi,j. Thus, if one is only interested in whether the sequence of distributions
of the total number of customers in the network at time ¢ is tight or not, the traffic equations
p;(0) < ¢; can be replaced by the traffic equations using average rates. This has been reported
in [18] under similar moment conditions. Along this line, we have proposed a unified approach

for the stability of generalized Jackson’s networks in [10].

To stabilize a K-class nonfeedforward network, one can reserve a certain portion of the capacity
at each queue to each class as discussed in Section 2.4. However, the problem of how one
partitions the capacity is interesting and requires more numerical study.

4 Conclusions and future research

In this paper, we have proposed two new notions of traffic characterization: MER and MER
with respect to 8. We have also developed a set of rules for network operations based on these
two characterizations. These rules provide a method to answer two types of stability problem
of queueing networks: (i) conditions for queueing networks that render bounded queue lengths
and bounded delay for customers, and (ii) conditions for queueing networks in which the queue
length distribution of a queue has an exponential tail with rate 6. For single class networks with

nonfeedforward routing, we have provided a new method to establish stability results under the
FCFS policy.

Recently, we have extended our theory in two directions: (i) large deviation and fast simula-
tion, and (ii) stability of other networks. The connection with large deviation theory through
Géartner-Ellis theorem was first established in [29] using the Legendre transform. Along this
line, we have extended the notion of envelope process with respect to 6 in [11], where a fast
simulation method for ATM intree networks is derived. The new method for the stability of
nonfeedforward networks has been applied to generalized Jackson’s networks in [10]. Another
possible application is the stability of token rings with limited service. We note that Yaron
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and Sidi, in a recent paper [41], also considered exponential bounds as in Section 3. The key
difference between our work and theirs is that we allow the bounds to be parameterized by 6,
which in general renders tighter bounds and sometimes lower bounds.

Finally, we note that the notion of MER with respect to # might be of practical importance
in communication networks. In Section 3, we have shown that the MER with respect to 0 is
equivalent to the recently developed notion of effective bandwidth in communication networks
when restricting to a family of two-state Markov modulated arrival processes. This equivalence
relation has been recently extended to other Markov processes (see [29, 16]). Since our definition
of MER with respect to 6 is fairly general and does not require a preset mathematical model,
our approach might be able to be used to obtain the effective bandwidth for other real-time
traffic, e.g. video. Moreover, the tool for computing the bounds and approximations of the tail
distributions of queues in a network is already available in our analysis once the MER with
respect to 6 of input processes are obtained. A tentative solution for admission control of high
speed networks is proposed in [9]. Further numerical studies will be reported in a separate
paper.
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A Appendix A

In this appendix, we prove Lemma 3.6.
Proof. (i) Since a(t) < M, A(s,s +1t) < Mt < co. Thus, [|A(s,s + t)]|ecc < Mt < oo. Since
|A(s, s + t)]|oo is the greatest lower bound, for every ¢ > 0 there exists a § > 0 such that
Prob(A(s,s +t) > ||A(s,s +1)||oc — €) > d > 0. From Chernoff’s bound, it then follows that

1 1

7 log Be® A0+ > | A(s, 5 +)]so — € + i log 4.

Letting 6§ — oo and then € — 0 yields

1
lim — log BP0 > 1 A(s, 5 + 1) oo

0—oc
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Thus,

1
lim A*(0,¢) > sup lim - log Ee? (55t > sup || A(s, s + t)]| -
0—oc s>0

§>0 0—00

(ii) Let ¢(0) = Eexp(6X) be the the moment generating function of a bounded random variable
X (0 < X < M, for some constant M;). Then for any finite 6, the n'* derivative of ¢(6),
n =1,2,..., denoted as ¢{™(6), exists and equals to E(X™ exp(#X)). In particular, the first
derivative ¢'(0) is equal to EX. Applying Taylor’s expansion to the function log ¢(0) at 6 = 0
yields

log $(0) = AEX + 9_2¢(2)(91)¢(91) — (¢(1)(91))2

2 (¢(61))?
for some 6; € [0,0]. Since 0 < X < M,
1 M?

Replacing X and M; with A(s, s+ t) and Mt in (85) and taking the supremum on both sides
yields
Mt)?
A*(0,t) <supEA(s,s + 1)+ Hu.
§>0 2

(86)

Letting 6 — 0 completes the derivation for (ii).

(iii) Observe that log E exp(6A(s, s+1)) is bounded and convex in 6 for 0 < 6 < oo since a(t) <
M < oo. Since the supremum or upper limit of bounded and convex functions is still bounded
and convex, both sup,( log E exp(0A(s, s+1)) and limsup;_, », (1/t) sup,> log E exp(0A(s, s + 1))

are bounded and convex in 6 for 0 < 8 < oco. It then follows from the boundedness and the con-
vexity that §A*(0,t) and fa*(0) are continuous for 0 < # < oo. Multiplying by the continuous

function 1/6 completes the proof. O
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