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AbstractMotivated by recent development in high speed networks, in this paper we study twotypes of stability problems: (i) conditions for queueing networks that render bounded queuelengths and bounded delay for customers, and (ii) conditions for queueing networks in whichthe queue length distribution of a queue has an exponential tail with rate �. To answer thesetwo types of stability problems, we introduce two new notions of tra�c characterization:minimum envelope rate (MER) and minimum envelope rate with respect to �. Based onthese two new notions of tra�c characterization, we develop a set of rules for network opera-tions such as superposition, input-output relation of a single queue, and routing. Speci�cally,we show that (i) the MER of a superposition process is less than or equal to the sum of theMER of each process, (ii) a queue is stable in the sense of bounded queue length if the MERof the input tra�c is smaller than the capacity, (iii) the MER of a departure process froma stable queue is less than or equal to that of the input process (iv) the MER of a routedprocess from a departure process is less than or equal to the MER of the departure processmultiplied by the MER of the routing process. Similar results hold for MER with respectto � under a further assumption of independence. These rules provide a natural way toanalyze feedforward networks with multiple classes of customers. For single class networkswith nonfeedforward routing, we provide a new method to show that similar stability resultshold for such networks under the FCFS policy. Moreover, when restricting to the family oftwo-state Markov modulated arrival processes, the notion of MER with respect to � is shown�IEEE Trans. Automatic Control, Vol. 39, pp. 913-931, 1994.0



to be equivalent to the recently developed notion of e�ective bandwidth in communicationnetworks.Keywords: stability, queueing networks, e�ective bandwidth, large deviation
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1 IntroductionAs information technology advances, the demands for new types of communication serviceshave been rapidly increased. To cope with these new demands, recent development of commu-nication networks aims to serve these di�erent demands through an integrated network, i.e., anIntegrated Services Digital Network (ISDN). Before entering an ISDN, each service proposesto the network controller a service request which includes the information of source, destina-tion, tra�c pattern and grade of service (GOS). Judging from the \state" (current utilizations)of the network, the network controller then grants this service request if the GOS of this re-quest and other tra�c that are currently being served are satis�ed. Otherwise, the servicerequest is rejected. As noted in [42, 40, 34], an open and challenging problem is how to designa network controller to make such a decision. Recent research in this area can be found in[5, 14, 15, 19, 21, 22, 20, 23, 25, 26, 30] and many others.Motivated by the problem in communication networks, in this paper we study two types ofstability problems: (i) conditions for queueing networks that render bounded queue lengthsand bounded delay for customers, and (ii) conditions for queueing networks in which the queuelength distribution of a queue has an exponential tail with rate �. The �rst type of problemcorresponds to the case when GOS requires no loss or bounded delay, while the second type ofproblem might be suitable for the case when GOS requires an extremely small loss probability,e.g. 10�9. Other interesting applications of these stability problems include investigation ofinventory levels and due dates for manufacturing systems, especially for the semiconductormanufacturing systems [12, 33, 32]. In such systems, the variability of arrivals of parts andprocessing times of parts are small. Moreover, there are due dates for certain types of products.The question is if there exists a scheduling policy that meets all the due dates while keepingthe inventory levels bounded.We will answer these two types of stability problems in Sections 2 and 3 respectively. Ourapproach to these two problems is to develop stability conditions parallel to the classical con-ditions for queues with random inputs. It is well known (e.g., [31, 6, 3, 7]) that a single-serverqueue with interarrival times fTn; n � 1g and service times fSn; n � 1g is stable, i.e., thedelays converge in distribution to a �nite random variable, if f(Tn; Sn); n � 1g is stationaryand ergodic and ETn > ESn (a random variable is �nite if Prob(jXj < 1) = 1). Moreover, ifETn < ESn, then the delays converge almost surely to in�nity. From this classical example, wededuce two conditions: (i) tra�c characterization and (ii) tra�c condition. Stationarity andergodicity reduces the complexity of characterizing a process to a single number, the averagerate. The tra�c condition then ensures that the input rate is smaller than the output rate.To obtain an appropriate tra�c characterization of the �rst type of problem, we use the notionof \envelope process" by Cruz [14, 15]. The notion of envelope process is similar to stationarity2



since it bounds the original process for an arbitrary shift of time (note that a stochastic processis stationary if its joint distribution is invariant with respect to an arbitrary shift of time). Byadding the subadditive property to an envelope process, we show that a subadditive envelopeprocess has an average rate. The subadditive property corresponds to the ergodic propertyin a G=G=1 queue, which requires the existence of an identical average for each sample path.Among all envelope processes, we denote the smallest envelope process as the minimum envelopeprocess (MEP). The MEP is subadditive and has an average rate, denoted as the minimumenvelope rate (MER). Based on the new tra�c characterization of MER, we develop a set ofrules for network operations such as superposition, input-output relation of a single queue, androuting.(i) (Lemma 2.3) The MER of a superposition process is less than or equal to the sum of theMER of each process.(ii) (Theorem 2.4) A queue is stable in the sense of bounded queue length and bounded delayfor customers if the MER of the input tra�c is smaller than the capacity, and it cannotbe stable if the MER is larger than the capacity.(iii) (Lemma 2.6) The MER of a departure process from a stable queue is less than or equalto that of the input process.(iv) (Theorem 2.7) The MER of a routed process from a departure process is less than or equalto the MER of the departure process multiplied by the MER of the routing process.These rules are parallel to classical stability results and provide a natural way to analyzefeedforward networks with multiple classes of customers. The analogy is shown in Table 1.Table 1. Analogy of stability conditionsshift invariant existence of average stable unstableclassical stationary process ergodicity ETn > ESn ETn < ESndeterministic envelope process subadditivity MER < c MER > cFor single class networks with nonfeedforward routing, we use the facts that the MER's ofdeparture processes are bounded by capacities in such a network and that the total number ofcustomers in the network is decreasing with respect to the capacity of each queue. We showthat the queue length and delay at each queue is bounded under the First Come First Served(FCFS) policy if the input rates from solving tra�c equations are smaller than the capacities.As in Lu and Kumar [32], in general the same stability result may not hold for multiclassnetworks with nonfeedforward routing, even though the input rate is smaller than the capacityat each queue. We then discuss various scheduling policies that stabilize multiclass networks3



with nonfeedforward routing such as priority assignments and capacity partitions. Based onthe argument for single class networks, we provide a su�cient condition for the stability of amulticlass network under the FCFS policy.In Section 3, we generalize the notion of MER as a function of �. This characterization is calledminimum envelope rate with respect to �. This rate function is increasing in � and rangesbetween average rate and peak rate. Moreover, when restricting to the family of two-stateMarkov modulated arrival processes, the MER with respect to � is shown to be equivalent tothe recently developed notion of e�ective bandwidth in communication networks. Parallel tothe development for the �rst type of problem, we derive a set of rules for network operations.(i) (Lemma 3.4) The MER with respect to � of a superposition of independent processes is lessthan (resp. equal to) the sum of the MER with respect to � of each process (resp. whena set of large deviation conditions, [C1� 3] in Section 3.1, are satis�ed).(ii) (Theorems 3.8 and 3.9) If the MER with respect to � of the input tra�c is smaller than thecapacity, then the queue length distribution has an exponential tail with rate �. Moreover,the MER with respect to � of the departure process is less than or equal to that of theinput process.(iii (Lemma 3.11) The MER with respect to � of a routed process from a departure processcan be bounded by a function of the MER with respect to � of the departure process andthe MER with respect to � of the routing process.These rules allow us to analyze acyclic networks with multiple classes of customers, where thearrival processes in front of each queue are independent. For a single class nonfeedforwardnetwork, we show similar result holds when the routing sequences are i.i.d. Bernoulli randomvariables.We conclude the paper in Section 4, where we discuss possible extensions of the theory developedin this paper.Throughout we use increasing and convex in the nonstrict sense.2 Deterministic networksIn this section, we will answer the type of stability problem regarding bounded queue lengthsand bounded delay for customers. We will introduce the notions of envelope processes andenvelope rate in Section 2.1 as a method for tra�c characterization. Network operation rulesfor this characterization are developed for a single queue in Section 2.2, and for a feedforwardnetwork with multiple classes of customers in Section 2.3. A single class nonfeedforward networkis addressed in Section 2.4. 4



2.1 Envelope processes and envelope ratesConsider a nonnegative sequence fa(t); t = 0; 1; 2; : : :g. Let A(t1; t2) = Pt2�1t=t1 a(t). Cruz [14]introduced the following characterization of the burstiness of the sequence a(t). He considereda bounding process Â(t) with the following property:A(t1; t2) � Â(t2 � t1); 8t1 � t2:This process Â(t) will be called an envelope process of a(t) in this paper. Note that Â(t) is\stationary" in the sense that it only depends on the di�erence of the two time epochs t1 andt2. In the following lemma, we establish monotonicity and subadditivity for envelope processes.Recall that a process Â(t) is subadditive if Â(t1 + t2) � Â(t1) + Â(t2) for all t1 and t2.Lemma 2.1 Given that Â(t) is an envelope process of some unknown nonnegative process a(t),one could obtain from Â(t) another envelope process Â0(t) that is increasing and subadditive.Proof. Let Â00(t) = infs�t Â(s). Clearly, Â00(t) is increasing. Since a(t) is nonnegative,A(t1; t2) � A(t1; t2 + s) � Â(s+ t2 � t1) for all s � 0. Thus, A(t1; t2) � infs�0 Â(s+ t2 � t1) =Â00(t2 � t1) for all t1 � t2 and Â00(t) is an envelope process of a(t).To show the subadditivity, we construct Â0(t) from Â00(t) recursively by the following equation:Â0(t) = min hÂ00(t); min0<s<t [Â0(s) + Â0(t� s)]i:It is easy to verify inductively that Â0(t) is still increasing in t. Note thatÂ0(t1 + t2) � min0<s<t1+t2 hÂ0(s) + Â0(t1 + t2 � s)i� Â0(t1) + Â0(t2):Thus, Â0(t) is subadditive. Now we show that Â0(t) is an envelope process by induction ont. Clearly, it holds for t = 1 since Â0(1) = Â00(1). Assume it holds for t � 1 as our inductionhypothesis. From the induction hypothesis, it follows that that for all � and 0 < s < t,A(�; � + t) = A(�; � + s) +A(� + s; � + t) � Â0(s) + Â0(t� s):This implies that A(�; � + t) � min0<s<t[Â0(s) + Â0(t � s)]. In conjunction with A(�; � + t) �Â00(t), we have A(�; � + t) � Â0(t). This completes the argument for t. 25



According to Lemma 2.1, we may assume that Â(t) is increasing and subadditive. It is known(see [28]) that limt!1 Â(t)t = inft�1 Â(t)t def= âif Â(t) is subadditive. The limit â will be referred as the envelope rate of the envelope processÂ(t).Since envelope processes are not unique, it is natural to ask if there is a minimum one, i.e.,an envelope process A�(t) satisfying A�(t) � Â(t) for all t and for all envelope processes Â(t).Clearly, the answer to this question isA�(t) = sups�0 A(s; s+ t): (1)Hereafter, we refer to the process A�(t) as the minimum envelope process (MEP) of a(t). It iseasy to see that A�(t) is increasing and subadditive. De�ne the minimum envelope rate (MER)a� as the limit, limt!1 A�(t)t = inft�1 A�(t)t . One can also view the MER by considering thefamily of linear envelope processes proposed by Cruz [14, 15]F def= fâ : A�(t) � ât+ �̂ for some nonnegative constant �̂g: (2)The linear envelope processes in (2) have been used in [14, 15] as a tool for computing the boundfor delays. Clearly, a� � â for all â 2 F . Since limt!1A�(t)=t = a�, for every � > 0 there existsa constant t0 such that for all t � t0, A�(t)=t � (a� + �). Let � = maxt<t0 [A�(t)] = A�(t0 � 1).It then follows that A�(t) � (a� + �)t+ �. Thus,a� = inf[â : â 2 F ]: (3)If the average rate of a(t) exists, i.e., limt!1 A(s;s+t)t = a0 for all s, then one might ask if a0 = a�.In the following, we show by a counterexample that this is in general not true.Example 2.2 Let a(t) be a function that alternates between ones and zeros as follows: 1 one,1 zero, 2 ones, 2 zeros, 3 ones, 3 zeros, 4 ones, 4 zeros, etc. Then we have12 t � A[0; t] � 12 t+pt+ 1:Thus, limt!1 A(s;s+t)t = 1=2. However, one could �nd a subsequence with an arbitrary numberof consecutive 1's and thus a� = 1. 6



We note that under the uniformly convergent condition, one could interchange the limit withthe supremum to derive that a� = a0. One could also verify that the uniformly convergentcondition is satis�ed when a(t) is periodic.In the following lemma, we establish bounds for the MEP and the MER of a superposition ofK processes.Lemma 2.3 Let a(t) = PKk=1 ak(t) be a superposition of K nonnegative processes. ThenA�(t) �PKk=1A�k(t) and a� �PKk=1 a�k.Proof. Observe thatA�(t) = sups�0 A(s; s+ t) = sups�0 KXk=1Ak(s; s+ t) � KXk=1 sups�0 Ak(s; s+ t) = KXk=1A�k(t): (4)That a� �PKk=1 a�k follows immediately by taking limits. 2Throughout, we shall use a lower case letter to denote a process, e.g., a(t) and the correspondingupper case letter to denote the partial sums, e.g., A(t1; t2) = Pt2�1t=t1 a(t). A superscript � onthe corresponding upper (lower) case letter will denote the MEP (MER) of that process, e.g.,A�(t) (a�). We shall use the letters a, b and p to denote an arrival process, a departure processand a sequence of routing parameters, respectively.2.2 A single queueIn this section, we consider a discrete-time queue with one class of customers. Let a(t) andq(t) be the number of arrivals at time t and the number of customers in the queue at time trespectively. Assume that the bu�er size is in�nite and that the server can serve c customersper unit of time. The constant c will be referred to as the capacity of the server. Under awork-conserving policy, i.e., a policy that does not allow idling when there are customers in thequeue, the queue is governed by the following Lindley's equation:q(t+ 1) = (q(t) + a(t)� c)+ (5)where (x)+ def= max(0; x).Let A(t1; t2) =Pt2�1t=t1 a(t) be the number of arrivals in [t1; t2) and A�(t) be its MEP with MERa�. Note that A�(t) is the maximum number of arrivals within t units of time.7



In the following theorem, we show that there exists a bounded delay if a� is less than thecapacity and the delay cannot be bounded if a� exceeds the capacity. A similar result alsoholds for queue length.Theorem 2.4 (i) If a� < c, then there exists a constant d < 1 such that the delay of everycustomer is not longer than d.(ii) If a� > c, then there does not exist a constant d <1 such that the delay of every customeris not longer than d.As noted in the introduction, we have complete analogy to the the classical stability conditionsfor queues with random input: (i) envelope processes, which bounds the number of arrivalswith respect to an arbitrary shift of time, correspond to stationary processes which require thejoint distributions to be invariant with respect to an arbitrary shift of time, (ii) subadditivityof envelope processes, which guarantees the existence of a limit, corresponds to ergodicity ofstationary processes which also guarantees the existence of an identical limit for every samplepath, and (iii) the condition a� < c in Theorem 2.4 is simply the usual tra�c condition.Proof. (i) We �rst show that the length of each busy period is bounded above by a constantd. This in turn implies that the delay of each customer is bounded above by d. This argumenthas been used in Cruz [14, 15] and Kurose [30]. Letd def= infft � 1 : A�(t)� ct � 0g: (6)Since limt!1 A�(t)t = a� < c, limt!1A�(t)� ct = �1 and thus d is �nite. Observe that thetotal number of arrivals within d units of time is bounded above by A�(d). Thus, if we startfrom an empty system at time 0, then the next time (under a work conserving policy) that thequeue becomes empty must be within d units of time. Following the same argument shows thateach busy period is bounded above by d.(ii) We show that the queue length cannot be bounded above by a constant. Since the servercan serve at most c customers per unit of time, this in turn implies that the delay of eachcustomer cannot be bounded above by a constant. Since limt!1 A�(t)t = inft�1 A�(t)t = a�, wehave that A�(t)=t � a� for all t. From (1), it follows that for every t and � > 0, there exists aconstant m � t such that A(m� t;m) � A�(t)� � � a�t� �: (7)If the queue is empty at time 0, expanding (5) recursively yieldsq(m) = max h0; a(m�1)�c; a(m�1)+a(m�2)�2c; : : : ; a(m�1)+a(m�2)+: : : a(0)�mci: (8)8



In conjunction with (7), we conclude thatq(m) � A(m� t;m)� tc� (a� � c)t� �:Since a� > c and t and � are arbitrary, the queue length cannot be bounded above by a constant.2Remark 2.5 Though Theorem 2.4(i) is only stated for a queue with a �xed capacity c, it canbe extended to a queue with a time varying capacity. Speci�cally, let c(t) denote the maximumnumber of customers that can be served at time t and C(t1; t2) = Pt2�1t=t1 c(t). Instead ofde�ning an envelope process from above, one can also de�ne an envelope process from below.The maximum lower envelope process, denoted by C�(t), is then de�ned to be infs�0C(s; s+ t).Analogous to the argument for MEP, one can easily verify that the maximum lower envelopeprocess is increasing and superadditive. Thus, one can de�ne the maximum lower envelope rate,denoted by c�, as limt!1C�(t)=t = supt�1 C�(t)=t. Under the condition a� < c�, the delay ofevery customer is bounded above by d, whered def= infft � 1 : A�(t)� C�(t) � 0g: (9)In particular, if c(t) is a periodic sequence, then c� = c� and both rates are the same as itsaverage rate. We will not pursue the notion of lower envelope processes any further in thispaper. Further development along this line can be found in [10, 11].In Theorem 2.4(i), we do not assume any particular scheduling policy as long as it is work-conserving. If we assume that the scheduling policy is FCFS, then the bound for the delay in(6) could be tightened by considering the maximum queue length. The delay of a customerthat arrives at time t + 1 is bounded above by d(q(t + 1) + a(t + 1))=ce. From (8), it followsthat q(t+ 1) + a(t+ 1) � max hA�(1); A�(2) � c;A�(3)� 2c; : : : ; A�(t+ 2)� (t+ 1)ci: (10)By the de�nition of d in (6), A�(d) � cd. Thus, for t � d, we have from the subadditive propertyof A�(t) thatA�(t)� (t� 1)c � A�(t� d)� (t� d� 1)c+A�(d)� cd � A�(t� d)� (t� d� 1)c:In conjunction with (10), it follows that for all tq(t+ 1) + a(t+ 1) � max hA�(1); A�(2)� c;A�(3)� 2c; : : : ; A�(d) � c(d � 1)i: (11)9



Note that the right hand side of (11) is independent of t and provides an upper bound for themaximum queue length.As shown in Example 2.2, we also note that the two conditions (i) the existence of an averagerate a0 and (ii) a0 < c are not enough to guarantee bounded delays.Now we consider the departure process from the queue. Let B(t1; t2) denote the number ofdepartures in [t1; t2). Also let B�(t) and b� be the corresponding MEP and MER.Lemma 2.6 If the delay of each customer is bounded above by a �nite constant, then the MERof the departure process is the same as that of the input process, i.e., b� = a�.Proof. Since each arrival can be delayed by at most d units of time,A(t1; t2) � B(t1; t2 + d) � A(t1 � d; t2 + d): (12)This implies that A�(t) � B�(t+ d) � A�(t+ 2d). Thus, b� = a�. 2We note that the �rst inequality in (12) was used in Cruz [14] to compute the delays in feedfor-ward networks. Also, Lemma 2.6 does not depend on how the queue is operated. For instance,the input process might be a superposition process of multiple classes of customers. As long asthe delay for each customer is bounded above by a constant, the result in Lemma 2.6 holds foreach class of customers. In the next section, we will use the input-output relation in Lemma2.6 to discuss the stability of feedforward networks.2.3 Multiclass networks with feedforward routingIn this section, we consider a discrete-time queueing network with K classes of customers andI queues. We assume that the bu�er sizes of these I queues are in�nite and that the servicerequirements of these K class customers at all I queues are one unit of time. The capacityof queue i is ci, i.e., at most ci customers can be served at queue i per unit of time. Wefurther assume that each queue is operated under a work-conserving policy. The number ofclass k, k = 1; 2; : : : ;K, customers that arrive at the system at time t is denoted by a0;k(t); t =0; 1; 2; : : :. These arriving customers are then routed to the I queues according to a set of routingparameters p0;i;k(n); i = 1; 2; : : : ; I; k = 1; 2; : : : ;K; n = 0; 1; 2; : : :. The nth class k customer is(resp. not) routed to queue i if p0;i;k(n) = 1 (resp. 0). Similarly, the nth departure of class kcustomers from queue i is (resp. not) routed to queue j if pi;j;k(n) = 1 (resp. 0). We assumethat pi;j;k(n) = 0 for all i � j, i.e., the network is feedforward (see �gure 1). We note that wedo not assume that PIj=1 pi;j;k(n) � 1. This allows us to model broadcasting.10



Let ai;k(t) be the number of class k customers that arrives at queue i at time t and ai(t) =PKk=1 ai;k(t). Let qi(t) be the total number of customers in front of queue i at time t. Then wehave the Lindley equation for queue i, i = 1; : : : ; I:qi(t+ 1) = (qi(t) + ai(t)� ci)+: (13)Let Aj;k(t1; t2) = Pt2�1t=t1 aj;k(t), j = 0; 1; 2 : : : ; I, be the number of class k arrivals at queuej (the system when j = 0) in [t1; t2) and A�j;k(t) and a�j;k be its MEP and MER. Also letAj(t1; t2) = PKk=1Aj;k(t1; t2) be the total number of arrivals at queue j in [t1; t2) and A�j(t)be its MEP with the MER a�j , j = 1; : : : ; I. Let P �i;j;k(m) be the MEP of the routing processpi;j;k(n), i.e., P �i;j;k(m) def= sups�0 s+m�1Xn=s pi;j;k(n): (14)In other words, P �i;j;k(m) is the maximum number of class k customers that are routed to queuej among m consecutive class k customers that depart from queue i. Similarly, let p�i;j;k be thecorresponding MER. Let �j;k = a�0;kp�0;j;k + j�1Xi=1 �i;kp�i;j;k; j = 1; : : : ; I: (15)In the following theorem, we will show that �j;k is an upper bound for the MER of class kcustomers at queue j and that the delay of each customer can be bounded above by a constantif the bound for the MER of the arrival process at each queue is less than the capacity of thecorresponding queue.Theorem 2.7 If PKk=1 �j;k < cj for all j = 1; : : : ; I, then the delay of a customer through thenetwork can be bounded above by a constant.Proof. We will prove this by double induction on j = 1; : : : I. Our induction hypotheses are (i)the delay is bounded above by a constant and (ii) the MER of the departure process of classk customers from queue j, denoted by b�j;k, is not greater than �j;k. First, we show the casej = 1. In this case, the number of class k customers arrived at the �rst queue in [t1; t2) is thenumber of class k customers that arrives within this time interval and are routed to queue 1.Thus, we have A1;k(t1; t2) � P �0;1;k(A0;k(t1; t2)) � P �0;1;k(A�0;k(t2 � t1)): (16)This implies that A�1;k(t) � P �0;1;k(A�0;k(t)): (17)11



Note that limt!1 P �0;1;k(A�0;k(t))t = limt!1 P �0;1;k(A�0;k(t))A�0;k(t) A�0;k(t)t = p�0;1;ka�0;k:Since �1;k = p�0;1;ka�0;k, we have a�1;k � �1;k: (18)In conjunction with Lemma 2.3 for a superposition of K processes, it follows thata�1 � KXk=1 a�1;k � KXk=1 �1;k:It then follows from Theorem 2.4 (i) and the assumption PKk=1 �1;k < c1 that the delay foreach customer at queue 1 is bounded above by a constant. This completes the argument forthe induction hypotheses (i) for queue 1. That the induction hypothesis (ii) for queue 1 holdsfollows from Lemma 2.6 and (18).Now suppose the induction hypotheses (i) and (ii) hold for the �rst j � 1 queues. Note thatthe arrival process of class k customers at queue j is a superposition of the external arrivalsthat are routed directly to queue j, and all the class k customers that depart from queue i,i = 1; : : : j � 1, and are routed to queue j. Using Lemma 2.3, the argument in the previousparagraph for routing and the induction hypothesis (ii) yieldsa�j;k � a�0;kp�0;j;k + j�1Xi=1 b�i;kp�i;j;k � a�0;kp�0;j;k + j�1Xi=1 �i;kp�i;j;k = �j;k:Apply Lemma 2.3 once more to show that a�j �PKk=1 �j;k. Again, it follows from Theorem 2.4(i) and the assumption PKk=1 �j;k < cj that the delay at queue j is also bounded above by a�nite constant. Finally, applying Lemma 2.6 completes the induction hypothesis (ii) for queuej. 2We note that the stability result in Theorem 2.7 can also be extended to networks in whichcustomers have di�erent service times. Let si;k(n), i = 1; : : : I, k = 1; : : : ;K, denote the servicetime of the nth class k customer at queue i and s�i;k's be the corresponding MER's.Theorem 2.8 If PKk=1 �j;ks�j;k < cj for all j, then the delay of a customer through the networkcan be bounded above by a constant.Proof. We only prove it for a queue with a single class of customer. The rest of the proof iscompletely parallel to the development in Theorem 2.7. Consider the workload process, v(t),12



(virtual waiting times) that satis�es the following Lindley's equation:v(t+ 1) = (v(t) + w(t) � c)+; (19)where w(t) is the total amount of work that arrives at time t. As in the proof for Theorem2.4, one can show that the busy period at each queue is bounded above by a �nite constant, ifw� < c. Since the total amount of work that arrives within an interval is the sum of the workof the customers that arrive within the interval, Pt2�1t1 w(t) satis�es a similar inequality to thatin (16). This implies w� < a�s�. In conjunction with the assumption a�s� < c, the delay ofevery customer is bounded above by a constant. 2Note that si;k(n) may not be the same as the service time of the nth class k customer that arrivesat the network. However, for the network with �xed routing for each class, i.e., pi;j;k(n) = 1 or0 for all n, and the FCFS policy at each queue, the nth class k customer at queue i is also thesame as the nth class k customer that arrives at the network.2.4 Single class networks with nonfeedforward routingIn this section, we consider a discrete-time queueing network similar to the one in x2.3 withthe following two exceptions: (i) there is only one class of customer (and thus the index k willbe dropped in this section), and (ii) the routing can be nonfeedforward, i.e., pi;j(n) may notbe 0 for all i < j (see �gure 2). In a nonfeedforward network, an individual customer could becircled within the network for an arbitrary number of times. Thus, the delay for an individualcustomer cannot be bounded and we are interested in the conditions that result in boundeddelay for each queue. To be precise, let �j = a�0p�0;j, j = 1; : : : ; I. From x2.3, �j is an upperbound of the MER of the external arrivals to queue j. Similar to the de�nition of �j in (15),let �j , j = 1; : : : ; I be the solution of the following tra�c equation:�j = �j + IXi=1 �ip�i;j: (20)As one might notice, �j is the arrival rate to queue j (including both external and internaltra�c) in the Jackson network with the external arrival rates �j , j = 1; : : : ; I and the routingprobabilities p�i;j, i; j = 1; : : : ; I. It is known that the Jackson network is stable if �j < cj forall j. These conditions will be referred to as the usual tra�c conditions. Our interest in thissection is to answer if the delay at each queue can be bounded above by a �nite constant underthe usual tra�c conditions.Due to the possibility of customers being circled around, our inductive proof in the previoussection cannot be applied to nonfeedforward networks. As a natural extension of induction,13



one might consider the �xed point iteration algorithm as in [15, 30]. First, one considers thenetwork excludes all internal tra�c. Each queue is analyzed in isolation and a bound is foundfor the MEP of the departure process from each queue. These bounds for the MEPs of thedeparture processes are then incorporated with the bounds for external tra�c to analyze eachqueue in isolation. The procedure is iterated until the bounds for the MEPs of the departureprocesses converge. Unfortunately, as noted in Cruz [15], this iteration algorithm convergesonly if the tra�c is su�ciently low and the tra�c conditions needed for it to converge arestronger than the usual ones. Thus, a di�erent approach is needed.Before we introduce our approach, let us simplify the notations by using matrix representation.Let � = [�1; : : : ; �I ], � = [�1; : : : ; �I ], c = [c1; : : : ; cI ] and p� be a matrix with p�i;j being theelement in the ith row and jth column. Write (20) in matrix form as follows:� = � + �p�: (21)Equation (21) can be solved by the �xed point iteration. Since � and p� are nonnegative,the sequence of vectors, �(n) = � + �(n�1)p� with �(0) = [0:; : : : ; 0], is increasing in n. If thespectral radius of the matrix p�, denoted by sp(p�), is less than 1, then the sequence �(n)converges to � and �j , j = 1; : : : ; I are �nite. Moreover, the matrix � � p� is invertible andthus � = �(� � p�)�1, where � is the identity matrix. A su�cient condition for sp(p�) < 1is that PIj=1 p�i;j < 1 for all i ([24], Theorems 5.6.5 and 5.6.9). Hereafter, we will assume thatsp(p�) < 1.Our approach for the stability problem consists of the following steps. We �rst consider twoopen polyhedral sets E1 and E2 (below) obtained from a strong tra�c condition and the usualtra�c condition. In Lemma 2.9, we show that a bounded delay at each queue can be achievedunder the stronger tra�c condition E1. We then relax the tra�c condition from E1 to E2 usingthe monotonicity result in Lemma 2.10.Now consider the following two open polyhedral sets:E1 = fc : � < c(�� p�)g (22)E2 = fc : �(�� p�)�1 < cg (23)It is easy to see that E1 is a shifted cone (i.e., all the hyperplanes pass through �) and that � isan extreme direction of E1 (i.e., for any c 2 E1 and � > 0, c+ �� 2 E1). The open polyhedralset E2 is simply the quadrant fc : c > �g. Moreover, we have the following two propertiesbetween these two open polyhedral sets.(P1) E1 � E2. 14



(P2) For every vector c 2 E2, there is a vector c1 2 E1 such that c1 � c.To show the �rst property, one observes that(�� p�)�1 = �+ p� + (p�)2 + (p�)3 + : : : (24)is a nonnegative matrix with positive diagonal elements since the matrix p� is nonnegative.Thus, if a vector c is in E1, then multiplying both sides of (22) by the matrix (��p�)�1 yields�(�� p�)�1 < c(�� p�)(�� p�)�1 (25)since each scalar inequality in (25) is a linear combination of the scalar inequalities in (22) withat least one positive coe�cient. This shows that c 2 E2. For (P2), we only show the case� > 0. The general case can be shown by a similar argument and the property of open sets.Since � > 0, we have � > 0. Let � def= min[c1=�1; : : : ; cI=�I ]. Clearly, � > 1 if c 2 E2. Now letc1 = ��. It is easy to see that c1 � c. Moreover, c1 2 E1 since ��(� � p�) = �� > �. As anexample, consider � = (1; 1) and the matrixp� = " 0 1212 0 # :In this example, � = (2; 2) and the regions of E1 and E2 are shown in �gure 3.Lemma 2.9 If c 2 E1, then the delay at each queue is bounded above by a �nite constant andthe queue length at each queue is also bounded.Proof. Note that the MER of the departure process from queue j is bounded above by thecapacity cj. Thus, the MER of the arrival process to queue j is bounded above by �j+PIi=1 cip�i;j.From Theorem 2.4 (i), it follows that customers at queue j would have a bounded delay if�j + IXi=1 cip�i;j < cj: (26)The condition (22) is the matrix form of (26). 2Lemma 2.10 For two queueing networks described in this section, if the capacities are ordered,i.e., c1 � c2, then the number of departures from each queue by time t at the �rst system is notgreater than that at the second system. As a direct consequence, the total number of customersin the �rst system is not less than that of the second system.15



Proof. This type of monotonicity result is well known in the literature (see Tsoucas andWalrand[39], Foss [18] and references therein). For completeness, we provide the argument in [39]. Letri;t(n) be the time remaining at time t until the nth customer that arrives at queue i leavesqueue i. By convention, ri;t(n) =1 if fewer than n customers have arrived at queue i by timet and ri;t(n) = 0 if the nth customer has departed from queue i by time t. Then it can provedby induction on t that r1i;t(n) � r2i;t(n) for all i; n; t if c1 � c2. 2Remark 2.11 We note that if there are non-integer, but rational components in c1 in Lemma2.10, then those capacities should be interpreted as periodic sequences that alternate betweentheir ceiling and oor values (cf. Remark 2.5). For instance, if c = 2:5, then c(2t) = 2 andc(2t + 1) = 3 for all t, where c(t) is the maximum number of customers that can be servedper unit of time. One can easily verify that both Lemmas 2.9 and 2.10 hold for this periodicinterpretation for a non-integer capacity. (To apply the sample path argument in Lemma 2.10,one should construct the two periodic sequences such that c1(t) � c2(t) for all t.)Analogous to the stability conditions for the Jackson networks, we have the following theorem:Theorem 2.12 If �j < cj for all j and sp(p�) < 1, then every queue length can be boundedabove by a �nite constant. As a direct consequence, the delay at each queue is bounded if theservice discipline is FCFS.Proof. For every c2 2 E2, there exists c1 2 E1 such that c1 � c2. From Lemma 2.9, the queuelength at each queue is bounded above by a constant when the system has capacity c1. Thisimplies that the total number of customers in the system is still bounded above by a �niteconstant. Applying Lemma 2.10, the total number of customers in the system with capacityc2 is then bounded above by the same constant. Thus, each queue is bounded above by thesame constant. If, furthermore, the service discipline is FCFS, it then follows from the sameargument as in (11) that the delay at each queue is bounded above by a �nite constant. 2Corollary 2.13 If �j < cj, sp(p�) < 1, and the service discipline at each queue is FCFS, thenb�j � �j for all j, where b�j is the MER of the departure process from queue j.Proof. The MER of the arrival process from queue i to queue j is bounded above by b�i p�i;j.Thus, the MER of the arrival process to queue j is bounded above by �j+PIi=1 b�i p�i;j. Since weassume that �j < cj, it then follows from Theorem 2.12 the delay at each queue is bounded aboveby a constant. In conjunction with Lemma 2.6, we have b�j � �j +Pni=1 b�i p�i;j or equivalentlyb�(�� p�) � �; (27)16



where b� = [b�1; : : : ; b�I ]. Analogous to the argument for (P1), we multiply both sides of (27) bythe matrix (�� p�)�1. We then have b� � �(�� p�)�1 = �. 2We note one can also use the argument in this section to compute the bound for the totalnumber of customers in the network. However, this bound may not be tight.To stabilize a K-class nonfeedforward network, one can reserve a certain portion of the capacityat each queue to each class of tra�c. Thus, the system behaves like K independent single classnonfeedforward networks and each one of them can be shown to be stable by the argumentdeveloped in this section. Another way to stabilize a K-class nonfeedforward network (with�xed routing) is to assign appropriate priorities to classes of jobs at each queue. For instance,one could assign priorities according to the order that queues are visited (see [32]). By sodoing, the class of jobs that has higher priority is not a�ected by the other classes of jobs.Moreover, the tra�c of this class of jobs entering its �rst queue is also not a�ected by its owninternal tra�c from other queues. Thus, the induction technique in x2.3 can be used to show thestability of the network under the usual tra�c conditions, i.e., PKk=1 �j;k < cj for all j, where�j;k is the solution of (20) for class k customers. However, it is still not clear if the systemcould be stabilized under the FCFS policy when the usual tra�c conditions are satis�ed. Themain di�culty in analyzing multiclass nonfeedforward networks is that the departure processfrom each queue consists of di�erent classes of customers. If we simply bound the departureprocess of each class by capacity, the bound is too loose to derive the desired tra�c conditions.However, we still can mimic the proof for Theorem 2.12 to obtain su�cient conditions. Recallthat the number of arrivals from queue i to queue j within a time interval of t units of time isbounded above by the number of customers that depart from queue i within that interval andare routed to queue j. Suppose there are nk class k customers that depart from queue i withinthe interval of t units of time. Clearly, PKk=1 nk � cit. Thus, we haveA�i;j(t) � maxn1+:::+nK�cit [ KXk=1P �i;j;k(nk)] def= Âi;j(t): (28)It is easy to verify that Âi;j(t) de�ned above is also increasing and subadditive in t. SinceÂi;j(t) � maxk[P �i;j;k(cit)], limt!1 Âi;j(t)=t � cimaxk[p�i;j;k]. Note that for every �i;j;k > 0 thereexists a constant �i;j;k such thatP �i;j;k(n) � (p�i;j;k + �i;j;k)n+ �i;j;k: (29)It then follows that Âi;j(t) � (maxk[p�i;j;k] + �i;j)cit + �i;j, where �i;j = maxk[�i;j;k] and �i;j =maxk[�i;j;k]. Thus, limt!1 Âi;j(t)t = cimaxk [p�i;j;k]:17



Now using the same argument as in the proof of Theorem 2.12, one can show that a multiclassnonfeedforward network under FCFS policy is stable if �j < cj for all j, where �j is the solutionof (20) with p�i;j = maxk[p�i;j;k] and �j =PKk=1 �j;k. However, these tra�c conditions are strongerthan desired.3 Stochastic networksIn this section, we extend our results in the previous section from deterministic queueing net-works to stochastic queueing networks. Our objectives in this section are (i) to provide a toolto compute simple bounds for tail distributions and (ii) to answer the second type of stabilityproblem of queueing networks.Instead of having deterministic bounds for random variables as in the previous section, in thissection we consider bounds for moment generating functions. We say a random variable X isbounded exponentially with respect to � (0 < � < 1) if the �-norm of exp(X) is �nite, i.e.,there exist a constant d <1 such that (Ee�X) 1� � d: (30)Thus, we have from Cherno�'s bound thatP (X � x) � d�e��x for all x;which provides a bound for the tail distribution of X.Parallel to the development in deterministic queueing networks, we consider envelope processes(EP) of input processes with respect to � in Section 3.1. Among the EPs, the class of linearEPs is of importance, as noted by Cruz [14, 15] in a deterministic setting. We show that ifthe input process in a single queue has a linear EP whose rate is smaller than the capacity, c,and the queue is operated under a work-conserving policy, then (i) the queue length is boundedexponentially with respect to �, (ii) there exists a linear EP of the departure process whichcan be represented as a function of the linear EP of the input process and (iii) the virtualdelay is bounded exponentially with respect to �c if the scheduling policy is First Come FirstServed (FCFS). Using these results, bounds for the tail distributions of queue length and virtualdelay can be computed easily from the linear EP of the input process. Like in the previoussection for deterministic networks, the minimum envelope rate with respect to � (MER) is thein�mum of the rates in the class of linear EPs. A su�cient condition for the queue length to bebounded exponentially with respect to � is that the MER of the input process is smaller thanthe capacity. On the other hand, if the MER is larger than the capacity, then the queue lengthcannot be bounded exponentially with respect to �. In particular, when the arrival process is a18



superposition of independent two-state Markov modulated processes, we show that the notionof MER is equivalent to the recently developed notion of e�ective bandwidth in [26, 20, 23] andis also related to the Perron-Frobenius eigenvalue in [37].In order to extend these results to networks, in Section 3.3 we consider marked point processes,in which there are a sequence of arrival points and a sequence of marks associated with thearrival points. The marks can be viewed either as the service requirements or the routingvariables. We show that if (i) there are a linear EP of the arrival process and a linear EP of themarking sequence and (ii) the arrival points and marks are independent, then there is a linearEP of the marked process in terms of the linear EP of the arrival process and the linear EPof the marking process. Using these input-output types of relations, we extend the bounds forthe tail distributions of virtual delay and queue length from a single queue to acyclic networks,where the paths of customers do not form a loop and the input at each queue is a superpositionof independent processes. Note that the notion of independence, though trivial in deterministicnetworks, is crucial in stochastic networks.We then consider a single class network with nonfeedforward routing in Section 3.4. We assumethat the routing random variables from each queue are independent and identically distributed(i.i.d.). Using an argument similar to that in Section 2.4, we show that the queue length ateach queue can be bounded exponentially with respect to � if the strong tra�c condition (E1) issatis�ed. Under the weak tra�c condition (E2), we show that the total number of customers inthe system can be bounded exponentially with respect to �=I, where I is the number of queuesin the network.3.1 Envelope processes and envelope ratesConsider a sequence of nonnegative random variables, fa(t); t = 0; 1; 2; : : :g. Let A(t1; t2) =Pt2�1t=t1 a(t). Analogous to the notions of envelope processes in previous section for deterministicnetworks, we consider the following \bounding" process of a(t):1� logEe�A(t1;t2) � Â(�; t2 � t1) 8 t1 � t2 (31)The process Â(�; t) will be also called an envelope process of a(t) with respect to � (EP). Clearly,the minimum envelope process with respect to � (MEP) isA�(�; t) = sups�0 1� logEe�A(s;s+t): (32)
19



Unlike the MEP in a deterministic setting, the MEP de�ned in (32) is not subadditive ingeneral. Thus, we de�ne the minimum envelope rate of a(t) with respect to � (MER) to bea�(�) = lim supt!1 A�(�; t)t : (33)Similar to (2), one can also view the MER by considering the family of linear EPs.F� def= fâ(�) : A�(�; t) � â(�)t+ �̂(�) for some nonnegative constant �̂(�)g; (34)where â(�) will be called the rate of a linear EP. Note that �̂(�) is constant in t, but it is afunction of �. Using the same argument as in (3), it is easy to see that for each �xed �,a�(�) = inf[â(�) : â(�) 2 F�]: (35)We note that our de�nition of MER is connected to the theory of large deviation throughthe G�artner-Ellis theorem. To establish the connection, we further introduce the followingconditions for a sequence fa(t); t � 0g.(C1) fa(t); t � 0g is stationary and ergodic.(C2) a�(�) = limt!1 A�(�;t)t for all 0 < � <1.(C3) �a�(�) is strictly convex and di�erentiable for all 0 < � <1.Under these three conditions, the sequence fA(0; t); t � 1g obeys the large deviation principle(see [8]) with the rate function I(v) = sup� f�v � �a�(�)g: (36)We note that �a�(�) is increasing and convex for 0 � � < 1 according to the de�nition ofa�(�). Strict convexity of �a�(�) implies that a�(�) is strictly increasing. We will discuss moreon monotonicity and bounds in Lemma 3.5. Moreover, under [C1� 3] one can also verify thatfor all t1 � t2 and any � > 0, there is a constant �̂(�) � 0 such that(a�(�)� �)(t2 � t1)� �̂(�) � 1� logEe�A(t1;t2) � (a�(�) + �)(t2 � t1) + �̂(�): (37)Thus, a�(�) is not only the minimum upper envelope rate but also the maximum lower enveloperate. For further development along this line, we refer to [29, 11].In the next section, we will �rst use linear EPs to derive input-output relations between arrivalprocesses and departure processes and then apply the representation in (35) to establish stabilityresults. Now we consider some stochastic processes where these concepts can be easily applied.20



Example 3.1 If a(t) is a sequence of independent random variables, then the MEP A�(�; t) issubadditive. Thus, a�(�) = limt!1 A�(�; t)t = inft�1 A�(�; t)t :Proof. Observe thatA�(�; t1 + t2) = sups�0 1� logEe�A(s;s+t1+t2) = sups�0 1� logEe�A(s;s+t1)+�A(s+t1;s+t1+t2) (38)Thus, A�(�; t1 + t2) = sups�0 h1� logEe�A(s;s+t1) + 1� logEe�A(s+t1;s+t1+t2)i� sups�0 1� logEe�A(s;s+t1) + sups�0 1� logEe�A(s+t1;s+t1+t2)� A�(�; t1) +A�(�; t2):The limit then follows from the subadditive property (see [28]). 2In the second example, we consider stationary and associated processes. A process a(t) is saidto be stationary if its joint distribution is invariant with respect to an arbitrary shift of time,i.e., Prob(a(t1) < x1; : : : ; a(tn) < xn) = Prob(a(t1 + s) < x1; : : : ; a(tn + s) < xn) (39)for all t1; : : : ; tn and s. A process a(t) is said to be associated if all the random variables,fa(t); t = 0; 1; 2; : : :g, are associated, i.e.,Ef(a(t1); : : : ; a(tn))g(a(t1); : : : ; a(tn)) � Ef(a(t1); : : : ; a(tn))Eg(a(t1); : : : ; a(tn)) (40)for all t1; : : : ; tn and for all f , g increasing. For the properties of associated random variables,we refer to [4, 17].Example 3.2 If a(t) is stationary and associated, then the MEP A�(�; t) is superadditive.Thus, a�(�) = limt!1 A�(�; t)t = supt�1 A�(�; t)t :Proof. Observe from stationarity thatA�(�; t1 + t2) = 1� logEe�A(0;t1+t2) = 1� logEe�A(0;t1)e�A(t1;t2+t2):21



Since a(t) is associated, the two random variables A(0; t1) and A(t1; t1 + t2) are associated.Thus, A�(�; t1 + t2) � 1� logEe�A(0;t1) + 1� logEe�A(t1;t1+t2):Since a(t) is stationary, the two random variables A(t1; t1 + t2) and A(0; t2) have the samedistribution. Thus, we have A�(�; t1 + t2) � A�(�; t1) +A�(�; t2):Again, the limit then follows from the superadditive property [28]. 2As a special case of Examples 3.1 and 3.2, a�(�) = (1=�) log(E exp(�a(0))) if a(t) is a sequenceof i.i.d. random variables. The MER a�(�) for i.i.d. random variables is referred to as e�ectivebandwidth in Kelly [26].In the third example, we consider a Markov modulated process (MMP). Let x(t) be a Markovprocess on the states f1; : : : ;Mg with the transition matrix r, i.e., ri;j is the transition proba-bility from state i to state j. Also let fyi(t); t = 0; 1; : : :g, i = 1; : : : ;M , beM sequences of i.i.d.random variables with the moment generating functions �i(�) = E exp(�yi(0)). The processa(t) = yx(t)(t) is then an MMP with the modulating process x(t). Clearly, a(t) is stationary ifx(t) is stationary.Example 3.3 Consider an MMP a(t) as described above. Let �(�) be the diagonal matrixdiagf�1(�); : : : ; �M (�)g and sp(�(�)r) be the spectral radius of the matrix �(�)r. Then theMER a�(�) is bounded above by (1=�) log sp(�(�)r).If, furthermore, the Markov process x(t) with the transition matrix r is irreducible and aperi-odic, then a�(�) = limt!1 A�(�; t)t = 1� log sp(�(�)r):Note that sp(�(�)r) = sp(r�(�)) ([24], Theorem 1.3.20).Proof. Analogous to the backward equation, one observes thatE(e�A(0;t)jx(0) = i) = �i(�) MXj=1E(e�A(0;t�1)jx(0) = j)ri;j : (41)Let  (�; t) = (E(e�A(0;t)jx(0) = 1); : : : ; E(e�A(0;t)jx(0) =M))22



and  (�; t)T be its transpose. Writing (41) in matrix form, we have (�; t)T = �(�)r (�; t� 1)T (42)with the initial condition  (�; 1)T = �(�)1T ;where 1T is the column vector with all its elements being one. Let �i be the probability of x(0)being at state i and also let � = (�1; : : : ; �M ). Thus,E(e�A(0;t)) = � (�; t)T = �(�(�)r)t�1�(�)1T : (43)Since sp(�(�)r) is the spectral radius of the matrix �(�)r, for every � > 0 there exists a constant��(�) such that every element of the matrix (�(�)r)t is bounded above by ��(�)(sp(�(�)r) +�)t (see [24], Corollary 5.6.13). In conjunction with (43), one can easily show that a�(�) �(1=�) log sp(�(�)r).If we also assume that the Markov process x(t) with the transition matrix r is irreducible andaperiodic, then the matrix r is primitive, i.e., rn > 0 for some n � 1. Observing that thematrix �(�) is a diagonal matrix with positive diagonal elements, it is easy to see that thematrix �(�)r is also primitive. From (43) and the Perron-Frobenius theorem ([24], Theorem8.5.1), i.e., limt!1 [�(�)r=sp(�(�)r)]t = L(�) > 0for some constant matrix L(�), it follows that the MER is (1=�) log sp(�(�)r). 2If the modulating process is a two-state Markov chain, then the spectral radius of the matrix�(�)r can be computed easily (see [24], pp. 39) anda�(�) = 1� log �r11�1(�) + r22�2(�) +q(r11�1(�)� r22�2(�))2 + 4r12r21�1(�)�2(�)2 �: (44)For the usual voice model [37], one has in particular a constant number of arrivals, �, at state2 and no arrivals at state 1. Then �2(�) = exp(��) and �1(�) = 1 and the MERa�(�) = 1� log �r11 + r22 exp(��) +q(r11 + r22 exp(��))2 � 4(r11 + r22 � 1) exp(��)2 �: (45)Our de�nitions for MERs in (33) can also be easily extended to continuous-time models. Forinstance, we consider the two-state Markov modulated uid process. The transition rate fromstate 1 to state 2 is � and the transition rate from state 2 to state 1 is �. Assume that there23



are no arrivals at state 1 and that the arrivals at state 2 is a constant rate process with rate �.Using the backward equation as in Example 3.3, one can easily show thata�(�) = �� � �� �+p(�� � �+ �)2 + 4��2� : (46)The MER in (46) is then the same as the e�ective bandwidth �(�) in Gibbens and Hunt [20]with � = ��.Now we discuss some properties of MEPs and MERs. In Lemma 3.4 below, we establish boundsfor the MEP and the MER of a superposition of K independent processes. The proof is direct.Lemma 3.4 Let a(t) =PKk=1 ak(t) be a superposition of K independent processes. Then(i) A�(�; t) �PKk=1A�k(�; t) and a�(�) �PKk=1 a�k(�).(ii) If, furthermore, ak(t), k = 1; : : : ;K satisfy conditions [C1 � 3], then a(t) also satis�esconditions [C1� 3] with a�(�) =PKk=1 a�k(�).If theseK processes are not independent, a general bound can be obtained by H�older's inequality(suggested by Joy Thomas). Note that for mk > 1, k = 1; : : : ;K, PKk=1 (1=mk) = 1,Ee�PKk=1 Ak(t1;t2) � KYk=1 (Ee�mkAk(t1;t2))1=mk : (47)It then follows that a�(�) � infPKk=1 (1=mk)=1 KXk=1 a�k(mk�): (48)As we shall prove in Lemma 3.5, a�k(�)'s are increasing in �. The general bound in (48) is notas tight as that in Lemma 3.4. However, this general bound cannot be improved without anyfurther assumptions. Consider the case that ak(t)'s are identical, i.e., a(t) = Ka1(t). Thena�(�) = Ka�1(K�) which is the same as the right hand side of (48), taking into account theconvexity of �a�1(�).We note that the process a(t) is associated if ak(t), k = 1; : : : ;K are associated. This followsfrom the fact that independent random variables are associated.In the following lemma, we establish monotonicity results and bounds for MEPs and MERs.De�ne the essential supremum of a random variable X, denoted as kXk1, to be the greatestlower bound of the set fx : Prob(X > x) = 0g (see [36]), i.e.,kXk1 = inffx : Prob(X > x) = 0g:24



Thus, Prob(X � kXk1) = 1 and EX � kXk1. Since the function exp(�x), 0 < � < 1, isstrictly increasing and continuous in x, we have that k exp(�X)k1 = exp(�kXk1). Moreover,it is easy to verify that kX1k1 + kX2k1 � kX1 +X2k1:Lemma 3.5 MEPs are increasing in �, i.e., for 0 < �1 � �2 <1, A�(�1; t) � A�(�2; t) for allt. Moreover, for 0 < � <1,sups�0 EA(s; s+ t) � A�(�; t) � sups�0 kA(s; s+ t)k1: (49)As a direct consequence, MERs are increasing in � andinft�1 1t sups�0 EA(s; s+ t) � a�(�) � inft�1 1t sups�0 kA(s; s+ t)k1: (50)If a(t) is stationary, then inft�1 1t sups�0EA(s; s+ t) = Ea(0). The lower bound in (50) impliesthat MERs are not less than the corresponding average rate.Proof. From Jensen's inequality, it follows that for 0 < �1 � �2 <1Ee�2A(s;s+t) = Ee(�2=�1)�1A(s;s+t) � (Ee�1A(s;s+t))�2=�1 : (51)Taking the log function on both sides yields1�1 logEe�1A(s;s+t) � 1�2 logEe�2A(s;s+t):Thus, we have A�(�1; t) � A�(�2; t). The �rst inequality in (49) also follows immediately fromJensen's inequality. For the second inequality in (49), observe thatEe�A(s;s+t) � ke�A(s;s+t)k1 = ek�A(s;s+t)k1 :Observe that both sups�0EA(s; s+ t) and sups�0 kA(s; s+ t)k1 are subadditive in t. Thus,the inequalities in (50) hold. 2In the following lemma, we show that both the upper and lower bounds for MEPs can bereached if a(t) is bounded. Moreover, under the same condition, the MEP A�(�; t) and theMER a�(�) are continuous for 0 < � <1. The proof is given in Appendix A.Lemma 3.6 If a(t) is bounded, i.e., a(t) �M for some constant M <1 and for all t, then25



(i) the upper bound of the MEP can be reached by letting � !1, i.e.,lim�!1A�(�; t) = sups�0 kA(s; s+ t)k1;(ii) the lower bound of the MEP can be reached by letting � ! 0, i.e.,lim�!0A�(�; t) = sups�0 EA(s; s+ t);(iii) A�(�; t) and a�(�) are continuous for all 0 < � <1.From Lemma 3.6, it follows that the MEP A�(�; t) of a bounded process a(t) is continuous for0 � � � 1 if one de�nes A�(0; t) = sups�0EA(s; s+ t) and A�(1; t) = sups�0 kA(s; s+ t)k1.We note that the conditions for a�(�) to be continuous at � = 0 and � =1 are in general morerestrictive than the boundedness of a(t). These conditions won't be pursued here.As in the previous section, we shall use a lower case letter to denote a stochastic process, e.g., a(t)and the corresponding upper case letter to denote its partial sums , e.g., A(t1; t2) =Pt2�1t=t1 a(t).A superscript � on the corresponding upper (lower) case letter will denote the MEP (MER) ofthat process, e.g., A�(�; t) (a�(�)).3.2 A single queue with multiple classes of customersIn this section, we consider a discrete-time queue with K classes of customers. The servicerequirements of these K class customers are assumed to be one unit of time. Let ak(t), k =1; : : : ;K, be the number of class k arrivals at time t and a(t) =PKk=1 ak(t) be the total numberof arrivals at time t. We assume that these K arrival processes are independent. Denote q(t)as the number of customers in the queue at time t. Assume that the bu�er size is in�nite andthat the server can serve c customers per unit of time. The constant c will be referred to as thecapacity of the server. Analogous to x2.2, under a work-conserving policy the queue is governedby Lindley's equation in (5). Furthermore, we assume that the queue is empty at time 0.Let Ak(t1; t2) =Pt2�1t=t1 ak(t) be the number of class k arrivals in [t1; t2) and A�k(�; t) be its MEPwith MER a�k(�). We use the notations without the subscript k to denote the correspondingde�nitions for the superposition of these K independent processes. For the departure processes,we use the letter b or B to denote the corresponding quantities.In the following lemma, we establish an input-output relation for a single queue. We show thatif the arrival process of each class has a linear EP, âk(�)t+ �̂k(�), and the total envelope rate is26



less than the capacity, i.e., PKk=1 âk(�) < c, then (i) the queue length is bounded exponentiallywith respect to �, (ii) there exists a linear EP of the departure process which can be representedas a function of the linear EP of the input process and (iii) the virtual delay at time t (theworkload at time t) is bounded exponentially with respect to �c if the scheduling policy is FirstCome First Served (FCFS).Lemma 3.7 Suppose that âk(�)t+ �̂k(�) is an EP of ak(t), i.e., A�k(�; t) � âk(�)t+ �̂k(�). Letâ(�) =PKk=1 âk(�) and �̂(�) =PKk=1 �̂k(�). Also let B�S(�; t) be the MEP of Pk2S bk(t), whereS is a subset of f1; : : : ;Kg. If â(�) < c, then q(t) is bounded exponentially with respect to �,and there exists a constant �(�) <1 such that for all t,Prob(q(t) � x) � �(�)e��x (52)B�S(�; t) � (Xk2S âk(�))t+ 1� log �(�); (53)where �(�) = e��̂(�)(1� e�(â(�)�c))�1:If the scheduling policy is FCFS, then the virtual delay at time t, denoted as v(t), is boundedexponentially with respect to �c andProb(v(t) � x) � e�â(�)�(�)e��c(x�1): (54)Proof. Expanding (5) recursively yieldsq(t) = max h0; a(t� 1)� c; a(t� 1) + a(t� 2)� 2c; : : : ; a(t� 1) + a(t� 2) + : : : a(0)� tci: (55)Using the inequality that max(x1; x2) � x1 + x2 for x1; x2 � 0, we haveEe�q(t) � tXs=0Ee�(A(t�s;t)�sc): (56)From (31) and Lemma 3.4, it follows that E exp(�A(t � s; t)) � exp(�â(�)s + ��̂(�)). Inconjunction with (56),Ee�q(t) � e��̂(�) tXs=0 e�s(â(�)�c) � e��̂(�) 1Xs=0 e�s(â(�)�c) = �(�) (57)27



if â(�) < c. Applying Cherno�'s bound yieldsProb(q(t) � x) � e��xEe�q(t) � �(�)e��x:This completes the argument for the queue length.For the departure processes, observe that the number of class k departures in [t1; t2) is notgreater than the sum of the number of class k arrivals in [t1; t2) and the number of class kcustomers in the queue at time t1. Thus, we haveXk2SBk(t1; t2) �Xk2SAk(t1; t2) + q(t1) (58)for any subset S of f1; : : : ;Kg. From (55), it follows thatXk2SBk(t1; t2) � max0�s�t1 hXk2SAk(t1 � s; t2) +Xk 62SAk(t1 � s; t1)� sci: (59)Using an argument similar to that for the queue length and the independence assumption ofarrival processes, one can easily show thatE exp(�Xk2SBk(t1; t2)) � exp(�Xk2S âk(�)(t2 � t1))�(�):Taking the log function on both sides completes the argument for the departure processes.If the scheduling policy is FCFS, then the virtual delay of a customer that arrives at time t isbounded above by d(q(t) + a(t))=ce. Note thatProb(d(q(t) + a(t))=ce � x) � Prob(q(t) + a(t) � c(x� 1)): (60)Now q(t) + a(t) in (60) is a special case of (58) when taking t1 = t, t2 = t + 1 and S =f1; 2; : : : ;Kg. 2We note that the K departure processes are in general not independent though the K arrivalprocesses are independent. Moreover, the bounding processes for the departure processes ob-tained by (58) are in general not independent since the random variable q(t) appears in theright hand side of (58) for each class. However, if the queue length is always bounded above bya constant q, one could obtain independent bounding processes for the departure processes byreplacing q(t) with q in (58). If, furthermore, the delay of each customer is bounded above by aconstant d, one can use the property derived in a deterministic queue (cf. Lemma 2.6) to estab-lish that Bk(t1; t2) � Ak(t1� d; t2). Now the bounding processes Ak(t1� d; t2); k = 1; 2; : : : ;K,are also independent if the arrival processes ak(t); k = 1; 2; : : : ;K, are independent. These28



independent bounding processes have been used in Kurose [30] for stochastic networks withdeterministic bounded delays.Also, we note that inequalities similar to (52) for queues with renewal inputs, i.e., GI=GI=1queues, were reported in the literature (see [27, 35, 38]).From the relation between the MER and the class of linear EPs in (34-35), the theorem below,stating the input-output relation of MERs and the boundedness of queue length and virtualdelay, follows as a direct consequence of Lemma 3.7.Theorem 3.8 If the sum of MER of the K independent processes is less than the capacity,i.e., PKk=1 a�k(�) < c, then the MER of the departure process is bounded above by the MER ofthe corresponding arrival process, i.e., b�k(�) � a�k(�) for all k. Moreover, the queue length canbe bounded exponentially with respect to �. If the scheduling policy is FCFS, then the virtualdelay can be bounded exponentially with respect to �c.Since a�(�) is increasing in � ( Lemma 3.5), it is of interest to study the largest � that satis�esa�(�) < c. Let �� = supf� : a�(�) < cg: (61)Suppose ak(t) is a two-state Markov modulated process with a�k(�) described in (45). Then ��is the solution of the following equationexp(�c) = KYk=1 �r(k)11 + r(k)22 exp(�k�) +q(r(k)11 + r(k)22 exp(�k�))2 � 4(r(k)11 + r(k)22 � 1) exp(�k�)2 �:(62)We note that (62) is the same as (13) in Sohraby [37], which was obtained by a spectral decompo-sition method. Based on an asymptotic expansion, Sohraby further obtained an approximationfor �� and showed that it is consistent with the result in [1] when all the K arrival processesare identically distributed.We now show a converse statement to Theorem 3.8.Theorem 3.9 (i) If the MER of the input process is larger than the capacity, i.e., a�(�) > c,then the queue length cannot be bounded exponentially with respect to �, i.e., there does notexist a constant d <1 such that (E exp(�q(t)))1=� � d for all t.(ii)If, furthermore, ak(t), k = 1; : : : ;K, satisfy conditions [C1 � 3] and �� in (61) is positiveand �nite, i.e., 0 < �� <1, then the queue length process fq(t); t � 0g converges in distribution29



to a �nite random variable q(1) that satis�eslimx!1 � logProb(q(1) � x)x = ��: (63)Proof. (i) We will prove the �rst part of the theorem by contradiction. Assume that E exp(�q(t)) �d� <1 for all t. From (55), it follows that q(s+ t) � A(s; s+ t)� tc. Thus, E exp(�(A(s; s+t)� tc)) <1 for all s and t. This in turns implies that a�(�) � c and we reach a contradiction.(ii) From Lemma 3.4(ii), it follows that a�(�) = PKk=1 a�k(�) and a�(�) also satis�es conditions[C1 � 3]. Thus, a�(�) is strictly increasing, and �� is the unique solution of a�(�) = c. Since0 < �� <1, we have from Lemma 3.5 that Ea(0) < a�(��) = c. Observe from the stationarityof a(t) and (55) that the queue length process fq(t); t � 0g is a stochastically increasing sequenceif q(0) = 0 (cf. Loynes's construction in [31, 3]). Recall that the stochastic ordering X �st Y ifProb(X � x) � Prob(Y � x) for all x. Thus, fq(t); t � 0g converges in distribution to a �niterandom variable q(1). To show (63), observe from Theorem 3.8 thatlim supx!1 log Prob(q(t) � x)x � �� (64)for all t and x if a�(�) < c. Thus, it su�ces to show the lower bound. Since q(t) �st q(1),Prob(q(1) � x) � Prob(q(t) � x) � Prob(A(0; t) � ct+ x) for all t. Letting v = c+ (x=t) andapplying the lower bound of the G�artner-Ellis theorem [8], one haslim infx!1 log Prob(q(1) � x)x � lim inft!1 log Prob(A(0; t) � vt)(v � c)t � � I(v)v � c ; (65)where I(v) is de�ned in (36). Optimizing v over all possible values yieldslim infx!1 log Prob(q(1) � x)x � � infv�c I(v)v � c : (66)The proof is then completed if the right hand side of (66) is shown to be ���. We will followthe argument used in [29] Lemma 1. Let J(�) = �a�(�). Then I(v) and J(�) are convexconjugates [2]. Since we assume by [C3] that J(�) is strictly convex and di�erentiable, I(v)and J(�) actually forms a pair of Legendre transformation, i.e., I(v) is also strictly convex anddi�erentiable and J(�) has the representationJ(�) = �I 0�1(�)� I(I 0�1(�)); (67)30



where I 0�1(�) is the inverse function of I 0(v). Since �� is the unique solution of a�(�) = c, �� isthe unique solution of I 0�1(�)� I(I 0�1(�))� = c: (68)De�ne the function g(v) = v�I(v)=I 0(v). From the strict convexity of I(v), it follows that g(v)is strictly increasing. Thus we can de�ne g�1 as the inverse function of g. Note that g�1(c) isthe solution of the equation c = v � I(v)=I 0(v) and thatinfv�c I(v)v � c = I 0(g�1(c)): (69)It is easy to verify that I 0(g�1(c)) is indeed a solution of (68) and thus infv�c I(v)=(v � c) = ��.2In particular, we consider the arrival process as a superposition of K independent continuous-time two-state Markov modulated uid processes with the MERs a�k(�) in (46). It is easy tosee that a�(�) = KXk=1 ��k � �k � �k +p(��k � �k + �k)2 + 4�k�k2� (70)for all 0 < � < 1 and thus conditions [C1 � 3] are satis�ed. As an application of Theorems3.9(ii), we recover the result for the e�ective bandwidth in Gibbens and Hunt, Theorem 1 [20].Note that �� is the solution of the equationc = KXk=1 ��k � �k � �k +p(��k � �k + �k)2 + 4�k�k2� : (71)The equation (71) has been reported by Gu�erin, Ahmadi and Naghshineh ([23], (7)) for anapproximation of the tail distribution of the queue length.To extend our result for delay, de�ne the distribution of the stationary delay z as follows:Prob(z � x) = limn!1 1n nXm=1 1fzm�xg; (72)where zm is the delay of the mth customer that arrives at the queue.Corollary 3.10 If (i) a(t) satisfy conditions [C1� 3], (ii) 1 � a(t) �M <1, and (iii) �� in(61) is positive and �nite, then under the FCFS policylimx!1 � logProb(z � x)x = ��c: (73)31



Proof. Note that under the FCFS policylimn!1 1n nXm=1 1fzm�xg = limt!1 1t Pts=1Pa(s)l=1 1fd(q(s)+l)=ce�xglimt!1 1t Pts=1 a(s) : (74)Since q(s) � q(s)+l � q(s)+a(s), it then follows from stationarity and ergodicity (cf. Campbell-Little-Mecke formula in [3]) thatEa(0)1fdqs(0)=ce�xgEa(0) � Prob(z � x) � Ea(0)1fd(qs(0)+a(0))=ce�xgEa(0) ; (75)where qs(0) is the stationary version of q(t) at time 0, i.e., qs(0) =st q(1). The rest of the proofthen follows from Theorem 3.9(ii) using the assumption 1 � a(0) �M . 2In the next section, we will use the input-output relation in Lemma 3.7 to study the stabilityof acyclic networks in which we need the notion of splitting departure processes.3.3 Marked point processes and acyclic networksOur objective in this section is to extend the single queue result to acyclic networks. Ourapproach is based on the notion of marked point processes. A discrete-time marked pointprocess f(�(n); p(n)); n = 0; 1; 2; : : :g is a sequence of random vectors. The process f�(n)g iscalled the arrival process with �(n) being the arrival epoch of the nth customer. We will assumethat �(n) is increasing and that �(n)!1 a:s: as n!1. The random variable p(n) is calledthe mark associated with the arrival epoch �(n). For instance, the mark p(n) could be theservice requirement of the nth arrival. If p(n) is an indicator function, it could be viewed as arouting variable (see Section 2.3). Letb(t) = 1Xn=01f�(n)=tg:Then b(t) is the number of arrivals at time t. Leta(t) = 1Xn=01f�(n)=tgp(n):If p(n)'s are service requirements, then a(t) is the total amount of work that arrives at time t.On the other hand, if p(n)'s are indicator random variables (e.g., routing variables), then a(t)is a thinning process of b(t) and can be viewed as the number of customers that are routed toa particular queue at time t. 32



In the following, we establish the \input-output" relation between the arrival process and themarked process.Lemma 3.11 (i) If the two sequences f�(n); n � 0g and fp(n); n � 0g are independent, andthere exist two linear EPs of b(t) and p(n) as follows:B�(�; t) � b̂(�)t+ �̂(�) 8 0 < � <1;P �(�;m) � p̂(�)m+ �̂(�) 8 0 < � <1;then there exists a linear EP of the marked process a(t) as follows:A�(�; t) � p̂(�)b̂(�p̂(�))t+ �̂(�) + p̂(�)�̂(�p̂(�)) 8 0 < � <1:As a direct consequence, the MER of the marked point process, a�(�), is bounded above byp�(�)b�(�p�(�)), where b�(�) and p�(�) are the MERs of the arrival process and the markingprocess respectively.(ii) If, furthermore, both b(t) and p(n) satis�es conditions [C1 � 3], then a(t) also satis�esconditions [C1� 3] with a�(�) = p�(�)b�(�p�(�)).We note that we have implicitly assumed that p�(�) < 1 in Lemma 3.11. If p�(�) = 1, thenwe have the trivial inequality a�(�) � 1.Proof. (i) Let nf = inffn : �(n) � t1g and nl = inffn � nf : �(n) � t2g. Since �(n) !1 a:s:as n!1, both nf and nl are �nite random variables. In other words, nf is the identity of the�rst customer that arrives after t1 � 1 and nl is the identity of the �rst customer that arrivesafter t2 � 1. Thus, B(t1; t2) = nl � nf . Since f�(n)g and fp(n)g are independent,Ee�A(t1 ;t2) = 1Xm1=0 1Xm2=m1Ee�Pm2�1n=m1 p(n)Prob(nf = m1; nl = m2)� 1Xm1=0 1Xm2=m1 e�(p̂(�)(m2�m1)+�̂(�))Prob(nf = m1; nl = m2)= 1Xm1=0 1Xm=0 e�(p̂(�)m+�̂(�))Prob(nf = m1; B(t1; t2) = m)Interchanging the sums yields Ee�A(t1;t2) � e��̂(�)Ee�p̂(�)B(t1 ;t2): (76)33



Replacing the expectation in (76) by the EP of B(t1; t2) and taking the log function on bothsides completes the derivation.(ii) It follows directly from (37) and the argument for (i). For stationarity and ergodicity ofmarked point processes, we refer to [3]. 2We note that the independence of the arrival process and the marking process is crucial. Aswe mentioned earlier, the departure processes of di�erent classes of customers from a commonqueue are not independent. Thus, in order to use the input-output relation in a network, thedeparture processes of di�erent classes from a common queue cannot be the arrival processesof another queue. Networks with this property are known as acyclic networks (see �gure 4).To be precise, consider the multiclass feedforward network in Section 2.3. Construct a directedgraph with all the queues in the feedforward network being its nodes (excluding the router).Add an arc between queue i and queue j (i < j) whenever there is a class of customers that arerouted from queue i to queue j. Then the network is acyclic if there is at most one path fromqueue i to queue j (i < j) in the directed graph. This implies that the input in front of eachqueue can be represented as a superposition of independent arrival processes. Thus, one couldapply Lemmas 3.4, 3.7 and 3.11 inductively to obtain bounds for the tail distribution of queuelength at each queue as well as the linear EPs of the input process and the departure processat each queue.Analogous to the notations in Section 2.3, let a�i;k(�) and p�i;j;k(�) be the MER of the arrivalprocess of class k customer to queue i and the MER of the routing sequence of class k customerfrom queue i to queue j (i = 0 for external arrivals). Let Sj;k denote the set of queues from whichthere are class k customers routed to queue j. In an acyclic network, the set Sj;k contains atmost one element. Let �0;k(�) = a�0;k(�); k = 1; : : : ;K. Since an acyclic network is feedforward,we can de�ne recursively for each k�j;k(�) = Xi2Sj;k �i;k(�p�i;j;k(�))p�i;j;k(�); j = 1; : : : ; I: (77)Theorem 3.12 In an acyclic network, if PKk=1 �j;k(�) < cj for all j = 1; : : : ; I, then the queuelength of each queue can be bounded exponentially with respect to �. If the scheduling policy isFCFS at each queue, then the virtual delay of a customer that arrives at queue i at time t canalso be bounded exponentially with respect to �ci.Proof. Using an argument similar to that used in Section 2.3 and Lemma 3.11, one can easilyshow inductively that �j;k(�) � a�j;k(�). The rest of the proof of Theorem 3.12 then follows fromTheorem 3.8. 234



We note that there are other networks that can be analyzed by our method. For instance, theintree network in �gure 5 is not an acyclic network since there are two paths from queue 1 toqueue 2. However, using (53) we are still able to obtain a linear EP of the superposition ofthe departure processes from queue 1. Thus, by viewing the superposition of the departureprocesses from queue 1 as a single composite process, the input process at queue 2 can berepresented as a superposition of independent processes with known linear EPs. Using Lemma3.7, one could obtain a bound for the tail distribution of the queue length at queue 2, as wellas other desired information.To extend from the �xed service requirements to general service requirements, one can considerthe virtual waiting processes instead of the queue length processes. Since the virtual waitingprocess can be approximated by the queue length process subject to batch arrivals, similarresults to (52) and (54) in Lemma 3.7 can be derived by replacing the queue length q(t) bythe work load v(t) and treating a(t) as a marked point process with the marks representingthe service requirements. However, unlike the deterministic queues with bounded delays in theprevious section for deterministic networks, we do not have the input-output relation as in (53)and the result might not able to be extended to acyclic networks.3.4 Single class networks with nonfeedforward routingIn this section, we consider the nonfeedforward network in Section 2.4. As in the acyclicnetworks, we assume that the sequences of routing random variables fpi;j(n)g and the externalarrival process fa0(t)g are independent. We further assume that the sequence of the routingvariables f(pi;1(n); : : : ; pi;I(n))g are i.i.d. random vectors with the means (�pi;1; : : : ; �pi;I). Thus,the sequence fpi1;j(n); n = 0; 1; 2; : : :g and the sequence fpi2;j(n); n = 0; 1; 2; : : :g (i1 6= i2)form two independent sequences of i.i.d. Bernoulli random variables with means �pi1;j and �pi2;jrespectively. This implies that P �i;j(�;m) = mp�i;j(�)with p�i;j(�) = 1� log(�pi;je� + (1� �pi;j)):We note that pi;j1(n) and pi;j2(n) (j1 6= j2) are in general not independent.Let A�0(�; t) and a�0(�) be the MEP and the MER of a0(t). In the following theorem, we showthat every queue in the single class nonfeedforward network is bounded exponentially withrespect to � if a strong tra�c condition similar to E1 in Section 2.4 is satis�ed.
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Theorem 3.13 If â0(�)t+ �̂0(�) is a linear EP of the external arrival process a0(t) satisfyingâ0(�p�0;j(�))p�0;j(�) + IXi=1 cip�i;j(�) < cj for j = 1; : : : ; I; (78)then for j = 1; : : : ; I, the queue length of the jth queue at time t, qj(t), is bounded exponentiallywith respect to � and P (qj(t) � x) � �j(�)e��x;where�j(�) = exp [��̂0(�p�0;j(�))p�0;j(�)]�1� exp [�(â0(�p�0;j(�))p�0;j(�) + IXi=1 cip�i;j(�)� cj)]��1:As a direct consequence, the queue length is bounded exponentially with respect to � ifa�0(�p�0;j(�))p�0;j(�) + IXi=1 cip�i;j(�) < cj for all j: (79)Similar results hold for the virtual delay at each queue when the scheduling policy is FCFS.Proof. Let Ai;j(t1; t2), i = 0; : : : ; I, j = 1; : : : ; I, be the number of customers that are routedfrom queue i to queue j in the interval [t1; t2) (i = 0 for external arrivals) with the correspondingMEP A�i;j(�; t) and MER a�i;j(�). Also let Aj(t1; t2) = PIi=0Ai;j(t1; t2) be the total number ofcustomers that arrives at queue j within the interval [t1; t2) with the correspondingMEPA�j (�; t)and MER a�j(�). In order to use Lemma 3.7 to derive the desired result, we need to derive alinear EP for Aj(t1; t2).From Lemma 3.11, it follows that for j = 1; : : : ; I;A�0;j(�; t) � â0(�p�0;j(�))p�0;j(�)t+ �̂0(�p�0;j(�))p�0;j(�): (80)Note that the number of customers that depart from queue i in the interval [t1; t2) is boundedby ci(t2� t1). Since we assume that the routing random variables are i.i.d., it then follows froma standard sample path argument (see [38, 35]) thatAj(t1; t2) �st A0;j(t1; t2) + c1(t2�t1)Xn=1 p1;j(n) + : : :+ cI(t2�t1)Xn=1 pI;j(n); (81)
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where �st denotes the stochastic ordering as in the proof of Theorem 3.9(ii). Now the right-hand side of (81) is a sum of independent random variables. Using an argument similar toLemma 3.11 and (80), one can show thatA�j(�; t) � �â0(�p�0;j(�))p�0;j(�) + IXi=1 cip�i;j(�)�t+ �̂0(�p�0;j(�))p�0;j(�):View the superposition process of all arrivals to queue j as a single class of customers. ApplyingLemma 3.7 for a single class of customers completes the proof. 2Analogous to the notations in Section 2.4, let �j(�) = a�0(�p�0;j(�))p�0;j(�), j = 1; : : : ; I. FromLemma 3.11, �j(�) is an upper bound of the MER of the external arrivals to queue j. Using thematrix representation, let �(�) = [�1(�); : : : ; �I(�)], c = [c1; : : : ; cI ] and p�(�) be a matrix withp�i;j(�) being the element in the ith row and jth column. The condition in (79) then correspondsto the polyhedral set de�ned in Section 2.4:E1(�) = fc : �(�) < c(�� p�(�))g; (82)where � is the identity matrix. If the spectral radius of the matrix p�(�), denoted by sp(p�(�)),is less than 1, then the matrix �� p�(�) is invertible and the tra�c equation�(�) = �(�) + �(�)p�(�) (83)has the solution �(�) = (�1(�); : : : ; �I(�)) = �(�)(�� p�(�))�1:Consider the second polyhedral set:E2(�) = fc : �(�)(�� p�(�))�1 < cg (84)Analogous to the argument in Section 2.4, we have the following two properties between thesetwo open polyhedral sets (if sp(p�(�)) < 1).(P1) E1(�) � E2(�).(P2) For every vector c 2 E2(�), there is a vector c1 2 E1(�) such that c1 � c.Theorem 3.14 If �j(�) < cj for all j and sp(p�(�)) < 1, then the total number of customersin the system can be bounded exponentially with respect to �=I.37



Proof. Since for every c2 2 E2, there exists c1 2 E1 such that c1 � c2. From Theorem 3.13,the queue length at each queue is bounded exponentially with respect to � when the systemhas capacity c1. Note that if there are non-integer component in c1, they should be interpretedas periodic sequences as in Remark 2.11. Using the H�older's inequality in (47) yields the resultthat the total number of customers in the system is bounded exponentially with respect to �=I.Applying the monotonicity result in Lemma 2.10, the total number of customers in the systemwith capacity c2 is then bounded exponentially with respect to �=I. 2As an application of Theorem 3.14, consider the case that the external arrivals a0(t) are i.i.d.random variables with mean �a0. Suppose the moment generating function of a0(t), denoted as�0(�), is �nite for some � > 0. Then a�(�) = 1=� log�0(�) and lim�!0 a�0(�) = �a0. Similarly,lim�!0 p�i;j(�) = �pi;j. Thus, if one is only interested in whether the sequence of distributionsof the total number of customers in the network at time t is tight or not, the tra�c equations�j(�) < cj can be replaced by the tra�c equations using average rates. This has been reportedin [18] under similar moment conditions. Along this line, we have proposed a uni�ed approachfor the stability of generalized Jackson's networks in [10].To stabilize a K-class nonfeedforward network, one can reserve a certain portion of the capacityat each queue to each class as discussed in Section 2.4. However, the problem of how onepartitions the capacity is interesting and requires more numerical study.4 Conclusions and future researchIn this paper, we have proposed two new notions of tra�c characterization: MER and MERwith respect to �. We have also developed a set of rules for network operations based on thesetwo characterizations. These rules provide a method to answer two types of stability problemof queueing networks: (i) conditions for queueing networks that render bounded queue lengthsand bounded delay for customers, and (ii) conditions for queueing networks in which the queuelength distribution of a queue has an exponential tail with rate �. For single class networks withnonfeedforward routing, we have provided a new method to establish stability results under theFCFS policy.Recently, we have extended our theory in two directions: (i) large deviation and fast simula-tion, and (ii) stability of other networks. The connection with large deviation theory throughG�artner-Ellis theorem was �rst established in [29] using the Legendre transform. Along thisline, we have extended the notion of envelope process with respect to � in [11], where a fastsimulation method for ATM intree networks is derived. The new method for the stability ofnonfeedforward networks has been applied to generalized Jackson's networks in [10]. Anotherpossible application is the stability of token rings with limited service. We note that Yaron38



and Sidi, in a recent paper [41], also considered exponential bounds as in Section 3. The keydi�erence between our work and theirs is that we allow the bounds to be parameterized by �,which in general renders tighter bounds and sometimes lower bounds.Finally, we note that the notion of MER with respect to � might be of practical importancein communication networks. In Section 3, we have shown that the MER with respect to � isequivalent to the recently developed notion of e�ective bandwidth in communication networkswhen restricting to a family of two-state Markov modulated arrival processes. This equivalencerelation has been recently extended to other Markov processes (see [29, 16]). Since our de�nitionof MER with respect to � is fairly general and does not require a preset mathematical model,our approach might be able to be used to obtain the e�ective bandwidth for other real-timetra�c, e.g. video. Moreover, the tool for computing the bounds and approximations of the taildistributions of queues in a network is already available in our analysis once the MER withrespect to � of input processes are obtained. A tentative solution for admission control of highspeed networks is proposed in [9]. Further numerical studies will be reported in a separatepaper.Acknowledgements:The author would like to thank Roch Gu�erin [23], Jim Kurose [30], Khosrow Sohraby [37] andPantelis Tsoucas [39] for their valuable discussions on their works. Insightful discussions atvarious stages with Leonidas Georgiadis, Armand Makowski, and Joy Thomas are gratefullyacknowledged. Last, but not least, the author would like thank the referees for their carefulreading and detailed comments that have greatly improved the presentation of this paper.A Appendix AIn this appendix, we prove Lemma 3.6.Proof. (i) Since a(t) � M , A(s; s + t) � Mt < 1. Thus, kA(s; s + t)k1 � Mt < 1. SincekA(s; s + t)k1 is the greatest lower bound, for every � > 0 there exists a � > 0 such thatProb(A(s; s+ t) > kA(s; s+ t)k1 � �) � � > 0. From Cherno�'s bound, it then follows that1� logEe�A(s;s+t) � kA(s; s+ t)k1 � �+ 1� log �:Letting � !1 and then �! 0 yieldslim�!1 1� logEe�A(s;s+t) � kA(s; s+ t)k1:39



Thus, lim�!1A�(�; t) � sups�0 lim�!1 1� logEe�A(s;s+t) � sups�0 kA(s; s+ t)k1:(ii) Let �(�) = E exp(�X) be the the moment generating function of a bounded random variableX (0 � X � M1 for some constant M1). Then for any �nite �, the nth derivative of �(�),n = 1; 2; : : :, denoted as �(n)(�), exists and equals to E(Xn exp(�X)). In particular, the �rstderivative �0(0) is equal to EX. Applying Taylor's expansion to the function log �(�) at � = 0yields log�(�) = �EX + �22 �(2)(�1)�(�1)� (�(1)(�1))2(�(�1))2for some �1 2 [0; �]. Since 0 � X �M1,1� log �(�) � EX + �M212 : (85)Replacing X and M1 with A(s; s+ t) and Mt in (85) and taking the supremum on both sidesyields A�(�; t) � sups�0 EA(s; s+ t) + � (Mt)22 : (86)Letting � ! 0 completes the derivation for (ii).(iii) Observe that logE exp(�A(s; s+ t)) is bounded and convex in � for 0 < � <1 since a(t) �M <1. Since the supremum or upper limit of bounded and convex functions is still boundedand convex, both sups�0 logE exp(�A(s; s+t)) and lim supt!1 (1=t) sups�0 logE exp(�A(s; s+ t))are bounded and convex in � for 0 < � <1. It then follows from the boundedness and the con-vexity that �A�(�; t) and �a�(�) are continuous for 0 < � <1. Multiplying by the continuousfunction 1=� completes the proof. 2References[1] D. Anick, D. Mitra and M.M. Sondhi, \Stochastic theory of a data handling system withmultiple sources," Bell Syst. Tech. J., Vol. 61, pp. 1871-1894, 1982.[2] M. Avriel, "Nonlinear Programming: Analysis and Methods", Prentice-Hall, 1976.[3] F. Baccelli and P. Bremaud. Elements of Queueing Theory. New York: Springer Verlag,1990. 40
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