
Steerable-Scalable Kernels for Edge Detection andJunction Analysis?
Pietro Perona1;21 California Institute of Technology 116-81, Pasadena CA 91125, USAe-mail: perona@verona.caltech.edu2 Universit�a di Padova { DEI, via Gradenigo 6A, 35131 Padova, ItalyAbstract. Families of kernels that are useful in a variety of early vi-sion algorithms may be obtained by rotating and scaling in a continuum a`template' kernel. These multi-scale multi-orientation family may be approx-imated by linear interpolation of a discrete �nite set of appropriate `basis'kernels. A scheme for generating such a basis together with the appropriateinterpolation weights is described. Unlike previous schemes by Perona, andSimoncelli et al. it is guaranteed to generate the most parsimonious one.Additionally, it is shown how to exploit two symmetries in edge-detectionkernels for reducing storage and computational costs and generating simul-taneously endstop- and junction-tuned �lters for free.
1 IntroductionPoints, lines, edges, textures, motions are present in almost all images of everyday'sworld. These elementary visual structures often encode a great proportion of the infor-mation contained in the image, moreover they can be characterized using a small setof parameters that are locally de�ned: position, orientation, characteristic size or scale,phase, curvature, velocity. It is threrefore resonable to start visual computations withmeasurements of these parameters. The earliest stage of visual processing, common forall the classical early vision modules, could consist of a collection of operators that calcu-late one or more dominant orientations, curvatures, scales, velocities at each point of theimage or, alternatively, assign an `energy', or `probability', value to points of a position-orientation-phase-scale-etc. space. Ridges and local maxima of this energy would markspecial interest loci such as edges and junctions. The idea that biological visual systemsmight analyze images along dimensions such as orientation and scale dates back to workby Hubel and Wiesel [19, 18] in the 1960's. In the computational vision literature the ideaof analyzing images along multiple orientations appears at the beginning of the seventieswith the Binford-Horn line�nder [17, 3] and later work by Granlund [14].A computational framework that may be used to performs this proto-visual analy-sis is the convolution of the image with kernels of various shapes, orientations, phases,elongation, scale. This approach is attractive because it is simple to describe, imple-ment and analyze. It has been proposed and demonstrated for a variety of early visiontasks [23, 22, 5, 1, 6, 15, 40, 30, 28, 31, 10, 26, 4, 41, 20, 21, 11, 36, 2]. Various `general'computational justi�cations have been proposed for basing visual processing on the out-put of a rich set of linar �lters: (a) Koenderink has argued that a structure of this type isan adequate substrate for local geometrical computations [24] on the image brightness,(b) Adelson and Bergen [2] have derived it from the `�rst principle' that the visual system? This work was partially conducted while at MIT-LIDS with the Center for Intelligent ControlSystems sponsored by ARO grant DAAL 03-86-K-0171, .



computes derivatives of the image along the dimensions of wavelength, parallax, position,time, (c) a third point of view is the one of `matched �ltering': where the kernels aresynthesized to match the visual events that one looks for.The kernels that have been proposed in the computational literature have typicallybeen chosen according to one or more of three classes of criteria: (a) `generic optimality'(e.g. optimal sampling of space-frequency space), (b) `task optimality' (e.g. signal tonoise ratio, localization of edges) (c) emulation of biological mechanisms. While there isno general consensus in the literature on precise kernel shapes, there is convergence onkernels roughly shaped like either Gabor functions, or derivatives or di�erences of eitherround or elongated Gaussian functions { all these functions have the advantage that theycan be speci�ed and computed easily. A good rule of the thumb in the choice of kernelsfor early vision tasks is that they should have good localization in space and frequency,and should be roughly tuned to the visual events that one wants to analyze.Since points, edges, lines, textures, motions can exist at all possible positions, orien-tations, scales of resolution, curvatures one would like to be able to use families of �ltersthat are tuned to all orientations, scales and positions. Therefore once a particular con-volution kernel has been chosen one would like to convolve the image with deformations(rotations, scalings, stretchings, bendings etc.) of this `template'. In reality one can a�ordonly a �nite (and small) number of �ltering operations, hence the common practice of`sampling' the set of orientations, scales, positions, curvatures, phases 3. This operationhas the strong drawback of introducing anisotropies and algorithmic di�culties in thecomputational implementations. It would be preferable to keep thinking in terms of acontinuum, of angles for example, and be able to localize the orientation of an edge withthe maximum accuracy allowed by the �lter one has chosen.This aim may sometimes be achieved by means of interpolation: one convolves theimage with a small set of kernels, say at a number of discrete orientations, and obtains theresult of the convolution at any orientation by taking linear combinations of the results.Since convolution is a linear operation the interpolation problem may be formulatedin terms of the kernels (for the sake of simplicity the case of rotations in the plane isdiscussed here): Given a kernel F : R2 ! C1, de�ne the family of `rotated' copies of F as:F� = F �R�, � 2 S1, where S1 is the circle and R� is a rotation. Sometimes it is possibleto express F� as F�(x) = nXi=1 �(�)iGi(x) 8� 2 S1; 8x 2 R2 (1)3 Motion ow computation using spatiotemporal �lters has been proposed by Adelson andBergen [1] as a model of human vision and has been demonstrated by Heeger [15] (hisimplementation had 12 discrete spatio-temporal orientations and 3 scales of resolution).Work on texture with multiple-resolution multiple-orientation kernels is due to Knuttsonand Granlund [23] (4 scales, 4 orientations, 2 phases), Turner [40] (4 scales, 4 orientations,2 phases), Fogel and Sagi [10] (4 scales, 4 orientations, 2 phases), Malik and Perona [26] (11scales, 6 orientations, 1 phase) and Bovik et al. [4] (n scales, m orientations, l phases). Workon stereo by Kass [22] (12 �lters, scales, orientations and phases unspeci�ed) and Jones andMalik [20, 21] (see also the two articles in this book) (6 scales, 2-6 orientations, 2 phases).Work on curved line grouping by Parent and Zucker [31] (1 scale, 8 orientations, 1phase) andMalik and Gigus [25] (9 curvatures, 1 scale, 18 orientations, 2 phases). Work on brightnessedge detection by Binford and Horn [17, 3] (24 orientations), Canny [6] (1-2 scales,1-6 orien-tations, 1 phase), Morrone,Owens and Burr [30, 28] (1-3 scales, 2-4 orientations, 1 phases),unpublished work on edge and illusory contour detection by Heitger, Rosenthaler, K�ubler andvon der Heydt (6 orientations, 1 scale, 2 phases). Image compression by Zhong and Mallat [41](4 scales, 2 orientations, 1 phase).



(Paolina) (T junction detail)
Fig. 1.
a �nite linear combination of functions Gi : R2 ! C1. It must be noted that, at least forpositions and phases, the mechanism for realizing this in a systematic way is well under-stood: in the case of positions the sampling theorem gives conditions and an interpolationtechnique for calculating the value of the �ltered image at any point in a continuum; inthe case of phases a pair of �lters in quadrature can be used for calculating the responseat any phase [1, 29]. Rotation, scalings and other deformations are less well understood.An example of `rotating' families of kernels that have a �nite representation is wellknown: the �rst derivative along an arbitrary direction of a round (�x = �y) Gaussianmay be obtained by linear combination of the X- and Y-derivatives of the same. Thecommon implementations of the Canny edge detector [6] are based on this principle.Unfortunately the kernel obtained this way has poor orientation selectivity and thereforeit is unsuited for edge detection if one wants to recover edge-junctions (see in Fig. 2 thecomparison with a detector that uses narrow orientation-selective �lters). Freeman andAdelson have recently proposed [11, 12] to construct orientation-selective kernels thatcan be exactly rotated by interpolation (they call this property \steerability") and haveshown that higher order derivatives of round Gaussians, indeed all polynomials multipliedby a radially symmetric function are steerable. They have also shown that functions thatmay be written as �nite sums of polar-separable kernels with sinusoidal � component arealso steerable. These functions may be designed to have higher orientation selectivity andcan be used for contour detection and signal processing [11]. However, one must be awareof the fact that for most kernels F of interest a �nite decomposition of F� as in Eq. (1)cannot be found. For example the elongated kernels used in edge detection by [35, 36](see Fig. 2 top right) do not have a �nite decomposition as in Eq. (1).Perona [32, 33] has proposed an approximation technique that, given an F�, allowsone to generate a function G[n]� which is su�ciently similar to F� and that is steerable, i.e.can be expressed as a �nite sum of n terms as in (1). This technique is guaranteed to �ndthe most parsimonious steerable approximation to a given kernel F�, i.e. given a tolerableamount � of error it computes an approximating G[n]� that has minimum number n ofcomponents and is within a distance � from F�. Perona [32, 33] and Simoncelli et al. [9]
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Fig. 2. Example of the use of orientation-selective �ltering on a continuum of orientations (seePerona and Malik [35, 36]). Fig. 1 (Left) Original image. Fig. 1 (Right) A T-junction (64x64pixel detail from a region roughly at the centre of the original image). The kernel of the �lterfor the edge-detector is elongated to have high orientation selectivity; it is depicted in Fig. 3.(Top-left) Modulus R(x; y; �) of the output of the complex-valued �lter (polar plot shown for 8x8pixels in the region of the T-junction). (Top-right) The local maxima of jR(x; y; �)j with respectto �. Notice that in the region of the junction one �nds two local maxima in � correspondingto the orientation of the edges. Searching for local maxima in (x,y) in a direction ortogonal tothe maximizing �'s one can �nd the edges (Bottom left) with high accuracy (error around 1degree in orientation and 0.1 pixels in position). (Bottom right) Comparison with the output ofa Canny detector using the same kernel width (� in pixel units).
have proposed non-optimal extensions to the case of joint rotation and scaling.In this paper the general case of compact deformations is reviewed in section 2. Someresults of functional analysis are recalled to formulate the decomposition technique in allgenerality. The case of rotations is briey recalled in section 3 to introduce some notationwhich is used later in the paper. In section 4 it is shown how to generate a steerable andscalable family. Experimental results and implementation issues are presented and dis-cussed. Finally, in section 5 some basic symmetries of edge-detection kernels are studiedand their use described in (a) reducing calculations and storage, and (b) implementing�lters useful for junction analysis at no extra cost.



2 Deformable functionsIn order to solve the approximation problem one needs of course to de�ne the `qual-ity' of the approximation G[n]� � F�. There are two reasonable choices: (a) a distanceD(F�; G[n]� ) in the space R2 � S1 where F� is de�ned; (b) if F� is the kernel of some�lter one is interested in the worst-case error in the `output' space: the maximum dis-tance d(hF�; fi; hG[n]� ; fi) over all unit-norm f de�ned on R2. The symbols �n and �nwill indicate the `optimal' distances, i.e. the minimum possible approximation errors us-ing n components. These quantities may be de�ned using the distances induced by theL2-norm:De�nition. �n(F�) = infG[n]� kF� �G[n]� kR2�S1�n(F�) = infG[n]� supkfk=1 khF� �G[n]� ; fiR2kS1
The existence of the optimal �nite-sum approximation of the kernel F�(x) as decribedin the introduction is not peculiar to the case of rotations. This is true in more generalcircumstances: this section collects a few facts of functional analysis that show that onecan compute �nite optimal approximations to continuous families of kernels whenevercertain `compactness' conditions are met.Consider a parametrized family of kernels F (x; �) where x 2 X now indicates a genericvector of variables in a set X and � 2 T a vector of parameters in a set T . (The notationis changed slightly from the previous section.) Consider the sets A and B of continuousfunctions from X and T to the complex numbers, call a(x) and b(�) the generic elementsof these two sets. Consider the operator L : A �! B de�ned by F as:(La(�))(�) = hF (�; �); a(�)iA (2)A �rst theorem says that if the kernel F has bounded norm then the associatedoperator L is compact (see [7] pag. 316):Theorem1. Let X and T be locally compact Hausdor� spaces and F 2 L2(X�T ). ThenL is well de�ned and is a compact operator.Such a kernel is commonly called a Hilbert-Schmidt kernel.A second result tells us that if a linear operator is compact, then it has a discretespectrum (see [8] pag. 323):Theorem2. Let L be a compact operator on (complex) normed spaces, then the spectrumS of L is at most denumerable.A third result says that if L is continuous and operates on Hilbert spaces then thecompactness property transfers to the adjoint of L (see [8] pag. 329):Theorem3. Let L be a compact operator on Hilbert spaces, then the adjoint L� is com-pact.



Trivially, the composition of two compact operators is compact, so the operators LL�and L�L are compact and have a discrete spectrum as guaranteed by theorem 2. Thesingular value decomposition (SVD) of the operator L can therefore be computed as thecollection of triples (�i; ai; bi); i = 0; ::: where the �i constitute the spectra of both LL�and L�L and the ai and bi are the corresponding eigenvectors.The last result can now be enunciated (see [37] Chap.IV,Theorem 2.2):Theorem4. Let L : A! B be a linear compact operator between two Hilbert spaces. Letai; bi; �i be the singular value decomposition of L, where the �i are in decreasing order ofmagnitude. Then1. An optimal n-dimensional approximation to L is Ln =Pni=1 �iaibi2. The approximation errors are dn(L) = �n+1, and �2n(L) =PNi=n+1 �2iAs a result we know that when our original template kernel F (x) and the chosen familyof deformations R(�) de�ne a Hilbert-Schmidt kernel F (x; �) = (F � R(�))(x) then it ispossible to compute a �nite discrete approximation as for the case of 2D rotations.Are the families of kernels F (x; �) of interest in vision Hilbert-Schmidt kernels? In thecases of interest for vision applications the `template' kernel F (x) typically has a �nitenorm, i.e. it belongs to L2(X) (all kernels used in vision are bounded compact-supportkernels such as Gaussian derivatives, Gabors etc.). However, this is not a su�cient con-dition for the family F (x; �) = F �R(�)(x) obtained composing F (x) with deformationsR(�) (rotations, scalings) to be a Hilbert-Schmidt kernel: the norm of F (x; �) could beunbounded (e.g. if the deformation is a scaling in the unbounded interval (0;1)). A suf-�cient condition for the associated family F (x; �) to be a Hilbert-Schmidt kernel is thatthe inverse of the Jacobian of the transformation R, jJRj�1 belongs to L2(T ) (see [34]).A typical condition in which this arises is when the transformation R is unitary, e.g.a rotation, translation, or an appropriately normalized scaling, and the set T is bounded.In that case the norm of kJRk�1 is equal to the measure of T . The following sections inthis paper will illustrate the power of these results by applying them to the decompositionof rotating rotating and scaled kernels.A useful subclass of kernels F for which the �nite orthonormal approximation canbe in part explicitly computed is obtained by composing a template function with trans-formations T� belonging to a compact group. This situation arises in the case of n-dimensional rotations and is useful for edge detection in tomographic data and spa-tiotemporal �ltering. It is discussed in [32, 33, 34].
3 RotationTo make the paper self-contained the formula for generating a steerable approximationis recalled here. The F [n]� which is the best n-dimensional approximation of F� is de�nedas follows:De�nition. Call F [n]� the n-terms sum:

F [n]� = nXi=1 �iai(x)bi(�) (3)
with �i, ai and bi de�ned in the following way: let ĥ(�) be the (discrete) Fourier transformof the function h(�) de�ned by:



(gaus-3) (sfnc.0) (sfnc.1) (sfnc.2) (sfnc.3) (sfnc.4) (sfnc.5) (sfnc.6) (sfnc.7) (sfnc.8)
Fig. 3. The decomposition (ai; bi; �i) of a complex kernel used for brightness-edge detection [36].(Left) The template function (gaus-3) is shown rotated counterclockwise by 120o. Its real part(above) is the second derivative along the vertical (Y) axis of a Gussian with �x : �y ratio of1:3. The imaginary part (below) is the Hilbert transform of the real part along the Y axis. Thesingular values �i (not shown here { see [34]) decay exponentially: �i+1 � 0:75�i. (Right) Thefunctions ai (sfnc.i) are shown for i = 0 : : : 8. The real part is above; the imaginary part below.The functions bi(�) are complex exponentials (see text) with associated frequencies �i = i.

h(�) = ZR2 F�(x)F�0=0(x)dx (4)and let �i be the frequencies on which ĥ(�) is de�ned, ordered in such a way that ĥ(�i) �ĥ(�j) if i � j. Call N � 1 the number of nonzero terms ĥ(�i). Finally, de�ne thequantities: �i = ĥ(�i)1=2 (5)bi(�) = ej2��i� (6)ai(x) = ��1i ZS1 F�(x)ej2��i�d� (7)See Fig. 3 and [32, 33, 34] for details and a derivation of these formulae.
4 Rotation and scaleA number of �lter-based early vision and signal processing algorithms analyze the imageat multiple scales of resolution. Although most of the algorithms are de�ned on, andwould take advantage of, the availability of a continuum of scales only a discrete andsmall set of scales is usually employed due to the computational costs involved with�ltering and storing images. The problem of multi-scale �ltering is somewhat analogueto the multi-orientation �ltering problem: given a template function F (x) and de�nedF�(x) as F�(x) = �1=2F (�x), � 2 (0;1) one would like to be able to write F� as a(small) linear combination:F�(x) =Xi si(�)di(x) � 2 (0;1) (8)Unfortunately the domain of de�nition of s is not bounded (it is the real line) andtherefore the kernel F�(x) is not Hilbert-Schmidt (it has in�nite norm). As a consequencethe spectrum of the LL� and L�L operators is continuus and no discrete approximationmay be computed.



One has therefore to renounce to the idea of generating a continuum of scales spanningthe whole positive line. This is not a great loss: the range of scales of interest is never theentire real line. An interval of scales (�1; �2), with 0 < �1 � �2 < 1 is a very realisticscenario; if one takes the human visual system as an example, the range of frequenciesto which it is most sensitive goes from approximatly 2 to 16 cycles per degree of visualangle i.e. a range of 3 octaves. In this case the interval of scales is compact and one canapply the results of section 2 and calculate the SVD and therefore an L2-optimal �niteapproximation.In this section the optimal scheme for doing so is proposed. The problem of simul-taneously steering and scaling a given kernel F (x) generating a family F(�;�)(x) wichhas a �nite approximation will be tackled. Previous non-optimal schemes are due toPerona [32, 33] and Simoncelli et al. [9, 12].4.1 Polar-separable decompositionObserve �rst that the functions ai de�ned in eq.(7) are polar-separable. In fact x maybe written in polar coordinates as x = kxkR�(x)u where u is some �xed unit vector (e.g.the 1st coordinate axis versor) and �(x) is the angle between x and u and R�(x) is arotation by �. Substituting the de�nition of F� in (7) we get:ai(x) = ��1i ZS1 F (kxkR�+�(x)(u))ej2��i�d� == ��1i e�j2��i�(x) ZS1 F (kxkR (u))ej2��i d so that (3) may be also written as :F�(x) = NXi=1 �ici(kxk)ej2��i(���(x)) (9)
ci(kxk) = �i ZS1 F (kxkR (u))ej2��i d (10)

4.2 Scaling is a 1D problemThe scaling operation only a�ects the radial components ci and does not a�ect theangular components. The problem of scaling the kernels ai, and therefore F� through itsdecomposition, is then the problem of �nding a �nite (approximate) decomposition ofcontinuously scaled versions of functions c(�):c�(�) =Xk sk(�)rk(�) � 2 (�1; �2) (11)If the scale interval (�1; �2) and the function c are such that the operator L associatedto F is compact then we can obtain the optimal �nite decomposition via the singularvalue decomposition. The conditions for compactness of L are easily met in the cases ofpractical importance: it is su�cient that the interval (�1; �2) is bounded and that thenorm of c(�) is bounded (� 2 R+).Even if these conditions are met, the calculations usually cannot be performed analyt-ically. One can employ a numerical routine (see e.g. [38]) and for each ci (below indicatedas ci) obtain an SVD expansion of the form:
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ci�(�) =Xk iksik(�)rik(�) (12)As discussed before (Theorem 4) one can calculate the approximation error from thesequence of the singular values ik. Finally, substituting (12) into (10) the scale-orientationexpansion takes the form (see Fig. 6):
F�;�(x) = NXi=1 �iej2��i(���(x)) niXk=1 iksik(�)rik(kxk) (13)Filtering an image I with a deformable kernel built this way proceeds as follows:�rst the image is �ltered with kernels aik(x) = exp(�j2��i�(x))rik(kxk), i = 0; : : : ; N ,k = 0; : : : ; ni, the outputs Iik of this operation can be combined asI�;�(x) =PNi=1 �ibi(�)Pnik=1 iksik(�)Iik(x) to yeld the result.

4.3 Polar-separable decomposition, experimental resultsAn orientation-scale decomposition was performed on the kernel of Fig. 3 (second deriva-tive of a Gaussian and its Hilbert transform, �x : �y = 3 : 1). The decomposition recalledin sec. 3 and shown in Fig. 3 was taken as a starting point. The corresponding functionsci(�) of eq. (9) are shown in Fig. 4.The interval of scales chosen was (�1; �2) s.t. �1 : �2 = 1 : 8, an interval which isample enough for a wide range of visual tasks.The range of scales was discretized in 128 samples for computing numerically thesingular value decomposition (ik; sik; rik) of ci�(�). The computed weights ik are plottedon a logarithmic scale in Fig. 5 (Top). The `X' axis corresponds to the k index, eachcurve is indexed by i, i = 0; : : : ; 8. One can see that for all the ci the error decreasesexponentially at approximately the same rate. The components rik(�) and sik(�), i = 4,k = 0; : : : ; 3 are shown in the two plots at the bottom of Fig. 5.



Gaussian 3:1 -- s.f. scale decomposition -- weights
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Gaussian 3:1 -- singular function n.4 - scale
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Fig. 5. Scale-decomposition of the radial component of the functions ai. The interval of scales� is � 2 (0:125; 1:00). See also Fig. 6. (Top-left) The weights ik of each polar functions' decom-position (i = 0; : : : ; 8 , k along the x axis). The decay of the weights is exponential in k; 5 to 8components are needed to achieve 1% error (e.g 5 for the 0th, 7 for the 4th and 8 for the 8thshown in �g 4). (Bottom) The �rst four radial (left) and scale (right) components of the 5thsingular function: r4k(�) and s4k(�), k = 0; : : : ; 3 (see Eq. (12)). (Top-right) The real parts of the�rst four scale-components of the 5th singular function a5: cos(2��4�)s4k(�) with k = 0; : : : ; 3(see Eq. (13)).

In �gure Fig. 6 reconstructions of the kernel based on a 1% error decompositionare shown for various scales and angles. A maximum of 1% error was imposed on theoriginal steerable decomposition, and again on the scale decomposition of each single ai.The measured error was 2.5% independently from angle and scale. The total number of�lters required to implement a 3-octave 1% (nominal, 2.5% real) approximation error ofthe 3:1 Gaussian pair is 16 (rotation) times 8 (scale) = 128. If 10% approximation erroris allowed the number of �lters decreases by approximately a factor 4 to 32.



(G2-r3-sc0.125)

(G2-r3-sc0.33)
(G2-r3-sc0.77)

(G2-r3-sc1.00)
Fig. 6. The kernel at di�erent scales and orientations: the scales are (left to right) 0.125, 0.33,0.77, 1.00. The orientations are (left to right) 30o, 66o, 122o, 155o. The kernels shown here wereobtained from the scale-angle decomposition shown in the previous �gures.
5 Kernel symmetries and junction analysisThe Hilbert-pair kernels used by [27, 11, 36] for edge detection have a number of inter-esting symmetries that may be exploited to reduce the computational and storage costsby a factor of two. Moreover, these symmetries may be used to reconstruct the responseof two assiociated kernels, endstopped and one-sided, that are useful for the analysis ofedge junctions. The kernels of �gure 7, are used here as speci�c examples.An illustration of the use of these kernels for the analysis of edges and junctions isproposed in Fig. 8 where response maxima w.r. to orientation � as in Fig. 2 are shownfor a di�erent image, a synthetic T-junction (Fig.7, right). The kernels employed forthis demonstration have shape as in Fig. 7 and are derived from an elongated Gaussianfunction of variances �y = 1:2 pixels and �x : �y = 3 : 1.From equation (10) one can see that the coe�cients ci(�) (where � = kxk) are, foreach value of �, the Fourier coe�cients of F�(x) along a circular path of radius � and



(2-sided) (endstopped) (1-sided) Tjc-120
Fig. 7. Three complex-valued kernels used in edge and junction analysis (the real parts areshown above and imaginary parts below). The �rst one (2-sided) is `tuned' to edges that arecombinations of steps and lines (see [36]) { it is the same as in Fig. 3 top left, shown at anorientation of 0o; the second kernel one (endstopped) is tuned to edge endings and `crisscross'junctions [13, 16, 39]: it is equivalent to a 1st derivative of the 2-sided kernel along its axisdirection; the third one (1-sided) may be used to analyze arbitrary junctions. All three kernelsmay be obtained at any orientation by combining suitably the `basis' kernels ai shown in Fig. 3.
center in the origin. The circular path begins and ends at the positive side of the X axis.Consider now such a path for the 2-sided kernel of Fig. 7: observe that for every � wehave at least two symmetries.For the real part:(E) the function is even-symmetric,(�+) a translation of the function by � returns the same function (i.e. it is �-periodic).For the imaginary part:(O) the function is odd-symmetric,(��) a translation of the function by � returns the function multiplied by �1.These symmetries imply corresponding properties in the discrete Fourier transform(DFT) of the functions: symmetry (E) implies a DFT with zero coe�cients for the sinu-soidal components; symmetry (O) a DFT with zero cosinusoidal components; symmetry(�+) implies that the odd-frequency components are zero; symmetry (��) that theeven-frequency components are zero.As a consequence, the DFT of the real part of the 2-sided kernel is only made upof even-frequency cosine components, while the imaginary part is only made up of odd-frequency sinus components. If the complex-exponential, rather than the sinus-cosine,notation is used, as in eq. (7) and (10), this implies that the odd-frequency coe�cientsonly depend on the imaginary part of the kernel, while the even-frequency components de-pend on the real part. The negative-frequency components �iai are equal to the positive-frequency components for even frequencies and to the opposite for odd-frequencies. Thenegative-frequency components therefore do not need to be computed and stored thussaving a factor 2 of storage and computations. Equation (3) may therefore be re-writtenas follows (for convenience of notation suppose that the number of components n is odd:n=2b+1, and that the n frequencies �i involved are the ones from -b to b):
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C { endstop D { endstop along 1-sided max.24
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24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39Fig. 8. Demonstration of the use of the kernels shown in Fig. 7 for the analysis of orientationand position of edges and junctions. For each pixel in a 16x16 neighbourhood of the T-junctionin Fig. 7 (right) the local maxima in orientation of the modulus of corresponding �lter responsesare shown. A { 2-sided: (equivalent to Fig. 2 top-right) Within a distance of approximately2� 2:5�y from an isolated edge this kernel gives an accurate estimate of edge orientation. Nearthe junction there is a distortion in the estimate of orientation; notice that the needles indicatingthe orientation of the horizontal edge bend clockwise by approximately 15o within a distance ofapprox. 1:5�x from the junction. The periodicity of the maxima is 180o making it di�cult totake a local decision about the identity of the junction (L, T, X). B { 1-sided: Notice the goodestimate of orientation near the junction; from the disposition of the local maxima it is possibleto identify the junction as a T-junction. The estimate of edge orientation near an isolated edge isworse than with the 2-sided kernel since the 1-sided kernel has a 360o symmetry. C { endstop:The response along an `isolated' edge (far from the junction) is null along the orientation ofthe edge, while the response in the region of the junction has maxima along the directions ofthe intervening edges. D { endstop along 1-sided maxima: Response of the endstop kernelalong the orientations of maximal response of the 1-sided kernel. Notice that there is signi�cantresponse only in the region of the junction. The junction may be localized at the position withmaximal total endstop response.



F [n](2S)� = nXi=1 �iai(x)ej2���i = bX�=�b��a�(x)e2��� = bX�=0��a�(x)(e2���+j2�e�2���) (14)where the indexing is now by frequency: a� and �� denote the ai and �i associated tothe frequency � = �i, and ��=0 = 12�i, i =arg(ui = 0).Consider now the endstopped kernel (Fig. 7, middle): the same symmetries are foundin a di�erent combination: the real part has symmetries (E) and (��) while the imaginarypart has symmeries (O) and (�+). A kernel of this form may be clearly obtained fromthe coe�cients of the 2-sided kernel exchanging the basis �nctions: sinusoids for the evenfrequencies and cosinusoids for the odd frequencies (equivalent to taking the Hilberttransform of the 2-sided kernel along the circular concentric paths):F [n](ES)�(x) = bX�=0��a�(x)(e2��� + j2�+1e�2���) (15)The endstopped kernel shown in Fig. 7 has been obtained following this procedure fromthe decomposition (�i; ai; bi) of the 2-sided kernel in the same �gure.A kernel of the form 1-sided can now be obtained by summing the 2-sided and end-stopped kernels previously constructed. It is the one shown in Fig. 7, right side. Thecorresponding reconstruction equation is:F [n](1S)�(x) = bX�=0��a�(x)e2��� (16)
6 ConclusionsA technique has been presented for implementing families of deformable kernels for earlyvision applications. A given family of kernels obtained by deforming continuously a tem-plate kernel is approximated by interpolating a �nite discrete set of kernels. The techniquemay be applied if and only if the family of kernels involved satisfy a compactness con-dition. This improves upon previous work by Freeman and Adelson on steerable �ltersand Perona and Simoncelli et al. on scalable �lters in that (a) it is formulated with max-imum generality to the case of any compact deformation, or, equivalently any compactfamily of kernels, and (b) it provides a design technique which is guaranteed to �nd themost parsimonious discrete approximation. It has also been shown how to build edge-terminator- and junction-tuned kernels out of a same family of `basis' function.Unlike common techniques used in early vision where the set of orientations is dis-cretized, here the kernel and the response of the corresponding �lter may be computedin a continuum for any value of the deformation parameters, with no anisotropies. Theapproximation error is computable a priori and it is constant with respect to the defor-mation parameter. This allows one, for example, to recover edges with great spatial andangular accuracy.
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