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Summary 
Most researches concerning uniform caching base their 
replacement decision on just one parameter. This parameter in 
some cases may not do well because of the workload 
characteristics. Some others use more than one parameter. In this 
case, finding the relation between these parameters and how to 
combine them is another problem. A number of algorithms try to 
combine their decision parameter with some mathematical 
equations. But as different workloads have different 
characteristics, it is not possible to express the parameters 
relation with an exact mathematical formula. In real world 
situations, it would often be more realistic to find viable 
compromises between these parameters. For many problems, it 
makes sense to partially consider each of them. One especially 
straightforward method to achieve this is the modeling of these 
parameters through fuzzy logic. This paper proposes a fuzzy 
algorithm in which the decision parameters are treated as fuzzy 
variables. A simulation is also performed and the results are 
compared with Optimal, LRU and LFU replacement algorithms. 
The latter two algorithms are the most commonly used 
algorithms for replacement of cache objects and the first one is a 
theoretical optimal algorithm.  It is concluded that the proposed 
fuzzy approach is very promising and it has the potential to be 
considered for future research. 
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Introduction 

With the ever-widening speed gap between computing 
elements and memory units in modern computing systems, 
Caching finds extensive application in storage systems, 
databases, Web servers, middleware, processors, file 
systems, disk drives, redundant array of independent disks 
controllers, operating systems, and other applications such 
as data compression and list updating. [1]. 
Both cache and auxiliary memory handle uniformly sized 
items called pages. Requests for pages go first to the cache. 
When a page is found in the cache, a hit occurs; otherwise, 
a cache miss happens, and the request goes to the auxiliary 
memory. 
In the latter case, a copy is paged in to the cache. This 
practice, called demand paging, rules out prefetching 
pages from the auxiliary memory into the cache. If the 

cache is full, before the system can page in a new page, it 
must page out one of the currently cached pages. A 
replacement policy determines which page is evicted. 
Under demand paging, the only question of interest is: 
When the cache is full and a new page must be inserted in 
the cache, which page should be replaced. 
A good policy reduces the number of media accesses by 
choosing to evict pages that will not be used for some time, 
thus keeping in memory pages that will be used soon. 
Notice that choosing well requires that the policy guess 
whether or not a page is likely to be needed soon. Such a 
choice demands certain assumptions about how a program 
is likely to reference its pages in the future, making page 
replacement a difficult and impractical problem. Because 
page replacement was initially greeted with such 
skepticism, researchers analyzed reference behavior and 
developed important concepts, such as the principle of 
locality [11] which states that only a small fraction of a 
program’s memory is used most of time. This concept 
exhibited by many programs made the paging aspect of 
virtual memory practical. 
The basic idea of locality is that data which is referenced is 
close to other data that has been and will be referenced. 
Notice that the term close can be interpreted in at least two 
ways, most commonly in terms of both space and time. 
Therefore, both spatial and temporal localities are 
discussed when analyzing reference behavior and 
designing replacement algorithms. Two pieces of data are 
temporally local if they are accessed at nearly the same 
time during program execution. Two pieces of data are 
spatially local if they are near to one another in the address 
space. 
Belady’s MIN is an optimal, offline policy for replacing 
the page in the cache that is used farthest in the future. 
This algorithm could cheat by examining future references, 
therefore avoiding poor decisions [12]. 
Of course, as mentioned before, in practice, we are only 
interested in online cache replacement policies that do not 
demand any prior knowledge of the workload. Page 
replacement, in real systems, must be done online and the 
policy must decide which page to evict based only on 
information it has collected about previously used pages. 
In other words, a page replacement policy must use past 
information to predict the future. 
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The LRU policy always replaces the least recently used 
page. LRU exploits spatial locality in request sequence and 
the recency property which states recently requested 
objects are more likely to be requested next than objects 
that have not been requested recently [1,3]. 
In use for decades, this policy has undergone numerous 
approximations and improvements. Three of the most 
important related algorithms are Clock, WS (working set), 
and WSClock. So far, LRU and its variants are amongst 
the most popular replacement policies [2]. 
The advantages of LRU are that it is extremely simple to 
implement, has constant time and space overhead, and 
captures recency or clustered locality of reference that is 
common to many workloads. One main disadvantage of 
the LRU algorithm is as follows: While LRU captures the 
recency features of a workload; it does not capture and 
exploit the frequency features of a workload. More 
generally, if some pages are often requested, but the 
temporal distance between consecutive requests is larger 
than the cache size, then LRU cannot take advantage of 
such pages with long-term utility. 
LFU is another policy that seems to perform well in web 
request sequences [3]. LFU evicts the pages in the cache 
that was requested the fewest number of times. LFU 
exploits the frequency property of request sequence which 
states that pages that have been requested more times are 
more likely to be requested again. This is exactly what we 
called it temporal locality. As a disadvantages, it does not 
adapt well to variable access patterns; it accumulates stale 
pages with past high frequency counts, which may no 
longer be useful. 
The last fifteen years have seen development of a number 
of novel caching algorithms that have attempted to 
combine recency and frequency. There is an association   
between recency and frequency; if a recently used page is 
likely to be used soon, then such a page will be used 
frequently. The least recently frequently used (LRFU) 
Policy is one if them [3, 5]. 
The LFFU policy associates a value with each block. This 
value is called CRF (Combined recency and frequency) 
and quantifies the likelihood that the block will be 
referenced in the near future. This value is calculated 
according to a mathematical equation that is going to mix 
recency and frequency and comes to a single decision 
parameter.  
Although, there is a correlation between recency and 
frequency but, as experiences show, this correlation is not 
the same for all kind of workloads. So, describing this 
relation with an exact mathematical formula is impossible. 
In real world situations, it would often be more realistic to 
find viable compromises between these parameters. For 
many problems, it makes sense to partially consider each 

of them. One especially straightforward method to achieve 
this is the modeling of these parameters through fuzzy 
logic. Using fuzzy rules we can combine these parameters 
as they are connected in real worlds. 
The scope of the paper is confined to replacement of 
uniform cache objects with fuzzy logic. The rest of the 
paper is organized as follow. In section 2 the fuzzy 
inference systems are discussed. Section 3 covers the 
proposed model and section 4 contains the experimental 
results. Conclusion and future works are debated in 
Sections 5. 

2. Fuzzy Inference System 

Fuzzy logic is an extension of Boolean logic dealing with 
the concept of partial truth which denotes the extent to 
which a proposition is true. Whereas classical logic holds 
that everything can be expressed in binary terms (0 or 1, 
black or white, yes or no), fuzzy logic replaces Boolean 
truth values with a degree of truth. Degree of truth is often 
employed to capture the imprecise modes of reasoning that 
play an essential role in the human ability to make 
decisions in an environment of uncertainty and imprecision. 
Fuzzy Inference Systems (FIS) are conceptually very 
simple. They consist of an input, a processing, and an 
output stage. The input stage maps the inputs, such as 
frequency of reference, recency of reference, and so on, to 
the appropriate membership functions and truth values. 
The processing stage invokes each appropriate rule and 
generates a corresponding result. It then combines the 
results. Finally, the output stage converts the combined 
result back into a specific output value [6]. 
The membership function of a fuzzy set corresponds to the 
indicator function of the classical sets. It is a curve that 
defines how each point in the input space is mapped to a 
membership value or a degree of truth between 0 and 1. 
The most common shape of a membership function is 
triangular, although trapezoidal and bell curves are also 
used. The input space is sometimes referred to as the 
universe of discourse [6]. 
As discussed earlier, the processing stage which is called 
inference engine is based on a collection of logic rules in 
the form of IF-THEN statements where the IF part is 
called the "antecedent" and the THEN part is called the 
"consequent". Typical fuzzy inference systems have 
dozens of rules. These rules are stored in a knowledgebase. 
An example of a fuzzy IF-THEN rule is: IF Frequency is 
low then SwapPriority is very high, which frequency and 
priority are linguistics variables and low and very high are 
linguistics terms. Each linguistic term corresponds to 
membership function.  
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An inference engine tries to process the given inputs and 
produce an output by consulting an existing 
knowledgebase. The five steps toward a fuzzy inference 
are as follows: 

• Fuzzifying Inputs 
• Applying Fuzzy Operators 
• Applying Implication Methods 
• Aggregating All Outputs 
• Defuzzifying outputs 

Bellow is a quick review of these steps but a detailed study 
is not in the scope of this paper. 
Fuzzifying the inputs is the act of determining the degree 
to which they belong to each of the appropriate fuzzy sets 
via membership functions. Once the inputs have been 
fuzzified, the degree to which each part of the antecedent 
has been satisfied for each rule is known. If the antecedent 
of a given rule has more than one part, the fuzzy operator 
is applied to obtain one value that represents the result of 
the antecedent for that rule. The implication function then 
modifies that output fuzzy set to the degree specified by 
the antecedent. Since decisions are based on the testing of 
all of the rules in an FIS, the results from each rule must be 
combined in order to make a decision. Aggregation is the 
process by which the fuzzy sets that represent the outputs 
of each rule are combined into a single fuzzy set. The input 
for the defuzzification process is the aggregated output 
fuzzy set and the output is a single value. This can be 
summarized as follows: mapping input characteristics to 
input membership functions, input membership function to 
rules, rules to a set of output characteristics, output 
characteristics to output membership functions, and the 
output membership function to a single-valued output. 
There are two common inference processes [6]. First is 
called Mamdani's fuzzy inference method proposed in 
1975 by Ebrahim Mamdani [8] and the other is Takagi-
Sugeno-Kang, or simply Sugeno, method of fuzzy 
inference Introduced in 1985 [9]. These two methods are 
the same in many respects, such as the procedure of 
fuzzifying the inputs and fuzzy operators.  
The main difference between Mamdani and Sugeno is that 
the Sugeno output membership functions are either linear 
or constant but Mamdani’s inference expects the output 
membership functions to be fuzzy sets. 
Sugeno’s method has three advantages. First it is 
computationally efficient, which is an essential benefit to 
real-time systems. Second, it works well with optimization 
and adaptive techniques. These adaptive techniques 
provide a method for the fuzzy modeling procedure to 
extract proper knowledge about a data set, in order to 
compute the membership function parameters that best 
allow the associated fuzzy inference system to track the 
given input/output data. However, in this paper we will not 

consider these techniques. The third, advantage of Sugeno 
type inference is that it is well-suited to mathematical 
analysis. 

3. The Proposed Model 

The block diagram of our inference system is presented in 
Figure 1.  
 

ReferenceRecency (3)

ReferenceFrequency (3)

ReuseDistance (3)

f(u)

SwapPriority

Fuzzy 
Inference 

Engine

(sugeno)

Output 

 
Fig.1. Inference system block diagram. 

 
In the proposed model, the input stage consists of three 
linguistic variables. The first one is the recency of 
references which is going to present the spatial locality of 
references.  The second input variable is the frequency of 
references. This parameter exploits the temporal locality of 
references. The last input variable is reuse distance which 
is the distance between two consecutive references to the 
page. By considering this parameter, we are able to 
eliminate negative effects caused by only considering 
recency in weak locality workloads such as sequential 
scans and loop like patterns [7].  
Frequency seems to matter more for larger caches and 
recency has a more impact with smaller cache sizes. 
Distance reuse enriches the system to become suitable to 
weak locality workloads. 
With the help of these three parameters this system is 
going to predicate about the soonness of reference to each 
page. The output if the system is swap priority that 
determine which page should be replaced. The page with 
higher swap priority has little chance to be referenced in 
near future. 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006 
 
 

 

185

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

ReferenceRecency

D
eg

re
e 

of
 m

em
be

rs
hi

p

low medium high

  
Fig.2. Fuzzy sets corresponding to reference recency 

The input variables mapped into the fuzzy sets as 
illustrated in Figures 2, 3 and 4. 
The shape of the membership function for each linguistic 
term is determined by the expert. It is very difficult for the 
expert to adjust these membership functions in an optimal 
way. However, there are some techniques for adjusting 
membership functions [10, 13]. In this paper, we will not 
consider these techniques. They can be further studied in a 
separate paper. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

ReferenceFrequency

D
eg

re
e 

of
 m

em
be

rs
hi

p

low medium high

  
Fig.3. Fuzzy sets corresponding to frequency of references 
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Fig.4. Fuzzy sets corresponding to reuse distance 

 
Fuzzy rules try to combine these parameters as they are 
connected in real worlds. Some of these rules are 
mentioned here: 
 

• If   (ReferenceRecency is high)    and  
             (ReferenceFrequency is high) and 

      (ReuseDistance is short)         then 
      (SwapPriority is very low) 

• If   (ReferenceRecency is low)     and  
             (ReferenceFrequency is low)  and 

      (ReuseDistance is long)         then 
      (SwapPriority is very high) 

• If   (ReferenceRecency is medium)     and  
             (ReferenceFrequency is medium) and 

      (ReuseDistance is medium)         then 
      (SwapPriority is normal) 
 

In fuzzy inference systems, the number of rules has a 
direct effect on its time complexity. So, having fewer rules 
may result in a better system performance.  

2.1 The Proposed Algorithm  

The FPR algorithm is as follows: 
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4. Performance Evaluation  

To validate our algorithm and to demonstrate its strength, 
we use trace-driven simulations with various types of 
workloads. Results presented in this paper are given for a 
set of nine workload traces which was used in [4]. These 
traces were used in previous literature aiming at addressing 
other algorithms performance. 
These traces can be classified to five groups according to 
their cache access pattern. 

• Spatial clustered references: pages are accessed 
according to the spatial locality of references. It 
means pages are near to one another in the 
address space. 

• Temporal clustered references: pages are 
accessed at nearly the same time during the 
execution. 

• Looping references: all pages are accessed 
repeatedly with a regular interval (period); 

• Probabilistic references: each page has a 
reference probability, and all pages are accessed 
independently with the associated probabilities. 

• Mixed references: A mixture of the others. 
A commonly used performance metric for evaluating a 
replacement policy is its hit ratio which is defined as the 
frequency with which it finds a page in the cache. All the 
traces are compared with each other according to this 
metric. 
The traces are as follows: 

• The first trace, which is called Cpp, is a GNU C 
compiler pre-processor trace. The total size of C 
source programs used as input is roughly 11.  

• Cs: is an interactive C source program 
examination tool trace. The total size of the C 
programs used as input is roughly 9 MB. 

• Mud: is a multi-user database application trace 
with a random access pattern. 

• Glimpse: is a text information retrieval utility 
trace. The total size of text files used as input is 
roughly 50 MB.  

• Sprite: is from the Sprite network file system, 
which contains requests to a file server from 
client workstations for a two-day period. 

• Postgres: is a trace of join queries among four 
relations in a relational database system from the 
University of California at Berkeley. 

• Mulit1: is obtained by executing two workloads, 
Cpp and Cs, together. 

• Muti2: is obtained by executing three workloads 
Cs, Cpp and Postgres, together. 

• Muti3: is obtained by executing four workloads, 
Cpp, Glimpse, Postgres, Cs, together. 

 
Among these nine traces Cs, Postgres and Glimpse have 
looping reference pattern. As Figures 7, 8 and 12 state, for 
looping pattern, the FPR does approximately the same as 
the LFU but, much better than LRU. Mud has a 
probabilistic reference pattern. Figure 6 shows that both 
LFU and LRU are the same and FPR performs better for 
this pattern. Temporal clustered reference pattern exists 
just in Cpp trace and as Figure 5 illustrates all the 
algorithms are near optimal. The sprite reference trace has 
a sequential pattern. As it was expected and the Figure 13 
confirms LRU has the best performance among the others. 
Figure 9, 10 and 11 show that, FPR can make better 
decisions in mixed reference patterns that is closer to the 
real world.  
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Fig.5. Cpp 

Algorithm FPR 

1. For each used page P in cache, feed its 
recency of reference, frequency of 
reference and reuse distance into the 
inference engine. Consider the output of 
the inference module as swap priority of 
page P. 

2. Swap out the page with the highest swap 
priority. 
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Fig.6. Mud 
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Fig.7. Cs 
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Fig.8. Glimpse 
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Fig.9. Multi1 
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Fig.10. Multi2 
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Fig.11. Multi3 
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Fig.12. Postgres 
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Fig.13. Sprite 

5. Conclusion and Future Works 

This paper has described the use of fuzzy logic to improve 
cache replacement decisions. Nine different workloads 
were examined and as it was shown the fuzzy approach 
has better performance over the LFU and LRU algorithms 
in eight of them. Results say that, the fuzzy approach is 
suitable for looping, probabilistic and temporal pattern of 
reference and it does better in mixed reference patterns. 
Despite its success, the proposed fuzzy algorithm is a little 
bit time consuming and it is because the nature of fuzzy 
inference process. 
In the future, the fuzzy approach will be applied to the 
distributed cache management. Also a non-uniform version 
of this algorithm is under publication. 
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