
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

182

Manuscript received March 25, 2006.
Manuscript revised March 30 , 2006.

Using Fuzzy Logic to Improve Cache Replacement Decisions

Mojtaba Sabeghi1,† and Mohammad Hossein Yaghmaee2††,

Ferdowsi University of Mashhad, Mashhad, Iran

Summary
Most researches concerning uniform caching base their
replacement decision on just one parameter. This parameter in
some cases may not do well because of the workload
characteristics. Some others use more than one parameter. In this
case, finding the relation between these parameters and how to
combine them is another problem. A number of algorithms try to
combine their decision parameter with some mathematical
equations. But as different workloads have different
characteristics, it is not possible to express the parameters
relation with an exact mathematical formula. In real world
situations, it would often be more realistic to find viable
compromises between these parameters. For many problems, it
makes sense to partially consider each of them. One especially
straightforward method to achieve this is the modeling of these
parameters through fuzzy logic. This paper proposes a fuzzy
algorithm in which the decision parameters are treated as fuzzy
variables. A simulation is also performed and the results are
compared with Optimal, LRU and LFU replacement algorithms.
The latter two algorithms are the most commonly used
algorithms for replacement of cache objects and the first one is a
theoretical optimal algorithm. It is concluded that the proposed
fuzzy approach is very promising and it has the potential to be
considered for future research.
Key words:
Fuzzy logic, page replacement algorithm, LRU, LFU, FPR.

Introduction

With the ever-widening speed gap between computing
elements and memory units in modern computing systems,
Caching finds extensive application in storage systems,
databases, Web servers, middleware, processors, file
systems, disk drives, redundant array of independent disks
controllers, operating systems, and other applications such
as data compression and list updating. [1].
Both cache and auxiliary memory handle uniformly sized
items called pages. Requests for pages go first to the cache.
When a page is found in the cache, a hit occurs; otherwise,
a cache miss happens, and the request goes to the auxiliary
memory.
In the latter case, a copy is paged in to the cache. This
practice, called demand paging, rules out prefetching
pages from the auxiliary memory into the cache. If the

cache is full, before the system can page in a new page, it
must page out one of the currently cached pages. A
replacement policy determines which page is evicted.
Under demand paging, the only question of interest is:
When the cache is full and a new page must be inserted in
the cache, which page should be replaced.
A good policy reduces the number of media accesses by
choosing to evict pages that will not be used for some time,
thus keeping in memory pages that will be used soon.
Notice that choosing well requires that the policy guess
whether or not a page is likely to be needed soon. Such a
choice demands certain assumptions about how a program
is likely to reference its pages in the future, making page
replacement a difficult and impractical problem. Because
page replacement was initially greeted with such
skepticism, researchers analyzed reference behavior and
developed important concepts, such as the principle of
locality [11] which states that only a small fraction of a
program’s memory is used most of time. This concept
exhibited by many programs made the paging aspect of
virtual memory practical.
The basic idea of locality is that data which is referenced is
close to other data that has been and will be referenced.
Notice that the term close can be interpreted in at least two
ways, most commonly in terms of both space and time.
Therefore, both spatial and temporal localities are
discussed when analyzing reference behavior and
designing replacement algorithms. Two pieces of data are
temporally local if they are accessed at nearly the same
time during program execution. Two pieces of data are
spatially local if they are near to one another in the address
space.
Belady’s MIN is an optimal, offline policy for replacing
the page in the cache that is used farthest in the future.
This algorithm could cheat by examining future references,
therefore avoiding poor decisions [12].
Of course, as mentioned before, in practice, we are only
interested in online cache replacement policies that do not
demand any prior knowledge of the workload. Page
replacement, in real systems, must be done online and the
policy must decide which page to evict based only on
information it has collected about previously used pages.
In other words, a page replacement policy must use past
information to predict the future.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

183

The LRU policy always replaces the least recently used
page. LRU exploits spatial locality in request sequence and
the recency property which states recently requested
objects are more likely to be requested next than objects
that have not been requested recently [1,3].
In use for decades, this policy has undergone numerous
approximations and improvements. Three of the most
important related algorithms are Clock, WS (working set),
and WSClock. So far, LRU and its variants are amongst
the most popular replacement policies [2].
The advantages of LRU are that it is extremely simple to
implement, has constant time and space overhead, and
captures recency or clustered locality of reference that is
common to many workloads. One main disadvantage of
the LRU algorithm is as follows: While LRU captures the
recency features of a workload; it does not capture and
exploit the frequency features of a workload. More
generally, if some pages are often requested, but the
temporal distance between consecutive requests is larger
than the cache size, then LRU cannot take advantage of
such pages with long-term utility.
LFU is another policy that seems to perform well in web
request sequences [3]. LFU evicts the pages in the cache
that was requested the fewest number of times. LFU
exploits the frequency property of request sequence which
states that pages that have been requested more times are
more likely to be requested again. This is exactly what we
called it temporal locality. As a disadvantages, it does not
adapt well to variable access patterns; it accumulates stale
pages with past high frequency counts, which may no
longer be useful.
The last fifteen years have seen development of a number
of novel caching algorithms that have attempted to
combine recency and frequency. There is an association
between recency and frequency; if a recently used page is
likely to be used soon, then such a page will be used
frequently. The least recently frequently used (LRFU)
Policy is one if them [3, 5].
The LFFU policy associates a value with each block. This
value is called CRF (Combined recency and frequency)
and quantifies the likelihood that the block will be
referenced in the near future. This value is calculated
according to a mathematical equation that is going to mix
recency and frequency and comes to a single decision
parameter.
Although, there is a correlation between recency and
frequency but, as experiences show, this correlation is not
the same for all kind of workloads. So, describing this
relation with an exact mathematical formula is impossible.
In real world situations, it would often be more realistic to
find viable compromises between these parameters. For
many problems, it makes sense to partially consider each

of them. One especially straightforward method to achieve
this is the modeling of these parameters through fuzzy
logic. Using fuzzy rules we can combine these parameters
as they are connected in real worlds.
The scope of the paper is confined to replacement of
uniform cache objects with fuzzy logic. The rest of the
paper is organized as follow. In section 2 the fuzzy
inference systems are discussed. Section 3 covers the
proposed model and section 4 contains the experimental
results. Conclusion and future works are debated in
Sections 5.

2. Fuzzy Inference System

Fuzzy logic is an extension of Boolean logic dealing with
the concept of partial truth which denotes the extent to
which a proposition is true. Whereas classical logic holds
that everything can be expressed in binary terms (0 or 1,
black or white, yes or no), fuzzy logic replaces Boolean
truth values with a degree of truth. Degree of truth is often
employed to capture the imprecise modes of reasoning that
play an essential role in the human ability to make
decisions in an environment of uncertainty and imprecision.
Fuzzy Inference Systems (FIS) are conceptually very
simple. They consist of an input, a processing, and an
output stage. The input stage maps the inputs, such as
frequency of reference, recency of reference, and so on, to
the appropriate membership functions and truth values.
The processing stage invokes each appropriate rule and
generates a corresponding result. It then combines the
results. Finally, the output stage converts the combined
result back into a specific output value [6].
The membership function of a fuzzy set corresponds to the
indicator function of the classical sets. It is a curve that
defines how each point in the input space is mapped to a
membership value or a degree of truth between 0 and 1.
The most common shape of a membership function is
triangular, although trapezoidal and bell curves are also
used. The input space is sometimes referred to as the
universe of discourse [6].
As discussed earlier, the processing stage which is called
inference engine is based on a collection of logic rules in
the form of IF-THEN statements where the IF part is
called the "antecedent" and the THEN part is called the
"consequent". Typical fuzzy inference systems have
dozens of rules. These rules are stored in a knowledgebase.
An example of a fuzzy IF-THEN rule is: IF Frequency is
low then SwapPriority is very high, which frequency and
priority are linguistics variables and low and very high are
linguistics terms. Each linguistic term corresponds to
membership function.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

184

An inference engine tries to process the given inputs and
produce an output by consulting an existing
knowledgebase. The five steps toward a fuzzy inference
are as follows:

• Fuzzifying Inputs
• Applying Fuzzy Operators
• Applying Implication Methods
• Aggregating All Outputs
• Defuzzifying outputs

Bellow is a quick review of these steps but a detailed study
is not in the scope of this paper.
Fuzzifying the inputs is the act of determining the degree
to which they belong to each of the appropriate fuzzy sets
via membership functions. Once the inputs have been
fuzzified, the degree to which each part of the antecedent
has been satisfied for each rule is known. If the antecedent
of a given rule has more than one part, the fuzzy operator
is applied to obtain one value that represents the result of
the antecedent for that rule. The implication function then
modifies that output fuzzy set to the degree specified by
the antecedent. Since decisions are based on the testing of
all of the rules in an FIS, the results from each rule must be
combined in order to make a decision. Aggregation is the
process by which the fuzzy sets that represent the outputs
of each rule are combined into a single fuzzy set. The input
for the defuzzification process is the aggregated output
fuzzy set and the output is a single value. This can be
summarized as follows: mapping input characteristics to
input membership functions, input membership function to
rules, rules to a set of output characteristics, output
characteristics to output membership functions, and the
output membership function to a single-valued output.
There are two common inference processes [6]. First is
called Mamdani's fuzzy inference method proposed in
1975 by Ebrahim Mamdani [8] and the other is Takagi-
Sugeno-Kang, or simply Sugeno, method of fuzzy
inference Introduced in 1985 [9]. These two methods are
the same in many respects, such as the procedure of
fuzzifying the inputs and fuzzy operators.
The main difference between Mamdani and Sugeno is that
the Sugeno output membership functions are either linear
or constant but Mamdani’s inference expects the output
membership functions to be fuzzy sets.
Sugeno’s method has three advantages. First it is
computationally efficient, which is an essential benefit to
real-time systems. Second, it works well with optimization
and adaptive techniques. These adaptive techniques
provide a method for the fuzzy modeling procedure to
extract proper knowledge about a data set, in order to
compute the membership function parameters that best
allow the associated fuzzy inference system to track the
given input/output data. However, in this paper we will not

consider these techniques. The third, advantage of Sugeno
type inference is that it is well-suited to mathematical
analysis.

3. The Proposed Model

The block diagram of our inference system is presented in
Figure 1.

ReferenceRecency (3)

ReferenceFrequency (3)

ReuseDistance (3)

f(u)

SwapPriority

Fuzzy
Inference

Engine

(sugeno)

Output

Fig.1. Inference system block diagram.

In the proposed model, the input stage consists of three
linguistic variables. The first one is the recency of
references which is going to present the spatial locality of
references. The second input variable is the frequency of
references. This parameter exploits the temporal locality of
references. The last input variable is reuse distance which
is the distance between two consecutive references to the
page. By considering this parameter, we are able to
eliminate negative effects caused by only considering
recency in weak locality workloads such as sequential
scans and loop like patterns [7].
Frequency seems to matter more for larger caches and
recency has a more impact with smaller cache sizes.
Distance reuse enriches the system to become suitable to
weak locality workloads.
With the help of these three parameters this system is
going to predicate about the soonness of reference to each
page. The output if the system is swap priority that
determine which page should be replaced. The page with
higher swap priority has little chance to be referenced in
near future.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

185

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

ReferenceRecency

D
eg

re
e

of
 m

em
be

rs
hi

p

low medium high

Fig.2. Fuzzy sets corresponding to reference recency

The input variables mapped into the fuzzy sets as
illustrated in Figures 2, 3 and 4.
The shape of the membership function for each linguistic
term is determined by the expert. It is very difficult for the
expert to adjust these membership functions in an optimal
way. However, there are some techniques for adjusting
membership functions [10, 13]. In this paper, we will not
consider these techniques. They can be further studied in a
separate paper.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

ReferenceFrequency

D
eg

re
e

of
 m

em
be

rs
hi

p

low medium high

Fig.3. Fuzzy sets corresponding to frequency of references

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

ReuseDistance

D
eg

re
e

of
 m

em
be

rs
hi

p

short medium long

Fig.4. Fuzzy sets corresponding to reuse distance

Fuzzy rules try to combine these parameters as they are
connected in real worlds. Some of these rules are
mentioned here:

• If (ReferenceRecency is high) and
 (ReferenceFrequency is high) and

 (ReuseDistance is short) then
 (SwapPriority is very low)

• If (ReferenceRecency is low) and
 (ReferenceFrequency is low) and

 (ReuseDistance is long) then
 (SwapPriority is very high)

• If (ReferenceRecency is medium) and
 (ReferenceFrequency is medium) and

 (ReuseDistance is medium) then
 (SwapPriority is normal)

In fuzzy inference systems, the number of rules has a
direct effect on its time complexity. So, having fewer rules
may result in a better system performance.

2.1 The Proposed Algorithm

The FPR algorithm is as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

186

4. Performance Evaluation

To validate our algorithm and to demonstrate its strength,
we use trace-driven simulations with various types of
workloads. Results presented in this paper are given for a
set of nine workload traces which was used in [4]. These
traces were used in previous literature aiming at addressing
other algorithms performance.
These traces can be classified to five groups according to
their cache access pattern.

• Spatial clustered references: pages are accessed
according to the spatial locality of references. It
means pages are near to one another in the
address space.

• Temporal clustered references: pages are
accessed at nearly the same time during the
execution.

• Looping references: all pages are accessed
repeatedly with a regular interval (period);

• Probabilistic references: each page has a
reference probability, and all pages are accessed
independently with the associated probabilities.

• Mixed references: A mixture of the others.
A commonly used performance metric for evaluating a
replacement policy is its hit ratio which is defined as the
frequency with which it finds a page in the cache. All the
traces are compared with each other according to this
metric.
The traces are as follows:

• The first trace, which is called Cpp, is a GNU C
compiler pre-processor trace. The total size of C
source programs used as input is roughly 11.

• Cs: is an interactive C source program
examination tool trace. The total size of the C
programs used as input is roughly 9 MB.

• Mud: is a multi-user database application trace
with a random access pattern.

• Glimpse: is a text information retrieval utility
trace. The total size of text files used as input is
roughly 50 MB.

• Sprite: is from the Sprite network file system,
which contains requests to a file server from
client workstations for a two-day period.

• Postgres: is a trace of join queries among four
relations in a relational database system from the
University of California at Berkeley.

• Mulit1: is obtained by executing two workloads,
Cpp and Cs, together.

• Muti2: is obtained by executing three workloads
Cs, Cpp and Postgres, together.

• Muti3: is obtained by executing four workloads,
Cpp, Glimpse, Postgres, Cs, together.

Among these nine traces Cs, Postgres and Glimpse have
looping reference pattern. As Figures 7, 8 and 12 state, for
looping pattern, the FPR does approximately the same as
the LFU but, much better than LRU. Mud has a
probabilistic reference pattern. Figure 6 shows that both
LFU and LRU are the same and FPR performs better for
this pattern. Temporal clustered reference pattern exists
just in Cpp trace and as Figure 5 illustrates all the
algorithms are near optimal. The sprite reference trace has
a sequential pattern. As it was expected and the Figure 13
confirms LRU has the best performance among the others.
Figure 9, 10 and 11 show that, FPR can make better
decisions in mixed reference patterns that is closer to the
real world.

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

80

90

100

Cache Size

H
it

R
at

e

LFU
LRU
FPR
OPT

Fig.5. Cpp

Algorithm FPR

1. For each used page P in cache, feed its
recency of reference, frequency of
reference and reuse distance into the
inference engine. Consider the output of
the inference module as swap priority of
page P.

2. Swap out the page with the highest swap
priority.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

187

50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

Cache Size

H
it

R
at

e

OPT
LRU
LFU
FPR

Fig.6. Mud

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

Cache Size

H
it

R
at

e

OPT
LRU
LFU
FPR

Fig.7. Cs

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

Cache Size

H
it

R
at

e

OPT
LRU
LFU
FPR

Fig.8. Glimpse

200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

Cache Size

H
it

R
at

e

OPT
LRU
LFU
OPT

Fig.9. Multi1

500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

Cache Size

H
it

R
at

e

OPT
LRU
LFU
FPR

Fig.10. Multi2

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

70

80

Cache Size

H
it

R
at

e

OPT
LRU
LFU
FPR

Fig.11. Multi3

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

188

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

Cache Size

H
it

R
at

e

OPT
LRU
LFU
FPR

Fig.12. Postgres

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Cache Size

H
it

R
at

e

OPT
LRU
LFU
FPR

Fig.13. Sprite

5. Conclusion and Future Works

This paper has described the use of fuzzy logic to improve
cache replacement decisions. Nine different workloads
were examined and as it was shown the fuzzy approach
has better performance over the LFU and LRU algorithms
in eight of them. Results say that, the fuzzy approach is
suitable for looping, probabilistic and temporal pattern of
reference and it does better in mixed reference patterns.
Despite its success, the proposed fuzzy algorithm is a little
bit time consuming and it is because the nature of fuzzy
inference process.
In the future, the fuzzy approach will be applied to the
distributed cache management. Also a non-uniform version
of this algorithm is under publication.

References
[1] Megiddo N., Modha DS., Outperforming LRU with an
adaptive replacement cache algorithm, Computer, 2004.
[2] Bansal S., Modha DS, CAR: Clock with Adaptive
Replacement, Proceedings of the USENIX Conference on
File and Storage Technologies, 2004.

[3] Lee D., Choi J., Kim J.-H., Min S.L., Cho Y., Kim
C.S., Noh S.H., On the Existence of a Spectrum of Policies
That Subsumes the Least Recently Used (LRU) and Least
Frequently Used (LFU) Policies, Proceedings ACM
SIGMETRICS, 1999.
[4] Choi J., Noh S., Min S., Cho Y., Towards
Application/File-Level Characterization of Block
References: A Case for Fine-Grained Buffer Management,
Proceedings of ACM SIGMETRICS Conference on
Measuring and Modeling of Computer Systems, June 2000.
[5] Lee D., Choi D., Kim J.-H., Noh S. H., Min S. L., Cho
Y., Kim C. S., LRFU: A spectrum of policies that
subsumes the least recently used and least frequently used
policies, IEEE Trans. Computers, vol. 50, no. 12, 2001.
[6] Wang Lie-Xin, A course in fuzzy systems and control,
Prentice Hall, Paperback, Published August 1996.
[7] Jiang S., Zhang X., LIRS: An Efficient Low Inter-
reference Recency Set Replacement Policy to Improve
Buffer Cache performance, SIGMETRICS, 2002.
[8] Mamdani E.H., Assilian S., An experiment in linguistic
synthesis with a fuzzy logic controller, International
Journal of Man-Machine Studies, Vol. 7, No. 1, pp. 1-13,
1975.
[9] Sugeno, M., Industrial applications of fuzzy control,
Elsevier Science Inc., New York, NY, 1985.
[10] Jang, J.-S. R., ANFIS: Adaptive-Network-based
Fuzzy Inference Systems, IEEE Transactions on Systems,
Man, and Cybernetics, Vol. 23, No. 3, pp. 665-685, May
1993.
[11] Denning, P. J., The locality principle, Communication
of the ACM 48, 7, 2005.
[12] Aho A.V., Denning P. J., and Ullman J. D., Principles
of optimal page replacement, J. ACM, vol. 18, no. 1, 1971.
[13] Simon D, Training fuzzy systems with the extended
Kalman filter, Fuzzy Sets and Systems, Volume
132, Number 2, 1, pp. 189-199, December 2002.

