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Abstract—Many network design problems arising in the fields
of transportation, distribution and logisitics require clients to be
connected to facilities through a set of carriers subject to distance
and capacity constraints. Here a carrier could be a cable, vehicle,
salesman etc. The distance from a facility to client using a carrier
could be expressed as signal loss, time spent, path length, etc.
The capacity of a carrier could be interpreted as the maximum
number of commodities that a carrier can carry, the maximum
number of clients or links that a single carrier can visit, etc. The
main decisions are to determine the number of carriers, assign
clients to carriers, and design a network for each carrier subject
to distance, capacity and some side constraints. In this paper,
we focus on Cable Routing Problem (CRP), which is NP-hard.
We present a constraint-based local search algorithm and two
efficient local move operators. The effectiveness of our approach
is demonstrated by experimenting with 300 instances of CRP
taken from real-world passive optical network deployments in
Ireland. The results show that our algorithm can scale to very
large size problem instances and it can compute good quality
solutions in a very limited time.

I. INTRODUCTION

Many network design problems arising in the fields of
transportation, distribution and logistics require clients to be
connected to facilities through a set of carriers subject to
distance and capacity constraints. Here a carrier could be a
cable, vehicle, salesman etc. The distance of a carrier from a
facility to a client could be expressed as signal loss, time spent,
path length, etc. The capacity of a carrier could be interpreted
as the maximum number of commodities that it can carry,
the maximum number of clients or links that a carrier can
be connected to, etc. Two well-known classes of such network
design problems are multiple Travelling Salesmen Problem and
Vehicle Routing Problem (VRP).

The multiple travelling salesman problem (mTSP) is a
generalisation of the well-known travelling salesman problem
(TSP) [1]. In mTSP we are given a set of clients, one site
where salesmen are located, and a cost metric, the objective
of the mTSP is to determine a tour for each salesman such
that the total tour cost is minimised and that each client is
visited exactly once by only one salesman. The number of
salesmen may be a fixed number or may be determined by
the solution but bounded by an upper bound. Some extensions
of mTSP have distance constraints where the time required
to complete any tour should not exceed a maximum allowed
policy. Applications of this problem are school bus routing,
crew scheduling, aircraft scheduling etc [2].

The mTSP is a restriction of Vehicle Routing Problem
(VRP) which has numerous applications in real world [3]. In

VRP a set of routes for a fleet of vehicles based at one or more
sites must be determined for a number of geographically dis-
persed clients. The objective is to deliver a set of clients with
known demands on minimum-cost vehicle routes originating
and terminating at a site. There are several variants to VRP
like the capacitated VRP (CVRP), VRP with Time Windows
(VRPTW) [4]. In the CVRP, a fleet of identical vehicles located
at a central facility has to be optimally routed to supply a set
of customers with known demands subject to a given capacity.
The objective of the VRPTW is to serve a number of customers
within predefined time windows at minimum cost (in terms of
distance travelled), without violating the capacity and total trip
time constraints for each vehicle.

In both mTSP and VRP the main decisions are to determine
the number of carriers, assign each client to a carrier, and
determine which links are used for connecting clients to the
facility subject to a set of constraints. One of the constraint in
these problems is that the network design for each carrier is a
tour (or graph cycle). We focus on a network design problem
arising in optical networks where a bound is given on the
number of carriers and each selected carrier is connected to a
set of clients using a tree topology that respects distance and
capacity constraints and additionally a set of side constraints.
We define this problem as Cable Routing Problem (CRP).

In optical network a carrier is an optical cable fibre that
originates from the central office and it is splitted in a number
of cable fibres in order to connect to a given number of
customers. The quality of the signal deteriorates due to length
of the fibre and the splitting of the fibre to connect a number
of customers. Depending on the technology used, there is
a threshold on the allowed signal attenuation. Consequently,
there is a tradeoff between the distance and capacity limits,
i.e., as the distance limit (i.e., the length of the fibre) increases,
the capacity limit (i.e., the number of clients that can be
connected to the fibre) decreases. The goal is to resolve the
trade-off between the distance and capacity limits optimally
to design minimum cost network. The CRP is NP-hard since
it involves finding minimum spanning trees with bounded
path length [5]. We present a constraint-based local search
algorithm and two efficient local move operators. The effec-
tiveness of our approach is demonstrated by experimenting
with 300 problem instances of CRP taken from real-world
passive optical network deployments in Ireland. The size of
these instances can vary from few tens of clients to few tens of
thousands of clients. We study the trade-off between distance
and size limits and show that our approach can compute very
good quality solutions for very large size instances in a very



Fig. 1. Example of a Long-Reach Passive Optical Network

limited time.

II. PROBLEM DESCRIPTION

The motivation behind the work presented in this paper
comes from a real-world problem arising in the domain of
optical networks. Long Reach Passive Optical Networks (LR-
PONs) are gaining increasing interest as they provide a low
cost and economically viable solution for fibre-to-the-home
network architectures [6]. The LR-PON architecture consists
of three subnetworks: (1) Optical Distribution Network (ODN)
for connecting customers to exchange-sites, (2) Backhaul Net-
work for connecting exchange-sites to metro-nodes, and (3)
Core Network connecting pairs of metro-nodes. An example
of a Long-Reach PON is shown in Figure 1.

We focus on ODN part of LR-PON consisting of exchange-
sites and customers. Notice that an exchange-site is a facility, a
customer is a client and fibre is a carrier. In Figure 1 the ODN
network consists of nodes corresponding to blue boxes and
houses. Here the biggest blue boxes can be seen as exchange-
sites and houses are customers. In LR-PON an exchange-site
could be connected to tens of thousands of customers. In the
optical distribution network an optical cable fibre is routed
from an exchange site to a set of customers which forms a
tree distribution network. A PON is a tree network associated
with each cable. The optical signal attenuation in PON is due to
the number of customers in the PON and the maximum length
of the fibre between the exchange site and the customer. As
signal attenuation is allowed up to some threshold, the upper-
bound on the length of the cable fibre from the exchange site
to any customer varies with respect to the size of the PON.
In [7] the authors show the relationship between the size and
the maximum length of the PON,

In Figure 2 we show two ways of connecting a given set
of customers to an exchange-site. In the first case (Figure2(a))
we are directly connecting each customer to the exchange site.
Certainly the option of connecting each customer directly to
the exchange site leads to shorter connection paths. However,
the drawback of connecting each customer directly is the total
amount of fibre cable used. In the second case (Figure 2(b))
we are computing a minimum spanning tree rooted at the

exchange-site. Certainly this option minimises the total length
of fibre cable but the drawback is that we might be violating the
maximum fibre cable length allowed between the exchange-site
and any of its customers.

(a)

(b)

Fig. 2. (a) Customers are directly connected to an exchange-site. (b)
Customers are connected to the exchange-site through a spanning tree.

We are interested in both restricting the length of the
paths and the total amount of fibre cable used. Keeping both
requirements is known to be a hard problem [5]. There has
been a significant amount of work on this bounded version
of the spanning tree problem (see [8] for a short summary
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Fig. 3. Relationship between the number of customers and the maximum
fibre length

of the most relevant approaches). Constraint programming
based techniques has also been suggested for tackling this
problem [8], [9].

The Cable Routing Problem (CRP) that we are tackling
in this paper is more complicated than the bounded spanning
tree problem. In CRP we want to determine a set of distance
bounded and capacity bounded cable tree networks such that
each tree is rooted at exchange-site, each customer is present
in exactly one tree and the total cost is minimised. The number
of trees denotes the number of optical fibre that run from the
exchange-site to the customers. The deterioration in the quality
of the optical signal can not surpass a given threshold. Notice
that the signal deterioration depends both on the maximum
length of the fibre cable and the number of customers of a
given tree. Therefore, when the former increases the latter
decreases and vice-versa. The relationship between them is
shown in Figure 3. In other words, in CRP we are given a
set of customers, an exchange-site and a cost function, and
the objective is to determine a number of fibre cables that
start at the exchange-site and create a tree distribution network
for each fibre cable such that each customer is included in
exactly one tree, the total cost of all trees is minimised and
both distance and capacity bounds are respected.

III. CONSTRAINT OPTIMISATION FORMULATION

In the following we present some notations, the formal
definition of the problem and the constraint optimisation model
of the CRP:

‚ G “ pV,Eq is a given network

‚ V “ tv0, v1, . . . , vnu is a set of vertices

‚ v0 is the facility and V ztv0u is a set of clients

‚ E “ tpvi, vjq|vi, vj P V ; i ‰ ju is an edge set

‚ C is a matrix of non-negative costs cij between
customers vi and vj

‚ D is a matrix of distances dij between customers vi
and vj

‚ m is the number of cables leaving central facility

‚ Ti is the tree distribution network for cable i

The Cable Routing Problem consists in finding a set of m
bounded trees of minimum total cost, starting at facility, such
that every vertex in V ztv0u is included exactly in one tree.
A feasible solution is composed of a partition R1, . . . , Rm of
V ztv0u and a tree Ti “ pRi Y tv0u, Liq with root v0 and
Li Ď EÓRiYtv0u,which means that Ti is a tree whose root (v0)
has one outgoing link. Ti is feasible if the distance from the
facility to the client does not exceed a given bound and the
size of the tree in terms of number clients does not exceed a
given capacity limit.

Unlike other problems where the distance and capacity
bounds are independent, in this work the bound on the size of
the tree varies with respect to that of the maximum path length
from the root-node to any leaf-node. Below is the constraint
optimisation formulation of the cable routing problem arising
in LR-PON.

Variables

‚ Let xij be a Boolean variable for each xi, jy P V 2

that denotes whether a link between node i and node
j exists in the tree.

‚ Let yij be a non-negative integer variable that denotes
the number of customers in the sub-tree emanating
from node j.

‚ Let zi be a non-negative integer variable that denotes
the length of the path from the facility to the client
vi.

Constraints
Each node (except root-node) must have one incoming link:

ÿ

viPV

xij “ 1, @vjPV ztv0u

The root-node is connected to at least one another node:
ÿ

vjPV ztv0u

x0j ě 1

If there is a link from vi P V to vj P V then the length
of the path from root-node to vj is equal to the length of the
path from root-node to vi plus the distance between nodes vi
and vj :

xij “ 1ñ zj “ zi ` dij , @tvi,vjuĎV

The number of customers relying on any link node is one more
than the number of nodes in the sub-tree emanating from that
node.

yij “
ÿ

vkPV

yjk ` 1, @tvi,vjuĎV

If there is no link between nodes i and j then of course no
customers are relying on this link in the tree

@tvi,vjuPV : xij “ 0 ùñ yij “ 0

The number of customers in any tree is dependent on the
maximum distance between a customer and the facility. For
example, if the maximum path length is greater than 10
then the cable tree network cannot contain more than 512
customers. Below we show constraints for 10, 20, 30 and 40



KMs and the similar constraints for 40 to 100 in steps of 10
KMs can be enforced.

zi ą 10 ùñ yij ă 512, @tvi,vjuĎV

zi ą 20 ùñ yij ă 256, @tvi,vjuĎV

zi ą 30 ùñ yij ă 128, @tvi,vjuĎV

zi ą 40 ùñ yij ă 64, @tvi,vjuĎV

Objective Function The main objective is to minimise the
total cable lengths.

min
ÿ

viPV

ÿ

vjPV

dij ¨ xij

One might also be interested in minimising the number of
cable tree networks:

min
ÿ

vjPV ztv0u

x0j

IV. LOCAL SEARCH ALGORITHM

In this paper, we explore an iterative constraint-based local
search [10], [11] algorithm to tackle the problem. The general
scheme of the algorithm (depicted in Algorithm 1) comprises
two phases. First, in a local search phase, the algorithm
improves the current solution, little by little, by performing
small changes. Generally speaking, it employs a move operator
in order to move from one solution to another in the hope
of improving the value of the objective function. Second, in
the perturbation phase, the algorithm perturbs the incumbent
solution (s˚) in order to escape from difficult regions of the
search (e.g., a local minima). Finally, the acceptance criterion
decides whether to update s˚ or not. To this end, with a
probability 5% s1˚ will be chosen, and the better one otherwise.

Our algorithm starts with a given initial solution where
a given set of clients is partitioned and each element of
that partition is associated with a cable tree network that
satisfy all constraints (i.e., the maximum path length and the
maximum number of nodes in the tree). The initial solution
is also computed using the local search algorithm which is
described in Section IV-D. We switch from the local search
phase to perturbation when a local minima is observed; in
the perturbation phase we perform a given number of random
moves (20 in this paper). The stopping criteria is either a
timeout or a given number of iterations.

A solution is represented by a tree whose root-node is the
facility and the number of immediate successors of the root-
node is the number of cables starting at the facility. Notice that
the facility acts as the root-node of each cable tree network.
Without loss of generality we add a set of dummy clients (or
copies of the facility) to the original set of clients for the
purpose of ease of representation to distinguish the cable tree-
networks. More precisely the set of clients, tv0, . . . , vnu, is
modified to tv0, v1, . . . , vm, v1`m . . . , vn`mu. Recall that n is
the number of clients and m is the upper bound on the number
of cables that can start at the facility. In the latter set v0 is
the original facility, each vi P tv1 . . . vmu denote the starting
point of a cable tree network, and tv1`m, . . . , vn`mu denote
the original set of clients. We further enforce that each dummy
client is connected to v0 and the distance between the dummy
client and the facility is zero, i.e., @1 ď i ď m, d0i “ 0.

Algorithm 1 Iterated Constraint-Based Local Search
1: s0 := Initial Solution
2: s˚ := ConstraintBasedLocalSearch(s0)
3: repeat
4: s1 := Perturbation(s˚)
5: s1˚ := ConstraintBasedLocalSearch(s1)
6: s˚ := AcceptanceCriterion(s˚, s1˚)
7: until No stopping criterion is met

A. Move-Operators

In this section we propose node and subtree move opera-
tors. We use T to denote the entire tree network of a given
facility and Ti to denote the cable tree network associated with
ith cable starting at node vi that covers the set of clients Ri.
An edge between two clients vp and vq is denoted by xvp, vqy.

Node operator (Figure 4(b)) moves a given node vi from the
current location to another in the tree. As a result of this, all
successors of vi will be directly connected to the predecessor
node of vi. vi can be placed as a new successor for another
node or in the middle of an existing arc in the tree.

Subtree operator (Figure 4(c)) moves a given node vi and
the subtree emanating from vi from the current location to
another in the tree. As a result of this, the predecessor of
vi is not connected to vi, and all successors of vi are still
directly connected to vi. vi can be placed as a new successor
for another node or in the middle of an existing arc.

Edge Operator (Figure4(d)). In this paper we limit our atten-
tion to moving a node or a complete subtree. [12] proposed
to move arcs in the context of the Constrained Optimum Path
problems. Pham et al. move operator (Figure 4(d)) chooses an
arc in the tree and finds another location for it without breaking
the flow.

B. Operations and Complexities

We first present the complexities of node and subtree
operators as they share similar features. For an efficient imple-
mentation of the move operators, it is necessary to maintain
fj denoting the length of the path from the root-node to
client j and bj denoting the length of the path from vj
down to the farthest leaf in the subtree emanating of node
vj . This information will be used to maintain the path-length
constraint. We also maintain nj denoting the number of nodes
in the subtree emanating from vj . We use λpniq to denote
the maximum path length allowed for a subtree emanating at
node vi when it contains ni number of clients. Let vpj

be the
immediate predecessor of vj and let Sj be the set of immediate
successors of vj in T . Table I summarises the complexities of
the move operators.

TABLE I. COMPLEXITIES OF DIFFERENT OPERATIONS

Node Subtree Arc
Delete Opnq Opnq Op1q
Feasibility Op1q Op1q Opnq
Move Opnq Opnq Opnq
Best move Opnq Opnq Opn3

q

Delete. Removing a node vj from the tree T requires a linear
complexity. For both operators, it is necessary to update bj1 for
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Fig. 4. Move operators

all the nodes j1 in the path from the root-node to client vpj in
T . In addition, the node operator updates fj1 for all the nodes
j1 in the subtree emanating from vi. After deleting a node vj or
a subtree emanating from vj , the objective function is updated
as follows:

obj “ obj ´ cj,pj

Furthermore, the node operator needs to add to the objective
function the cost of disconnecting each successor element of
vj and reconnecting them to vpj .

obj “ obj `
ÿ

kPSj

pck,pj
´ ckjq

Furthermore, we decrease the number of nodes in the path
from the root-node to vpj

accordingly, that is, decreasing one

unit for the node operator and nj units for the subtree operator.

Feasibility. Checking feasibility for adding vj in the cable
tree network Ti can be performed in linear time. Let s be the
number of nodes that will be added in the tree, i.e., 1 for the
node operator and nj for the subtree operator. If vj is inserted
between an arc xvp, vqy then we check the following:

maxpfp ` cpj ` cjq ` bq, fi ` biq ď λpni ` sq

If vp is a leaf-node in the tree and vj is placed as its successor
then the following is checked:

maxpfp ` cpj ` bj , fi ` biq ď λpni ` sq

Move. A move can be performed in linear time. We recall that
this move operator might replace an existing arc xvp, vqy with
two new arcs xvp, vjy and xvj , vqy. This operation requires to
update fj for all nodes in the emanating tree of vj , and bj in
all nodes in the path from the facility acting as a root node
down to the new location of vj . The objective function must
be updated as follows:

obj “ obj ` cpj ` cjq ´ cpq

In addition to modifying the objective, fj and bj for a certain
set of nodes, we also update the npj

after applying the move-
operators. On one hand, the subtree (reps. node) operator
increase nj units (reps. one unit) in all nodes in the path from
the root-node to npj . Whenever the node operator is breaking
an existing link xvp, vqy, nj would be set to np + 1.

Best Move. Selecting the best move involves traversing all
clients associated with the facility and selecting the one with
the maximum reduction in the objective function.

Now we switch our attention to the edge operator. This
operator does not benefit by using bj . The reason is that
moving a given arc from one location to another might require
changing the direction of a certain number of arcs in the tree
as shown in Figure 4(d). Deleting an arc requires constant
complexity, this operation generates two separated subtrees and
no data structures need to be updated. Checking the feasibility
of adding an arc xvp1 , vq1y to connect two subtress requires
linear complexity. It is necessary to actually traverse the new
tree to obtain the distance from vq1 to the farthest leaf in
the tree. Performing a move requires a linear complexity, and
it involves updating fj for the new emanating tree of vq1 .
Consequently, performing the best move requires a cubic time
complexity, the number of possible moves is n2 (total number
of possible arcs for connecting the two subtree) and for each
possible move it is necessary to check feasibility. Due to the
high complexity (Opn3q) of the arc operator to complete a
move, hereafter we limit our attention to the node and subtree
operators.

C. Constrained-Based Local Search

Algorithm 2 depicts general scheme for the constraint
based local search algorithm, In each iteration of the loop
(Lines 2-9), it selects a node vj randomly and then identifies
the best location for vj . Instead of verifying that the local
minima is reached by exhaustively checking all moves for all
clients, we maintain a list of nodes that must be visited. The
list is initialised in Line 1 with all nodes in the tree. Once a
node is explored, it is removed from the list. The nodes would



Algorithm 2 ConstraintBasedLocalSearch(move-op,T)
1: list Ð tvi P T u
2: while list ‰ H do
3: Select vj randomly from list
4: pvq, S, Costq Ð BestMovepmove-op, T, vjq
5: if Cost ‰ 8 then
6: list Ð tvi P T u
7: list Ð list´ tvju
8: T ÐMove( T ,move-op, pvq, Sjq, vj )
9: return T

be added back in the list when an improvement in the objective
function has been observed (Lines 5-7). We recall that after
reaching a local minima, the iterated constraint-based local
search algorithm perturbs the solution by applying a certain
number of random moves in the tree (either using node or
subtree operators).

The pseudo-code to compute the best move is depicted in
Algorithm 3. The input parameters of the algorithm are: the
move-operator which is itself a function, tree T , and the node
vj . It first delete vj from T . In each iteration of the loop
(Lines 4–11), it identifies a best location for vj . A location in
a tree T is defined by pvq, Sq where vq denotes the parent of
vj and S denotes the set of successors of vj after the move is
performed.

Broadly speaking, there are two options for the new loca-
tion: (1) Breaking an arc xvp, vqy and inserting vj in between
them such that the parent node of vj would be vp and the
successor set would be singleton, i.e., S “ tvqu; (2) Adding a
new arc xvp, vjy in the tree in which case the parent of vj is vp
and S “ H. Locations returns all the locations relevant with
respect to a given move-operator (Line 4). Line 5 verifies that
the new move is not breaking any constraint and CostMove
returns the cost of applying such a move using a given move-
operator (Line 6).

If the cost of new location is the best so far then the
best set of candidates is reinitialised to that location (Lines 7-
9). If the cost is same as the best known cost so far then
the best set of candidates is updated by adding that location
(Lines 10-11). The new location for a given node is randomly
selected from the best candidates if there are more than one
(Lines 12). The best move returns the best move for vj , the
one that minimises the overall cost (i.e., sum of edge’s cost)
of building the distance and size constrained rooted minimum
spanning tree.

D. Finding Initial Solution

Similar to other meta-heuristics, our local search approach
needs to be equipped with an initial solution. The quality of the
initial solution can have a significant impact on the the quality
of the final solution when the solution time is limited. We
use a constraint-based local search algorithm for computing
a good quality initial solution that uses the earlier proposed
move operators. The pseudo-code is shown in Algorithm 4.
The algorithm starts by creating a tree rooted at the facility,
and then connect all the dummy clients with the root-node
(Lines 1-2). Afterwards, it iteratively add one client randomly
at a time (Lines 4-12). It invokes Algorithm 3 to compute the

Algorithm 3 BestMove (move-op,T, vj)
1: Delete vj from T and update T
2: Best Ð tpvj , Sjqu

3: costÐ8

4: for pvq, Sq in Locationspmove-op, T q do
5: if FeasibleMove(move-op, pvq, Sq, vj) then
6: cost1 Ð CostMove( pvq, Sq, vi)
7: if cost1 ă cost then
8: Best Ð tpvq, Squ
9: costÐ cost1

10: else if cost1 “ cost then
11: Best Ð Best Ytpvq, Squ
12: Select pvq1 , S1q randomly from Best
13: return pvq1 , S1, Costq

Algorithm 4 Initial-Solution(move-op, V ,m)
1: Create a tree T rooted at v0
2: T Ð T Y txv0, viy|1 ď i ď mu
3: list Ð tvj |vj P V ^m ă j ď nu
4: while list ‰ H do
5: Select vj randomly from list
6: pvq, S, Costq Ð BestMovepmove-op, T, vjq
7: if Cost ‰ 8 then
8: T ÐMove( T ,move-op, pvq, Sjq, vj )
9: list Ð list´ tvju

10: else
11: remove a set of k original clients, V 2, from T
12: list ÐlistYV 2
13: T Ð perturbation(T )
14: return T

best location with respect to the cost for adding the client in
the tree. If the node cannot be added the algorithm removes
k (5 in this paper) randomly selected nodes from the current
solution and perturbs the current state of the solution in order
to allow a more diversified solution.

The cable routing problem has a multi-criterion objective
function: minimising the number of cable tree networks and
the total cable fibre cost. These two objectives might be in
conflict, i.e., the solution providing the minimum number of
trees might not give the overall minimum cable length cost
and vice-versa. Therefore, we explore two approaches to tackle
the problem. In one we fix the number of cable tree networks,
and another one we provide providing an upper bound on the
number cable tree networks. In both approaches, we apply the
constraint-based local search framework and minimise the total
cable cost of the problem.

In order to fix the number of trees for a given problem
instance, we compute the number of customers that are within
a certain distance from the facility (e.g., Customers(v0, 10km)),
and the near-optimal number of cable tree networks for cus-
tomers within this distance of the facility would be set to
Customers(v0,10km)/512. Here 512 is the maximum size of the
cable tree network when the maximum path length is 10KM).
The same procedure is repeated for other sizes of cable tree
networks. Taking this into account, the value of m is passed
as a parameter to Algorithm4 for compute the optimal number
of PONs. To this end we create dummy nodes whose location
is the same as the facility. These nodes are added into the tree
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as the direct successors of the root-node. Moreover, since we
always want to maintain a fixed number of nodes during the
search, no other nodes can be added as successor of the root-
node, and of course dummy nodes always remain at the same
position in the tree.

V. EMPIRICAL ANALYSIS

In the experiments we explore the two versions of the local
search algorithm. (i) Using a fixed near-optimal number of
cable tree networks and (ii) a flexible number of cable tree
networks. We recall that other algorithms to compute minimum
distance constrained spanning trees (e.g., [13], [14], and [5])
cannot be used for solving our problem as these algorithms
rely on the use of the shortest path from the root-node to
every other node, and this path might not be available for some
nodes because the distance limit varyies with the number of
nodes in the tree. All the experiments where performed on
a 39-node cluster, each node features a 2 Intel Xeon E5430
processors at 2.66Ghz and 12 GB of RAM memory. For each
instance we report the average performance of 10 independent
executions with a 5-minute time limit. We would like to remark
that we experimented with the MIP model using CPLEX, but
the complete solver does not scale up to more than a few tens
of customers per exchange site (usually 30).

In this paper we present experimental results for 300
instances corresponding to exchange sites from real networks
from Ireland (randomly selected out of 1121 ones in the
country). The selected exchange sites cover 543697 customers
(out of 2189120) distributed among the country. In preliminary
experiments not presented in this paper, we observed that the
subtree operator outperformed the node operator, and therefore
we limit our attention to only subtree move operator. Figure 5
shows the number of customers per instance, as it can be
observed due to the geographic of the country the size of the
instances vary from dense areas with up to 11000 customers
per instance and rural areas with at least 70 customers per
instance. Figure 6 shows an example of the resulting tree after
applying the proposed constraint-based local search algorithm,
this instance contains 6419 customers and the solution features
16 cable tree networks (or PONs).

Figure 7 depicts the histogram of the distribution of the
distances from the facility to the customers using the flexible

Fig. 6. Solution example for a local exchange with 6419 customers
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Fig. 7. Histogram of distances from customers to the facility

and fixed number of cable tree networks as well as the direct
connection of the customer to the facility. As one might have
expected the distribution exhibits a long tail where a vast
majority of users are within the first few kms of the facility.
Nearly all instances are about 5km (direct connection), 10
km (fix number of cable tree networks), and 13 km (flexible
number of cable tree networks).

Table V reports total number of cable networks for each
capacity type, the number of customers covered, and the
average min, max, average distance from the facility (ES)
to any customer. In general the fixed approach uses a fewer
number of cable networks with larger capacities. Indeed this
approach only uses cable networks with capacities 512, 256,
64, and 8, while the flexible approach spreads the use of
all cable networks of different capacities in order to improve
in the overall cable fibre cost. Additionally, as expected 512
cable networks are covering the majority of customers about
95% (Fixed) and 79% (Flexible) of the sampled population of
Ireland.

In addition to the summary of the overall usage of cable
networks of different capacity types, Figure 8 depicts the
histogram with the distribution of the number of networks



TABLE II. CABLE TREE NETWORK USAGE STATISTICS

Type Alg Cable Network Customers Min Max Avg

512 Fix 1106.9 519803.0 0.32 8.39 3.91
Flex 979.4 432066.8 0.36 8.04 3.89

256 Fix 147.0 32625.5 0.39 11.19 5.54
Flex 569.3 125031.2 0.42 10.4 5.28

128 Fix 15.0 1660.2 0.53 11.01 4.88
Flex 132.4 13564.7 0.49 7.54 3.87

64 Fix 1.0 53.0 0.29 4.60 2.17
Flex 44.1 2273.0 0.45 3.71 2.08

32 Fix – – – – –
Flex 33.3 792.2 0.34 1.93 1.13

16 Fix – – – – –
Flex 22.3 277.4 0.42 2.23 1.26

8 Fix 2.0 11.0 2.59 2.95 2.75
Flex 31.5 201.4 0.43 1.35 0.83

4 Fix – – – – –
Flex 27.4 90.5 0.23 0.48 0.36

2 Fix – – – – –
Flex 25.7 51.5 0.29 0.51 0.40

1 Fix – – – – –
Flex 34.6 34.6 0.20 0.20 0.20
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Fig. 8. Histogram of number of cable tree networks per facility

TABLE III. PERFORMANCE SUMMARY, TOTAL NUMBER OF CABLE
TREE NETWORKS AND AVERAGE CABLE FIBRE COST

Algorithm #Cable Networks Cost
Direct 5436797.0 3863.6
Fix 1271.9 241.6
Flexible 1877.7 161.3

per instance. As expected since a majority of customers are
grouped into individual exchange sites (i.e., instances), the
majority of the cable networks are required to cover about
30 instances. It is worth noticing that the remaining 270
instances require a very low number of cable networks and
for illustrative proposes those cable networks were removed
in the figure.

In Table III we report a performance summary of the
average performance of the fix and flexible approaches. In this
table, we observe the trade-off between minimising number of
cable networks and their cable cost in terms of distance. In
general, we expect that a flexible approach would provide a
better global cable cost and the fix approach would be the best
one w.r.t. the number of cable networks. In these experiments
we observed that the fixed approach reports a 32% fewer
number of tree networks at a cost of 33% increasing in the
total cable cost w.r.t. the flexible approach. As expected the
direct connection of customer to the exchange site reports the
worse results for both objectives.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an efficient local search algorithm for
solving Distance and Capacity Bounded Network Design Prob-
lems. We presented two novel move operators along with their
complexities and incremental evaluation of the neighborhood
and the objective function. The effectiveness of our approach is
demonstrated by experimenting with a set of problem instances
taken from real-world networks form Ireland.

In the future we would like to experiment with the option
of optional nodes, since this is a requirement in several
applications, and also plan to experiment with instances for
bigger countries such as Italy and the UK. Finally, we also
plan to use the proposed framework to tackle other problems
in the context of the multiple travelling salesman and vehicle
routing problems.
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